1
|
Gong Y, Korzekwa K, Nagar S. Rat PermQ: A permeability- and perfusion-based physiologically based pharmacokinetic model for improved prediction of drug concentration-time profiles in rat. Drug Metab Dispos 2025; 53:100033. [PMID: 40023575 DOI: 10.1016/j.dmd.2024.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/10/2024] [Indexed: 03/04/2025] Open
Abstract
A new rat permeability- and perfusion-limited physiologically based pharmacokinetic model, "rat PermQ," was developed with the goal of improving concentration-time (C-t) predictions of drugs. Similar to the previously published human PermQ, drugs can reversibly distribute between capillaries and interstitial fluid by fenestra or discontinuities in capillaries or by transcellular diffusion through endothelial cells. Drugs also can be partitioned into intracellular phospholipids and neutral lipids in the cytosol. For acidic drugs, active uptake transport and an empirical protein binding correction factor were considered. A shallow distribution compartment was added for basic drugs to account for early distribution. In vitro and in vivo experimental inputs were collected in-house or from the literature. C-t profiles were predicted for 7 drugs (2 acidic, 2 neutral, and 3 basic) with 3 models: Rodgers and Rowland (RR), a perfusion-limited membrane-based model, and rat PermQ. Results indicate the importance of consistent, species-specific in vitro inputs. In general, rat PermQ predicted C-t profiles at least as well as the other models. For acidic drugs, rat PermQ predictions improved with incorporation of uptake transport and the empirical protein binding factor. For neutral drugs, RR predicted digoxin C-t profiles better compared with rat PermQ, while midazolam predictions with rat PermQ were improved with the use of in-house in vitro experimental inputs. Rat PermQ predicted C-t profiles for all 3 bases better than RR and perfusion-limited membrane-based model, and addition of a shallow compartment greatly improved the predictions. Rat and human PermQ allowed several hypotheses to be simulated for putative uptake mechanisms for atenolol and glyburide. SIGNIFICANCE STATEMENT: A new physiologically based pharmacokinetic framework, rat PermQ, was developed. This model predicted plasma concentration-time profiles of the tested drugs as well as or better than published physiologically based pharmacokinetic models. PermQ allowed several hypotheses to be simulated for uptake mechanisms in rats and humans. The work highlights the importance of accurate in vitro parameters such as drug plasma protein binding and blood-to-plasma ratio. The model can aid in testing new hypotheses to explain poorly understood observations in distribution and elimination of drugs.
Collapse
Affiliation(s)
- Yifan Gong
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania.
| |
Collapse
|
2
|
Song Y, Wu Y, Ding F, Li S, Shen Y, Yang B, Tang X, Ren L, Deng L, Jin X, Yan Y. The Preventive and Therapeutic Effects of Acute and Severe Inflammatory Disorders with Heparin and Heparinoid. Biomolecules 2024; 14:1078. [PMID: 39334845 PMCID: PMC11430252 DOI: 10.3390/biom14091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Systematic inflammatory response syndrome (SIRS) and the accompanying sepsis pose a huge threat to human health worldwide. Heparin is a part of the standard supportive care for the disease. However, the molecular mechanism is not fully understood yet, and the potential signaling pathways that play key roles have not yet been elucidated. In this paper, the main findings regarding the molecular mechanisms associated with the beneficial effects of heparin, including inhibiting HMGB-1-driven inflammation reactions, histone-induced toxicity, thrombo-inflammatory response control and the new emerging mechanisms are concluded. To set up the link between the preclinical research and the clinical effects, the outcomes of the clinical trials are summarized. Then, the structure and function relationship of heparin is discussed. By providing an updated analysis of the above results, the paper highlights the feasibility of heparin as a possible alternative for sepsis prophylaxis and therapy.
Collapse
Affiliation(s)
- Ying Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Fangfang Ding
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuo Li
- Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518118, China
| | - Yaojia Shen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Bingyan Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xinran Tang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lige Ren
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Lirong Deng
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Xuewen Jin
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Yishu Yan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Bender M, Abicht JM, Reichart B, Leuschen M, Wall F, Radan J, Neumann E, Mokelke M, Buttgereit I, Michel S, Ellgass R, Gieseke K, Steen S, Paskevicius A, Denner J, Godehardt AW, Tönjes RR, Hagl C, Ayares D, Wolf E, Schmoeckel M, Brenner P, Müller MB, Längin M. The Endothelial Glycocalyx in Pig-to-Baboon Cardiac Xenotransplantation-First Insights. Biomedicines 2024; 12:1336. [PMID: 38927543 PMCID: PMC11201800 DOI: 10.3390/biomedicines12061336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiac xenotransplantation has seen remarkable success in recent years and is emerging as the most promising alternative to human cardiac allotransplantation. Despite these achievements, acute vascular rejection still presents a challenge for long-term xenograft acceptance and new insights into innate and adaptive immune responses as well as detailed characterizations of signaling pathways are necessary. In allotransplantation, endothelial cells and their sugar-rich surface-the endothelial glycocalyx-are known to influence organ rejection. In xenotransplantation, however, only in vitro data exist on the role of the endothelial glycocalyx so far. Thus, in the current study, we analyzed the changes of the endothelial glycocalyx components hyaluronan, heparan sulfate and syndecan-1 after pig-to-baboon cardiac xenotransplantations in the perioperative (n = 4) and postoperative (n = 5) periods. These analyses provide first insights into changes of the endothelial glycocalyx after pig-to-baboon cardiac xenotransplantation and show that damage to the endothelial glycocalyx seems to be comparable or even less pronounced than in similar human settings when current strategies of cardiac xenotransplantation are applied. At the same time, data from the experiments where current strategies, like non-ischemic preservation, growth inhibition or porcine cytomegalovirus (a porcine roseolovirus (PCMV/PRV)) elimination could not be applied indicate that damage of the endothelial glycocalyx also plays an important role in cardiac xenotransplantation.
Collapse
Affiliation(s)
- Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maria Leuschen
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Felicia Wall
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Katja Gieseke
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Antonia W. Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ralf R. Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany
| | - Michael Schmoeckel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Martin B. Müller
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
4
|
Tay EA, Vijayakumar V, Morales RF, Lee ES, Teo A. Protecting the endothelial glycocalyx in COVID-19. PLoS Pathog 2024; 20:e1012203. [PMID: 38753622 PMCID: PMC11098429 DOI: 10.1371/journal.ppat.1012203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Affiliation(s)
- Emira Adam Tay
- School of Applied Science, Republic Polytechnic, Singapore, Singapore
| | | | | | - Ee Soo Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Andrew Teo
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Xu H, Wang Y, Yu C, Han C, Cui H. Heparin-Modified Superparamagnetic Iron Oxide Nanoparticles Suppress Lithium Chloride/Pilocarpine-Induced Temporal Lobe Epilepsy in Rats through Attenuation of Inflammation and Oxidative Stress. ACS Chem Neurosci 2024; 15:1937-1947. [PMID: 38630556 DOI: 10.1021/acschemneuro.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The development of antiepileptic drugs is still a long process. In this study, heparin-modified superparamagnetic iron oxide nanoparticles (UFH-SPIONs) were prepared, and their antiepileptic effect and underlying mechanism were investigated. UFH-SPIONs are stable, homogeneous nanosystems with antioxidant enzyme activity that are able to cross the blood-brain barrier (BBB) and enriched in hippocampal epileptogenic foci. The pretreatment with UFH-SPIONs effectively prolonged the onset of seizures and reduced seizure severity after lithium/pilocarpine (LP)-induced seizures in rats. The pretreatment with UFH-SPIONs significantly decreased the expression of inflammatory factors in hippocampal tissues, including IL-6, IL-1β, and TNF-α. LP-induced oxidative stress in hippocampal tissues was in turn reduced upon pretreatment with UFH-SPIONs, as evidenced by an increase in the levels of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and a decrease in the level of lipid peroxidation (MDA). Moreover, the LP-induced upregulation of apoptotic cells was decreased upon pretreatment with UFH-SPIONs. Together, these observations suggest that the pretreatment with UFH-SPIONs ameliorates LP-induced seizures and downregulates the inflammatory response and oxidative stress, which exerts neuronal protection during epilepsy.
Collapse
Affiliation(s)
- Hanbing Xu
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yubo Wang
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Congcong Yu
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunhong Han
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huifei Cui
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- National Glycoengineering Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
6
|
Owens CD, Bonin Pinto C, Detwiler S, Olay L, Pinaffi-Langley ACDC, Mukli P, Peterfi A, Szarvas Z, James JA, Galvan V, Tarantini S, Csiszar A, Ungvari Z, Kirkpatrick AC, Prodan CI, Yabluchanskiy A. Neurovascular coupling impairment as a mechanism for cognitive deficits in COVID-19. Brain Commun 2024; 6:fcae080. [PMID: 38495306 PMCID: PMC10943572 DOI: 10.1093/braincomms/fcae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Components that comprise our brain parenchymal and cerebrovascular structures provide a homeostatic environment for proper neuronal function to ensure normal cognition. Cerebral insults (e.g. ischaemia, microbleeds and infection) alter cellular structures and physiologic processes within the neurovascular unit and contribute to cognitive dysfunction. COVID-19 has posed significant complications during acute and convalescent stages in multiple organ systems, including the brain. Cognitive impairment is a prevalent complication in COVID-19 patients, irrespective of severity of acute SARS-CoV-2 infection. Moreover, overwhelming evidence from in vitro, preclinical and clinical studies has reported SARS-CoV-2-induced pathologies in components of the neurovascular unit that are associated with cognitive impairment. Neurovascular unit disruption alters the neurovascular coupling response, a critical mechanism that regulates cerebromicrovascular blood flow to meet the energetic demands of locally active neurons. Normal cognitive processing is achieved through the neurovascular coupling response and involves the coordinated action of brain parenchymal cells (i.e. neurons and glia) and cerebrovascular cell types (i.e. endothelia, smooth muscle cells and pericytes). However, current work on COVID-19-induced cognitive impairment has yet to investigate disruption of neurovascular coupling as a causal factor. Hence, in this review, we aim to describe SARS-CoV-2's effects on the neurovascular unit and how they can impact neurovascular coupling and contribute to cognitive decline in acute and convalescent stages of the disease. Additionally, we explore potential therapeutic interventions to mitigate COVID-19-induced cognitive impairment. Given the great impact of cognitive impairment associated with COVID-19 on both individuals and public health, the necessity for a coordinated effort from fundamental scientific research to clinical application becomes imperative. This integrated endeavour is crucial for mitigating the cognitive deficits induced by COVID-19 and its subsequent burden in this especially vulnerable population.
Collapse
Affiliation(s)
- Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sam Detwiler
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Lauren Olay
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Ana Clara da C Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Judith A James
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Veronica Galvan
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
7
|
Lui KO, Ma Z, Dimmeler S. SARS-CoV-2 induced vascular endothelial dysfunction: direct or indirect effects? Cardiovasc Res 2024; 120:34-43. [PMID: 38159046 DOI: 10.1093/cvr/cvad191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024] Open
Abstract
Clinical evidence reveals that manifestations of endothelial dysfunction are widely observed in COVID-19 and long-COVID patients. However, whether these detrimental effects are caused by direct infection of the endothelium or are indirectly mediated by systemic inflammation has been a matter of debate. It has been well acknowledged that endothelial cells (ECs) of the cardiovascular system ubiquitously express the SARS-CoV-2 entry receptor angiotensin-converting enzyme 2 (ACE2), yet accumulating evidence suggests that it is more predominantly expressed by pericytes and vascular smooth muscle cells of the mammalian blood vessel. Besides, replicative infection of ECs by SARS-CoV-2 has yet to be demonstrated both in vitro and in vivo. In this study, we review latest research on endothelial ACE2 expression in different vascular beds, and the heterogeneity in various EC subsets with differential ACE2 expression in response to SARS-CoV-2. We also discuss ACE2-independent alternative mechanisms underlying endothelial activation in COVID-19, and the clinical manifestations of SARS-CoV-2-induced endothelial dysfunction. Altogether, understanding ACE2-dependent and ACE2-independent mechanisms driving SARS-CoV-2-induced vascular dysfunction would shed light on strategies of more effective therapies targeting cardiovascular complications associated with COVID-19.
