1
|
Abou Abdallah F, Abdel Massih C, Attieh C, Chebly A. The impact of mosaic loss of the Y chromosome (mLOY) in men of advanced age. Biogerontology 2024; 25:943-955. [PMID: 39223433 DOI: 10.1007/s10522-024-10133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The Y chromosome has long been considered to be a "genetic wasteland" harboring only few genes essentially involved in male sex development and spermatogenesis. However, the discovery of mosaic loss of the Y chromosome (mLOY) in older men has led to revisiting of the potential impact of the Y chromosome on health and the pathophysiological processes of multiple diseases such as cancer, Alzheimer's disease and cardiovascular disease. Hence, developing more sensitive techniques for the detection of mLOY has become an emergent concern. In this article, we present a comprehensive review of the literature regarding mLOY. Additionally, we discuss the emerging discoveries concerning mLOY as well as the underlying mechanisms promoting disease in men of advanced age.
Collapse
Affiliation(s)
| | | | - Charbel Attieh
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Alain Chebly
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon.
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon.
| |
Collapse
|
2
|
Fritz García JHG, Keller Valsecchi CI, Basilicata MF. Sex as a biological variable in ageing: insights and perspectives on the molecular and cellular hallmarks. Open Biol 2024; 14:240177. [PMID: 39471841 PMCID: PMC11521605 DOI: 10.1098/rsob.240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 11/01/2024] Open
Abstract
Sex-specific differences in lifespan and ageing are observed in various species. In humans, women generally live longer but are frailer and suffer from different age-related diseases compared to men. The hallmarks of ageing, such as genomic instability, telomere attrition or loss of proteostasis, exhibit sex-specific patterns. Sex chromosomes and sex hormones, as well as the epigenetic regulation of the inactive X chromosome, have been shown to affect lifespan and age-related diseases. Here we review the current knowledge on the biological basis of sex-biased ageing. While our review is focused on humans, we also discuss examples of model organisms such as the mouse, fruit fly or the killifish. Understanding these molecular differences is crucial as the elderly population is expected to double worldwide by 2050, making sex-specific approaches in the diagnosis, treatment, therapeutic development and prevention of age-related diseases a pressing need.
Collapse
Affiliation(s)
| | | | - M. Felicia Basilicata
- Institute of Molecular Biology (IMB), Mainz, Germany
- University Medical Center (UMC), Mainz, Germany
| |
Collapse
|
3
|
CellDynaMo–stochastic reaction-diffusion-dynamics model: Application to search-and-capture process of mitotic spindle assembly. PLoS Comput Biol 2022; 18:e1010165. [PMID: 35657997 PMCID: PMC9200364 DOI: 10.1371/journal.pcbi.1010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 06/15/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
We introduce a Stochastic Reaction-Diffusion-Dynamics Model (SRDDM) for simulations of cellular mechanochemical processes with high spatial and temporal resolution. The SRDDM is mapped into the CellDynaMo package, which couples the spatially inhomogeneous reaction-diffusion master equation to account for biochemical reactions and molecular transport within the Langevin Dynamics (LD) framework to describe dynamic mechanical processes. This computational infrastructure allows the simulation of hours of molecular machine dynamics in reasonable wall-clock time. We apply SRDDM to test performance of the Search-and-Capture of mitotic spindle assembly by simulating, in three spatial dimensions, dynamic instability of elastic microtubules anchored in two centrosomes, movement and deformations of geometrically realistic centromeres with flexible kinetochores and chromosome arms. Furthermore, the SRDDM describes the mechanics and kinetics of Ndc80 linkers mediating transient attachments of microtubules to the chromosomal kinetochores. The rates of these attachments and detachments depend upon phosphorylation states of the Ndc80 linkers, which are regulated in the model by explicitly accounting for the reactions of Aurora A and B kinase enzymes undergoing restricted diffusion. We find that there is an optimal rate of microtubule-kinetochore detachments which maximizes the accuracy of the chromosome connections, that adding chromosome arms to kinetochores improve the accuracy by slowing down chromosome movements, that Aurora A and kinetochore deformations have a small positive effect on the attachment accuracy, and that thermal fluctuations of the microtubules increase the rates of kinetochore capture and also improve the accuracy of spindle assembly. The CellDynaMo package models, in 3D, any cellular subsystem where sufficient detail of the macromolecular players and the kinetics of relevant reactions are available. The package is based on the Stochastic Reaction-Diffusion-Dynamics model that combines the stochastic description of chemical kinetics, Brownian diffusion-based description of molecular transport, and Langevin dynamics-based representation of mechanical processes most pertinent to the system. We apply the model to test the Search-and-Capture mechanism of mitotic spindle assembly. We find that there is an optimal rate of microtubule-kinetochore detachments which maximizes the accuracy of chromosome connections, that chromosome arms improve the attachment accuracy by slowing down chromosome movements, that Aurora A kinase and kinetochore deformations have small positive effects on the accuracy, and that thermal fluctuations of the microtubules increase the rates of kinetochore capture and also improve the accuracy.
