1
|
Singh B, Singh L, Bhatt ID, Kandpal ND. Tailored NADES solvents for the extraction optimization of benzylisoquinoline alkaloids from Thalictrum foliolosum DC.- A potential phyto-nutraceutical source. Food Chem 2025; 463:141016. [PMID: 39241417 DOI: 10.1016/j.foodchem.2024.141016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
From a perspective focused on phyto-nutraceuticals, alkaloids are considered to be the most significant metabolites, as they exhibit a broad range of pharmacological applications. Therefore, it is essential, to conduct a thorough investigation of the extraction techniques employed and to optimize the overall process. Considering this, we delved into tailor-made natural deep eutectic solvents coupled with ultrasonic-assisted extraction and macroporous resins aided recovery of therapeutics alkaloids from Thalictrum foliolosum DC. The extraction parameters including duty cycle (X1), extraction time (X2), water content (X3), and liquid-to-solid ratio (X4) were optimized through response surface methodology. Under the optimal extraction conditions [duty cycle- 61 %, ultrasonication extraction time- 10.35 min, water content- 30.51 %, and liquid-to-solid ratio- 30 mL/g], the yield of berberine (11.91 ± 0.12 mg/g DW), berbamine (11.85 ± 0.16 mg/g DW), magnoflorine (6.06 ± 0.05 mg/g DW), and palmatine (2.53 ± 0.015 mg/g DW) were found to be near the model prediction. Further, adsorption/desorption characteristics were investigated, and the results highlight AB-8 resin as most effective for the recovery of berberine and palmatine, while, XAD-7HP resin is best suited for berbamine and magnoflorine. FT-IR analysis shows similar spectra among the purified extracts with significantly (p < 0.05) higher antioxidant and anti-glycemic activities. In conclusion, the developed method complies with the criteria of green extraction which can be harnessed as a natural antioxidant in pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Basant Singh
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Laxman Singh
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Indra D Bhatt
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India.
| | - Narain D Kandpal
- Department of Chemistry, S. S. J. Campus, Soban Singh Jeena University Almora, India
| |
Collapse
|
2
|
Del Vecchio G, Zhang L, Sinan KI, Terzic M, Zengin G, Bene K, Mahomoodally MF, Lucini L. Different extraction methods shape the phenolic signature and biological activity of Morinda lucida extracts: A novel source of bioactive compounds preparing functional applications. Food Chem 2025; 462:140956. [PMID: 39197243 DOI: 10.1016/j.foodchem.2024.140956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
The extraction of bioactive compounds is based on the application of various extraction techniques. Therefore, the stem and root bark of the plant species Morinda lucida L. were used in this research, while the extraction procedure was performed using three extraction techniques: HAE (homogenizer extraction), UAE (ultrasound extraction) as modern, and MAC (maceration) as conventional extraction technique. The presence of different classes of secondary metabolites was determined using the UHPLC method, while the content of total phenols and flavonoids was determined spectrophotometrically. The biological potential was investigated by in vitro antioxidant and enzyme assays. Different extraction technologies showed significant differences in only two classes of phenols, namely lignans and phenolic acids, which were significantly higher in HAE than in UAE and MAC. These findings highlight the significant effect of stem and bark extracts of M. lucida, opening the way for innovative industrial exploitation of these matrices.
Collapse
Affiliation(s)
- Gianmarco Del Vecchio
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University Campus, Konya, Turkey
| | - Milena Terzic
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia.
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University Campus, Konya, Turkey.
| | - Kouadio Bene
- Laboratoire de Botanique et Valorisation de la Biodiversité Végétale, Unité de Formation et de Recherche Sciences de la Nature, 02 BP 801 Abidjan 02, Université Nangui Abrogoua, Abidjan, Cote d'Ivoire
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
3
|
Jia H, Jia Y, Ren F, Liu H. Enhancing bioactive compounds in plant-based foods: Influencing factors and technological advances. Food Chem 2024; 460:140744. [PMID: 39116769 DOI: 10.1016/j.foodchem.2024.140744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Plant-based foods are natural sources of phytochemicals, which exhibit free radical scavenging capacity. However, the bioaccessibility of phytochemicals in foods are limited due to their poor stability and solubility within food matrix. Moreover, chemical degradation induced by processing further diminish the levels of these bioactive compounds. This review explores the impacts of thermal and non-thermal processing on fruits and vegetables, emphasizing the application of emerging technologies to enhance food quality. Innovative non-thermal technologies, which align with sustainable and environmentally friendly principles of green development, are particularly promising. Supercritical CO2 and cold plasma can be applied in extraction of phytochemicals, and these extracts also can be used as natural preservatives in food products, as well as improve the texture and sensory properties of food products, offering significant potential to advance the field of food science and technology while adhering to eco-friendly practices.
Collapse
Affiliation(s)
- Hanbing Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hongzhi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
4
|
Yang H, Mu Y, Zheng D, Puopolo T, Zhang L, Zhang Z, Gao S, Seeram NP, Ma H, Huang X, Li L. Caseinate-coated zein nanoparticles as potential delivery vehicles for guavinoside B from guava: Molecular interactions and encapsulation properties. Food Chem 2024; 456:140066. [PMID: 38901076 DOI: 10.1016/j.foodchem.2024.140066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Guavinoside B (GUB) is a characteristic constituent from guava with strong antioxidant activity; however, its low water solubility limits its utilization. Herein, we investigated the interaction between GUB and zein, a prolamin with self-assembling property, using multiple spectroscopic methods and fabricated GUB-zein-NaCas nanoparticles (GUB-Z-N NPs) via the antisolvent coprecipitation approach. GUB caused fluorescence quenching to zein via the static quenching mechanism. Fourier-transform infrared spectroscopy and computational analysis revealed that GUB bound to zein via van der Waals interaction, hydrogen bond, and hydrophobic forces. The GUB-Z-N NPs were in the nanometric size range (< 200 nm) and exhibited promising encapsulation efficiency and redispersibility after freeze-drying. These particles remained stable for up to 31 days at 4 °C and great resistance to salt and pH variation, and displayed superior antioxidant activity to native GUB. The current study highlights the potential of zein-based nanoparticles as delivery vehicles for GUB in the food industry.
Collapse
Affiliation(s)
- Haoning Yang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Tess Puopolo
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Lejie Zhang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Zhuo Zhang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Sai Gao
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
5
|
Singh L, Singh B, Bhatt ID. NADES-based extraction optimization and enrichment of Cyanidin-3-O-galactoside from Rhododendron arboreum Sm.: Kinetics and thermodynamics insights. Food Chem 2024; 455:139793. [PMID: 38823128 DOI: 10.1016/j.foodchem.2024.139793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
Cyanidin-3-O-galactoside (Cy3-gal) is the most widespread anthocyanin that has been found to be applicable to nutraceutical and pharmaceutical ingredients. Nevertheless, the process of separation and purification, susceptibilities to heat, and pH inactivation present some limitations. In the present study, natural deep eutectic solvents (NADES) with an ultrasonic-assisted extraction method were briefly studied, and the recovery of Cy3-gal from Rhododendron arboreum was highlighted. The NADES, consisting of choline chloride and oxalic acid (1:1), was screened out as an extractant, and single-factor experiments combined with a two-site kinetic model were employed to describe the extraction process. Further, the work investigated ultrasound-assisted adsorption/desorption to efficiently purify Cy3-gal using macroporous resins. The optimal extraction conditions to attain maximum Cy3-gal yield was 30% water in a 50:1 (mL/g) solvent-to-sample ratio, 11.25 W/cm3 acoustic density, and 50% duty cycle for 16 min of extraction time. Under these conditions, the results revealed 23.07 ± 0.14 mg/g of Cy3-gal, two-fold higher than the traditional solvents. Furthermore, of the different resins used, Amberlite XAD-7HP showed significantly (p < 0.05) higher adsorption/desorption capacities (12.82 ± 0.18 mg/g and 10.97 ± 0.173 mg/g) and recovery (48.41 ± 0.76%) percent over other adsorbents. Experiments on the degrading behavior (40-80 °C) of the recovered Cy3-gal were performed over time, and the first-order kinetic model better explained the obtained data. In conclusion, the study asserts the use of ultrasonication with NADES and XAD-7HP resin for the improved purification of Cy3-gal from the crude extract.
Collapse
Affiliation(s)
- Laxman Singh
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Basant Singh
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Indra Dutt Bhatt
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India.
| |
Collapse
|
6
|
Loukri A, Kissas T, Kyriakoudi A, Zymvrakaki E, Stratakos AC, Mourtzinos I. Coupling of cold atmospheric plasma treatment with ultrasound-assisted extraction for enhanced recovery of bioactive compounds from cornelian cherry pomace. Food Chem 2024; 455:139989. [PMID: 38850969 DOI: 10.1016/j.foodchem.2024.139989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Cornelian cherry pomace is produced during the production of juice from this traditional superfood. Due to its high nutritive value, the by-product can be utilized as a source of bioactive compounds. The present study aimed to develop a sustainable methodology for the recovery of bioactive compounds based on the combination of atmospheric cold plasma (CAP) with ultrasound assisted extraction. The pomace was treated with cold plasma under different conditions. Cyclodextrin was used as green extraction enhancer due to its capacity to develop inclusion complexes with bioactive compounds. CAP pretreatment before extraction appeared to enhance the recovery of the target compounds. GC-MS analysis and in vitro digestion analysis conducted in order to evaluate the composition and the protentional bioavailability of the bioactive compounds. CHEMICALS COMPOUNDS: β-cyclodextrin (PubChem CID: 444041), DPPH free radical (PubChem CID: 2735032), Trolox (PubChem CID: 40634), sodium carbonate (PubChem CID: 10340), gallic acid (PubChem CID: 370) potassium chloride (PubChem CID: 4873), sodium acetate (PubChem CID: 517045), loganic acid (PubChem CID: 89640), pyridine (PubChem CID: 1049, BSTFA(PubChem CID: 94358), potassium chloride (PubChem CID: 4873), ammonium carbonate (PubChem CID: 517111), calcium chloride dehydrate (PubChem CID: 24844), potassium dihydrogen phosphate (PubChem CID: 516951), magnesium chloride hexahydrate (PubChem CID: 24644), sodium hydrogen carbonate (PubChem CID: 516892), sodium chloride (PubChem CID: 5234).