Collapse
Affiliation(s)
- Kathy O Lui
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Sha Tin, New Territories, 999077 Hong Kong, China
| | - Zhangjing Ma
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Sha Tin, New Territories, 999077 Hong Kong, China
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, and Faculty of Biological Sciences, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
8
|
Badulescu OV, Badescu MC, Bojan IB, Vladeanu M, Filip N, Dobreanu S, Tudor R, Ciuntu BM, Tanevski A, Ciocoiu M. Thrombotic Disease in Hemophilic Patients: Is This a Paradox in a State of Hypocoagulability? Diagnostics (Basel) 2024; 14:286. [PMID: 38337802 PMCID: PMC10854955 DOI: 10.3390/diagnostics14030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Hemophilia patients have a deficiency in or dysfunction of clotting factors, which can lead to a bleeding tendency. However, paradoxically, some hemophilia patients may also be at an increased risk of developing thrombotic events such as deep vein thrombosis or pulmonary embolism. The pathophysiology of thrombosis in hemophilia patients is not fully understood, but it is thought to involve a complex interplay of various factors, including the severity of the hemophilia, the presence of other risk factors such as obesity, smoking, or the use of hormonal therapies, and the presence of certain genetic mutations that increase the risk of thrombosis. In addition, it has been suggested that the use of clotting factor replacement therapy, which is a standard treatment for hemophilia, may also contribute to the development of thrombosis in some cases.
Collapse
Affiliation(s)
- Oana Viola Badulescu
- Department of Pathophysiology, Morpho-Functional Sciences (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.V.B.); (M.V.); (M.C.)
| | - Minerva Codruta Badescu
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Iris Bararu Bojan
- Department of Pathophysiology, Morpho-Functional Sciences (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.V.B.); (M.V.); (M.C.)
| | - Maria Vladeanu
- Department of Pathophysiology, Morpho-Functional Sciences (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.V.B.); (M.V.); (M.C.)
| | - Nina Filip
- Department of Biochemistry, Morpho-Functional Sciences (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Stefan Dobreanu
- Institute of Cardiovascular Diseases, G.I.M. Georgescu, 700503 Iasi, Romania
| | - Razvan Tudor
- Department of Orthopedics and Traumatology, Surgical Science (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Bogdan-Mihnea Ciuntu
- Department of General Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (B.-M.C.); (A.T.)
| | - Adelina Tanevski
- Department of General Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (B.-M.C.); (A.T.)
| | - Manuela Ciocoiu
- Department of Pathophysiology, Morpho-Functional Sciences (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.V.B.); (M.V.); (M.C.)
| |
Collapse
|
9
|
Shuldyakov AA, Smagina AN, Ramazanova KK, Lyapina EP, Chabbarov YR, Sheshina NA, Zhuk AA. [Pathogenetic approaches to the correction of vascular homeostasis in patients with COVID-19: A review]. TERAPEVT ARKH 2023; 95:1004-1008. [PMID: 38158960 DOI: 10.26442/00403660.2023.11.202487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
The adverse outcomes in patients with COVID-19 in the initial phase of the disease are often due to the development of cytokine storm, endothelial dysfunction, shifts in the hemostasis system, microangiopathy, angiocentric inflammation, and pathological angiogenesis, which require targeted therapy. Unfortunately, to date, there is still no drug with proven high efficacy. This review is to analyse the literature data on the pathogenesis of vascular homeostasis lesions and possible ways to correct the existing shifts in patients with COVID-19. When the oxygen content in the tissue decreases, one of the most important mechanisms of adaptation is the activation of the succinate oxidase pathway, but under conditions of prolonged hypoxia and intoxication, the succinate reserve is rapidly depleted. That is why exogenous of succinic acid can enhance the adaptive capabilities of the organism and improve the prognosis in patients with COVID-19. Succinic acid preparations contribute to normalization of energy exchange and reduction of oxidative stress, especially in combination with inosine, nicotinamide and riboflavin and are widely used in clinical practice in various nosological forms. Taking into account the analysis of data on the mechanisms of clinical effects of succinate-containing preparations, this group of drugs can be considered as promising with regard to the correction of vascular disorders in COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | - A A Zhuk
- Razumovsky Saratov State Medical University
| |
Collapse
|
10
|
Jones EAV. Mechanism of COVID-19-Induced Cardiac Damage from Patient, In Vitro and Animal Studies. Curr Heart Fail Rep 2023; 20:451-460. [PMID: 37526812 PMCID: PMC10589152 DOI: 10.1007/s11897-023-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE OF REVIEW Though patient studies have been important for understanding the disease, research done in animals and cell culture complement our knowledge from patient data and provide insight into the mechanism of the disease. Understanding how COVID causes damage to the heart is essential to understanding possible long-term consequences. RECENT FINDINGS COVID-19 is primarily a disease that attacks the lungs; however, it is known to have important consequences in many other tissues including the heart. Though myocarditis does occur in some patients, for most cases of cardiac damage, the injury arises from scarring either due to myocardial infarction or micro-infarction. The main focus is on how COVID affects blood flow through the coronaries. We review how endothelial activation leads to a hypercoagulative state in COVID-19. We also emphasize the effects that the cytokine storm can directly have on the regulation of coronary blood flow. Since the main two cell types that can be infected in the heart are pericytes and cardiomyocytes, we further describe the known effects on pericyte function and how that can further lead to microinfarcts within the heart. Though many of these effects are systemic, this review focuses on the consequences on cardiac tissue of this dysregulation and the role that it has in the formation of myocardial scarring.
Collapse
Affiliation(s)
- Elizabeth A V Jones
- Centre for Molecular and Vascular Biology, Herestraat 49, Bus 911, 3000, KU, Leuven, Belgium.
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, Netherlands.
| |
Collapse
|
11
|
Feng K, Wang K, Zhou Y, Xue H, Wang F, Jin H, Zhao W. Non-Anticoagulant Activities of Low Molecular Weight Heparins-A Review. Pharmaceuticals (Basel) 2023; 16:1254. [PMID: 37765064 PMCID: PMC10537022 DOI: 10.3390/ph16091254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Low molecular weight heparins (LMWHs) are derived from heparin through chemical or enzymatic cleavage with an average molecular weight (Mw) of 2000-8000 Da. They exhibit more selective activities and advantages over heparin, causing fewer side effects, such as bleeding and heparin-induced thrombocytopenia. Due to different preparation methods, LMWHs have diverse structures and extensive biological activities. In this review, we describe the basic preparation methods in this field and compare the main principles and advantages of these specific methods in detail. Importantly, we focus on the non-anticoagulant pharmacological effects of LMWHs and their conjugates, such as preventing glycocalyx shedding, anti-inflammatory, antiviral infection, anti-fibrosis, inhibiting angiogenesis, inhibiting cell adhesion and improving endothelial function. LMWHs are effective in various diseases at the animal level, including cancer, some viral diseases, fibrotic diseases, and obstetric diseases. Finally, we briefly summarize their usage and potential applications in the clinic to promote the development and utilization of LMWHs.
Collapse
Affiliation(s)
- Ke Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Kaixuan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Yu Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Haoyu Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Fang Wang
- Department of Stomatology, Tianjin Nankai Hospital, 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Hongzhen Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| |
Collapse
|
12
|
Lv B, Huang S, Huang H, Niu N, Liu J. Endothelial Glycocalyx Injury in SARS-CoV-2 Infection: Molecular Mechanisms and Potential Targeted Therapy. Mediators Inflamm 2023; 2023:6685251. [PMID: 37674786 PMCID: PMC10480029 DOI: 10.1155/2023/6685251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
This review aims at summarizing state-of-the-art knowledge on glycocalyx and SARS-CoV-2. The endothelial glycocalyx is a dynamic grid overlying the surface of the endothelial cell (EC) lumen and consists of membrane-bound proteoglycans and glycoproteins. The role of glycocalyx has been determined in the regulation of EC permeability, adhesion, and coagulation. SARS-CoV-2 is an enveloped, single-stranded RNA virus belonging to β-coronavirus that causes the outbreak and the pandemic of COVID-19. Through the respiratory tract, SARS-CoV-2 enters blood circulation and interacts with ECs possessing angiotensin-converting enzyme 2 (ACE2). Intact glycolyx prevents SARS-CoV-2 invasion of ECs. When the glycocalyx is incomplete, virus spike protein of SARS-CoV-2 binds with ACE2 and enters ECs for replication. In addition, cytokine storm targets glycocalyx, leading to subsequent coagulation disorder. Therefore, it is intriguing to develop a novel treatment for SARS-CoV-2 infection through the maintenance of the integrity of glycocalyx. This review aims to summarize state-of-the-art knowledge of glycocalyx and its potential function in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bingxuan Lv
- The Second Hospital of Shandong University, Shandong University, 247 Beiyuan Street, Jinan 250033, China
| | - Shengshi Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Hong Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Na Niu
- Department of Pediatrics, Shandong Provincial Hospital, Shandong First Medical University, 324 Jingwu Road, Jinan 250021, China
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| |
Collapse
|
13
|
Wang LJ, Feng F, Li JC, Chen TT, Liu LP. Role of heparanase in pulmonary hypertension. Front Pharmacol 2023; 14:1202676. [PMID: 37637421 PMCID: PMC10450954 DOI: 10.3389/fphar.2023.1202676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathophysiological condition of increased pulmonary circulation vascular resistance due to various reasons, which mainly leads to right heart dysfunction and even death, especially in critically ill patients. Although drug interventions have shown some efficacy in improving the hemodynamics of PH patients, the mortality rate remains high. Hence, the identification of new targets and treatment strategies for PH is imperative. Heparanase (HPA) is an enzyme that specifically cleaves the heparan sulfate (HS) side chains in the extracellular matrix, playing critical roles in inflammation and tumorigenesis. Recent studies have indicated a close association between HPA and PH, suggesting HPA as a potential therapeutic target. This review examines the involvement of HPA in PH pathogenesis, including its effects on endothelial cells, inflammation, and coagulation. Furthermore, HPA may serve as a biomarker for diagnosing PH, and the development of HPA inhibitors holds promise as a targeted therapy for PH treatment.