Collapse
|
4
|
Gerussi A, Paraboschi EM, Cappadona C, Caime C, Binatti E, Cristoferi L, Asselta R, Invernizzi P. The Role of Epigenetics in Primary Biliary Cholangitis. Int J Mol Sci 2022; 23:ijms23094873. [PMID: 35563266 PMCID: PMC9105933 DOI: 10.3390/ijms23094873] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Primary Biliary Cholangitis (PBC) is a rare autoimmune disease of the liver, affecting mostly females. There is evidence that epigenetic changes have a pathogenic role in PBC. Epigenetic modifications are related to methylation of CpG DNA islands, post-translational modifications of histone proteins, and non-coding RNAs. In PBC, there are data showing a dysregulation of all these levels, especially in immune cells. In addition, epigenetics seems to be involved in complex phenomena such as X monosomy or abnormalities in the process of X chromosome inactivation, which have been reported in PBC and appear to influence its sex imbalance and pathogenesis. We review here historical data on epigenetic modifications in PBC, present new data, and discuss possible links among X-chromosome abnormalities at a genetic and epigenetic level, PBC pathogenesis, and PBC sex imbalance.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (E.M.P.); (C.C.); (R.A.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - Claudio Cappadona
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (E.M.P.); (C.C.); (R.A.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - Chiara Caime
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Eleonora Binatti
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (E.M.P.); (C.C.); (R.A.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
- Correspondence:
| |
Collapse
|
5
|
Gerussi A, Caime C, Binatti E, Cristoferi L, Asselta R, Gershwin EM, Invernizzi P. X marks the spot in autoimmunity. Expert Rev Clin Immunol 2022; 18:429-437. [PMID: 35349778 DOI: 10.1080/1744666x.2022.2060203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Autoimmune diseases mostly affect females. Besides hormones, several factors related to chromosome X have been called in action to explain this sex predominance. AREAS COVERED This paper provides an overview on the role of chromosome X (chrX) in explaining why females have higher susceptibility to autoimmunity. The work outlines some essential concepts regarding chrX inactivation, escape from chrX inactivation and the evolutionary history of chrX. In addition, we will discuss the concept of gene escape in immune cells, with examples related to specific X-linked genes and autoimmune diseases. EXPERT OPINION There is growing evidence that many genes present on chrX escape inactivation, and some of them have significant immune-mediated functions. In immune cells of female individuals the escape of these genes is not constant, but the knowledge of the mechanisms controlling this plasticity are not completely understood. Future studies aimed at the characterization of these modifications at single-cell resolution, together with conformational 3D studies of the inactive X chromosome, will hopefully help to fill this gap of knowledge.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Chiara Caime
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Eleonora Binatti
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Eric M Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, USA
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
6
|
Kirsch-Volders M, Fenech M. Aneuploidy, inflammation and diseases. Mutat Res 2022; 824:111777. [PMID: 35358789 DOI: 10.1016/j.mrfmmm.2022.111777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 05/23/2023]
Abstract
This review discusses how numerical aneuploidy may trigger inflammation in somatic cells and its consequences. Therefore we: i) summarized current knowledge on the cellular and molecular pathological effects of aneuploidy; ii) considered which of these aspects are able to trigger inflammation; iii) determined the genetic and environmental factors which may modulate the link between aneuploidy and inflammation; iv) explored the rôle of diet in prevention of aneuploidy and inflammation; v) examined whether aneuploidy and inflammation are causes and/or consequences of diseases; vi) identified the knowledge gaps and research needed to translate these observations into improved health care and disease prevention. The relationships between aneuploidy, inflammation and diseases are complex, because they depend on which chromosomes are involved, the proportion of cells affected and which organs are aneuploid in the case of mosaic aneuploidy. Therefore, a systemic approach is recommended to understand the emergence of aneuploidy-driven diseases and to take preventive measures to protect individuals from exposure to aneugenic conditions.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Michael Fenech
- Genome Health Foundation, North Brighton, SA 5048, Australia; Clinical and Health Sciences, University of South Australia, SA 5000, Australia.
| |
Collapse
|
7
|
Fukami M, Miyado M. Mosaic loss of the Y chromosome and men's health. Reprod Med Biol 2022; 21:e12445. [PMID: 35386373 PMCID: PMC8967293 DOI: 10.1002/rmb2.12445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
Background Although Y chromosomal genes are involved in male sex development, spermatogenesis, and height growth, these genes play no role in the survival or mitosis of somatic cells. Therefore, somatic cells lacking the Y chromosome can stay and proliferate in the body. Methods Several molecular technologies, including next-generation sequencing and multiplex PCR-based assays, are used to detect mosaic loss of the Y chromosome (mLOY) in the blood of men. Main findings Accumulating evidence suggests that mLOY represents the most common acquired chromosomal alteration in humans, affecting >40% of men over 70 years of age. Advanced age, tobacco smoking, and some SNPs in cell cycle genes are known to increase the frequency of mLOY. The developmental process of mLOY in elderly men remains to be clarified, but it possibly reflects recurrent mitotic elimination of Y chromosomes or clonal expansion of 45,X cell lineages. In rare cases, mLOY also occurs in young men and fetuses. MLOY has been associated with early death, cancers, and other disorders in elderly men, infertility in reproductive-aged men, and developmental defects in children. Conclusion Y chromosomes in men can be lost at every life stage and Y chromosomal loss is associated with various health problems.
Collapse
Affiliation(s)
- Maki Fukami
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Mami Miyado
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| |
Collapse
|
8
|
Alhareeri AA, Archer KJ, Fu H, Lyon DE, Elswick RK, Kelly DL, Starkweather AR, Elmore LW, Bokhari YA, Jackson-Cook CK. Telomere lengths in women treated for breast cancer show associations with chemotherapy, pain symptoms, and cognitive domain measures: a longitudinal study. Breast Cancer Res 2020; 22:137. [PMID: 33276807 PMCID: PMC7716505 DOI: 10.1186/s13058-020-01368-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
Background Survival rates for breast cancer (BC) have improved, but quality of life post-diagnosis/treatment can be adversely affected, with survivors reporting a constellation of psychoneurological symptoms (PNS) including stress, anxiety, depression, pain, fatigue, sleep disturbance, and cognitive dysfunction. Methods To assess a potential relationship between telomere length (TL) and the development/persistence of PNS, we longitudinally studied 70 women (ages 23–71) with early stage BC (I-IIIA) at 5 time-points: prior to treatment (baseline), the mid-point of their chemotherapy cycle, 6 months, 1 year, and 2 years following the initiation of chemotherapy. Measures quantified included assessments of each of the PNS noted above and TL [using both a multiplex qPCR assay and a chromosome-specific fluorescence in situ hybridization (FISH) assay]. Results Variables associated with qPCR mean TLs were age (p = 0.004) and race (T/S ratios higher in Blacks than Whites; p = 0.019). Significant differences (mostly decreases) in chromosome-specific TLs were identified for 32 of the 46 chromosomal arms at the mid-chemo time-point (p = 0.004 to 0.049). Unexpectedly, the sequential administration of doxorubicin [Adriamycin], cyclophosphamide [Cytoxan], and docetaxel [Taxotere] (TAC regimen) was consistently associated with higher TLs, when compared to TLs in women receiving a docetaxel [Taxotere], Carboplatin [Paraplatin], and trastuzumab [Herceptin] [TCH] chemotherapy regimen [association was shown with both the qPCR and FISH assays (p = 0.036)]. Of the PNS, pain was significantly negatively associated with TL (higher pain; shorter telomeres) for a subset of chromosomal arms (5q, 8p, 13p, 20p, 22p, Xp, Xq) (p = 0.014–0.047). Chromosomal TLs were also associated with 7 of the 8 cognitive domains evaluated, with the strongest relationship being noted for chromosome 17 and the visual memory domain (shorter telomeres; lower scores). Conclusions We showed that race and age were significantly associated with telomere length in women treated for early stage BC and that acquired telomere alterations differed based on the woman’s treatment regimen. Our study also demonstrated that pain and cognitive domain measures were significantly related to telomere values in this study cohort. Expanding upon the knowledge gained from this longitudinal study could provide insight about the biological cascade of events that contribute to PNS related to BC and/or its treatment. Supplementary information The online version contains supplementary material available at 10.1186/s13058-020-01368-6.