Collapse
Affiliation(s)
- Anastasia Loukri
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Thomas Kissas
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Eleni Zymvrakaki
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Alexandros Ch Stratakos
- College of Health, Science and Society, School of Applied Sciences, University of the West of England, Coldharbour Ln, Bristol BS16 1QY, UK.
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
7
|
Ristivojević P, Krstić Ristivojević M, Stanković D, Cvijetić I. Advances in Extracting Bioactive Compounds from Food and Agricultural Waste and By-Products Using Natural Deep Eutectic Solvents: A Circular Economy Perspective. Molecules 2024; 29:4717. [PMID: 39407645 PMCID: PMC11478183 DOI: 10.3390/molecules29194717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Due to the urgent need for a transition to sustainable, zero-waste green technology, the extraction of bioactives from food and agricultural by-products and waste has garnered increasing interest. Traditional extraction techniques often involve using organic solvents, which are associated with environmental and health risks. Natural deep eutectic solvents (NADESs) have emerged as a promising green alternative, offering advantages such as low toxicity, biodegradability, and the ability to dissolve a wide range of biomolecules. This review provides a comprehensive overview of recent trends in the application of NADESs for extracting bioactive compounds from sustainable sources. The review explains the composition and principles of preparation and highlights various applications of NADESs in extracting different classes of bioactive compounds, emphasizing their potential to revolutionize extraction processes. By summarizing the latest advancements and trends, this review aims to support research and industrial applications of NADESs, promoting more sustainable and efficient extraction methods in the food and agricultural sectors.
Collapse
Affiliation(s)
- Petar Ristivojević
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| | - Maja Krstić Ristivojević
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Dalibor Stanković
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| | - Ilija Cvijetić
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| |
Collapse
|
8
|
Cheng Y, Wu R, Xiao D, Wang Z, Chen Q, Zeng M, Qin F, Chen J, He Z. Improved encapsulation efficiency and storage stability of lutein by soy protein isolate nanocarriers with thermal and trypsin treatments. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39268595 DOI: 10.1002/jsfa.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/31/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Encapsulation of bioactive compounds within protein-based nanoparticles has garnered considerable attention in the food and pharmaceutical industries because of its potential to enhance stability and delivery. Soy protein isolate (SPI) has emerged as a promising candidate, prompting the present study aiming to modify its properties through controlled thermal and trypsin treatments for improved encapsulation efficiency (EE) of lutein and its storage stability. RESULTS The EE of lutein nanoparticles encapsulated using SPI trypsin hydrolysates (SPIT) with three varying degrees of hydrolysis (4.11%, 6.91% and 10.61% for SPIT1, SPIT2 and SPIT3, respectively) increased by 12.00%, 15.78% and 18.59%, respectively, compared to SPI. Additionally, the photostability of SPIT2 showed a remarkable increase of 38.21% compared to SPI. The superior encapsulation efficiency and photostability of SPIT2 was attributed to increased exposure of hydrophobic groups, excellent antioxidant activity and uniform particle stability, despite exhibiting lower binding affinity to lutein compared to SPI. Furthermore, in SPIT2, the protein structure unfolded, with minimal impact on overall secondary structure upon lutein addition. CONCLUSION The precise application of controlled thermal and trypsin treatments to SPI has been shown to effectively produce protein nanoparticles with substantially improved encapsulation efficiency for lutein and enhanced storage stability of the encapsulated lutein. These findings underscore the potential of controlled thermal and trypsin treatments to modify protein properties effectively and offer significant opportunities for expanding the applications of protein-based formulations across diverse fields. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Renyi Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Dong Xiao
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Fang Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Yu Q, Yang M, Yang L, Li M, Yang Y. Optimization and Spectrum-Effect Analysis of Ultrasonically Extracted Antioxidant Flavonoids from Persicae Ramulus. Molecules 2024; 29:3860. [PMID: 39202938 PMCID: PMC11356933 DOI: 10.3390/molecules29163860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
The objectives of this study were to optimize the ultrasonic-assisted flavonoid extraction process from PR and to establish fingerprints in order to analyze the spectrum-effect relationship of antioxidant activity. The ultrasonic-assisted flavonoid extraction process from PR was optimized using RSM, and the fingerprints of twenty-eight batches of flavonoids from PR were established using UHPLC. Meanwhile, the in vitro antioxidant activity of PR was evaluated in DPPH and ABTS free radical-scavenging experiments. Then, the peaks of the effective antioxidant components were screened using the spectrum-effect relationships. The results show that the optimal extraction yield of flavonoids from PR was 3.24 ± 0.01 mg/g when using 53% ethanol, a 1:26 (g/mL) solid-liquid ratio, and 60 min of ultrasonic extraction. Additionally, the clearance of two antioxidant indices by the flavonoids extracted from PR had different degrees of correlation and showed concentration dependence. Simultaneously, the similarity of the UHPLC fingerprints of twenty-eight batches of PR samples ranged from 0.801 to 0.949, and four characteristic peaks, namely peaks 4, 12, 21, and 24, were screened as the peaks of the components responsible for the antioxidant effect of PR using a GRA, a Pearson correlation analysis, and a PLS-DA. In this study, characteristic peaks of the antioxidant effects of PR were screened in an investigation of the spectrum-effect relationship to provide a scientific basis for the study of pharmacodynamic substances and the elucidation of the mechanism of action of the antioxidant effect of PR.
Collapse
Affiliation(s)
- Qihua Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guiyang 550025, China; (Q.Y.); (M.Y.); (L.Y.)
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Mingyu Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guiyang 550025, China; (Q.Y.); (M.Y.); (L.Y.)
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Liyong Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guiyang 550025, China; (Q.Y.); (M.Y.); (L.Y.)
| | - Mengyu Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guiyang 550025, China; (Q.Y.); (M.Y.); (L.Y.)
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ye Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guiyang 550025, China; (Q.Y.); (M.Y.); (L.Y.)
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
10
|
Zhang S, Lin S, Zhang J, Liu W. Ultrasound-assisted natural deep eutectic solvent extraction of anthocyanin from Vitis davidii Foex. pomace: Optimization, identification, antioxidant activity and stability. Heliyon 2024; 10:e33066. [PMID: 38988524 PMCID: PMC11234101 DOI: 10.1016/j.heliyon.2024.e33066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
An efficient and environmentally friendly extraction method utilizing an ultrasonic-assisted natural deep eutectic solvent (UAE-NADES) was developed for the extraction of anthocyanins from Vitis davidii Foex. A screening process was conducted to evaluate seven different NADESs, resulting in the selection of a high-efficiency NADES (choline chloride-glycerol (ChGly)). To analyze the influence of significant factors and their interactive effects on the total anthocyanin content (TAC), response surface methodology (RSM) was employed. Furthermore, the conditions of extraction were optimized to attain the most productive yield of total anthocyanin content. The theoretical optimal conditions were determined to be a liquid‒solid ratio of 34.46 mL/g, an extraction temperature of 322.79 K and an ultrasonic power of 431.67 W, under which the verification TAC value (3.682 ± 0.051 mg/g) was highly consistent with the theoretical value (3.690 mg/g). Seventeen anthocyanins were identified by UPLC‒MS/MS. The contents of the main anthocyanins peonidin-3,5-O-diglucoside, malvidin-3,5-O-diglucoside, malvidin-3-O-5-O-(6-O-coumaroyl)-diglucoside, and malvidin-3-O-(6-O-p-coumaroyl)-glucoside in the ChGly extracts were significantly higher than those in the acid‒alcohol extract. Stability assays showed that the stability of anthocyanins in ChGly is higher than that in acidified alcohol at higher temperature, pH and stronger illumination. In vitro antioxidant results showed that the antioxidant capacities of the compounds extracted through the use of UAE-NADES were higher than those extracted using acidified alcohol. Additionally, the thermal behavior of anthocyanin extracts was further characterized through DSC analysis, highlighting the influence of ChGly or acidic ethanol. The results indicate that UAE-NADES exhibits a significant effect on the extraction of anthocyanins from plant byproducts, suggesting that its potential for use in the food sector is considerable.
Collapse
Affiliation(s)
- Shushu Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Shuhua Lin
- Hunan Agricultural Product Processing Institute, Changsha, 410125, China
| | - Juhua Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
- Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Wei Liu
- Hunan Agricultural Product Processing Institute, Changsha, 410125, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
| |
Collapse
|
11
|
Han L, Li R, Jin X, Li Y, Chen Q, He C, Wang M. Metabolomic analysis, extraction, purification and stability of the anthocyanins from colored potatoes. Food Chem X 2024; 22:101423. [PMID: 38764782 PMCID: PMC11101687 DOI: 10.1016/j.fochx.2024.101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Colored potatoes have many health benefits because they are rich in anthocyanins. However, the constituent and property of anthocyanins in colored potatoes have not been systematically studied yet. Herein, metabolomic analysis was carried out to investigate the chemical composition of anthocyanins in the four different colored potatoes. After that, the extract and purification conditions, and the stability of the anthocyanins were further studied. The results indicated that the four colored potatoes contained abundant of polyphenols, flavonoids, and anthocyanins. Cyanidin, delphinidin, and malvidin were identified as the major anthocyanidins in purple potatoes, whereas red potatoes were mainly consisted of pelargonidin and its derivatives. 84.47 mg C3GE/100 g DW of anthocyanins was obtained at the optimal conditions, which could be effectively purified macroporous resin of D101. Moreover, the anthocyanins were sensitive to pH, temperature, light, redox agents, and divalent or trivalent metal ions, but stable to sugars and univalent metal ions.