Collapse
Affiliation(s)
- Lin-Jun Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Fei Feng
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Jian-Chun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Ting-Ting Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Li-Ping Liu
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
14
|
Shabani Z, Liu J, Su H. Vascular Dysfunctions Contribute to the Long-Term Cognitive Deficits Following COVID-19. BIOLOGY 2023; 12:1106. [PMID: 37626992 PMCID: PMC10451811 DOI: 10.3390/biology12081106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus and a member of the corona virus family, primarily affecting the upper respiratory system and the lungs. Like many other respiratory viruses, SARS-CoV-2 can spread to other organ systems. Apart from causing diarrhea, another very common but debilitating complication caused by SARS-CoV-2 is neurological symptoms and cognitive difficulties, which occur in up to two thirds of hospitalized COVID-19 patients and range from shortness of concentration and overall declined cognitive speed to executive or memory function impairment. Neuro-cognitive dysfunction and "brain fog" are frequently present in COVID-19 cases, which can last several months after the infection, leading to disruption of daily life. Cumulative evidence suggests that SARS-CoV-2 affects vasculature in the extra-pulmonary systems directly or indirectly, leading to impairment of endothelial function and even multi-organ damage. The post COVID-19 long-lasting neurocognitive impairments have not been studied fully and their underlying mechanism remains elusive. In this review, we summarize the current understanding of the effects of COVID-19 on vascular dysfunction and how vascular dysfunction leads to cognitive impairment in patients.
Collapse
Affiliation(s)
- Zahra Shabani
- Center for Cerebrovascular Research, University of California (San Francisco), San Francisco, CA 94131, USA;
- Department of Anesthesia and Perioperative Care, University of California (San Francisco), San Francisco, CA 94131, USA
| | - Jialing Liu
- Department of Neurosurgery, University of California (San Francisco), San Francisco, CA 94131, USA;
| | - Hua Su
- Center for Cerebrovascular Research, University of California (San Francisco), San Francisco, CA 94131, USA;
- Department of Anesthesia and Perioperative Care, University of California (San Francisco), San Francisco, CA 94131, USA
| |
Collapse
|
15
|
Ying J, Zhang C, Wang Y, Liu T, Yu Z, Wang K, Chen W, Zhou Y, Lu G. Sulodexide improves vascular permeability via glycocalyx remodelling in endothelial cells during sepsis. Front Immunol 2023; 14:1172892. [PMID: 37614234 PMCID: PMC10444196 DOI: 10.3389/fimmu.2023.1172892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
Background Degradation of the endothelial glycocalyx is critical for sepsis-associated lung injury and pulmonary vascular permeability. We investigated whether sulodexide, a precursor for the synthesis of glycosaminoglycans, plays a biological role in glycocalyx remodeling and improves endothelial barrier dysfunction in sepsis. Methods The number of children with septic shock that were admitted to the PICU at Children's Hospital of Fudan University who enrolled in the study was 28. On days one and three after enrollment, venous blood samples were collected, and heparan sulfate, and syndecan-1 (SDC1) were assayed in the plasma. We established a cell model of glycocalyx shedding by heparinase III and induced sepsis in a mouse model via lipopolysaccharide (LPS) injection and cecal ligation and puncture (CLP). Sulodexide was administrated to prevent endothelial glycocalyx damage. Endothelial barrier function and expression of endothelial-related proteins were determined using permeability, western blot and immunofluorescent staining. The survival rate, histopathology evaluation of lungs and wet-to-dry lung weight ratio were also evaluated. Results We found that circulating SDC1 levels were persistently upregulated in the non-alive group on days 1 and 3 and were positively correlated with IL-6 levels. Receiver operating characteristic curve analysis showed that SDC1 could distinguish patients with mortality. We showed that SDC1-shedding caused endothelial permeability in the presence of heparinase III and sepsis conditions. Mechanistically, sulodexide (30 LSU/mL) administration markedly inhibited SDC1 shedding and prevented endothelial permeability with zonula occludens-1 (ZO-1) upregulation via NF-κB/ZO-1 pathway. In mice with LPS and CLP-induced sepsis, sulodexide (40 mg/kg) administration decreased the plasma levels of SDC1 and increased survival rate. Additionally, sulodexide alleviated lung injury and restored endothelial glycocalyx damage. Conlusions In conclusion, our data suggest that SDC1 predicts prognosis in children with septic shock and sulodexide may have therapeutic potential for the treatment of sepsis-associated endothelial dysfunction.
Collapse
Affiliation(s)
- Jiayun Ying
- Department of Critical Care Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Caiyan Zhang
- Department of Critical Care Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yaodong Wang
- Department of Critical Care Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Tingyan Liu
- Department of Critical Care Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Zhenhao Yu
- Department of Critical Care Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Kexin Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Weiming Chen
- Department of Critical Care Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yufeng Zhou
- Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
- State-level Reginal Children’s Medical Center, Children’s Hospital Of Fudan University at Xiamen (Xiamen Children’s Hospital), Fujian Provincial Key Laboratory of Neonatal Diseases, Fujian, China
| | - Guoping Lu
- Department of Critical Care Medicine, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
16
|
Teo A, Chan LLY, Cheung C, Chia PY, Ong SWX, Fong SW, Ng LFP, Renia L, Lye DC, Young BE, Yeo TW. Myeloperoxidase inhibition may protect against endothelial glycocalyx shedding induced by COVID-19 plasma. COMMUNICATIONS MEDICINE 2023; 3:62. [PMID: 37147421 PMCID: PMC10160718 DOI: 10.1038/s43856-023-00293-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND SARS-CoV-2, the causative agent of COVID-19, is a threat to public health. Evidence suggests increased neutrophil activation and endothelial glycocalyx (EG) damage are independently associated with severe COVID-19. Here, we hypothesised that an increased level of blood neutrophil myeloperoxidase (MPO) is associated with soluble EG breakdown, and inhibiting MPO activity may reduce EG damage. METHODS Analysing a subset of acute and convalescent COVID-19 plasma, 10 from severe and 15 from non-severe COVID-19 cases, and 9 from pre-COVID-19 controls, we determined MPO levels, MPO activity and soluble EG proteins (syndecan-1 and glypican-1) levels by enzyme-linked immunosorbent assay. In vitro primary human aortic endothelial cells were cultured with plasma untreated or treated with specific MPO inhibitors (MPO-IN-28, AZD5904) to determine EG shedding. We then investigated whether inhibiting MPO activity decreased EG degradation. RESULTS In COVID-19 plasma, MPO levels, MPO activity and levels of soluble EG proteins are significantly raised compared to controls, and concentrations increase in proportion to disease severity. Despite clinical recovery, protein concentrations remain significantly elevated. Interestingly, there is a trend of increasing MPO activity in convalescent plasma in both severe and non-severe groups. MPO levels and MPO activity correlate significantly with soluble EG levels and inhibiting MPO activity leads to reduced syndecan-1 shedding, in vitro. CONCLUSIONS Neutrophil MPO may increase EG shedding in COVID-19, and inhibiting MPO activity may protect against EG degradation. Further research is needed to evaluate the utility of MPO inhibitors as potential therapeutics against severe COVID-19.
Collapse
Affiliation(s)
- Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.
- National Centre for Infectious Diseases, Singapore, Singapore.
| | - Louisa L Y Chan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science and Technology and Research (A*STAR), Singapore, Singapore
| | - Po Ying Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Sean Wei Xiang Ong
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Siew Wai Fong
- A*STAR Infectious Diseases Lab (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #05-13, Singapore, 138648, Singapore
| | - Lisa F P Ng
- A*STAR Infectious Diseases Lab (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #05-13, Singapore, 138648, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Laurent Renia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- A*STAR Infectious Diseases Lab (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #05-13, Singapore, 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - David Chien Lye
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Barnaby Edward Young
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Tsin Wen Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
17
|
Vassiliou AG, Vrettou CS, Keskinidou C, Dimopoulou I, Kotanidou A, Orfanos SE. Endotheliopathy in Acute COVID-19 and Long COVID. Int J Mol Sci 2023; 24:8237. [PMID: 37175942 PMCID: PMC10179170 DOI: 10.3390/ijms24098237] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
The pulmonary endothelium is a highly regulated organ that performs a wide range of functions under physiological and pathological conditions. Since endothelial dysfunction has been demonstrated to play a direct role in sepsis and acute respiratory distress syndrome, its role in COVID-19 has also been extensively investigated. Indeed, apart from the COVID-19-associated coagulopathy biomarkers, new biomarkers were recognised early during the pandemic, including markers of endothelial cell activation or injury. We systematically searched the literature up to 10 March 2023 for studies examining the association between acute and long COVID-19 severity and outcomes and endothelial biomarkers.
Collapse
Affiliation(s)
- Alice G. Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (C.K.); (I.D.); (A.K.)
| | | | | | | | | | - Stylianos E. Orfanos
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (C.K.); (I.D.); (A.K.)
| |
Collapse
|
18
|
Shute JK. Heparin, Low Molecular Weight Heparin, and Non-Anticoagulant Derivatives for the Treatment of Inflammatory Lung Disease. Pharmaceuticals (Basel) 2023; 16:ph16040584. [PMID: 37111341 PMCID: PMC10141002 DOI: 10.3390/ph16040584] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Unfractionated heparin has multiple pharmacological activities beyond anticoagulation. These anti-inflammatory, anti-microbial, and mucoactive activities are shared in part by low molecular weight and non-anticoagulant heparin derivatives. Anti-inflammatory activities include inhibition of chemokine activity and cytokine synthesis, inhibitory effects on the mechanisms of adhesion and diapedesis involved in neutrophil recruitment, inhibition of heparanase activity, inhibition of the proteases of the coagulation and complement cascades, inhibition of neutrophil elastase activity, neutralisation of toxic basic histones, and inhibition of HMGB1 activity. This review considers the potential for heparin and its derivatives to treat inflammatory lung disease, including COVID-19, ALI, ARDS, cystic fibrosis, asthma, and COPD via the inhaled route.
Collapse
Affiliation(s)
- Janis Kay Shute
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK
| |
Collapse
|
19
|
Almeida CR, Lima JF, Machado MR, Alves JV, Couto AES, Campos LCB, Avila-Mesquita CD, Auxiliadora-Martins M, Becari C, Louzada-Júnior P, Tostes RC, Lobato NS, Costa RM. Inhibition of IL-6 signaling prevents serum-induced umbilical cord artery dysfunction from patients with severe COVID-19. Am J Physiol Regul Integr Comp Physiol 2023; 324:R435-R445. [PMID: 36737252 PMCID: PMC10026982 DOI: 10.1152/ajpregu.00154.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) infection has a negative impact on the cytokine profile of pregnant women. Increased levels of proinflammatory cytokines seem to be correlated with the severity of the disease, in addition to predisposing to miscarriage or premature birth. Proinflammatory cytokines increase the generation of reactive oxygen species (ROS). It is unclear how interleukin-6 (IL-6) found in the circulation of patients with severe COVID-19 might affect gestational health, particularly concerning umbilical cord function. This study tested the hypothesis that IL-6 present in the circulation of women with severe COVID-19 causes umbilical cord artery dysfunction by increasing ROS generation and activating redox-sensitive proteins. Umbilical cord arteries were incubated with serum from healthy women and women with severe COVID-19. Vascular function was assessed using concentration-effect curves to serotonin in the presence or absence of pharmacological agents, such as tocilizumab (antibody against the IL-6 receptor), tiron (ROS scavenger), ML171 (Nox1 inhibitor), and Y27632 (Rho kinase inhibitor). ROS generation was assessed by the dihydroethidine probe and Rho kinase activity by an enzymatic assay. Umbilical arteries exposed to serum from women with severe COVID-19 were hyperreactive to serotonin. This effect was abolished in the presence of tocilizumab, tiron, ML171, and Y27632. In addition, serum from women with severe COVID-19 increased Nox1-dependent ROS generation and Rho kinase activity. Increased Rho kinase activity was abolished by tocilizumab and tiron. Serum cytokines in women with severe COVID-19 promote umbilical artery dysfunction. IL-6 is key to Nox-linked vascular oxidative stress and activation of the Rho kinase pathway.