Collapse
Affiliation(s)
- Areej A Alhareeri
- Department of Human & Molecular Genetics, Virginia Commonwealth University, 737 North 5th Street, Biotech 8, Suite 104, Richmond, VA, 23129, USA.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Kellie J Archer
- Division of Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Han Fu
- Division of Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Debra E Lyon
- College of Nursing, University of Florida, Gainesville, FL, USA
| | - R K Elswick
- Family and Community Health Nursing, School of Nursing, Virginia Commonwealth University, Richmond, VA, USA
| | - Debra L Kelly
- College of Nursing, University of Florida, Gainesville, FL, USA
| | | | | | - Yahya A Bokhari
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Colleen K Jackson-Cook
- Department of Human & Molecular Genetics, Virginia Commonwealth University, 737 North 5th Street, Biotech 8, Suite 104, Richmond, VA, 23129, USA. .,Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA. .,Member of the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
9
|
Kirsch-Volders M, Bolognesi C, Ceppi M, Bruzzone M, Fenech M. Micronuclei, inflammation and auto-immune disease. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108335. [PMID: 33339583 DOI: 10.1016/j.mrrev.2020.108335] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Auto-immune diseases (AUD) are characterized by an immune response to antigenic components of the host itself. The etiology of AUD is not well understood. The available evidence points to an interaction between genetic, epigenetic, environmental, infectious and life-style factors. AUD are more prevalent in women than in men; sex hormones play a crucial role in this sex bias. Micronuclei (MN) emerged as a new player in the induction of AUD, based on the capacity of DNA-sensors to detect self-DNA that leaks into the cytoplasm from disrupted MN and induce the cGAS-STING pathway triggering an innate auto-immune response and chronic inflammation. It was found that inflammation can induce MN and MN can induce inflammation, leading to a vicious inflammation-oxidative-DNA damage-MN-formation-chromothripsis cycle. MN originating from sex chromosome-loss may induce inflammation and AUD. We performed a systematic review of studies reporting MN in patients with systemic or organ-specific AUD. A meta-analysis was performed on lymphocyte MN in diabetes mellitus (10 studies, 457 patients/290 controls) and Behcet's disease (3 studies, 100 patients/70 controls) and for buccal MN in diabetes mellitus (11 studies, 507 patients/427 controls). A statistically significant increase in patients compared to controls was found in the meta-analyses providing an indication of an association between MN and AUD. A 36%-higher mean-MRi in buccal cells (3.8+/-0.7) was found compared to lymphocytes (2.8+/-0.7)(P = 0.01). The meta-MRi in lymphocytes and buccal cells (1.7 and 3.0 respectively) suggest that buccal cells may be more sensitive. To assess their relative sensitivity, studies with measurements from the same subjects would be desirable. It is important that future studies (i) investigate, in well-designed powered studies, the prospective association of MN-formation with AUD and (ii) explore the molecular mechanisms by which chromosome shattering in MN and the release of chromatin fragments from MN lead to the formation of auto-antibodies.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Marcello Ceppi
- Unit of Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Bruzzone
- Unit of Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Michael Fenech
- Genome Health Foundation, North Brighton, 5048, Australia; Clinical and Health Sciences, University of South Australia, SA 5000, Australia
| |
Collapse
|
10
|
Mužinić V, Ramić S, Želježić D. Chromosome Missegregation and Aneuploidy Induction in Human Peripheral Blood Lymphocytes In vitro by Low Concentrations of Chlorpyrifos, Imidacloprid and α-Cypermethrin. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:72-84. [PMID: 30264469 DOI: 10.1002/em.22235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Chlorpyrifos, imidacloprid, and α-cypermethrin are some of the most widely used insecticides in contemporary agriculture. However, their low-dose, nontarget genotoxic effects have not been extensively assayed. As one of the most relevant cancer biomarkers, we aimed to assess the aneuploidy due to chromosome missegregation during mitosis. To aim it we treated human lymphocytes in vitro with three concentrations of insecticides equivalents relevant for real scenario exposure assessed by regulatory agencies. We focused on chlorpyrifos as conventional and imidacloprid and α-cypermethrin as sustainable use insecticides. Cytokinesis-blocked micronucleus assay was performed coupled with fluorescence in situ hybridization (FISH) with directly labeled pancentromeric probes for chromosomes 9, 18, X and Y. None of the insecticides induced significant secondary DNA damage in terms of micronuclei (MN), nuclear buds (NB), or nucleoplasmic bridges (NPB). However, significant disbalances in chromosomes 9, 18, X and Y, and in insecticide-treated cells has been observed. According to recent studies, these disbalances in chromosome numbers may be atributted to defect sister chromatid cohesion which contribute to the increase of chromosome missegregation but not to micronuclei incidence. We conclude that tested insecticidal active substances exert chromosome missegregation effects at low concentrations, possibly by mechanism of sister chromatid cohesion. These findings may contribute to future risk assesments and understanding of insecticide mode of action on human genome. Environ. Mol. Mutagen. 60:72-84, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vedran Mužinić
- Unit of Mutagenesis, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Snježana Ramić
- Department of Oncological Pathology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Davor Želježić
- Unit of Mutagenesis, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
11
|
Abstract
Post-zygotic variation refers to genetic changes that arise in the soma of an individual and that are not usually inherited by the next generation. Although there is a paucity of research on such variation, emerging studies show that it is common: individuals are complex mosaics of genetically distinct cells, to such an extent that no two somatic cells are likely to have the exact same genome. Although most types of mutation can be involved in post-zygotic variation, structural genetic variants are likely to leave the largest genomic footprint. Somatic variation has diverse physiological roles and pathological consequences, particularly when acquired variants influence the clonal trajectories of the affected cells. Post-zygotic variation is an important confounder in medical genetic testing and a promising avenue for research: future studies could involve analyses of sorted and single cells from multiple tissue types to fully explore its potential.