Collapse
Affiliation(s)
| | | | - Xiying Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yixin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Caian He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| |
Collapse
|
12
|
Bin Mokaizh AA, Nour AH, Kerboua K. Ultrasonic-assisted extraction to enhance the recovery of bioactive phenolic compounds from Commiphora gileadensis leaves. ULTRASONICS SONOCHEMISTRY 2024; 105:106852. [PMID: 38518410 PMCID: PMC10979263 DOI: 10.1016/j.ultsonch.2024.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/15/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
The "ultrasonic-assisted extraction (UAE)" method was utilized in this work to assess how different process parameters affected the yield and recovery of phenolic compounds from the leaf of Commiphora gileadensis, which is one of the medicinal plants with a variety of biological functions. Its leaf is used for a various of therapeutic applications, such as the treatment of bacterial infections, inflammation, and wound healing. The "One-Factor-At-a-Time (OFAT)" approach was employed to examine the impacts of various UAE process parameters on the process of extraction, which include time of extraction, sample/solvent ratio, ultrasonic frequency, and solvent (ethanol) concentration. The extracts were then investigated for the presence of several phytochemicals using analytical techniques such as "Gas Chromatography-Mass Spectroscopy (GC-MS)" and "Fourier Transform Infrared Spectroscopy (FTIR)" studies. The findings showed that the maximum extraction yield, the total phenolic content (TPC), and the total flavonoids content (TFC) of the ethanolic extract of the leaves of C. gileadensis using the UAE method were at 31.80 ± 0.41 %, 96.55 ± 2.81 mg GAE/g d.w. and 31.66 ± 2.01 mg QE/g d.w. accordingly under a procedure duration of 15 min, ultrasonic frequency of 20 kHz, solvent/sample ratio of 1:20 g/mL, and solvent concentration of 40 % v/v. The leaves extract of C. gileadensis included 25 phenolic compounds that were previously unreported, and GC-MS analysis confirmed their presence. Hence, it follows that the UAE technique can successfully extract the phytochemicals from C. gileadensis for a variety of therapeutic uses.
Collapse
Affiliation(s)
- Aiman A Bin Mokaizh
- Faculty "of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Kuantan, Pahang, Malaysia.
| | - Abdurahman Hamid Nour
- Faculty "of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Kuantan, Pahang, Malaysia; Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Kuantan, Pahang, Malaysia
| | - Kaouther Kerboua
- Department of Process and Energy Engineering, National Higher School of Technology and Engineering, 23005 Annaba, Algeria
| |
Collapse
|
13
|
Kuasnei M, Benvenutti L, Fernando dos Santos D, Ferreira SRS, Pinto VZ, Ferreira Zielinski AA. Efficient Anthocyanin Recovery from Black Bean Hulls Using Eutectic Mixtures: A Sustainable Approach for Natural Dye Development. Foods 2024; 13:1374. [PMID: 38731745 PMCID: PMC11083087 DOI: 10.3390/foods13091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
There is a growing interest in exploring new natural sources of colorants. This study aimed to extract anthocyanins from broken black bean hulls (Phaseolus vulgaris L.) by modifying water with a eutectic mixture (choline chloride:citric acid (ChCl:Ca)). Ultrasound-assisted extraction (UAE) was employed and optimized in terms of temperature (30-70 °C), ultrasound power (150-450 W), and eutectic mixture concentration in water (1-9% (w/v)), resulting in an optimal condition of 66 °C, 420 W, and 8.2% (w/v), respectively. The main quantified anthocyanins were delphinidin-3-O-glycoside, petunidin-3-O-glycoside, and malvidin-3-O-glycoside. The half-life of the anthocyanins at 60 °C increased twelvefold in the eutectic mixture extract compared to the control, and when exposed to light, the half-life was 10 times longer, indicating greater resistance of anthocyanins in the extracted eutectic mixture. Additionally, the extracts were concentrated through centrifuge-assisted cryoconcentration, with the initial cycle almost double the extract value, making this result more favorable regarding green metrics. The first concentration cycle, which showed vibrant colors of anthocyanins, was selected to analyze the color change at different pH levels. In general, the technology that uses eutectic mixtures as water modifiers followed by cryoconcentration proved to be efficient for use as indicators in packaging, both in quantity and quality of anthocyanins.
Collapse
Affiliation(s)
- Mayara Kuasnei
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.K.); (L.B.); (S.R.S.F.)
| | - Laís Benvenutti
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.K.); (L.B.); (S.R.S.F.)
| | | | - Sandra Regina Salvador Ferreira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.K.); (L.B.); (S.R.S.F.)
| | - Vânia Zanella Pinto
- Food Engineering, Federal University of Fronteira Sul, Laranjeiras do Sul 85301-970, PR, Brazil;
| | - Acácio Antonio Ferreira Zielinski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.K.); (L.B.); (S.R.S.F.)
| |
Collapse
|
14
|
Yu T, Yang L, Shang X, Bian S. Recovery of Cembratrien-Diols from Waste Tobacco ( Nicotiana tabacum L.) Flowers by Microwave-Assisted Deep Eutectic Solvent Extraction: Optimization, Separation, and In Vitro Bioactivity. Molecules 2024; 29:1563. [PMID: 38611842 PMCID: PMC11013614 DOI: 10.3390/molecules29071563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Deep eutectic solvents (DESs) are novel solvents with physicochemical properties similar to those of ionic liquids, and they have attracted extensive attention for the extraction of bioactive compounds from different plant materials in the context of green chemistry and sustainable development. In this study, seven DESs with different polarities were explored as green extraction solvents for cembratrien-diols (CBT-diols) from waste tobacco flowers. The best solvent, DES-3 (choline chloride: lactic acid (1:3)), which outperformed conventional solvents (methanol, ethanol, and ethyl acetate), was selected and further optimized for microwave-assisted DES extraction using the response surface methodology. The maximum yield of CBT-diols (6.23 ± 0.15 mg/g) was achieved using a microwave power of 425 W, microwave time of 32 min, solid/liquid ratio of 20 mg/mL, and microwave temperature of 40 °C. Additionally, the isolated CBT-diols exhibited strong antimicrobial activity against Salmonella, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa and antitumor activity in the human liver cancer HepG2 and SMMC-7721 cell lines. This study highlights the feasibility of recovering CBT-diols from tobacco flower waste using DESs and provides opportunities for potential waste management using green technologies.
Collapse
Affiliation(s)
- Tao Yu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Xianchao Shang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Shiquan Bian
- Anhui Provincial Key Laboratory of Rice Genetics and Breeding, Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
15
|
Kotland A, Thiery J, Hubert J. Chemical profiling of botanical extracts obtained in NADES systems using centrifugal partition chromatography combined with 13 C NMR dereplication-Hypericum perforatum as a case study. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:391-400. [PMID: 37886892 DOI: 10.1002/pca.3297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION Natural deep eutectic solvents (NADES) have emerged as interesting extractants to develop botanical ingredients. They are nontoxic and biodegradable, nonflammable, easy to prepare, and able to solubilize a wide range of molecules. However, NADES extracts remain difficult to analyze because the metabolites of interest stay highly diluted in the nonvolatile viscous NADES matrix. OBJECTIVE This study presents a robust analytical workflow for the chemical profiling of NADES extracts. It is applied to Hypericum perforatum aerial parts extracted with the neutral mixture fructose/glycerol/water (3/1/1, w/w/w), and compared to the chemical profiling of a classical dry methanol extract. METHODS Exploiting polarity differences between metabolites, the H. perforatum NADES extract was partitioned in a liquid-liquid solvent system to trap the hydrophilic NADES constituents in the lower phase. The upper phase, containing a diversity of secondary metabolites from H. perforatum, was fractionated by centrifugal partition chromatography. All fractions were chemically investigated using a 13 C NMR dereplication method which involves hierarchical clustering analysis of the whole NMR dataset, a natural metabolite database for metabolite identification, and 2D NMR analyses for validation. Liquid chromatography-mass spectrometry (LC-MS) analyses were also performed to complete the identification process. RESULTS A range of 21 metabolites were unambiguously identified, including glycosylated flavonols, lactones, catechins, phenolic acids, lipids, and simple sugars, and 15 additional minor extract constituents were annotated by LC-MS based on exact mass measurements. CONCLUSION The proposed identification process is rapid and nondestructive and provides good prospects to deeply characterize botanical extracts obtained in nonvolatile and viscous NADES systems.
Collapse
|
16
|
Teslić N, Pojić M, Stupar A, Mandić A, Pavlić B, Mišan A. PhInd-Database on Polyphenol Content in Agri-Food By-Products and Waste: Features of the Database. Antioxidants (Basel) 2024; 13:97. [PMID: 38247521 PMCID: PMC10812704 DOI: 10.3390/antiox13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Timely access to topic-relevant datasets is of paramount importance for the development of any successful strategy (food waste reduction strategy), since datasets illuminate opportunities, challenges and development paths. PhInd is the first comprehensive database on polyphenol content in plant-based by-products from the agri-food sector or the wastewater sector and was developed using peer-reviewed papers published in the period of 2015-2021. In total, >450 scientific manuscripts and >6000 compound entries were included. Database inclusion criteria were polyphenol contents = determined using HPLC/UHPLC quantitative methods. PhInd can be explored through several criteria which are either 'open' or checkboxes. Criteria are given in subsections: (a) plant source; (b) by-product industrial processing; (c) pre-treatment of by-products before the isolation of polyphenols; and (d) the extraction step of polyphenols. Database search results could be explored on the website directly or by downloading Excel files and graphs. This unique database content is beneficial to stakeholders-the food industry, academia, government and citizens.