Collapse
Affiliation(s)
- Cellyne R Almeida
- Academic Unit of Health Sciences, Federal University of Jatai, Jatai, Goias, Brazil
| | - Júlia F Lima
- Academic Unit of Health Sciences, Federal University of Jatai, Jatai, Goias, Brazil
| | - Mirele R Machado
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Juliano V Alves
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Ariel E S Couto
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Ligia C B Campos
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Carolina D Avila-Mesquita
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Maria Auxiliadora-Martins
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Christiane Becari
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Paulo Louzada-Júnior
- Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Núbia S Lobato
- Academic Unit of Health Sciences, Federal University of Jatai, Jatai, Goias, Brazil
| | - Rafael M Costa
- Academic Unit of Health Sciences, Federal University of Jatai, Jatai, Goias, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
20
|
Xu SW, Ilyas I, Weng JP. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin 2023; 44:695-709. [PMID: 36253560 PMCID: PMC9574180 DOI: 10.1038/s41401-022-00998-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/11/2022] [Indexed: 12/15/2022]
Abstract
The fight against coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is still raging. However, the pathophysiology of acute and post-acute manifestations of COVID-19 (long COVID-19) is understudied. Endothelial cells are sentinels lining the innermost layer of blood vessel that gatekeep micro- and macro-vascular health by sensing pathogen/danger signals and secreting vasoactive molecules. SARS-CoV-2 infection primarily affects the pulmonary system, but accumulating evidence suggests that it also affects the pan-vasculature in the extrapulmonary systems by directly (via virus infection) or indirectly (via cytokine storm), causing endothelial dysfunction (endotheliitis, endothelialitis and endotheliopathy) and multi-organ injury. Mounting evidence suggests that SARS-CoV-2 infection leads to multiple instances of endothelial dysfunction, including reduced nitric oxide (NO) bioavailability, oxidative stress, endothelial injury, glycocalyx/barrier disruption, hyperpermeability, inflammation/leukocyte adhesion, senescence, endothelial-to-mesenchymal transition (EndoMT), hypercoagulability, thrombosis and many others. Thus, COVID-19 is deemed as a (micro)vascular and endothelial disease. Of translational relevance, several candidate drugs which are endothelial protective have been shown to improve clinical manifestations of COVID-19 patients. The purpose of this review is to provide a latest summary of biomarkers associated with endothelial cell activation in COVID-19 and offer mechanistic insights into the molecular basis of endothelial activation/dysfunction in macro- and micro-vasculature of COVID-19 patients. We envisage further development of cellular models and suitable animal models mimicking endothelial dysfunction aspect of COVID-19 being able to accelerate the discovery of new drugs targeting endothelial dysfunction in pan-vasculature from COVID-19 patients.
Collapse
Affiliation(s)
- Suo-Wen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| | - Iqra Ilyas
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China
| | - Jian-Ping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
21
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
22
|
Longitudinal Assessment of Plasma Syndecan-1 Predicts 60-Day Mortality in Patients with COVID-19. J Clin Med 2023; 12:jcm12020552. [PMID: 36675479 PMCID: PMC9865511 DOI: 10.3390/jcm12020552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Background: Endotheliopathy is a common pathologic finding in patients with acute and long COVID-19. It may be associated with disease severity and predispose patients to long-term complications. Plasma levels of a proteoglycan, syndecan-1, are found to be significantly elevated in patients with COVID-19, but its roles in assessing disease severity and predicting long-term outcome are not fully understood. Methods: A total of 124 consecutive hospitalized patients with SARS-CoV-2 infection were prospectively enrolled and blood samples were collected on admission (T1), 3−4 days following treatment (T2), and 1−2 days prior to discharge or death (T3). Plasma levels of syndecan-1 were determined using an immunosorbent assay; various statistical analyses were performed to determine the association between plasma syndecan-1 levels and disease severity or the 60-day mortality rate. Results: Compared with those in the healthy controls, plasma levels of syndecan-1 in patients with critical COVID-19 were significantly higher (p < 0.0001). However, there was no statistically significant difference among patients with different disease severity (p > 0.05), resulting from large individual variability. Longitudinal analysis demonstrated that while the levels fluctuated during hospitalization in all patients, plasma syndecan-1 levels were persistently elevated from baseline in critical COVID-19 patients. Cox proportional hazard regression analyses revealed that elevated plasma levels of syndecan-1 (>260 ng/mL at T1, >1018 ng/mL at T2, and >461 ng/mL at T3) were significantly associated with the 60-day mortality rate. Conclusions: Endotheliopathy, marked by glycocalyx degradation and elevated plasma syndecan-1, occurs in nearly all hospitalized patients with SARS-CoV-2 infection; elevated plasma syndecan-1 is associated with increased mortality in COVID-19 patients.
Collapse
|
23
|
Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. Front Immunol 2022; 13:1039618. [PMID: 36618396 PMCID: PMC9815560 DOI: 10.3389/fimmu.2022.1039618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes respiratory insufficiency in patients with chronic liver diseases. HPS is characterized by two central pathogenic features-intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood vessels which is involved in a variety of physiological and pathophysiological processes including controlling vascular tone and angiogenesis. In terms of lung disorders, it has been well established that eGCX contributes to dysregulated vascular contraction and impaired blood-gas barrier and fluid clearance, and thus might underlie the pathogenesis of HPS. Additionally, pharmacological interventions targeting eGCX are dramatically on the rise. In this review, we aim to elucidate the potential role of eGCX in IPVD and angiogenesis and describe the possible degradation-reconstitution equilibrium of eGCX during HPS through a highlight of recent literature. These studies strongly underscore the therapeutic rationale in targeting eGCX for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yale Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| |
Collapse
|
24
|
Cusack R, Leone M, Rodriguez AH, Martin-Loeches I. Endothelial Damage and the Microcirculation in Critical Illness. Biomedicines 2022; 10:biomedicines10123150. [PMID: 36551905 PMCID: PMC9776078 DOI: 10.3390/biomedicines10123150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial integrity maintains microcirculatory flow and tissue oxygen delivery. The endothelial glycocalyx is involved in cell signalling, coagulation and inflammation. Our ability to treat critically ill and septic patients effectively is determined by understanding the underpinning biological mechanisms. Many mechanisms govern the development of sepsis and many large trials for new treatments have failed to show a benefit. Endothelial dysfunction is possibly one of these biological mechanisms. Glycocalyx damage is measured biochemically. Novel microscopy techniques now mean the glycocalyx can be indirectly visualised, using sidestream dark field imaging. How the clinical visualisation of microcirculation changes relate to biochemical laboratory measurements of glycocalyx damage is not clear. This article reviews the evidence for a relationship between clinically evaluable microcirculation and biological signal of glycocalyx disruption in various diseases in ICU. Microcirculation changes relate to biochemical evidence of glycocalyx damage in some disease states, but results are highly variable. Better understanding and larger studies of this relationship could improve phenotyping and personalised medicine in the future. Damage to the glycocalyx could underpin many critical illness pathologies and having real-time information on the glycocalyx and microcirculation in the future could improve patient stratification, diagnosis and treatment.
Collapse
Affiliation(s)
- Rachael Cusack
- Department of Intensive Care Medicine, St. James’s Hospital, James’s Street, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, College Green, D02 R590 Dublin, Ireland
| | - Marc Leone
- Department of Anaesthesiology and Intensive Care Unit, Hospital Nord, Assistance Publique Hôpitaux de Marseille, Aix Marseille University, 13015 Marseille, France
| | - Alejandro H. Rodriguez
- Intensive Care Unit, Hospital Universitario Joan XXIII, 43005 Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgil, 43007 Tarragona, Spain
- Departament Medicina I Cirurgia, Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, St. James’s Hospital, James’s Street, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, College Green, D02 R590 Dublin, Ireland
- Correspondence:
| |
Collapse
|
25
|
Pelisek J, Reutersberg B, Greber UF, Zimmermann A. Vascular dysfunction in COVID-19 patients: update on SARS-CoV-2 infection of endothelial cells and the role of long non-coding RNAs. Clin Sci (Lond) 2022; 136:1571-1590. [PMID: 36367091 PMCID: PMC9652506 DOI: 10.1042/cs20220235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 08/16/2023]
Abstract
Although COVID-19 is primarily a respiratory disease, it may affect also the cardiovascular system. COVID-19 patients with cardiovascular disorder (CVD) develop a more severe disease course with a significantly higher mortality rate than non-CVD patients. A common denominator of CVD is the dysfunction of endothelial cells (ECs), increased vascular permeability, endothelial-to-mesenchymal transition, coagulation, and inflammation. It has been assumed that clinical complications in COVID-19 patients suffering from CVD are caused by SARS-CoV-2 infection of ECs through the angiotensin-converting enzyme 2 (ACE2) receptor and the cellular transmembrane protease serine 2 (TMPRSS2) and the consequent dysfunction of the infected vascular cells. Meanwhile, other factors associated with SARS-CoV-2 entry into the host cells have been described, including disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), the C-type lectin CD209L or heparan sulfate proteoglycans (HSPG). Here, we discuss the current data about the putative entry of SARS-CoV-2 into endothelial and smooth muscle cells. Furthermore, we highlight the potential role of long non-coding RNAs (lncRNAs) affecting vascular permeability in CVD, a process that might exacerbate disease in COVID-19 patients.
Collapse
Affiliation(s)
- Jaroslav Pelisek
- Department of Vascular Surgery, University Hospital Zürich, Zürich, Switzerland
| | | | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Switzerland
| | | |
Collapse
|
26
|
Taghavi S, Abdullah S, Shaheen F, Mueller L, Gagen B, Duchesne J, Steele C, Pociask D, Kolls J, Jackson-Weaver O. Glycocalyx degradation and the endotheliopathy of viral infection. PLoS One 2022; 17:e0276232. [PMID: 36260622 PMCID: PMC9581367 DOI: 10.1371/journal.pone.0276232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
The endothelial glycocalyx (EGX) contributes to the permeability barrier of vessels and regulates the coagulation cascade. EGX damage, which occurs in numerous disease states, including sepsis and trauma, results in endotheliopathy. While influenza and other viral infections are known to cause endothelial dysfunction, their effect on the EGX has not been described. We hypothesized that the H1N1 influenza virus would cause EGX degradation. Human umbilical vein endothelial cells (HUVECs) were exposed to varying multiplicities of infection (MOI) of the H1N1 strain of influenza virus for 24 hours. A dose-dependent effect was examined by using an MOI of 5 (n = 541), 15 (n = 714), 30 (n = 596), and 60 (n = 653) and compared to a control (n = 607). Cells were fixed and stained with FITC-labelled wheat germ agglutinin to quantify EGX. There was no difference in EGX intensity after exposure to H1N1 at an MOI of 5 compared to control (6.20 vs. 6.56 Arbitrary Units (AU), p = 0.50). EGX intensity was decreased at an MOI of 15 compared to control (5.36 vs. 6.56 AU, p<0.001). The degree of EGX degradation was worse at higher doses of the H1N1 virus; however, the decrease in EGX intensity was maximized at an MOI of 30. Injury at MOI of 60 was not worse than MOI of 30. (4.17 vs. 4.47 AU, p = 0.13). The H1N1 virus induces endothelial dysfunction by causing EGX degradation in a dose-dependent fashion. Further studies are needed to characterize the role of this EGX damage in causing clinically significant lung injury during acute viral infection.