Collapse
|
12
|
Zaytsev AV, Grishchuk EL. Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules. Mol Biol Cell 2015; 26:3985-98. [PMID: 26424798 PMCID: PMC4710231 DOI: 10.1091/mbc.e15-06-0384] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/22/2015] [Indexed: 12/22/2022] Open
Abstract
Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientation must rely on specific mechanisms to avoid and resolve improper attachments. Here we use mathematical modeling to critically analyze the error-correction potential of a simplified biorientation mechanism, which involves the back-to-back arrangement of sister kinetochores and the marked instability of kinetochore-MT attachments. We show that a typical mammalian kinetochore operates in a near-optimal regime, in which the back-to-back kinetochore geometry and the indiscriminate kinetochore-MT turnover provide strong error-correction activity. In human cells, this mechanism alone can potentially enable normal segregation of 45 out of 46 chromosomes during one mitotic division, corresponding to a mis-segregation rate in the range of 10(-1)-10(-2) per chromosome. This theoretical upper limit for chromosome segregation accuracy predicted with the basic mechanism is close to the mis-segregation rate in some cancer cells; however, it cannot explain the relatively low chromosome loss in diploid human cells, consistent with their reliance on additional mechanisms.
Collapse
Affiliation(s)
- Anatoly V Zaytsev
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
13
|
Abstract
BACKGROUND The exciting discovery that telomere shortening is associated with many health conditions and that telomere lengths can be altered in response to social and environmental exposures has underscored the need for methods to accurately and consistently quantify telomere length. OBJECTIVES The purpose of this article is to provide a comprehensive summary that compares and contrasts the current technologies used to assess telomere length. DISCUSSION Multiple methods have been developed for the study of telomeres. These techniques include quantification of telomere length by terminal restriction fragmentation-which was one of the earliest tools used for length assessment-making it the gold standard in telomere biology. Quantitative polymerase chain reaction provides the advantage of being able to use smaller amounts of DNA, thereby making it amenable to epidemiology studies involving large numbers of people. An alternative method uses fluorescent probes to quantify not only mean telomere lengths but also chromosome-specific telomere lengths; however, the downside of this approach is that it can only be used on mitotically active cells. Additional methods that permit assessment of the length of a subset of chromosome-specific telomeres or the subset of telomeres that demonstrate shortening are also reviewed. CONCLUSION Given the increased utility for telomere assessments as a biomarker in physiological, psychological, and biobehavioral research, it is important that investigators become familiar with the methodological nuances of the various procedures used for measuring telomere length. This will ensure that they are empowered to select an optimal assessment approach to meet the needs of their study designs. Gaining a better understanding of the benefits and drawbacks of various measurement techniques is important not only in individual studies, but also to further establish the science of telomere associations with biobehavioral phenomena.
Collapse
|
14
|
Jacobs K, Mertzanidou A, Geens M, Thi Nguyen H, Staessen C, Spits C. Low-grade chromosomal mosaicism in human somatic and embryonic stem cell populations. Nat Commun 2014; 5:4227. [DOI: 10.1038/ncomms5227] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/23/2014] [Indexed: 12/14/2022] Open
|
15
|
Epigenetic alterations and an increased frequency of micronuclei in women with fibromyalgia. Nurs Res Pract 2013; 2013:795784. [PMID: 24058735 PMCID: PMC3766610 DOI: 10.1155/2013/795784] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/14/2013] [Indexed: 01/01/2023] Open
Abstract
Fibromyalgia (FM), characterized by chronic widespread pain, fatigue, and cognitive/mood disturbances, leads to reduced workplace productivity and increased healthcare expenses. To determine if acquired epigenetic/genetic changes are associated with FM, we compared the frequency of spontaneously occurring micronuclei (MN) and genome-wide methylation patterns in women with FM (n = 10) to those seen in comparably aged healthy controls (n = 42 (MN); n = 8 (methylation)). The mean (sd) MN frequency of women with FM (51.4 (21.9)) was significantly higher than that of controls (15.8 (8.5)) (χ2 = 45.552; df = 1; P = 1.49 × 10−11). Significant differences (n = 69 sites) in methylation patterns were observed between cases and controls considering a 5% false discovery rate. The majority of differentially methylated (DM) sites (91%) were attributable to increased values in the women with FM. The DM sites included significant biological clusters involved in neuron differentiation/nervous system development, skeletal/organ system development, and chromatin compaction. Genes associated with DM sites whose function has particular relevance to FM included BDNF, NAT15, HDAC4, PRKCA, RTN1, and PRKG1. Results support the need for future research to further examine the potential role of epigenetic and acquired chromosomal alterations as a possible biological mechanism underlying FM.
Collapse
|
16
|
York TP, Brumelle J, Juusola J, Kendler KS, Eaves LJ, Amstadter AB, Aggen SH, Jones KH, Ferreira-Gonzalez A, Jackson-Cook C. Increased frequency of micronuclei in adults with a history of childhood sexual abuse: a discordant monozygotic twin study. PLoS One 2013; 8:e55337. [PMID: 23383158 PMCID: PMC3559336 DOI: 10.1371/journal.pone.0055337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/23/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Childhood sexual abuse (CSA) is a traumatic life event associated with an increased lifetime risk for psychopathology/morbidity. The long-term biological consequences of CSA-elicited stress on chromosomal stability in adults are unknown. The primary aim of this study was to determine if the rate of acquired chromosomal changes, measured using the cytokinesis-block micronucleus assay on stimulated peripheral blood lymphocytes, differs in adult female monozygotic twins discordant for CSA. METHODS Monozygotic twin pairs discordant for CSA were identified from a larger population-based sample of female adult twins for whom the experience of CSA was assessed by self-report (51 individuals including a reference sample). Micronuclei (MN) contain chromatin from structurally normal or abnormal chromosomes that are excluded from the daughter nuclei during cell division and serve as a biomarker to assess acquired chromosomal instability. RESULTS Female twins exposed to CSA exhibited a 1.63-fold average increase in their frequency of MN compared to their nonexposed genetically identical cotwins (Paired t-test, t₁₆ = 2.65, P = 0.017). No additional effects of familial factors were detected after controlling for the effect of CSA exposure. A significant interaction between CSA history and age was observed, suggesting that the biological effects of CSA on MN formation may be cumulative. CONCLUSIONS These data support a direct link between CSA exposure and MN formation measured in adults that is not attributable to genetic or environmental factors shared by siblings. Further research is warranted to understand the biological basis for the observed increase in acquired chromosomal findings in people exposed to CSA and to determine if acquired somatic chromosomal abnormalities/somatic clonal mosaicism might mediate the adult pathology associated with CSA.