Collapse
Affiliation(s)
- Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Anamarija Mandić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Aleksandra Mišan
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| |
Collapse
|
17
|
Pusty K, Kumar Dash K, Giri S, Raj GVSB, Tiwari A, Shaikh AM, Béla K. Ultrasound assisted phytochemical extraction of red cabbage by using deep eutectic solvent: Modelling using ANFIS and optimization by genetic algorithms. ULTRASONICS SONOCHEMISTRY 2024; 102:106762. [PMID: 38211496 PMCID: PMC10825368 DOI: 10.1016/j.ultsonch.2024.106762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/23/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
The present investigation studied the effect of process parameters on the extraction of phytochemicals from red cabbage by the application of ultrasonication and temperature. The solvent selected for the study was deep eutectic solvent (DES) prepared by choline chloride and citric acid. The ultrasound assisted extraction process was modeled using adaptive neuro-fuzzy inference system (ANFIS) algorithm and integrated with the genetic algorithm for optimization purposes. The independent variables that influenced the responses (total phenolic content, antioxidant activity, total anthocyanin activity, and total flavonoid content) were ultrasonication power, temperature, molar ratio of DES, and water content of DES. Each ANFIS model was formed by the training of three Gaussian-type membership functions (MF) for each input, trained by a hybrid algorithm with 500 epochs and linear type MF for output MF. The ANFIS model predicted each response close to the experimental data which is evident by the statistical parameters (R2>0.953 and RMSE <1.165). The integrated hybrid ANFIS-GA algorithm predicted the optimized condition for the process parameters of ultrasound assisted extraction of phytochemicals from red cabbage was found to be 252.114 W for ultrasonication power, 52.715 °C of temperature, 2.0677:1 of molar ratio of DES and 25.947 % of water content in DES solvent with maximum extraction content of responses, with fitness value 3.352. The relative deviation between the experimental and ANFIS predicted values for total phenolic content, antioxidant activity, total anthocyanin activity, and total flavonoid content was found to be 1.849 %, 3.495 %, 2.801 %, and 4.661 % respectively.
Collapse
Affiliation(s)
- Kasturi Pusty
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India; Department of Agricultural Engineering, Assam University, Silchar, Assam, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| | - Souvik Giri
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - G V S Bhagya Raj
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Ajita Tiwari
- Department of Agricultural Engineering, Assam University, Silchar, Assam, India
| | - Ayaz Mukarram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary
| | - Kovács Béla
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary.
| |
Collapse
|
18
|
Karpitskiy DA, Bessonova EA, Shishov AY, Kartsova LA. Selective extraction of plant bioactive compounds with deep eutectic solvents: Iris sibirica L. as example. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:53-63. [PMID: 37545032 DOI: 10.1002/pca.3272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/21/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Deep eutectic solvents (DESs) are promising extractants with tuneable properties. However, there is a lack of reports about the influence of the nature of the original DES on obtaining the metabolomic profile of a plant. OBJECTIVE The aim of this study is to investigate the possibility of obtaining Iris sibirica L. chromatographical profiles with DESs based on various hydrogen bond donors and acceptors as extraction solvents. METHODOLOGY DESs were prepared by mixing choline chloride or tetrabutylammonium bromide with various hydrogen bond donors and investigated for the extraction of bioactive substances from biotechnological raw materials of I. sibirica L. The obtained extracts were analysed by HPLC with diode array detector (DAD) and Q-MS. RESULTS Chromatographic profiles for I. sibirica L. extracts by eight choline chloride DESs and six tetrabutylammonium DESs have been obtained. It has been found that selective recovery of bioactive substances can be achieved by varying the composition of DESs. Eleven phenolic compounds were identified in I. sibirica L. using HPLC-MS. Phase separation was observed with acetonitrile for four DESs. New flavonoid derivatives have been found in DES extracts compared with methanol extracts. CONCLUSION The results showed the possibility of DES usage for extraction without water addition. Selectivity of DESs varies depending on the chemical composition of hydrogen bond donors and acceptors. Choline chloride is a more suitable hydrogen bond acceptor for the flavonoid extraction. Choline chloride-lactic acid (1:1) DES has demonstrated a metabolic profile that was the closest to the methanol one and enhanced the extraction up to 2.6-fold.
Collapse
Affiliation(s)
- Dmitriy A Karpitskiy
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Elena A Bessonova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Andrey Yu Shishov
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Liudmila A Kartsova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
19
|
Gan Y, Wang C, Xu C, Zhang P, Chen S, Tang L, Zhang J, Zhang H, Jiang S. Simultaneous extraction of crocin and geniposide from gardenia fruits (Gardenia jasminoides Ellis) by probe-type ultrasound-assisted natural deep eutectic solvents and their inhibition effects on low density lipoprotein oxidation. ULTRASONICS SONOCHEMISTRY 2023; 101:106658. [PMID: 37913593 PMCID: PMC10638020 DOI: 10.1016/j.ultsonch.2023.106658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
The simultaneous extraction of crocin and geniposide from gardenia fruits (Gardenia jasminoides Ellis) was performed by integrating natural deep eutectic solvents (NADES) and ultrasound-assisted extraction (UAE). Among the eight kinds of NADES screened, choline chloride-1,2-propylene glycol was the most suitable extractant. The probe-type ultrasound-assisted NADES extraction system (pr-UAE-NADES) demonstrated higher extraction efficiency compared with plate-type ultrasound-assisted NADES extraction system (pl-UAE-NADES). Orthogonal experimental design and a modified multi-index synthetic weighted scoring method were adopted to optimize pr-UAE-NADES extraction process. The optimal extraction conditions that had a maximum synthetic weighted score of 29.46 were determined to be 25 °C for extraction temperature, 600 W for ultrasonic power, 20 min for extraction time, and 25% (w/w) for water content in NADES, leading to the maximum yields (7.39 ± 0.20 mg/g and 57.99 ± 0.91 mg/g, respectively) of crocin and geniposide. Thirty-three compounds including iridoids, carotenoids, phenolic acids, flavonoids, and triterpenes in the NADES extract were identified by LC-Q-TOF-MS2 coupled with a feature-based molecular networking workflow. The kinetics evaluation of the conjugated dienes generation on Cu2+-induced low density lipoprotein (LDL) oxidation via the four-parameter logistic regression model showed that crocin increased the lag time of LDL oxidation in a concentration-dependent manner (15 μg/mL, 30 μg/mL, 45 μg/mL) by 12.66%, 35.44%, and 73.42%, respectively. The quantitative determination for fluorescence properties alteration of the apolipoprotein B-100 exhibited that crocin effectively inhibited the fluorescence quenching of tryptophan residues and the modification of lysine residues caused by reactive aldehydes and malondialdehydes. The pr-UAE-NADES showed significant efficiency toward the simultaneous extraction of crocin and geniposide from gardenia fruits. And this study demonstrates the potential utility of gardenia fruits in developing anti-atherogenic functional food.
Collapse
Affiliation(s)
- Yuxin Gan
- School of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China; School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Chenyu Wang
- School of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China; School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Chenfeng Xu
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Pingping Zhang
- School of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China.
| | - Shutong Chen
- School of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China; School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Lei Tang
- School of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Junbing Zhang
- Jiangxi Danxia Biotechnology Co., Ltd, Yingtan 335000, China
| | - Huahao Zhang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Shenhua Jiang
- School of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China; School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; Jiangxi Danxia Biotechnology Co., Ltd, Yingtan 335000, China.
| |
Collapse
|
20
|
Ahmad I, Hikmawan BD, Maharani DF, Nisrina N, Arifianti AE, Mun’im A. Natural Deep Eutectic Solvent based Ultrasound-assisted extraction: A green approach for extraction of sulfhydryl and mimosine from Leucaena leucocephala (Lam) de Wit seeds. Heliyon 2023; 9:e20480. [PMID: 37842627 PMCID: PMC10570601 DOI: 10.1016/j.heliyon.2023.e20480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
Leucaena leucocephala (Lam.) de Wit seeds, also known as river tamarind, contain sulfhydryl compounds that exhibit antioxidant effects. However, these seeds also possess a toxic effect from mimosine. In this study, the river tamarind seeds were extracted using a natural deep eutectic solvent (NADES) based UAE. Among six NADES compositions screened, choline chloride-glycerol (ChCl-Gly) and choline chloride-sucrose (ChCl-Suc) were selected to be further optimized using a Box-Behnken Design in the RSM. The optimization of total sulfhydryl content was performed in 17 runs using three variables, namely water content in NADES (39%, 41%, and 43%), extraction time (5, 10, and 15 min), and the liquid-solid ratio (3, 5, and 7 mL/g). The highest concentration of sulfhydryls was obtained from ChCl-Gly-UAE (0.89 mg/g sample) under the conditions of a water content in NADES of 41% (v/v) and a liquid-solid ratio of 3 mL/g for 15 min, followed by that of from ChCl-Suc-UAE extract under the conditions of water content in NADES of 43% (v/v) and the liquid-solid ratio of 3 mL/g for 10 min with total sulfhydryl level was 0.67 mg/g sample. The maceration method using 30% ethanol resulted in the lowest level of sulfhydryls with a value of 0.52 mg/g. The mimosine compounds obtained in the NADES-based UAE (ChCl-Suc and ChCl-Gly) extracts were 4.95 and 7.67 mg/g, respectively, while 12.56 mg/g in the 30% ethanol-maceration extract. The surface morphology of L. leucocephala seed before and after extraction was analyzed using scanning electron microscopy. Therefore, it can be concluded that the use of ChCl-Suc and ChCl-Gly in NADES-based UAE is more selective in attracting sulfhydryl compounds than that of 30% ethanol-maceration extraction.
Collapse
Affiliation(s)
- Islamudin Ahmad
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, 75119, East Kalimantan, Indonesia
| | - Baso Didik Hikmawan
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, 75119, East Kalimantan, Indonesia
| | - Disqi Fahira Maharani
- Undergraduate Program of Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Nadya Nisrina
- Undergraduate Program of Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Ayun Erwina Arifianti
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Abdul Mun’im
- Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
- National Metabolomic Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| |
Collapse
|
21
|
Zhou M, Fakayode OA, Li H. Green Extraction of Polyphenols via Deep Eutectic Solvents and Assisted Technologies from Agri-Food By-Products. Molecules 2023; 28:6852. [PMID: 37836694 PMCID: PMC10574355 DOI: 10.3390/molecules28196852] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Polyphenols are the largest group of phytochemicals with important biological properties. Their presence in conveniently available low-cost sources, such as agri-food by-products, has gained considerable attention in their recovery and further exploitation. Retrieving polyphenols in a green and sustainable way is crucial. Recently, deep eutectic solvents (DESs) have been identified as a safe and environmentally benign medium capable of extracting polyphenols efficiently. This review encompasses the current knowledge and applications of DESs and assisted technologies to extract polyphenols from agri-food by-products. Particular attention has been paid to fundamental mechanisms and potential applications in the food, cosmetic, and pharmaceutical industries. In this way, DESs and DESs-assisted with advanced techniques offer promising opportunities to recover polyphenols from agri-food by-products efficiently, contributing to a circular and sustainable economy.