Collapse
Affiliation(s)
- Sharven Taghavi
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Sarah Abdullah
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Farhana Shaheen
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Lauren Mueller
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Brennan Gagen
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Juan Duchesne
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Chad Steele
- Department of Microbiology, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Derek Pociask
- Department of Internal Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Jay Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
| | - Olan Jackson-Weaver
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, United States of American
- * E-mail:
| |
Collapse
|
27
|
Solimando AG, Marziliano D, Ribatti D. SARS-CoV-2 and Endothelial Cells: Vascular Changes, Intussusceptive Microvascular Growth and Novel Therapeutic Windows. Biomedicines 2022; 10:2242. [PMID: 36140343 PMCID: PMC9496230 DOI: 10.3390/biomedicines10092242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial activation in infectious diseases plays a crucial role in understanding and predicting the outcomes and future treatments of several clinical conditions. COVID-19 is no exception. Moving from basic principles to novel approaches, an evolving view of endothelial activation provides insights into a better knowledge of the upstream actors in COVID-19 as a crucial future direction for managing SARS-CoV-2 and other infections. Assessing the function of resting and damaged endothelial cells in infection, particularly in COVID-19, five critical processes emerged controlling thrombo-resistance: vascular integrity, blood flow regulation, immune cell trafficking, angiogenesis and intussusceptive microvascular growth. Endothelial cell injury is associated with thrombosis, increased vessel contraction and a crucial phenomenon identified as intussusceptive microvascular growth, an unprecedented event of vessel splitting into two lumens through the integration of circulating pro-angiogenic cells. An essential awareness of endothelial cells and their phenotypic changes in COVID-19 inflammation is pivotal to understanding the vascular biology of infections and may offer crucial new therapeutic windows.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Donatello Marziliano
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
28
|
Patterson EK, Cepinskas G, Fraser DD. Endothelial Glycocalyx Degradation in Critical Illness and Injury. Front Med (Lausanne) 2022; 9:898592. [PMID: 35872762 PMCID: PMC9304628 DOI: 10.3389/fmed.2022.898592] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
The endothelial glycocalyx is a gel-like layer on the luminal side of blood vessels that is composed of glycosaminoglycans and the proteins that tether them to the plasma membrane. Interest in its properties and function has grown, particularly in the last decade, as its importance to endothelial barrier function has come to light. Endothelial glycocalyx studies have revealed that many critical illnesses result in its degradation or removal, contributing to endothelial dysfunction and barrier break-down. Loss of the endothelial glycocalyx facilitates the direct access of immune cells and deleterious agents (e.g., proteases and reactive oxygen species) to the endothelium, that can then further endothelial cell injury and dysfunction leading to complications such as edema, and thrombosis. Here, we briefly describe the endothelial glycocalyx and the primary components thought to be directly responsible for its degradation. We review recent literature relevant to glycocalyx damage in several critical illnesses (sepsis, COVID-19, trauma and diabetes) that share inflammation as a common denominator with actions by several common agents (hyaluronidases, proteases, reactive oxygen species, etc.). Finally, we briefly cover strategies and therapies that show promise in protecting or helping to rebuild the endothelial glycocalyx such as steroids, protease inhibitors, anticoagulants and resuscitation strategies.
Collapse
Affiliation(s)
- Eric K Patterson
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| | - Douglas D Fraser
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Pediatrics, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Western University, London, ON, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
29
|
Drost CC, Rovas A, Osiaevi I, Rauen M, van der Vlag J, Buijsers B, Salmenov R, Lukasz A, Pavenstädt H, Linke WA, Kümpers P. Heparanase Is a Putative Mediator of Endothelial Glycocalyx Damage in COVID-19 - A Proof-of-Concept Study. Front Immunol 2022; 13:916512. [PMID: 35757776 PMCID: PMC9226442 DOI: 10.3389/fimmu.2022.916512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a systemic disease associated with injury (thinning) of the endothelial glycocalyx (eGC), a protective layer on the vascular endothelium. The aim of this translational study was to investigate the role of the eGC-degrading enzyme heparanase (HPSE), which is known to play a central role in the destruction of the eGC in bacterial sepsis. Excess activity of HPSE in plasma from COVID-19 patients correlated with several markers of eGC damage and perfused boundary region (PBR, an inverse estimate of glycocalyx dimensions of vessels with a diameter 4-25 µm). In a series of translational experiments, we demonstrate that the changes in eGC thickness of cultured cells exposed to COVID-19 serum correlated closely with HPSE activity in concordant plasma samples (R = 0.82, P = 0.003). Inhibition of HPSE by a nonanticoagulant heparin fragment prevented eGC injury in response to COVID-19 serum, as shown by atomic force microscopy and immunofluorescence imaging. Our results suggest that the protective effect of heparin in COVID-19 may be due to an eGC-protective off-target effect.
Collapse
Affiliation(s)
- Carolin Christina Drost
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Münster, Germany
| | - Alexandros Rovas
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Münster, Germany
| | - Irina Osiaevi
- Department of Medicine A, Division of Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Münster, Germany
| | - Matthias Rauen
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Münster, Germany
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Baranca Buijsers
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rustem Salmenov
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexander Lukasz
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Münster, Germany
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Münster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Philipp Kümpers
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Münster, Germany
| |
Collapse
|
30
|
Tricarico G, Travagli V. Approach to the management of COVID-19 patients: When home care can represent the best practice. INTERNATIONAL JOURNAL OF RISK & SAFETY IN MEDICINE 2022; 33:249-259. [PMID: 35786662 DOI: 10.3233/jrs-210064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The pandemic that began around February 2020, caused by the viral pathogen SARS-CoV-2 (COVID-19), has still not completed its course at present in June 2022. OBJECTIVE The open research to date highlights just how varied and complex the outcome of the contagion can be. METHOD The clinical pictures observed following the contagion present variabilities that cannot be explained completely by the patient's age (which, with the new variants, is rapidly changing, increasingly affecting younger patients) nor by symptoms and concomitant pathologies (which are no longer proving to be decisive in recent cases) in relation to medium-to-long term sequelae. In particular, the functions of the vascular endothelium and vascular lesions at the pre-capillary level represent the source of tissue hypoxia and other damage, resulting in the clinical evolution of COVID-19. RESULTS Keeping the patient at home with targeted therapeutic support, aimed at not worsening vascular endothelium damage with early and appropriate stimulation of endothelial cells, ameliorates the glycocalyx function and improves the prognosis and, in some circumstances, could be the best practice suitable for certain patients. CONCLUSION Clinical information thus far collected may be of immense value in developing a better understanding of the present pandemic and future occurrences regarding patient safety, pharmaceutical care and therapy liability.
Collapse
Affiliation(s)
| | - Valter Travagli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.,Dipartimento di Eccellenza Nazionale, Università degli Studi di Siena, Siena, Italy
| |
Collapse
|
31
|
Zha D, Fu M, Qian Y. Vascular Endothelial Glycocalyx Damage and Potential Targeted Therapy in COVID-19. Cells 2022; 11:cells11121972. [PMID: 35741101 PMCID: PMC9221624 DOI: 10.3390/cells11121972] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is a highly infectious respiratory disease caused by a new coronavirus known as SARS-CoV-2. COVID-19 is characterized by progressive respiratory failure resulting from diffuse alveolar damage, inflammatory infiltrates, endotheliitis, and pulmonary and systemic coagulopathy forming obstructive microthrombi with multi-organ dysfunction, indicating that endothelial cells (ECs) play a central role in the pathogenesis of COVID-19. The glycocalyx is defined as a complex gel-like layer of glycosylated lipid–protein mixtures, which surrounds all living cells and acts as a buffer between the cell and the extracellular matrix. The endothelial glycocalyx layer (EGL) plays an important role in vascular homeostasis via regulating vascular permeability, cell adhesion, mechanosensing for hemodynamic shear stresses, and antithrombotic and anti-inflammatory functions. Here, we review the new findings that described EGL damage in ARDS, coagulopathy, and the multisystem inflammatory disease associated with COVID-19. Mechanistically, the inflammatory mediators, reactive oxygen species (ROS), matrix metalloproteases (MMPs), the glycocalyx fragments, and the viral proteins may contribute to endothelial glycocalyx damage in COVID-19. In addition, the potential therapeutic strategies targeting the EGL for the treatment of severe COVID-19 are summarized and discussed.
Collapse
Affiliation(s)
- Duoduo Zha
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China;
| | - Mingui Fu
- Shock/Trauma Research Center, Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA;
| | - Yisong Qian
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China;
- Correspondence:
| |
Collapse
|
32
|
Caird R, Williamson M, Yusuf A, Gogoi D, Casey M, McElvaney NG, Reeves EP. Targeting of Glycosaminoglycans in Genetic and Inflammatory Airway Disease. Int J Mol Sci 2022; 23:ijms23126400. [PMID: 35742845 PMCID: PMC9224208 DOI: 10.3390/ijms23126400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022] Open
Abstract
In the lung, glycosaminoglycans (GAGs) are dispersed in the extracellular matrix (ECM) occupying the interstitial space between the capillary endothelium and the alveolar epithelium, in the sub-epithelial tissue and in airway secretions. In addition to playing key structural roles, GAGs contribute to a number of physiologic processes ranging from cell differentiation, cell adhesion and wound healing. Cytokine and chemokine–GAG interactions are also involved in presentation of inflammatory molecules to respective receptors leading to immune cell migration and airway infiltration. More recently, pathophysiological roles of GAGs have been described. This review aims to discuss the biological roles and molecular interactions of GAGs, and their impact in the pathology of chronic airway diseases, such as cystic fibrosis and chronic obstructive pulmonary disease. Moreover, the role of GAGs in respiratory disease has been heightened by the current COVID-19 pandemic. This review underlines the essential need for continued research aimed at exploring the contribution of GAGs in the development of inflammation, to provide a better understanding of their biological impact, as well as leads in the development of new therapeutic agents.
Collapse
|
33
|
Wiernsperger N, Al-Salameh A, Cariou B, Lalau JD. Protection by metformin against severe Covid-19: an in-depth mechanistic analysis. DIABETES & METABOLISM 2022; 48:101359. [PMID: 35662580 PMCID: PMC9154087 DOI: 10.1016/j.diabet.2022.101359] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 12/05/2022]
Abstract
Since the outbreak of Covid-19, several observational studies on diabetes and Covid-19 have reported a favourable association between metformin and Covid-19-related outcomes in patients with type 2 diabetes mellitus (T2DM). This is not surprising since metformin affects many of the pathophysiological mechanisms implicated in SARS-CoV-2 immune response, systemic spread and sequelae. A comparison of the multifactorial pathophysiological mechanisms of Covid-19 progression with metformin's well-known pleiotropic properties suggests that the treatment of patients with this drug might be particularly beneficial. Indeed, metformin could alleviate the cytokine storm, diminish virus entry into cells, protect against microvascular damage as well as prevent secondary fibrosis. Although our in-depth analysis covers many potential metformin mechanisms of action, we want to highlight more particularly its unique microcirculatory protective effects since worsening of Covid-19 disease clearly appears as largely due to severe defects in the structure and functioning of microvessels. Overall, these observations confirm that metformin is a unique, pleiotropic drug that targets many of Covid-19′s pathophysiology processes in a diabetes-independent manner.