Collapse
Affiliation(s)
- Timothy P York
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Aging Process in Chromatin of Animals. ANNALS OF ANIMAL SCIENCE 2012. [DOI: 10.2478/v10220-012-0025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aging Process in Chromatin of AnimalsThe aging process is a variable, stochastic and pleiotropic phenomenon which is regulated by different environmental and genetic factors. The age-associated changes, which occur at the molecular and cellular levels and disturb biological homeostasis, may directly or indirectly contribute to aging, causing apoptosis or cellular senescence and consequently leading to the death of the organism. In this context, it is particularly interesting to observe changes in somatic cell chromatin. In the present paper, we summarized the knowledge on the biological aspects of aging with special consideration of age-related changes in chromatin like DNA damage, shortening telomeres or age-related changes in methylation of DNA.
Collapse
|
18
|
Hou L, Zhang X, Gawron AJ, Liu J. Surrogate tissue telomere length and cancer risk: shorter or longer? Cancer Lett 2012; 319:130-135. [PMID: 22269209 DOI: 10.1016/j.canlet.2012.01.028] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 12/24/2022]
Abstract
Telomeres play a critical role in chromosome stability. Telomere length (TL) shortening is a risk factor for cancers. Measuring TL in surrogate tissues that can be easily collected may provide a potential tool for early detection of cancers. A number of studies on surrogate tissue TL and cancer risks have been conducted and results are inconsistent, including positive, negative, or null associations. In this article, we reviewed the published data on surrogate tissue TL in relation to cancer risks, discussed the possible reasons for the differences in the results and future directions and challenges for this line of research.
Collapse
Affiliation(s)
- Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Chicago, IL 60611, United States; The Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL 60611, United States.
| | - Xiao Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Chicago, IL 60611, United States
| | - Andrew J Gawron
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 N. St. Clair, Chicago, IL 60611, United States
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, PR China.
| |
Collapse
|
19
|
Abstract
Chromosomal imbalances can result from numerical or structural anomalies. Numerical chromosomal abnormalities are often referred to as aneuploid conditions. This article focuses on the occurrence of constitutional and acquired autosomal aneuploidy in humans. Topics covered include frequency, mosaicism, phenotypic findings, and etiology. The article concludes with a consideration of anticipated advances that might allow for the development of screening tests and/or lead to improvements in our understanding and management of the role that aneuploidy plays in the aging process and acquisition of age-related and constitutional conditions.
Collapse
Affiliation(s)
- Colleen Jackson-Cook
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
20
|
Maes A, Verschaeve L. Can cytogenetics explain the possible association between exposure to extreme low-frequency magnetic fields and Alzheimer's disease? J Appl Toxicol 2011; 32:81-7. [PMID: 21935970 DOI: 10.1002/jat.1724] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 01/08/2023]
Abstract
Recently, a number of epidemiological studies have suggested that occupational as well as residential exposure to extreme low-frequency electromagnetic fields (ELF-EMFs) may be a risk factor for Alzheimer's disease. This is not proven yet and there are no known biological mechanisms to explain this alleged association. Alzheimer's disease is characterized by a number of events that have, at least partially, a genetic origin. In particular, trisomy of chromosomes 17 and 21 seems to be involved. Overall ELF-EMFs have not been identified as genotoxic agents, but there are some papers in the scientific literature that indicate that they may enhance the effects of agents that are known to induce mutations or tumors. There are also some indications that ELF-EMFs may induce aneuploïdy. This opens some perspectives for investigating the alleged association between ELF-EMFs and Alzheimer's. This paper reviews the possibility of a cytogenetic association between the electromagnetic fields and Alzheimer's disease.
Collapse
Affiliation(s)
- Annemarie Maes
- Scientific Institute of Public Health, Laboratory of Toxicology, J. Wytsmanstreet 14, B-1050, Brussels, Belgium
| | | |
Collapse
|
21
|
Kroenke CH, Epel E, Adler N, Bush NR, Obradovic J, Lin J, Blackburn E, Stamperdahl JL, Boyce WT. Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children. Psychosom Med 2011; 73:533-40. [PMID: 21873585 PMCID: PMC3212037 DOI: 10.1097/psy.0b013e318229acfc] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To examine associations between autonomic nervous system and adrenocortical reactivity to laboratory stressors and buccal cell telomere length (BTL) in children. METHODS The study sample comprised 78 children, aged 5 to 6 years, from a longitudinal cohort study of kindergarten social hierarchies, biologic responses to adversity, and child health. Buccal cell samples and reactivity measures were collected in the spring of the kindergarten year. BTL was measured by real-time polymerase chain reaction, as the telomere-to-single-copy gene ratio. Parents provided demographic information; parents and teachers reported children's internalizing and externalizing behavior problems. Components of children's autonomic (heart rate, respiratory sinus arrhythmia [RSA], and preejection period [PEP]) and adrenocortical (salivary cortisol) responses were monitored during standardized laboratory challenges. We examined relationships between reactivity, internalizing and externalizing behaviors, and BTL, adjusted for age, race, and sex. RESULTS Heart rate and cortisol reactivity were inversely related to BTL, PEP was positively related to BTL, and RSA was unrelated to BTL. Internalizing behaviors were also inversely related to BTL (standardized β = -0.33, p = .004). Split at the median of reactivity parameters, children with high sympathetic activation (decreasing PEP), and parasympathetic withdrawal (decreasing RSA) did not differ with regard to BTL. However, children with both this profile and high cortisol reactivity (n = 12) had significantly shorter BTL (0.80 versus 1.00; χ² = 7.6, p = .006), compared with other children. CONCLUSIONS The combination of autonomic and adrenocortical reactivity was associated with shorter BTL in children. These data suggest that psychophysiological processes may influence, and that BTL may be a useful marker of, early biologic aging.