Collapse
Affiliation(s)
- Man Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
| |
Collapse
|
22
|
Zhang C, Chi W, Zhou T, Wang Y, Li J, Wang L. Fabricating a visibly colorimetric film via self-releasing of anthocyanins from distributed mulberry pomace particles in hydrophilic sodium carboxymethyl starch-based matrix to monitor meat freshness. Int J Biol Macromol 2023; 246:125617. [PMID: 37390997 DOI: 10.1016/j.ijbiomac.2023.125617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
A highly distinguishable indicator film was developed based on sodium carboxymethyl starch, κ-carrageenan, carboxylated cellulose nanocrystals and mulberry pomace particles (MPPs). As the content of MPPs increased from 0 % to 6 %, the tensile strength decreased from 11.71 MPa to 5.20 MPa, the elongation at break increased from 26.84 % to 43.76 %, respectively, and the haze increased from 34.12 % to 52.10 %. The films accurately exhibit a color change from purple to blue-green under alkaline conditions. The enhanced haze improved the visible resolution of the films during the color-changing process. The films with the size of 7.50 mm × 7.50 mm and 10.0 mm × 10.0 mm exhibited obvious color changes when the total volatile basic nitrogen reached 14.60 mg/100 g and 19.04 mg/100 g, respectively, which accurately indicated the quality of pork and fish. This study will offer a simplified path to improve both accurate sensitivity and distinguishability for smart films.
Collapse
Affiliation(s)
- Cijian Zhang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Wenrui Chi
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Tao Zhou
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Yuxi Wang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Jian Li
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Lijuan Wang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China.
| |
Collapse
|
23
|
Lomba L, Werner Á, Giner B, Lafuente C. Deep Eutectic Solvents Formed by Glycerol and Xylitol, Fructose and Sorbitol: Effect of the Different Sugars in Their Physicochemical Properties. Molecules 2023; 28:6023. [PMID: 37630275 PMCID: PMC10458529 DOI: 10.3390/molecules28166023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The search for new eutectic solvents for different applications (extraction, drug formulation, chemical reactions, etc.) is booming thanks to their high solubility capacity and low toxicity. However, it is necessary to carry out a comprehensive physicochemical characterization of these mixtures to understand the molecular behavior at different experimental conditions. In this study, three deep eutectic solvents (DESs) formed by glycerol and xylitol, fructose and sorbitol and water in the molar ratio 1:2:3 were prepared and several physicochemical properties (refractive index, density, surface tension, viscosity, speed of sound, isobaric heat capacity and isentropic compressibility) were measured and analyzed in the 278.15-338.15 K temperature range. The results indicate a linear dependence with temperature for the following properties: surface tension, refractive index, density and isobaric molar heat capacity while viscosity values have been fitted to the Vogel-Fulcher-Tammann equation.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Campus Universitario, Universidad San Jorge, Autov. A23 km 299, Villanueva de Gállego, 50830 Zaragoza, Spain; (L.L.); (Á.W.)
| | - Álvaro Werner
- Facultad de Ciencias de la Salud, Campus Universitario, Universidad San Jorge, Autov. A23 km 299, Villanueva de Gállego, 50830 Zaragoza, Spain; (L.L.); (Á.W.)
| | - Beatriz Giner
- Facultad de Ciencias de la Salud, Campus Universitario, Universidad San Jorge, Autov. A23 km 299, Villanueva de Gállego, 50830 Zaragoza, Spain; (L.L.); (Á.W.)
| | - Carlos Lafuente
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| |
Collapse
|
24
|
Huang W, Zhao X, Chai Z, Herrera-Balandrano DD, Li B, Yang Y, Lu S, Tu Z. Improving Blueberry Anthocyanins' Stability Using a Ferritin Nanocarrier. Molecules 2023; 28:5844. [PMID: 37570814 PMCID: PMC10421234 DOI: 10.3390/molecules28155844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Blueberries are fruits known for their high level of anthocyanins, which have high nutritional value and several biological properties. However, the chemical instability of anthocyanins is one of the major limitations of their application. The stability of blueberry anthocyanin extracts (BAEs) encapsulated in a ferritin nanocarrier was investigated in this study for several influencing parameters, including pH, temperature, UV-visible light, redox agents, and various metal ions. The outcomes supported the positive role of protein nanoparticles in enhancing the stability of blueberry anthocyanins by demonstrating that the stability of encapsulated BAE nanoparticles with ferritin carriers was significantly higher than that of free BAEs and a mixture of BAEs and ferritin carriers. This study provides an alternative approach for enhancing blueberry anthocyanin stability using ferritin nanocarrier encapsulation.
Collapse
Affiliation(s)
- Wuyang Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.H.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Xingyu Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.H.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Zhi Chai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | | | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji 311899, China
| | - Shan Lu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhigang Tu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.H.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
25
|
Qu H, Wu Y, Luo Z, Dong Q, Yang H, Dai C. An efficient approach for extraction of polysaccharide from abalone (Haliotis Discus Hannai Ino) viscera by natural deep eutectic solvent. Int J Biol Macromol 2023; 244:125336. [PMID: 37327933 DOI: 10.1016/j.ijbiomac.2023.125336] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
In this study, a natural deep eutectic solvent (NADES) was proposed for the ultrasonic-assisted extraction of polysaccharides from abalone (Haliotis Discus Hannai Ino) viscera. Eleven NADESs were employed for abalone viscera polysaccharide (AVP) extraction. NADES, composed of choline chloride and ethylene glycol in a molar ratio 1: 3 had the highest extraction efficiency. The optimal extraction conditions were obtained using a four-factor, three-level Box-Behnken design and specific response surface methodology. The maximum predicted polysaccharide yield was 17.32 %. Fick's second law was fitted to the extraction process of AVP by ultrasonic-assisted NADES based on a high linear correlation (R2 ≥ 0.9). The extraction rate constants (k), diffusion coefficients (Du) and half-lives (t1/2) were calculated. Compared to the polysaccharides prepared by the conventional method, the polysaccharides extracted by NADES had a higher sugar content, lower molecular weight, more glucuronic acid, and stronger antioxidant capacity. Overall, the NADES extraction method established in this research can become a strategy for the preparation of high-purity and highly bioactive abalone viscera polysaccharides, which has implications for the exploitation and application of marine food byproduct resources.
Collapse
Affiliation(s)
- Hang Qu
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China; School of Life & Environmental Science, Wenzhou University, Chashan University Town, Wenzhou, China; Zhejiang Baizhentang Food Co. LTD, Wenzhou, China
| | - Yi Wu
- School of Life & Environmental Science, Wenzhou University, Chashan University Town, Wenzhou, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | | | - Hailong Yang
- School of Life & Environmental Science, Wenzhou University, Chashan University Town, Wenzhou, China.
| | - Chenyi Dai
- Zhejiang Baizhentang Food Co. LTD, Wenzhou, China
| |
Collapse
|
26
|
Zhou L, Luo J, Xie Q, Huang L, Shen D, Li G. Dietary Fiber from Navel Orange Peel Prepared by Enzymatic and Ultrasound-Assisted Deep Eutectic Solvents: Physicochemical and Prebiotic Properties. Foods 2023; 12:foods12102007. [PMID: 37238825 DOI: 10.3390/foods12102007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Dietary fiber (DF) was extracted from navel orange peel residue by enzyme (E-DF) and ultrasound-assisted deep eutectic solvent (US-DES-DF), and its physicochemical and prebiotic properties were characterized. Based on Fourier-transform infrared spectroscopy, all DF samples exhibited typical polysaccharide absorption spectra, indicating that DES could separate lignin while leaving the chemical structure of DF unchanged, yielding significantly higher extraction yields (76.69 ± 1.68%) compared to enzymatic methods (67.27 ± 0.13%). Moreover, ultrasound-assisted DES extraction improved the properties of navel orange DFs by significantly increasing the contents of soluble dietary fiber and total dietary fiber (3.29 ± 1.33% and 10.13 ± 0.78%, respectively), as well as a notable improvement in the values of water-holding capacity, oil-holding capacity, and water swelling capacity. US-DES-DF outperformed commercial citrus fiber in stimulating the proliferation of probiotic Bifidobacteria strains in vitro. Overall, ultrasound-assisted DES extraction exhibited potential as an industrial extraction method, and US-DES-DF could serve as a valuable functional food ingredient. These results provide a new perspective on the prebiotic properties of dietary fibers and the preparation process of prebiotics.
Collapse
Affiliation(s)
- Liling Zhou
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Jiaqian Luo
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Qiutao Xie
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Lvhong Huang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Dan Shen
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| |
Collapse
|
27
|
Feitosa BF, Decker BLA, Brito ESD, Rodrigues S, Mariutti LRB. Microencapsulation of anthocyanins as natural dye extracted from fruits - A systematic review. Food Chem 2023; 424:136361. [PMID: 37216779 DOI: 10.1016/j.foodchem.2023.136361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Anthocyanins are naturally colored compounds that can be extracted from plants, especially fruits. Their molecules are unstable under normal processing conditions; thus, they must be protected using modern technologies, such as microencapsulation. For this reason, many industries are searching for information from review studies to find the conditions that improve these natural pigments' stability. This systematic review aimed to elucidate different aspects of anthocyanins, such as main extraction and microencapsulation methods, gaps in analytical techniques, and industrial optimization measurements. Initially, 179 scientific articles were retrieved, of which seven clusters were found with 10-36 cross-linked references. Sixteen articles containing 15 different botanical specimens were included in the review, most focusing on the whole fruit, pulp, or subproducts. The extraction and microencapsulation technique resulting in the highest anthocyanin content was sonication with ethanol, temperature below 40 °C, and maximum time of 30 min, followed by microencapsulation by spray drying with maltodextrin or gum Arabic. Color apps and simulation programs may help verify natural dyes' composition, characteristics, and behavior.