Collapse
Affiliation(s)
| | - Abdallah Al-Salameh
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, Amiens, France; PériTox/UMR-I 01, University of Picardie Jules Verne, Amiens, France
| | - Bertrand Cariou
- Département d'Endocrinologie, Diabétologie et Nutrition, l'institut du thorax, Inserm, CNRS, UNIV Nantes, CHU Nantes, Hôpital Guillaume et René Laennec, 44093 Nantes Cedex 01, France
| | - Jean-Daniel Lalau
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, Amiens, France; PériTox/UMR-I 01, University of Picardie Jules Verne, Amiens, France.
| |
Collapse
|
34
|
Mangiafico M, Caff A, Costanzo L. The Role of Heparin in COVID-19: An Update after Two Years of Pandemics. J Clin Med 2022; 11:jcm11113099. [PMID: 35683485 PMCID: PMC9180990 DOI: 10.3390/jcm11113099] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is associated with an increased risk of venous thromboembolism (VTE) and coagulopathy, especially in critically ill patients. Endothelial damage induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is emerging as a crucial pathogenetic mechanism for the development of complications in an acute phase of the illness and for several postdischarge sequalae. Heparin has been shown to have a positive impact on COVID-19 due to its anticoagulant function. Moreover, several other biological actions of heparin were postulated: a potential anti-inflammatory and antiviral effect through the main protease (Mpro) and heparansulfate (HS) binding and a protection from the damage of vascular endothelial cells. In this paper, we reviewed available evidence on heparin treatment in COVID-19 acute illness and chronic sequalae, focusing on the difference between prophylactic and therapeutic dosage.
Collapse
Affiliation(s)
- Marco Mangiafico
- Unit of Internal Medicine, Policlinico “G. Rodolico—San Marco”, 95100 Catania, Italy; (M.M.); (A.C.)
| | - Andrea Caff
- Unit of Internal Medicine, Policlinico “G. Rodolico—San Marco”, 95100 Catania, Italy; (M.M.); (A.C.)
| | - Luca Costanzo
- Unit of Angiology, Department of Cardio-Thoraco-Vascular, Policlinico “G. Rodolico—San Marco” University Hospital, University of Catania, 95100 Catania, Italy
- Correspondence:
| |
Collapse
|
35
|
Xia H, Wang Z, Tian M, Liu Z, Zhou Z. Low-Molecular-Weight Heparin Versus Aspirin in Early Management of Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:823391. [PMID: 35281068 PMCID: PMC8908308 DOI: 10.3389/fimmu.2022.823391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To evaluate the difference between low-molecular-weight heparin (LMWH) and aspirin in preventing early neurological deterioration (END) and recurrent ischemic stroke (RIS), post-recovery independence, and safety outcomes in acute ischemic stroke. Materials and Methods We performed systematic searches of the PubMed, Embase, Web of Science, and Cochrane Library databases for full-text articles of randomized controlled trials (RCTs) of LMWH vs. aspirin in the early management of acute ischemic stroke. Information on study design, eligibility criteria, baseline information, and outcomes was extracted. Synthesized relative risks (RRs) with 95% confidence intervals (CIs) are used to present the differences between the two treatments based on fixed-effects models. Results Five RCTs were retrieved from the online databases. The results showed no significant difference in efficacy outcomes between the two groups among unselected patients. Subgroup analysis showed that LMWH was significantly related to a lower incidence of END events [relative risk (RR): 0.44, 95% confidence interval (CI): 0.35-0.56] and reduced occurrence of RIS during treatment (OR: 0.34, 95% CI: 0.16-0.75) in non-cardioembolic stroke. LMWH significantly increased the number of patients with a modified Rankin scale (mRS) score of 0-1 at 6 months in patients with large-artery occlusive disease (LAOD) (RR: 0.50, 95% CI: 0.27-0.91). LMWH had a similar effect on symptomatic intracranial hemorrhage (sICH) and major extracranial hemorrhage during treatment to that of aspirin, except that LMWH was related to an increased likelihood of extracranial hemorrhage. Conclusions In patients with acute non-cardioembolic ischemic stroke, especially that with large-artery stenosis, LMWH treatment significantly reduced the incidence of END and RIS, and improved the likelihood of independence (mRS 0-1) at 6 months compared with those with aspirin treatment. LMWH was related to an increased likelihood of extracranial hemorrhage among all patients; however, the difference in major extracranial hemorrhage and sICH was not significant. Choosing the appropriate patients and paying attention to the start time and duration of treatment are very important in the use of anticoagulation. Systematic Review Registration http://www.crd.york.ac.uk/PROSPERO, identifier CRD42020185446.
Collapse
Affiliation(s)
- Hui Xia
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Ziyao Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Min Tian
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Zunjing Liu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
36
|
Beltrán-Camacho L, Eslava-Alcón S, Rojas-Torres M, Sánchez-Morillo D, Martinez-Nicolás MP, Martín-Bermejo V, de la Torre IG, Berrocoso E, Moreno JA, Moreno-Luna R, Durán-Ruiz MC. The serum of COVID-19 asymptomatic patients up-regulates proteins related to endothelial dysfunction and viral response in circulating angiogenic cells ex-vivo. Mol Med 2022; 28:40. [PMID: 35397534 PMCID: PMC8994070 DOI: 10.1186/s10020-022-00465-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already caused 6 million deaths worldwide. While asymptomatic individuals are responsible of many potential transmissions, the difficulty to identify and isolate them at the high peak of infection constitutes still a real challenge. Moreover, SARS-CoV-2 provokes severe vascular damage and thromboembolic events in critical COVID-19 patients, deriving in many related deaths and long-hauler symptoms. Understanding how these processes are triggered as well as the potential long-term sequelae, even in asymptomatic individuals, becomes essential.
Methods We have evaluated, by application of a proteomics-based quantitative approach, the effect of serum from COVID-19 asymptomatic individuals over circulating angiogenic cells (CACs). Healthy CACs were incubated ex-vivo with the serum of either COVID-19 negative (PCR −/IgG −, n:8) or COVID-19 positive asymptomatic donors, at different infective stages: PCR +/IgG − (n:8) and PCR −/IgG + (n:8). Also, a label free quantitative approach was applied to identify and quantify protein differences between these serums. Finally, machine learning algorithms were applied to validate the differential protein patterns in CACs.
Results Our results confirmed that SARS-CoV-2 promotes changes at the protein level in the serum of infected asymptomatic individuals, mainly correlated with altered coagulation and inflammatory processes (Fibrinogen, Von Willebrand Factor, Thrombospondin-1). At the cellular level, proteins like ICAM-1, TLR2 or Ezrin/Radixin were only up-regulated in CACs treated with the serum of asymptomatic patients at the highest peak of infection (PCR + /IgG −), but not with the serum of PCR −/IgG + individuals. Several proteins stood out as significantly discriminating markers in CACs in response to PCR or IgG + serums. Many of these proteins particiArticle title: Kindly check and confirm the edit made in the article
title.pate in the initial endothelial response against the virus. Conclusions The ex vivo incubation of CACs with the serum of asymptomatic COVID-19 donors at different stages of infection promoted protein changes representative of the endothelial dysfunction and inflammatory response after viral infection, together with activation of the coagulation process. The current approach constitutes an optimal model to study the response of vascular cells to SARS-CoV-2 infection, and an alternative platform to test potential inhibitors targeting either the virus entry pathway or the immune responses following SARS-CoV-2 infection. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00465-w.
Collapse
|
37
|
Yuan L, Cheng S, Sol WM, van der Velden AI, Vink H, Rabelink TJ, van den Berg BM. Heparan sulfate mimetic fucoidan restores the endothelial glycocalyx and protects against dysfunction induced by serum of COVID-19 patients in the intensive care unit. ERJ Open Res 2022; 8:00652-2021. [PMID: 35509442 PMCID: PMC8958944 DOI: 10.1183/23120541.00652-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/08/2022] [Indexed: 12/03/2022] Open
Abstract
Accumulating evidence proves that endothelial dysfunction is involved in coronavirus disease 2019 (COVID-19) progression. We previously demonstrated that the endothelial surface glycocalyx has a critical role in maintenance of vascular integrity. Here, we hypothesised that serum factors of severe COVID-19 patients affect the glycocalyx and result in endothelial dysfunction. We included blood samples of 32 COVID-19 hospitalised patients at the Leiden University Medical Center, of which 26 were hospitalised in an intensive care unit (ICU) and six on a non-ICU hospital floor; 18 of the samples were obtained from convalescent patients 6 weeks after hospital discharge, and 12 from age-matched healthy donors (control) during the first period of the outbreak. First, we determined endothelial (angiopoietin 2 (ANG2)) and glycocalyx degradation (soluble thrombomodulin (sTM) and syndecan-1 (sSDC1)) markers in plasma. In the plasma of COVID-19 patients, circulating ANG2 and sTM were elevated in patients in the ICU. Primary lung microvascular endothelial cell (HPMEC) and human glomerular microvascular endothelial cell (GEnC) cultured in the presence of these sera led to endothelial cell glycocalyx degradation, barrier disruption, inflammation and increased coagulation on the endothelial surface, significantly different compared to healthy control and non-ICU patient sera. These changes could all be restored in the presence of fucoidan. In conclusion, our data highlight the link between endothelial glycocalyx degradation, barrier failure and induction of a procoagulant surface in COVID-19 patients in ICU which could be targeted earlier in disease by the presence of heparan sulfate mimetics.
Collapse
Affiliation(s)
- Lushun Yuan
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Dept of Internal Medicine, Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Shuzhen Cheng
- Dept of Internal Medicine, Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Wendy M.P.J. Sol
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Dept of Internal Medicine, Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anouk I.M. van der Velden
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Dept of Internal Medicine, Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Vink
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
- MicroVascular Health Solutions LLC, Alpine, UT, USA
| | - Ton J. Rabelink
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Dept of Internal Medicine, Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bernard M. van den Berg
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Dept of Internal Medicine, Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- For a list of the BEAT-COVID study group members and their affiliations see the Acknowledgements
| |
Collapse
|
38
|
Astapenko D, Tomasova A, Ticha A, Hyspler R, Chua HS, Manzoor M, Skulec R, Lehmann C, Hahn R, Malbrain ML, Cerny V. Endothelial glycocalyx damage in patients with severe COVID-19 on mechanical ventilation - a prospective observational pilot study. Clin Hemorheol Microcirc 2022; 81:205-219. [PMID: 35342082 DOI: 10.3233/ch-221401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Coronavirus disease (COVID-19) associated endotheliopathy and microvascular dysfunction are of concern. OBJECTIVE The objective of the present single-center observational pilot study was to compare endothelial glycocalyx (EG) damage and endotheliopathy in patients with severe COVID-19 (COVID-19 group) with patients with bacterial pneumonia with septic shock (non-COVID group). METHODS Biomarkers of EG damage (syndecan-1), endothelial cells (EC) damage (thrombomodulin), and activation (P-selectin) were measured in blood on three consecutive days from admission to the intensive care unit (ICU). The sublingual microcirculation was studied by Side-stream Dark Field (SDF) imaging with automatic assessment. RESULTS We enrolled 13 patients in the non-COVID group (mean age 70 years, 6 women), and 15 in the COVID-19 group (64 years old, 3 women). The plasma concentrations of syndecan-1 were significantly higher in the COVID-19 group during all three days. Differences regarding other biomarkers were not statistically significant. The assessment of the sublingual microcirculation showed improvement on Day 2 in the COVID-19 group. Plasma levels of C-reactive protein (CRP) were significantly higher on the first two days in the COVID-19 group. Plasma syndecan-1 and CRP were higher in patients suffering from severe COVID-19 pneumonia compared to bacterial pneumonia patients. CONCLUSIONS These findings support the role of EG injury in the microvascular dysfunction in COVID-19 patients who require ICU.