Collapse
Affiliation(s)
- Candyce H Kroenke
- Kaiser Permanente Division of Research, 2101 Webster St, Oakland, CA 94612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yurov YB, Vorsanova SG, Iourov IY. Ontogenetic variation of the human genome. Curr Genomics 2011; 11:420-5. [PMID: 21358986 PMCID: PMC3018722 DOI: 10.2174/138920210793175958] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/22/2022] Open
Abstract
The human genome demonstrates variable levels of instability during ontogeny. Achieving the highest rate during early prenatal development, it decreases significantly throughout following ontogenetic stages. A failure to decrease or a spontaneous increase of genomic instability can promote infertility, pregnancy losses, chromosomal and genomic diseases, cancer, immunodeficiency, or brain diseases depending on developmental stage at which it occurs. Paradoxically, late ontogeny is associated with increase of genomic instability that is considered a probable mechanism for human aging. The latter is even more appreciable in human diseases associated with pathological or accelerated aging (i.e. Alzheimer's disease and ataxia-telangiectasia). These observations resulted in a hypothesis suggesting that somatic genomic variations throughout ontogeny are determinants of cellular vitality in health and disease including intrauterine development, postnatal life and aging. The most devastative effect of somatic genome variations is observed when it manifests as chromosome instability or aneuploidy, which has been repeatedly noted to produce pathologic conditions and to mediate developmental regulatory and aging processes. However, no commonly accepted concepts on the role of chromosome/genome instability in determination of human health span and life span are available. Here, a review of these ontogenetic variations is given to propose a new "dynamic genome" model for pathological and natural genomic changes throughout life that mimic those of phylogenetic diversity.
Collapse
Affiliation(s)
- Y B Yurov
- Institute of Pediatrics and Children Surgery, Rosmedtechnologii
| | | | | |
Collapse
|
23
|
Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 2011; 12:R41. [PMID: 21527027 PMCID: PMC3218867 DOI: 10.1186/gb-2011-12-4-r41] [Citation(s) in RCA: 2297] [Impact Index Per Article: 176.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/14/2011] [Accepted: 04/28/2011] [Indexed: 12/18/2022] Open
Abstract
We describe methods with enhanced power and specificity to identify genes targeted by somatic copy-number alterations (SCNAs) that drive cancer growth. By separating SCNA profiles into underlying arm-level and focal alterations, we improve the estimation of background rates for each category. We additionally describe a probabilistic method for defining the boundaries of selected-for SCNA regions with user-defined confidence. Here we detail this revised computational approach, GISTIC2.0, and validate its performance in real and simulated datasets.
Collapse
Affiliation(s)
- Craig H Mermel
- Cancer Program, The Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
24
|
De S. Somatic mosaicism in healthy human tissues. Trends Genet 2011; 27:217-23. [PMID: 21496937 DOI: 10.1016/j.tig.2011.03.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/09/2011] [Accepted: 03/14/2011] [Indexed: 11/25/2022]
Abstract
From the fertilization of an egg until the death of an individual, somatic cells can accumulate genetic changes, such that cells from different tissues or even within the same tissue differ genetically. The presence of multiple cell clones with distinct genotypes in the same individual is referred to as 'somatic mosaicism'. Many endogenous factors such as mobile elements, DNA polymerase slippage, DNA double-strand break, inefficient DNA repair, unbalanced chromosomal segregation and some exogenous factors such as nicotine and UV exposure can contribute to the generation of somatic mutations, thereby leading to somatic mosaicism. Such changes can potentially affect the epigenetic patterns and levels of gene expression, and ultimately the phenotypes of cells. Although recent studies suggest that somatic mosaicism is widespread during normal development and aging, its implications for heightened disease risks are incompletely understood. Here, I discuss the origins, prevalence and implications of somatic mosaicism in healthy human tissues.
Collapse
Affiliation(s)
- Subhajyoti De
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA.
| |
Collapse
|
25
|
Abstract
Chromosomal instability occurs early in the development of cancer and may represent an important step in promoting the multiple genetic changes required for the initiation and/or progression of the disease. Telomere erosion is one of the factors that contribute to chromosome instability through end-to-end chromosome fusions entering BFB (breakage-fusion-bridge) cycles. Uncapped chromosomes with short dysfunctional telomeres represent an initiating substrate for both pre- and post-replicative joining, which leads to unstable chromosome rearrangements prone to bridge at mitotic anaphase. Resolution of chromatin bridge intermediates is likely to contribute greatly to the generation of segmental chromosome amplification events, unbalanced chromosome rearrangements and whole chromosome aneuploidy. Accordingly, telomere-driven instability generates highly unstable genomes that could promote cell immortalization and the acquisition of a tumour phenotype.
Collapse
|
26
|
Schwander T, Beukeboom LW. Non-random autosome segregation: a stepping stone for the evolution of sex chromosome complexes? Sex-biased transmission of autosomes could facilitate the spread of antagonistic alleles, and generate sex-chromosome systems with multiple X or Y chromosomes. Bioessays 2010; 33:111-4. [PMID: 21154781 DOI: 10.1002/bies.201000106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new study in Caenorhabditis elegans shows that homologous autosomes segregate non-randomly with the sex chromosome in the heterogametic sex. Segregation occurs according to size, small autosomes segregating with, and large autosomes segregating away from the X-chromosome. Such sex-biased transmission of autosomes could facilitate the spread of sexually antagonistic alleles whose effects favor the fitness of one sex at the expense of the other. This may provide a first step toward the evolution of new sex determination systems.