Collapse
Affiliation(s)
| | | | | | - Sueli Rodrigues
- Federal University of Ceará, 60020-181 Fortaleza, CE, Brazil.
| | | |
Collapse
|
28
|
Zhang XJ, Liu ZT, Chen XQ, Zhang TT, Zhang Y. Deep eutectic solvent combined with ultrasound technology: A promising integrated extraction strategy for anthocyanins and polyphenols from blueberry pomace. Food Chem 2023; 422:136224. [PMID: 37137239 DOI: 10.1016/j.foodchem.2023.136224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
To avoid wasting blueberry pomace resources, deep eutectic solvents (DESs) were combined with ultrasound technology to establish an efficient green method for the recovery of anthocyanins and polyphenols from plant-derived by-products. Choline chloride:1,4-butanediol (molar ratio of 1:3) was chosen as the optimal solvent based on the screening of eight solvents and single-factor experiments. Response surface methodology was applied to optimize the extraction parameters: water content, 29%; extraction temperature, 63 °C; liquid-solid ratio, 36:1 (v/w). The yields of total anthocyanins and total polyphenols from the optimized extraction were 11.40 ± 0.14 mg cyanidin-3-glucoside equiv./g and 41.56 ± 0.17 mg gallic acid equiv./g, respectively, which were both significantly better than the yields achieved with 70% ethanol. The purified anthocyanins showed excellent inhibition of α-glucosidase (IC50 = 16.57 μg/mL). The physicochemical parameters of DES suggest that it can be used for the extraction of bioactive substances.
Collapse
Affiliation(s)
- Xiu-Juan Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Zhi-Ting Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Xiao-Qiang Chen
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, PR China; College of Resources and Environment, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, PR China.
| | - Tong-Tong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Ying Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, PR China.
| |
Collapse
|
29
|
Leal M, Moreno MA, Albornoz PL, Mercado MI, Zampini IC, Isla MI. Morphological Characterization of Nicotiana tabacum Inflorescences and Chemical-Functional Analysis of Extracts Obtained from Its Powder by Using Green Solvents (NaDESs). PLANTS (BASEL, SWITZERLAND) 2023; 12:1554. [PMID: 37050180 PMCID: PMC10096878 DOI: 10.3390/plants12071554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
The production of smokeable tobacco for use in cigarettes is characterized by the production of pre-harvest and post-harvest waste, with ensuing undesirable effects on the environment. The inflorescences of tobacco after blunting, deflowering, or topping are considered pre-harvest waste and left in the field. Using green and ecofriendly solvents such as Natural deep eutectic solvents (NaDESs), these wastes could be used to obtain antioxidant molecules of interest in cosmetics. Taking into account its potential as plant matrix to obtain metabolites of commercial interest, tobacco inflorescences and inflorescence powders of different particle sizes were characterized by optic and electronic microscopy. Thus, the powdered inflorescences were extracted with four conventional solvents, i.e., distilled water (DW), acetone: distilled water (AW), ethanol 70° (EW), methanol (Me), and five NaDESs, i.e., lactic acid: sucrose (LAS), lactic acid: sucrose: distilled water (SALA), fructose: glucose: sucrose: distilled water (FGS), choline chloride: urea: distilled water (CU), and citric acid: propylene glycol (CAP). Among the tested NADESs, SALA was the most promising solvent; higher extraction yields of total phenolic compound (3420.0 ± 9.4 µg GAE/mL) than conventional solvents were attained and it was the only selective solvent to phenolics. CU was the best solvent for flavonoids and alkaloids extraction (215.3 ± 3.2 µg QE/mL and 392.3 ± 8.0 µg ACE/mL, respectively). All extracts showed antioxidant activity. A heatmap with dendrogram and main component analysis showed that acid-based NaDESs are grouped together, this group being the one with the best performance in H2O2 scavenging. The extracts obtained with green solvents could be used directly in cosmetic formulations as antioxidant ingredients because both tobacco flower oil and flower extracts are listed in the cosmetic ingredients database as non-toxic products. Additionally, the demand for sustainable ecological cosmetics is growing. In this sense, NaDESs represent an opportunity to develop innovative extracts with unique phytochemical fingerprints and biological activities.
Collapse
Affiliation(s)
- Mariana Leal
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán T4000, Argentina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán T4000, Argentina
- Biolates Network for Sustainable Use of Ibero-American Vegetable Biomass Resources in Cosmetics (Biolates CYTED), San Miguel de Tucumán T4000, Argentina
| | - María Alejandra Moreno
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán T4000, Argentina
- Biolates Network for Sustainable Use of Ibero-American Vegetable Biomass Resources in Cosmetics (Biolates CYTED), San Miguel de Tucumán T4000, Argentina
| | - Patricia Liliana Albornoz
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán T4000, Argentina
- Instituto de Morfología Vegetal, Fundación M. Lillo, Miguel Lillo 251, San Miguel de Tucumán T4000, Argentina
| | - María Inés Mercado
- Instituto de Morfología Vegetal, Fundación M. Lillo, Miguel Lillo 251, San Miguel de Tucumán T4000, Argentina
| | - Iris Catiana Zampini
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán T4000, Argentina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán T4000, Argentina
- Biolates Network for Sustainable Use of Ibero-American Vegetable Biomass Resources in Cosmetics (Biolates CYTED), San Miguel de Tucumán T4000, Argentina
| | - María Inés Isla
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán T4000, Argentina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán T4000, Argentina
- Biolates Network for Sustainable Use of Ibero-American Vegetable Biomass Resources in Cosmetics (Biolates CYTED), San Miguel de Tucumán T4000, Argentina
| |
Collapse
|
30
|
Zhu M, Sun Y, Bai H, Wang Y, Yang B, Wang Q, Kuang H. Effects of saponins from Chinese herbal medicines on signal transduction pathways in cancer: A review. Front Pharmacol 2023; 14:1159985. [PMID: 37063281 PMCID: PMC10090286 DOI: 10.3389/fphar.2023.1159985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Cancer poses a serious threat to human health, and the search for safe and effective drugs for its treatment has aroused interest and become a long-term goal. Traditional Chinese herbal medicine (TCM), an ancient science with unique anti-cancer advantages, has achieved outstanding results in long-term clinical practice. Accumulating evidence shows that saponins are key bioactive components in TCM and have great research and development applications for their significant role in the treatment of cancer. Saponins are a class of glycosides comprising nonpolar triterpenes or sterols attached to hydrophilic oligosaccharide groups that exert antitumor effects by targeting the NF-κB, PI3Ks-Akt-mTOR, MAPK, Wnt-β-catenin, JAK-STAT3, APMK, p53, and EGFR signaling pathways. Presently, few advances have been made in physiological and pathological studies on the effect of saponins on signal transduction pathways involved in cancer treatment. This paper reviews the phytochemistry and extraction methods of saponins of TCM and their effects on signal transduction pathways in cancer. It aims to provide theoretical support for in-depth studies on the anticancer effects of saponins.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Haodong Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yimeng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| |
Collapse
|
31
|
Li J, Guo X, Wang R, Geng Z, Jia J, Pang S, Du Y, Jia S, Cui J. Ultrasonic assisted extraction of anthocyanins from rose flower petal in DES system and enzymatic acylation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
32
|
da Silva Moura M, da Silva Gomes da Costa B, Giaconia MA, de Andrade RR, Braga ARC, Braga MB. Jaboticaba powders production by freeze‐drying: Influence of octenyl succinic anhydride‐modified starch concentrations over anthocyanins and physical properties. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Milena da Silva Moura
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
| | | | | | - Rafael Ramos de Andrade
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
- Department of Biosciences Universidade Federal de São Paulo (UNIFESP) Santos SP Brazil
| | - Matheus Boeira Braga
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
| |
Collapse
|
33
|
Lianza M, Marincich L, Antognoni F. The Greening of Anthocyanins: Eco-Friendly Techniques for Their Recovery from Agri-Food By-Products. Antioxidants (Basel) 2022; 11:2169. [PMID: 36358541 PMCID: PMC9717736 DOI: 10.3390/antiox11112169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/29/2023] Open
Abstract
In recent years, several steps forward have been made toward a more sustainable approach for the extraction of bioactive compounds from plant materials based on the application of green extraction principles. It is currently recognized that waste and by-products deriving from agriculture and food industries still contain a wide array of high value-added substances, which can be re-used to obtain new products with various applications in the food, supplement, pharmaceutical, and cosmetic industries. Anthocyanins are a class of these valuable metabolites; they confer the red, violet, and blue color to fruits and vegetables, and scientific evidence has accumulated over the last few decades to support their beneficial effects on human health, in great part deriving from their powerful antioxidant capacity. This review provides a general overview of the most recent green procedures that have been applied for the recovery of anthocyanins from plant-derived wastes and by-products. The most widely used green solvents and the main sustainable techniques utilized for recovering this class of flavonoids from various matrices are discussed, together with the variables that mainly impact the extraction yield.