Collapse
Affiliation(s)
- David Astapenko
- Department of Anesthesiology, Resuscitation and Intensive Care Medicine, University Hospital Hradec Kralove, Czech Republic.,Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic.,Center for Research and Development, University Hospital Hradec Kralove, Czech Republic
| | - Adela Tomasova
- Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Czech Republic
| | - Alena Ticha
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Czech Republic
| | - Radomir Hyspler
- Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Czech Republic
| | - Huey Shin Chua
- Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Mubashar Manzoor
- Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Roman Skulec
- Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic.,Department of Anesthesiology, Perioperative Medicine, and Intensive Care, J.E. Purkinje University, Masaryk Hospital, Usti nad Labem, Czech Republic
| | - Christian Lehmann
- Department of Anaesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Robert Hahn
- Research Unit, Södertälje Hospital, Sweden.,Karolinska Institutet at Danderyds Hospital (KIDS), Stockholm, Sweden
| | - Manu Lng Malbrain
- Department of Medical, Medical Direction, AZ Jan Palfijn Hospital, Gent, Belgium.,First Department of Anaesthesia and IntensiveTherapy, Medical University of Lublin, Lublin, Poland.,International Fluid Academy, Lovenjoel, Belgium
| | - Vladimir Cerny
- Department of Anesthesiology, Resuscitation and Intensive Care Medicine, University Hospital Hradec Kralove, Czech Republic.,Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic.,Center for Research and Development, University Hospital Hradec Kralove, Czech Republic.,Department of Anesthesiology, Perioperative Medicine, and Intensive Care, J.E. Purkinje University, Masaryk Hospital, Usti nad Labem, Czech Republic.,Department of Anaesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
39
|
Martínez-Salazar B, Holwerda M, Stüdle C, Piragyte I, Mercader N, Engelhardt B, Rieben R, Döring Y. COVID-19 and the Vasculature: Current Aspects and Long-Term Consequences. Front Cell Dev Biol 2022; 10:824851. [PMID: 35242762 PMCID: PMC8887620 DOI: 10.3389/fcell.2022.824851] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first identified in December 2019 as a novel respiratory pathogen and is the causative agent of Corona Virus disease 2019 (COVID-19). Early on during this pandemic, it became apparent that SARS-CoV-2 was not only restricted to infecting the respiratory tract, but the virus was also found in other tissues, including the vasculature. Individuals with underlying pre-existing co-morbidities like diabetes and hypertension have been more prone to develop severe illness and fatal outcomes during COVID-19. In addition, critical clinical observations made in COVID-19 patients include hypercoagulation, cardiomyopathy, heart arrythmia, and endothelial dysfunction, which are indicative for an involvement of the vasculature in COVID-19 pathology. Hence, this review summarizes the impact of SARS-CoV-2 infection on the vasculature and details how the virus promotes (chronic) vascular inflammation. We provide a general overview of SARS-CoV-2, its entry determinant Angiotensin-Converting Enzyme II (ACE2) and the detection of the SARS-CoV-2 in extrapulmonary tissue. Further, we describe the relation between COVID-19 and cardiovascular diseases (CVD) and their impact on the heart and vasculature. Clinical findings on endothelial changes during COVID-19 are reviewed in detail and recent evidence from in vitro studies on the susceptibility of endothelial cells to SARS-CoV-2 infection is discussed. We conclude with current notions on the contribution of cardiovascular events to long term consequences of COVID-19, also known as “Long-COVID-syndrome”. Altogether, our review provides a detailed overview of the current perspectives of COVID-19 and its influence on the vasculature.
Collapse
Affiliation(s)
- Berenice Martínez-Salazar
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Melle Holwerda
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Chiara Stüdle
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Indre Piragyte
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Nadia Mercader
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Institute of Anatomy, University of Bern, Bern, Switzerland.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Bern Center of Precision Medicine BCPM, University of Bern, Bern, Switzerland
| | | | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
40
|
Bradykinin-target therapies in SARS-CoV-2 infection: current evidence and perspectives. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:275-283. [PMID: 35089406 PMCID: PMC8795307 DOI: 10.1007/s00210-022-02206-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/17/2022] [Indexed: 12/26/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a potentially fatal disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that preferentially infects the respiratory tract. Bradykinin (BK) is a hypotensive substance that recently emerged as one of the mechanisms to explain COVID-19-related complications. Concerning this, in this review, we try to address the complex link between BK and pathophysiology of COVID-19, investigating the role of this peptide as a potential target for pharmacological modulation in the management of SARS-CoV-2. The pathology of COVID-19 may be more a result of the BK storm than the cytokine storm, and which BK imbalance is a relevant factor in the respiratory disorders caused by SARS-CoV-2 infection. Regarding this, an interesting point of intervention for this disease is to modulate BK signaling. Some drugs, such as icatibant, ecallantide, and noscapine, and even a human monoclonal antibody, lanadelumab, have been studied for their potential utility in COVID-19 by modulating BK signaling. The interaction of the BK pathway and the involvement of cytokines such as IL-6 and IL1 may be key to the use of blockers, even if only as adjuvants. In fact, reduction of BK, mainly DABK, is considered a relevant strategy to improve clinical conditions of COVID-19 patients. In this context, despite the current unproven clinical efficacy, drugs repurposing that block B1 or B2 receptor activation have gained prominence for the treatment of COVID-19 in the world.
Collapse
|
41
|
Matyjaszczyk-Gwarda K, Kij A, Olkowicz M, Fels B, Kusche-Vihrog K, Walczak M, Chlopicki S. Simultaneous quantification of selected glycosaminoglycans by butanolysis-based derivatization and LC-SRM/MS analysis for assessing glycocalyx disruption in vitro and in vivo. Talanta 2022; 238:123008. [PMID: 34857342 DOI: 10.1016/j.talanta.2021.123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022]
Abstract
Glycosaminoglycans (GAGs) constitute the main building blocks of the endothelial glycocalyx (GLX), and disruption of GLX initiates and promotes endothelial dysfunction. Here, we aimed to develop a novel, specific and accurate LC-SRM/MS-based method for glycosaminoglycans (GAGs) profiling. The method involved butanolysis derivatization to facilitate GAG-specific disaccharide generation and its subsequent retention in LC-reversed-phase mode followed by mass spectrometric detection performed in positive ion-selected reaction monitoring (SRM) mode. GAG contents were measured in media of endothelial cells (EA.hy926) subjected to various GAG-degrading enzymes, as well as in murine plasma and urine in apolipoprotein E/low-density lipoprotein receptor-deficient (ApoE/LDLR -/-) mice and age-matched wild-type C57BL/6 mice. Alternatively, GLX disruption was verified by atomic force microscopy (AFM)-based analysis of GLX thickness. The proposed assay to quantify GAG-specific disaccharides presented high sensitivity for each of the analytes (LLOQ: 0.05-0.1 μg/mL) as well as accuracy and precision (86.8-114.9% and 2.0-14.3%, respectively). In medium of EA.hy926 cells subjected to GAG-degrading enzymes various GAG-specific disaccharides indicating the degradation of keratan sulphate (KS), heparan sulphate (HS), chondroitin sulphate (CHS) or hyaluronan (HA) were detected as predicted based on the characteristics of individual enzyme activity. In turn, AFM-based assessment of GLX thickness was reduced to a similar extent by all single enzyme treatments, whereas the most prominent reduction of GLX thickness was detected following the enzyme mixture. Plasma measurements of GAGs revealed age- and hypercholesterolemia-dependent decrease in GAGs concentration. In summary, a novel LC-SRM/MS-based method for GAG profiling was proposed that may inform on GLX status in cell culture for both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Karolina Matyjaszczyk-Gwarda
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Mariola Olkowicz
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Benedikt Fels
- Universität zu Lübeck, Institut für Physiologie, Ratzeburger Allee 160, Gebäude 61, D-23562, Lübeck, Germany
| | - Kristina Kusche-Vihrog
- Universität zu Lübeck, Institut für Physiologie, Ratzeburger Allee 160, Gebäude 61, D-23562, Lübeck, Germany
| | - Maria Walczak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland; Jagiellonian University Medical College, Chair and Department of Toxicology, Medyczna 9, 30-688, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland; Jagiellonian University Medical College, Chair of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
42
|
Costa TJ, Potje SR, Fraga-Silva TFC, da Silva-Neto JA, Barros PR, Rodrigues D, Machado MR, Martins RB, Santos-Eichler RA, Benatti MN, de Sá KSG, Almado CEL, Castro ÍA, Pontelli MC, Serra LL, Carneiro FS, Becari C, Louzada-Junior P, Oliveira RDR, Zamboni DS, Arruda E, Auxiliadora-Martins M, Giachini FRC, Bonato VLD, Zachara NE, Bomfim GF, Tostes RC. Mitochondrial DNA and TLR9 activation contribute to SARS-CoV-2-induced endothelial cell damage. Vascul Pharmacol 2021; 142:106946. [PMID: 34838735 PMCID: PMC8612754 DOI: 10.1016/j.vph.2021.106946] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
Background and purpose Mitochondria play a central role in the host response to viral infection and immunity, being key to antiviral signaling and exacerbating inflammatory processes. Mitochondria and Toll-like receptor (TLR) have been suggested as potential targets in SARS-CoV-2 infection. However, the involvement of TLR9 in SARS-Cov-2-induced endothelial dysfunction and potential contribution to cardiovascular complications in COVID-19 have not been demonstrated. This study determined whether infection of endothelial cells by SARS-CoV-2 affects mitochondrial function and induces mitochondrial DNA (mtDNA) release. We also questioned whether TLR9 signaling mediates the inflammatory responses induced by SARS-CoV-2 in endothelial cells. Experimental approach Human umbilical vein endothelial cells (HUVECs) were infected by SARS-CoV-2 and immunofluorescence was used to confirm the infection. Mitochondrial function was analyzed by specific probes and mtDNA levels by real-time polymerase chain reaction (RT-PCR). Inflammatory markers were measured by ELISA, protein expression by western blot, intracellular calcium (Ca2+) by FLUOR-4, and vascular reactivity with a myography. Key results SARS-CoV-2 infected HUVECs, which express ACE2 and TMPRSS2 proteins, and promoted mitochondrial dysfunction, i.e. it increased mitochondria-derived superoxide anion, mitochondrial membrane potential, and mtDNA release, leading to activation of TLR9 and NF-kB, and release of cytokines. SARS-CoV-2 also decreased nitric oxide synthase (eNOS) expression and inhibited Ca2+ responses in endothelial cells. TLR9 blockade reduced SARS-CoV-2-induced IL-6 release and prevented decreased eNOS expression. mtDNA increased vascular reactivity to endothelin-1 (ET-1) in arteries from wild type, but not TLR9 knockout mice. These events were recapitulated in serum samples from COVID-19 patients, that exhibited increased levels of mtDNA compared to sex- and age-matched healthy subjects and patients with comorbidities. Conclusion and applications SARS-CoV-2 infection impairs mitochondrial function and activates TLR9 signaling in endothelial cells. TLR9 triggers inflammatory responses that lead to endothelial cell dysfunction, potentially contributing to the severity of symptoms in COVID-19. Targeting mitochondrial metabolic pathways may help to define novel therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Tiago J Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, USA.