Collapse
Affiliation(s)
- Tanja Schwander
- Evolutionary Genetics, Center for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands.
| | | |
Collapse
|
27
|
Pampalona J, Soler D, Genescà A, Tusell L. Whole chromosome loss is promoted by telomere dysfunction in primary cells. Genes Chromosomes Cancer 2010; 49:368-78. [PMID: 20088004 DOI: 10.1002/gcc.20749] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Errors in chromosome segregation during mitosis result in aneuploidy, which in humans may play a role in the onset of neoplasia by changing gene dosage. Nearly all solid tumors exhibit genomic instability at the chromosomal level, showing both structural and numerical chromosome abnormalities. Chromosomal instability occurs early in the development of cancer and may represent an important step in the initiation and/or progression of the disease. Telomere integrity appears to be a critical element in the genesis of structural chromosome imbalances, but it is still not clear whether it can also generate numerical chromosome aberrations. We investigated the possible relationship between telomere shortening and aneuploidy formation in human mammary epithelial cells using the cytokinesis-block micronucleus assay combined with fluorescent DNA probes. In this cell system, uncapped chromosomes fuse with each other resulting in dicentric chromosomes, which are known to be a source of new structural chromosome rearrangements. Here, we show that in primary epithelial cells, the chromosomes with short telomeres are more frequently involved in missegregation events than chromosomes of normal telomere length. Whole chromosome aneuploidy occurs through both nondisjunction and anaphase lagging of dicentric chromatids, which suggests that pulling anaphase bridges toward opposite poles can generate the necessary force for detaching a chromosome from the microtubules of one or both spindle poles. Therefore, telomere-driven instability can promote not only the appearance of chromosomal rearrangements but also the appearance of numerical chromosome aberrations that could favor cell immortalization and the acquisition of a tumor phenotype.
Collapse
Affiliation(s)
- Judit Pampalona
- Cell Biology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
28
|
Zheng YL, Ambrosone C, Byrne C, Davis W, Nesline M, McCann SE. Telomere length in blood cells and breast cancer risk: investigations in two case-control studies. Breast Cancer Res Treat 2009; 120:769-75. [PMID: 19543829 DOI: 10.1007/s10549-009-0440-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
Abstract
Telomere dysfunction, which leads to genomic instability, is hypothesized to play a causal role in the development of breast cancer. However, the few epidemiologic studies that assessed the relationship between telomere length in blood cells and breast cancer risk have been inconsistent. We conducted two case-control studies to further understand the role of telomere length and breast cancer risk. Overall telomere lengths were measured by telomere quantitative fluorescent in situ hybridization (TQ-FISH) and telomere quantitative real-time PCR (TQ-PCR). The associations between telomere length in blood leukocytes and risk of breast cancer were examined in two breast cancer case-control studies that were conducted at Roswell Park Cancer Institute (RPCI) and Lombardi Comprehensive Cancer Center (LCCC). Using the 50th percentile value in controls as a cut point, women who had shorter telomere length were not at significantly increased risk of breast cancer compared with women who had longer telomere length in the RPCI study (odds ratio [OR] = 1.34, 95% confidence interval [CI] = 0.84-2.12), in the LCCC study (OR = 1.18, 95% CI = 0.73-1.91), or in the combined RPCI and LCCC studies (OR = 1.23, 95% CI = 0.89-1.71). There was no significant dose-response relationship across quartiles of telomere length and no significant difference when comparing women in the lowest to highest quartile of telomere length. Overall telomere length in blood leukocytes was not significantly associated with the risk of breast cancer.
Collapse
Affiliation(s)
- Yun-Ling Zheng
- Cancer Genetics and Epidemiology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Telomere capture in hepatitis C infection. ACTA ACUST UNITED AC 2009; 191:63-6. [DOI: 10.1016/j.cancergencyto.2009.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 01/26/2009] [Indexed: 12/31/2022]
|
30
|
Xing J, Ajani JA, Chen M, Izzo J, Lin J, Chen Z, Gu J, Wu X. Constitutive short telomere length of chromosome 17p and 12q but not 11q and 2p is associated with an increased risk for esophageal cancer. Cancer Prev Res (Phila) 2009; 2:459-65. [PMID: 19401529 DOI: 10.1158/1940-6207.capr-08-0227] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Shortened telomere length may cause chromosomal instability in Barrett's esophagus and thus promote tumorigenesis. However, whether short telomere length in all chromosomes or just some of them is associated with increased esophageal cancer (EC) risk is largely unknown. To address this question, we examined the overall and chromosome-specific telomere lengths of 17p, 12q, 2p, and 11q and assessed their associations with EC risk. In a case-control study with 94 EC cases and 94 matched controls, the overall telomere length and the chromosome-specific telomere lengths of 17p, 12q, 2p, and 11q in peripheral blood lymphocytes were determined by a real-time PCR and a modified single telomere length analysis assay, respectively. Multivariate logistic regression analysis was used to assess the association between telomere length and EC risk. Compared with controls, EC patients had significantly shorter overall telomere lengths (P = 0.004) and chromosome-specific telomere lengths of 17p (P = 0.003) and 12q (P = 0.006) but not of 11q (P = 0.632) and 2p (P = 0.972). Furthermore, the multivariate logistic regression analysis showed that the short overall telomere length and chromosome-specific telomere lengths of 17p and 12q were associated with a dose-dependent increase in EC risk. Our study provides the first epidemiologic evidence that short telomere length of 17p and 12q plays an important role in esophageal carcinogenesis, suggesting that short telomere length of specific chromosomes is associated with the etiology of different cancer types.
Collapse
Affiliation(s)
- Jinliang Xing
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, 1155 Pressler Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Papavassiliou P, York TP, Gursoy N, Hill G, Nicely LV, Sundaram U, McClain A, Aggen SH, Eaves L, Riley B, Jackson-Cook C. The phenotype of persons having mosaicism for trisomy 21/Down syndrome reflects the percentage of trisomic cells present in different tissues. Am J Med Genet A 2009; 149A:573-83. [PMID: 19291777 PMCID: PMC3707311 DOI: 10.1002/ajmg.a.32729] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Little is known about the pathogenesis of the phenotype in individuals with trisomy 21 mosaicism and Down syndrome. The primary goal of this study was to identify factors contributing to the observed phenotypic variation by evaluating 107 individuals having trisomy 21 mosaicism. To investigate a potential "threshold" effect due to trisomic imbalance, lymphocyte and buccal mucosa nuclei were scored using FISH. Overall, buccal cells showed a significantly higher frequency of trisomy than lymphocytes (P < 0.0001). Using latent class analysis, two phenotypic classes were identified based on the clinical findings of the propositi. Patients from class 1 had significantly fewer traits and a lower percentage of trisomic cells (mean of 37.3% lymphocytes; 34.5% buccal mucosa cells) when compared to those stratified into class 2 (54.0% lymphocytes; 53.4% buccal mucosa cells). Tissue-specific influences were also detected, with buccal mucosa trisomy levels being significantly correlated with IQ (P = 0.0094; both ectodermal derivatives), while congenital heart defects were significantly correlated with lymphocytes (P = 0.0286; both mesodermal embryonic derivatives). In conclusion, allowing for the distinction of two groups, we observed variation in phenotype, associated with the percentage of trisomic cells. We also observed tissue-specific effects on phenotype. The results of this study should enable geneticists and other health care professionals to provide information regarding optimal diagnostic approaches and anticipated clinical outcomes.