Collapse
Affiliation(s)
| | | | - Fabiana Antognoni
- Department for Life Quality Studies, Rimini Campus, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
34
|
Jovanović MS, Krgović N, Živković J, Stević T, Zdunić G, Bigović D, Šavikin K. Ultrasound-Assisted Natural Deep Eutectic Solvents Extraction of Bilberry Anthocyanins: Optimization, Bioactivities, and Storage Stability. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202680. [PMID: 36297704 PMCID: PMC9609731 DOI: 10.3390/plants11202680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 05/14/2023]
Abstract
Bilberry fruits (Vaccinium myrtillus L.) are one of the richest natural sources of anthocyanins and are widely used due to their pharmacological and nutritional properties. To ensure their maximum application potential, it is necessary to overcome the limitations of conventional extraction solvents and techniques. This study aimed to develop a green method for bilberry anthocyanin extraction using natural deep eutectic solvents (NaDES) integrated with ultrasound-assisted extraction (UAE) in order to define extraction conditions that will prevent decomposition of the anthocyanins or the loss of bioactivity. After a screening of ten different NaDES, choline chloride:sorbitol (1:1) was selected as the most effective. Furthermore, the influence analysis and optimization of the NaDES-UAE extraction conditions were carried out employing response surface methodology. The optimal conditions were found to be an extraction time of 37.63 min, a temperature of 48.38 °C, and 34.79% (w/w) water in NaDES. The extraction yields of target compounds under optimized extraction conditions were 0.27 mg/g DW of cyanidin-3-O-glucoside and 2.12 mg CGE/g DW of TAC. The obtained optimized extract showed promising radical scavenging and antimicrobial activity. A stability study with the optimized extract revealed that refrigerated storage at 4 °C in the dark provided the best anthocyanins preservation. Overall, the developed NaDES-UAE method showed promising application potential and can be considered as a high-efficiency green alternative to conventional anthocyanins extraction methods, enabling the preservation of active ingredients and the bioactivity of extracts.
Collapse
Affiliation(s)
- Miloš S. Jovanović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr. Zorana Đinđića 81, 18000 Niš, Serbia
| | - Nemanja Krgović
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-64-867-4921
| | - Tatjana Stević
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Gordana Zdunić
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Dubravka Bigović
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| |
Collapse
|
35
|
Wu H, Di QR, Zhong L, Zhou JZ, Shan CJ, Liu XL, Ma AM. Enhancement on antioxidant, anti-hyperglycemic and antibacterial activities of blackberry anthocyanins by processes optimization involving extraction and purification. Front Nutr 2022; 9:1007691. [PMID: 36304233 PMCID: PMC9593095 DOI: 10.3389/fnut.2022.1007691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
This research aimed to recover anthocyanin-rich extracts from blackberry (Rubus spp. Hull cultivar) by optimizing the processing conditions, and to characterize anthocyanin individuals and determine influences of optimization on enhancement of antioxidant and anti-hyperglycemic activities of anthocyanins as natural supplements. The ethanol concentration of 69.87%, HCl dosage of 0.53%, solid-to-liquid ratio of 1:19.06 at 47.68°C for 17.04 h were optimal to obtain the highest extraction yield of anthocyanins at 0.72 mg/g. By using AB-8 macroporous resins, the anthocyanin concentration of 3.0 mg/mL, ethanol concentration of 90%, and elution rate of 2.0 mL/min were selected to boost the anthocyanin purity up to be 60.11%. Moreover, the purified anthocyanin extracts from blackberry contained nine main pigments which could be divided into three aglycone-based forms, and cyanidin-3-O-glucoside was the most abundant among them. Due to the successive processes of extraction and purification, the blackberry purified anthocyanin extracts (BA-PAE) showed much higher bioactive capacities than the blackberry crude anthocyanin extracts (BA-CAE) and blackberry fruit slurry extracts (BA-FSE), e.g., DPPH and ABTS radical scavenging activities (EC50 = 0.08 and 0.04, 0.32 and 0.24, and 1.31 and 0.41 mg/mL), oxygen radical absorbance capacity (1.60, 0.59, and 0.15 mmol TEAC/g), cytoprotective effects against oxidative stress in PC12 cells (1.69-, 1.58-, and 1.50-fold cell viability compared to oxidative group), α-amylase and α-glucosidase inhibitory activities (IC50 = 0.10 and 0.06, 0.56 and 0.32, and 3.98 and 2.16 mg/mL), and antibacterial activity (93.23, 40.85, and 80.42% reduced biofilm).
Collapse
Affiliation(s)
- Han Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China,Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qing-Ru Di
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liang Zhong
- Nanjing Youwei Organic Food Company, Nanjing, China
| | - Jian-Zhong Zhou
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Cheng-Jun Shan
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiao-Li Liu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ai-Min Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China,*Correspondence: Ai-Min Ma
| |
Collapse
|
36
|
Acidified glycerol as a one-step efficient green extraction and preservation strategy for anthocyanin from blueberry pomace: New insights into extraction and stability protection mechanism with molecular dynamic simulation. Food Chem 2022; 390:133226. [PMID: 35597084 DOI: 10.1016/j.foodchem.2022.133226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/14/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022]
Abstract
In present work, green and efficient glycerol solvent system was coupled with pulse-probe ultrasonication for one-step extraction and preservation of anthocyanin from blueberry pomace. Under optimal conditions (40 min, 174 W, 18.6 mL/g, 20% of glycerol fraction), extraction yield was 23.07 ± 0.09 mg C3GE/g DW. The extracted anthocyanins were characterized by UPLC-Triple-TOF/MS and 10 anthocyanins compounds were tentatively identified. Stability of anthocyanins influenced by solvents were evaluated in varying temperature, pH and light exposure conditions, demonstrating higher stability of anthocyanins in glycerol solvent system than methanol one. Furthermore, mechanism of high efficiency extraction and stability of anthocyanin using glycerol were investigated by quantum chemical calculation with molecular dynamic simulation. Larger solvent accessible surface area (127.16 nm2), hydrogen bonds number (228.16) and hydrogen bonds lifetime (4.35 ps), and lower intermolecular interaction energy (-1080.48 kJ/mol) between anthocyanin and glycerol were responsible for better extraction and preservation of anthocyanins using glycerol system.
Collapse
|
37
|
Phenolics from Defatted Black Cumin Seeds ( Nigella sativa L.): Ultrasound-Assisted Extraction Optimization, Comparison, and Antioxidant Activity. Biomolecules 2022; 12:biom12091311. [PMID: 36139150 PMCID: PMC9496517 DOI: 10.3390/biom12091311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
An ultrasound-assisted method was used for the extraction of phenolics from defatted black cumin seeds (Nigella sativa L.), and the effects of several extraction factors on the total phenolic content and DPPH radical scavenging activity were investigated. To improve the extraction efficiency of phenolics from black cumin seed by ultrasonic-assisted extraction, the optimal extraction conditions were determined as follows: ethanol concentration of 59.1%, extraction temperature of 44.6 °C and extraction time of 32.5 min. Under these conditions, the total phenolic content and DPPH radical scavenging activity increased by about 70% and 38%, respectively, compared with conventional extraction. Furthermore, a complementary quantitative analysis of individual phenolic compounds was carried out using the HPLC-UV technique. The phenolic composition revealed high amounts of epicatechin (1.88–2.37 mg/g) and rutin (0.96–1.21 mg/g) in the black cumin seed extracts. Ultrasonic-assisted extraction can be a useful extraction method for the recovery of polyphenols from defatted black cumin seeds.
Collapse
|
38
|
Modifiers based on deep eutectic mixtures: a case study for the extraction of anthocyanins from black bean hulls using high pressure fluid technology. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Duan Y, Tarafdar A, Chaurasia D, Singh A, Bhargava PC, Yang J, Li Z, Ni X, Tian Y, Li H, Awasthi MK. Blueberry fruit valorization and valuable constituents: A review. Int J Food Microbiol 2022; 381:109890. [DOI: 10.1016/j.ijfoodmicro.2022.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022]
|
40
|
Yusoff IM, Mat Taher Z, Rahmat Z, Chua LS. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res Int 2022; 157:111268. [DOI: 10.1016/j.foodres.2022.111268] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/27/2022]
|
41
|
Hoskin RT, Plundrich N, Vargochik A, Lila MA. CONTINUOUS FLOW MICROWAVE-ASSISTED AQUEOUS EXTRACTION OF POMACE PHYTOACTIVES FOR PRODUCTION OF PROTEIN-POLYPHENOL PARTICLES AND A PROTEIN-ENRICHED READY-TO-DRINK BEVERAGE. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Zannou O, Koca I. Greener extraction of anthocyanins and antioxidant activity from blackberry (Rubus spp) using natural deep eutectic solvents. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Li P, Huang D, Tang J, Zhang P, Meng F. Silica gel impregnated with deep eutectic solvent-based matrix solid-phase dispersion followed by high-performance liquid chromatography for extraction and detection of triazine herbicides in brown sugar. Anal Bioanal Chem 2022; 414:3497-3505. [PMID: 35169904 DOI: 10.1007/s00216-022-03970-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/22/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Abstract
A novel method was developed to determine six triazine herbicides from brown sugar samples using matrix solid-phase dispersion (MSPD) based on silica gel impregnated with deep eutectic solvent (DES) followed by high-performance liquid chromatography with photodiode array detector (HPLC/PDA). Several factors involved in the MSPD procedure such as DES type, DES content in impregnated silica gel, adsorbent-to-sample mass ratio, type and volume of washing solvent, type and volume of eluent, and grinding time were screened using single-factor experiments and then optimized using Box-Behnken design to accomplish the highest recoveries. The above method demonstrated a good linear range (20-1000 μg kg-1) with a determination coefficient exceeding 0.9962, low limits of determination (1.59-3.77 μg kg-1), acceptable limits of quantifications, and acceptable spiking recoveries (95.0-101.7%) for six triazines under optimized conditions. The proposed MSPD-HPLC/PDA method is a convenient, effective, and sensitive method for rapidly isolating and quantifying six triazines from brown sugar.