| | - Simone R Potje
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil; Minas Gerais State University - UEMG, Brazil
| | - Thais F C Fraga-Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Júlio A da Silva-Neto
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Paula R Barros
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Daniel Rodrigues
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Mirele R Machado
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Ronaldo B Martins
- Virology Research Center, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | | | - Maira N Benatti
- Department of Clinical Medicine, Division of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Keyla S G de Sá
- Department of Cell and Molecular Biology, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Carlos Eduardo L Almado
- Institute of Biological and Health Sciences, Federal University of Mato Grosso - UFMT, Brazil
| | - Ítalo A Castro
- Virology Research Center, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Marjorie C Pontelli
- Virology Research Center, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Leonardo La Serra
- Virology Research Center, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Christiane Becari
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Paulo Louzada-Junior
- Department of Clinical Medicine, Division of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Rene D R Oliveira
- Department of Clinical Medicine, Division of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Dario S Zamboni
- Department of Cell and Molecular Biology, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Eurico Arruda
- Virology Research Center, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Maria Auxiliadora-Martins
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Fernanda R C Giachini
- Institute of Biological and Health Sciences, Federal University of Mato Grosso - UFMT, Brazil
| | - Vânia L D Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, USA
| | - Gisele F Bomfim
- Institute of Health Sciences, Federal University of Mato Grosso - UFMT, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo - USP, Brazil.
| |
Collapse
|
43
|
Martín-Fernández M, Aller R, Heredia-Rodríguez M, Gómez-Sánchez E, Martínez-Paz P, Gonzalo-Benito H, Sánchez-de Prada L, Gorgojo Ó, Carnicero-Frutos I, Tamayo E, Tamayo-Velasco Á. Lipid peroxidation as a hallmark of severity in COVID-19 patients. Redox Biol 2021; 48:102181. [PMID: 34768063 PMCID: PMC8572041 DOI: 10.1016/j.redox.2021.102181] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Oxidative stress may be a key player in COVID-19 pathogenesis due to its significant role in response to infections. A defective redox balance has been related to viral pathogenesis developing a massive induction of cell death provoked by oxidative stress. The aim of this study is to perform a complete oxidative stress profile evaluation regarding antioxidant enzymes, total antioxidant capacity and oxidative cell damage in order to characterize its role in diagnosis and severity of this disease. METHODS Blood samples were obtained from 108 COVID-19 patients and 28 controls and metabolites representative of oxidative stress were assessed. The association between lipid peroxidation and 28-day intubation/death risk was evaluated by multivariable regression analysis. Probability of intubation/death to day-28 was analyzed by using Kaplan-Meier curves and tested with the log-rank test. RESULTS Antioxidant enzymes (Superoxide dismutase (SOD) and Catalase) and oxidative cell damage (Carbonyl and Lipid peroxidation (LPO)) levels were significantly higher in COVID-19 patients while total antioxidant capacity (ABTS and FRAP) levels were lower in these patients. The comparison of oxidative stress molecules' levels across COVID-19 severity revealed that only LPO was statistically different between mild and intubated/death COVID-19 patients. COX multivariate regression analysis identified LPO levels over the OOP (LPO>1948.17 μM) as an independent risk factor for 28-day intubation/death in COVID-19 patients [OR: 2.57; 95% CI: 1.10-5.99; p = 0.029]. Furthermore, Kaplan-Meier curve analysis revealed that COVID-19 patients showing LPO levels above 1948.17 μM were intubated or died 8.4 days earlier on average (mean survival time 15.4 vs 23.8 days) when assessing 28-day intubation/death risk (p < 0.001). CONCLUSION These findings deepen our knowledge of oxidative stress status in SARS-CoV-2 infection, supporting its important role in COVID-19. In fact, higher lipid peroxidation levels are independently associated to a higher risk of intubation or death at 28 days in COVID-19 patients.
Collapse
Affiliation(s)
- Marta Martín-Fernández
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Department of Medicine, Dermatology and Toxicology, Faculty of Medicine, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Rocío Aller
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Department of Medicine, Dermatology and Toxicology, Faculty of Medicine, Universidad de Valladolid, 47005 Valladolid, Spain; Gastroenterology Department, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - María Heredia-Rodríguez
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Department of Surgery, Faculty of Medicine, Universidad de Valladolid, 47005 Valladolid, Spain; Anesthesiology and Critical Care Department, Hospital Clínico Universitario de Salamanca, 37007 Salamanca, Spain.
| | - Esther Gómez-Sánchez
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Department of Surgery, Faculty of Medicine, Universidad de Valladolid, 47005 Valladolid, Spain; Anesthesiology and Critical Care Department, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain.
| | - Pedro Martínez-Paz
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Department of Surgery, Faculty of Medicine, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Hugo Gonzalo-Benito
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Institute of Health Sciences of Castile and Leon (IECSCYL), 42002 Soria, Spain
| | - Laura Sánchez-de Prada
- Department of Microbiology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - Óscar Gorgojo
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Institute of Health Sciences of Castile and Leon (IECSCYL), 42002 Soria, Spain
| | - Irene Carnicero-Frutos
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Institute of Health Sciences of Castile and Leon (IECSCYL), 42002 Soria, Spain
| | - Eduardo Tamayo
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Department of Surgery, Faculty of Medicine, Universidad de Valladolid, 47005 Valladolid, Spain; Anesthesiology and Critical Care Department, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - Álvaro Tamayo-Velasco
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain; Haematology and Hemotherapy Department, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| |
Collapse
|
44
|
Puchwein-Schwepcke A, Genzel-Boroviczény O, Nussbaum C. The Endothelial Glycocalyx: Physiology and Pathology in Neonates, Infants and Children. Front Cell Dev Biol 2021; 9:733557. [PMID: 34540845 PMCID: PMC8440834 DOI: 10.3389/fcell.2021.733557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
The endothelial glycocalyx (EG) as part of the endothelial surface layer (ESL) is an important regulator of vascular function and homeostasis, including permeability, vascular tone, leukocyte recruitment and coagulation. Located at the interface between the endothelium and the blood stream, this highly fragile structure is prone to many disruptive factors such as inflammation and oxidative stress. Shedding of the EG has been described in various acute and chronic diseases characterized by endothelial dysfunction and angiopathy, such as sepsis, trauma, diabetes and cardiovascular disease. Circulating EG components including syndecan-1, hyaluronan and heparan sulfate are being evaluated in animal and clinical studies as diagnostic and prognostic markers in several pathologies, and advances in microscopic techniques have enabled in vivo assessment of the EG. While research regarding the EG in adult physiology and pathology has greatly advanced throughout the last decades, our knowledge of the development of the glycocalyx and its involvement in pathological conditions in the pediatric population is limited. Current evidence suggests that the EG is present early during fetal development and plays a critical role in vessel formation and maturation. Like in adults, EG shedding has been demonstrated in acute inflammatory conditions in infants and children and chronic diseases with childhood-onset. However, the underlying mechanisms and their contribution to disease manifestation and progression still need to be established. In the future, the glycocalyx might serve as a marker to identify pediatric patients at risk for vascular sequelae and as a potential target for early interventions.
Collapse
Affiliation(s)
- Alexandra Puchwein-Schwepcke
- Division of Neonatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany.,Department of Pediatric Neurology and Developmental Medicine, University of Basel Children's Hospital, Basel, Switzerland
| | - Orsolya Genzel-Boroviczény
- Division of Neonatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Claudia Nussbaum
- Division of Neonatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
45
|
Rejinold N S, Choi G, Piao H, Choy JH. Bovine Serum Albumin-Coated Niclosamide-Zein Nanoparticles as Potential Injectable Medicine against COVID-19. MATERIALS 2021; 14:ma14143792. [PMID: 34300711 PMCID: PMC8307271 DOI: 10.3390/ma14143792] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022]
Abstract
(1) Background: COVID-19 has affected millions of people worldwide, but countries with high experimental anti-SARS-CoV-2 vaccination rates among the general population respectively show progress in achieving general herd immunity in the population (a combination of natural and vaccine-induced acquired immunity), resulting in a significant reduction in both newly detected infections and mortality rates. However, the longevity of the vaccines’ ability to provide protection against the ongoing pandemic is still unclear. Therefore, it is of utmost importance to have new medications to fight against the pandemic at the earliest point possible. Recently, it has been found that repurposing already existing drugs could, in fact, be an ideal strategy to formulate effective medication for COVID-19. Though there are many FDA-approved drugs, it has been found that niclosamide (NIC), an anthelmintic drug, has significantly high potential against the SARS-CoV-2 virus. (2) Methods: Here we deployed a simple self-assembling technique through which Zein nanoparticles were successfully used to encapsulate NIC, which was then coated with bovine serum albumin (BSA) in order to improve the drugs’ stability, injectablity, and selectivity towards the virus-infected cells. (3) Results: The particle size for the BSA-stabilized Zein-NIC nanohybrid was found to be less than 200 nm, with excellent colloidal stability and sustained drug release properties. In addition, the nanohybrid showed enhanced drug release behavior under serum conditions, indicating that such a hybrid drug delivery system could be highly beneficial for treating COVID-19 patients suffering from high endothelial glycocalyx damage followed by a cytokine storm related to the severe inflammations.
Collapse
Affiliation(s)
- Sanoj Rejinold N
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (S.R.N.); (G.C.); (H.P.)
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (S.R.N.); (G.C.); (H.P.)
- College of Science and Technology, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (S.R.N.); (G.C.); (H.P.)
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (S.R.N.); (G.C.); (H.P.)
- Department of Pre-medical Course, College of Medicine, Dankook University, Cheonan 31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Correspondence:
| |
Collapse
|
46
|
COVID-19 is a systemic vascular hemopathy: insight for mechanistic and clinical aspects. Angiogenesis 2021; 24:755-788. [PMID: 34184164 PMCID: PMC8238037 DOI: 10.1007/s10456-021-09805-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presenting as a systemic disease associated with vascular inflammation and endothelial injury. Severe forms of SARS-CoV-2 infection induce acute respiratory distress syndrome (ARDS) and there is still an ongoing debate on whether COVID-19 ARDS and its perfusion defect differs from ARDS induced by other causes. Beside pro-inflammatory cytokines (such as interleukin-1 β [IL-1β] or IL-6), several main pathological phenomena have been seen because of endothelial cell (EC) dysfunction: hypercoagulation reflected by fibrin degradation products called D-dimers, micro- and macrothrombosis and pathological angiogenesis. Direct endothelial infection by SARS-CoV-2 is not likely to occur and ACE-2 expression by EC is a matter of debate. Indeed, endothelial damage reported in severely ill patients with COVID-19 could be more likely secondary to infection of neighboring cells and/or a consequence of inflammation. Endotheliopathy could give rise to hypercoagulation by alteration in the levels of different factors such as von Willebrand factor. Other than thrombotic events, pathological angiogenesis is among the recent findings. Overexpression of different proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) or placental growth factors (PlGF) have been found in plasma or lung biopsies of COVID-19 patients. Finally, SARS-CoV-2 infection induces an emergency myelopoiesis associated to deregulated immunity and mobilization of endothelial progenitor cells, leading to features of acquired hematological malignancies or cardiovascular disease, which are discussed in this review. Altogether, this review will try to elucidate the pathophysiology of thrombotic complications, pathological angiogenesis and EC dysfunction, allowing better insight in new targets and antithrombotic protocols to better address vascular system dysfunction. Since treating SARS-CoV-2 infection and its potential long-term effects involves targeting the vascular compartment and/or mobilization of immature immune cells, we propose to define COVID-19 and its complications as a systemic vascular acquired hemopathy.
Collapse
|