Collapse
Affiliation(s)
- Peng Li
- Institute of Bioengineering and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, People's Republic of China.,Guangdong Engineering Research Center for Sugar Technology, Guangzhou, 510316, People's Republic of China
| | - Dongting Huang
- Institute of Bioengineering and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, People's Republic of China.,Guangdong Engineering Research Center for Sugar Technology, Guangzhou, 510316, People's Republic of China
| | - Jingjie Tang
- Institute of Bioengineering and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, People's Republic of China.,Guangdong Engineering Research Center for Sugar Technology, Guangzhou, 510316, People's Republic of China
| | - Pingjun Zhang
- Institute of Bioengineering and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, People's Republic of China.,Guangdong Engineering Research Center for Sugar Technology, Guangzhou, 510316, People's Republic of China
| | - Fei Meng
- Institute of Bioengineering and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, People's Republic of China. .,Guangdong Engineering Research Center for Sugar Technology, Guangzhou, 510316, People's Republic of China.
| |
Collapse
|
44
|
Xu B, Feng M, Tiliwa ES, Yan W, Wei B, Zhou C, Ma H, Wang B, Chang L. Multi-frequency power ultrasound green extraction of polyphenols from Pingyin rose: Optimization using the response surface methodology and exploration of the underlying mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
A Green Method of Extracting and Recovering Flavonoids from Acanthopanax senticosus Using Deep Eutectic Solvents. Molecules 2022; 27:molecules27030923. [PMID: 35164188 PMCID: PMC8838195 DOI: 10.3390/molecules27030923] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, green extraction of bioactive compounds from herbal medicines has generated widespread interest. Deep eutectic solvents (DES) have widely replaced traditional organic solvents in the extraction process. In this study, the efficiencies of eight DESs in extracting flavonoids from Acanthopanax senticosus (AS) were compared. Response surface methodology (RSM) was employed to optimize the independent variable including ultrasonic power, water content, solid-liquid ratio, extraction temperature, and extraction time. DES composed of glycerol and levulinic acid (1:1) was chosen as the most suitable extraction medium. Optimal conditions were ultrasonic power of 500 W, water content of 28%, solid-liquid ratio of 1:18 g·mL−1, extraction temperature of 55 °C, and extraction time of 73 min. The extraction yield of total flavonoids reached 23.928 ± 0.071 mg·g−1, which was 40.7% higher compared with ultrasonic-assisted ethanol extraction. Macroporous resin (D-101, HPD-600, S-8 and AB-8) was used to recover flavonoids from extracts. The AB-8 resin showed higher adsorption/desorption performance, with a recovery rate of total flavonoids of up to 71.56 ± 0.256%. In addition, DES solvent could efficiently be reused twice. In summary, ultrasonic-assisted DES combined with the macroporous resin enrichment method is exceptionally effective in recovering flavonoids from AS, and provides a promising environmentally friendly and recyclable strategy for flavonoid extraction from natural plant sources.
Collapse
|
46
|
Thakur R, Gupta V, Dhar P, Deka SC, Das AB. Ultrasound‐assisted extraction of anthocyanin from black rice bran using natural deep eutectic solvents: Optimization, diffusivity, and stability. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rahul Thakur
- Department of Food Engineering and Technology Tezpur University Tezpur India
| | - Vivek Gupta
- Department of Food Engineering and Technology Tezpur University Tezpur India
| | - Payel Dhar
- Department of Food Engineering and Technology Tezpur University Tezpur India
| | - Sankar Chandra Deka
- Department of Food Engineering and Technology Tezpur University Tezpur India
| | - Amit Baran Das
- Department of Food Engineering and Technology Tezpur University Tezpur India
| |
Collapse
|
47
|
Nunes AN, Borges A, Matias AA, Bronze MR, Oliveira J. Alternative Extraction and Downstream Purification Processes for Anthocyanins. Molecules 2022; 27:368. [PMID: 35056685 PMCID: PMC8779312 DOI: 10.3390/molecules27020368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are natural pigments displaying different attractive colors ranging from red, violet, to blue. These pigments present health benefits that increased their use in food, nutraceuticals, and the cosmetic industry. However, anthocyanins are mainly extracted through conventional methods that are time-consuming and involve the use of organic solvents. Moreover, the chemical diversity of the obtained complex extracts make the downstream purification step challenging. Therefore, the growing demand of these high-value pigments has stimulated the interest in designing new, safe, cost-effective, and tunable strategies for their extraction and purification. The current review focuses on the potential application of compressed fluid-based (such as subcritical and supercritical fluid extraction and pressurized liquid extraction) and deep eutectic solvents-based extraction methods for the recovery of anthocyanins. In addition, an updated review of the application of counter-current chromatography for anthocyanins purification is provided as a faster and cost-effective alternative to preparative-scale HPLC.
Collapse
Affiliation(s)
- Ana N. Nunes
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal; (A.N.N.); (A.A.M.); (M.R.B.)
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Alexandra Borges
- Laboratório Associado para a Química Verde—REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal;
| | - Ana A. Matias
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal; (A.N.N.); (A.A.M.); (M.R.B.)
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal; (A.N.N.); (A.A.M.); (M.R.B.)
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- iMed.Ulisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia da Universidade de Lisboa, Avenida das Forças Armadas, 1649-019 Lisboa, Portugal
| | - Joana Oliveira
- Laboratório Associado para a Química Verde—REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal;
| |
Collapse
|
48
|
Extraction of Anthocyanins from Borage ( Echium amoenum) Flowers Using Choline Chloride and a Glycerol-Based, Deep Eutectic Solvent: Optimization, Antioxidant Activity, and In Vitro Bioavailability. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010134. [PMID: 35011365 PMCID: PMC8746641 DOI: 10.3390/molecules27010134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Borage flower (Echium amoenum), an annual herb native to the Mediterranean region, is an excellent source of anthocyanins and is widely used in various forms due to its biological activities. In the present study, a choline chloride and glycerol (CHGLY)-based natural deep eutectic solvent (NADES) was applied in order to extract the anthocyanins from borage flowers. The traditional solvents, including water, methanol, and ethanol, were used to evaluate the efficiency of CHGLY. The results showed that CHGLY was highly efficient compared to the traditional solvents, providing the highest amounts of the total anthocyanin content (TAC), total phenolic content (TPC), total flavonoid content (TFC), individual anthocyanins, and antioxidant activity (DPPH radical scavenging (DPPH) and ferric-reducing antioxidant power (FRAP) assays). The most dominant anthocyanin found in studied borage was cyanidin-3-glucoside, followed by cyanin chloride, cyanidin-3-rutinoside, and pelargonidin-3-glucoside. The bioavailability % was 71.86 ± 0.47%, 77.29 ± 0.57%, 80.22 ± 0.65%, and 90.95 ± 1.01% for cyanidin-3-glucoside, cyanidin-3-rutinoside, by pelargonidin-3-glucoside and cyanin chloride, respectively. However, cyanidin-3-glucoside was the anthocyanin compound showing the highest stability (99.11 ± 1.66%) in the gastrointestinal environment. These results suggested that choline chloride and glycerol-based NADES is not only an efficient, eco-friendly solvent for the extraction of anthocyanins but can also be used to increase the bioavailability of anthocyanins.
Collapse
|
49
|
Liu X, Li S, Wang Z, Wang X, He Y, Wen L. Ultrahigh Pressure Facilitates the Acylation of Malvidin and Chlorogenic Acid to Increase the Stability and Protective Effect of Malvidin Derivatives on H 2O 2-Induced ARPE-19 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13990-14003. [PMID: 34672563 DOI: 10.1021/acs.jafc.1c03133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We explored the effects of ultrahigh-pressure technology and chlorogenic acid on the color stability and structure-activity relationship of malvidin (MV). Experimental conditions were optimized through single-factor experiments and response surface analysis at a pressure of 300 MPa, mass ratio of MV to chlorogenic acid of 1:3.64 (w/w), and time of 5 min. Compared with MV, MV derivatives showed higher stability and in vitro antioxidant activity. X-ray diffraction analysis, UV-vis spectroscopy, Fourier transform infrared spectroscopy, high-performance liquid chromatography, and mass spectrometry were conducted to determine the structures of MV derivatives for the first time. Ultrahigh pressure facilitated acylation of chlorogenic acid and MV and produced four new MV derivatives. Analysis of the effect of malvidin-3-O-6-(acrylic acid-(2-hydroxy, 4-carboxy-cyclohexanol) ester)-guaiacol (Mv3ACEC) on ARPE-19 cells exposed to H2O2 by RNA transcriptome sequencing showed that Mv3ACEC simultaneously inhibited various inflammatory and apoptotic signal transduction pathways, exerted a synergistic effect, and partly inhibited cell apoptosis through the MAPK signaling pathway. Therefore, the results show that ultrahigh pressure will cause acylation of chlorogenic acid and MV to produce four new MV derivatives, and MV derivatives protect ARPE-19 cells from H2O2-induced oxidative stress.
Collapse
Affiliation(s)
- Xinyao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Sheng Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Zhitong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xinyuan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| |
Collapse
|
50
|
Fu X, Belwal T, He Y, Xu Y, Li L, Luo Z. UPLC-Triple-TOF/MS characterization of phenolic constituents and the influence of natural deep eutectic solvents on extraction of Carya cathayensis Sarg. peels: Composition, extraction mechanism and in vitro biological activities. Food Chem 2021; 370:131042. [PMID: 34500297 DOI: 10.1016/j.foodchem.2021.131042] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023]
Abstract
Natural deep eutectic solvent (NADES) has received increasing interest as a green alternative to traditional organic solvents for efficient extraction of bioactive compounds from natural sources. In this study, phytochemicals in Carya cathayensis Sarg. peels extracted with Choline chloride-Malic acid (ChCl-MA) were identified using UPLC-Triple-TOF/MS. Effect of NADES on phenolic composition, antioxidant properties and inhibition of α-glucosidase and α-amylase were evaluated. Furthermore, extraction mechanism caused by different solvents were investigated by quantum chemical calculation combined with molecular dynamic simulation. A total of 29 phytochemicals were identified, and catechin, procyanidin B1, 2,3-dihydroxybenzoic acid, pinocembrin, procyanidin B3, myricetrin were the most abundant compounds. The extract using ChCl-MA exhibited the highest phenolic compounds content, antioxidant capacity, and α-glucosidase and α-amylase inhibition activities. Larger solvent accessible surface area, more hydrogen bonds between ChCl-MA and extract, longer lifetime of the hydrogen bonds, and lower intermolecular interaction energy account for higher extraction efficiency of ChCl-MA.
Collapse
Affiliation(s)
- Xizhe Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
| | - Yihan He
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
| | - Yanqun Xu
- Ningbo Research Institute, Zhejiang University, Ningbo, PR China
| | - Li Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, PR China; Ningbo Research Institute, Zhejiang University, Ningbo, PR China; Fuli Institute of Food Science, Hangzhou, PR China.
| |
Collapse
|