Collapse
Affiliation(s)
- Paulie Papavassiliou
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Timothy P. York
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Nurcan Gursoy
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Department of Neurology, State University of New York at Stony Brook, Stony Brook, New York
| | - Gloria Hill
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Virginia Department of Forensic Science, Norfolk, Virginia
| | - Lauren Vanner Nicely
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Usha Sundaram
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Allison McClain
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Steven H. Aggen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Lindon Eaves
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Brien Riley
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Colleen Jackson-Cook
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- The Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
32
|
Iourov IY, Vorsanova SG, Yurov YB. Chromosomal mosaicism goes global. Mol Cytogenet 2008; 1:26. [PMID: 19032785 PMCID: PMC2612668 DOI: 10.1186/1755-8166-1-26] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 11/16/2022] Open
Abstract
Intercellular differences of chromosomal content in the same individual are defined as chromosomal mosaicism (alias intercellular or somatic genomic variations or, in a number of publications, mosaic aneuploidy). It has long been suggested that this phenomenon poorly contributes both to intercellular (interindividual) diversity and to human disease. However, our views have recently become to change due to a series of communications demonstrated a higher incidence of chromosomal mosaicism in diseased individuals (major psychiatric disorders and autoimmune diseases) as well as depicted chromosomal mosaicism contribution to genetic diversity, the central nervous system development, and aging. The later has been produced by significant achievements in the field of molecular cytogenetics. Recently, Molecular Cytogenetics has published an article by Maj Hulten and colleagues that has provided evidences for chromosomal mosaicism to underlie formation of germline aneuploidy in human female gametes using trisomy 21 (Down syndrome) as a model. Since meiotic aneuploidy is suggested to be the leading genetic cause of human prenatal mortality and postnatal morbidity, these data together with previous findings define chromosomal mosaicism not as a casual finding during cytogenetic analyses but as a more significant biological phenomenon than previously recognized. Finally, the significance of chromosomal mosaicism can be drawn from the fact, that this phenomenon is involved in genetic diversity, normal and abnormal prenatal development, human diseases, aging, and meiotic aneuploidy, the intrinsic cause of which remains, as yet, unknown.
Collapse
Affiliation(s)
- Ivan Y Iourov
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, 119152, Russia.
| | | | | |
Collapse
|
33
|
Haker B, Fuchs S, Dierlamm J, Brümmendorf TH, Wege H. Absence of oncogenic transformation despite acquisition of cytogenetic aberrations in long-term cultured telomerase-immortalized human fetal hepatocytes. Cancer Lett 2007; 256:120-7. [PMID: 17630152 DOI: 10.1016/j.canlet.2007.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 05/10/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
As a culture model to study hepatocarcinogenesis, telomerase-immortalized human fetal hepatocytes were monitored for karyotype changes evolving in long-term culture and development of functional defects in DNA damage response. G-banding revealed acquisition of characteristic karyotype abnormalities, e.g., trisomy 7 and monosomy X, in two independently immortalized and cultured populations after 80-100 population doublings. Interestingly, the detected aneuploidies resemble some of the genetic events observed in hepatocellular cancer. However, these genetic changes were not sufficient to induce oncogenic transformation reflected by absence of anchorage-independent growth. Furthermore, long-term cultured telomerase-immortalized cells preserved p53 expression levels and effective p53-mediated damage response.
Collapse
Affiliation(s)
- Björn Haker
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
34
|
Iarmarcovai G, Botta A, Orsière T. Number of centromeric signals in micronuclei and mechanisms of aneuploidy. Toxicol Lett 2006; 166:1-10. [PMID: 16854538 DOI: 10.1016/j.toxlet.2006.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/29/2006] [Accepted: 05/30/2006] [Indexed: 11/29/2022]
Abstract
Genome instability or changes in chromosome structure and number are important facets of oncogenesis. Aneuploidy is a major cause of human reproductive failure and plays a large role in cancer. It is therefore important that any increase in its frequency due to occupational exposure to mutagens and carcinogens should be recognized and controlled. In recent years, the cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome/genome damage relevant to cancer. Fluorescent in situ hybridisation using human pancentromeric DNA probes discriminates between the presence of acentric chromosomal fragments and whole chromosomes in binucleated micronucleated lymphocytes. The separated analysis of centromeric micronuclei may improve the sensitivity of the micronucleus assay in detecting genotoxic effects and chromosome instability. Our previous findings suggest that aneugenic events leading to micronuclei (MN) containing a single centromere (C1+MN) and two or more centromeres (Cx+MN) may arise through different pathways. Chromosome migration impairment would lead to increased C1+MN frequency whereas centrosome amplification would induce Cx+MN with three or more centromeric signals. Additional studies that target cellular defects on the centrosome (microtubule nucleation, organization of the spindle poles, cell cycle progression) are required to better understand aneuploid cell production.
Collapse
Affiliation(s)
- G Iarmarcovai
- Laboratoire de Biogénotoxicologie et Mutagenèse Environnementale (EA 1784; IFR PMSE 112), Faculté de Médecine, Université de la Méditerranée, 13385 Marseille Cedex 5, France.
| | | | | |
Collapse
|
35
|
Rehen SK, Yung YC, McCreight MP, Kaushal D, Yang AH, Almeida BSV, Kingsbury MA, Cabral KMS, McConnell MJ, Anliker B, Fontanoz M, Chun J. Constitutional aneuploidy in the normal human brain. J Neurosci 2006; 25:2176-80. [PMID: 15745943 PMCID: PMC6726097 DOI: 10.1523/jneurosci.4560-04.2005] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mouse brain contains genetically distinct cells that differ with respect to chromosome number manifested as aneuploidy (Rehen et al., 2001); however, the relevance to humans is not known. Here, using double-label fluorescence in situ hybridization for the autosome chromosome 21 (chromosome 21 point probes combined with chromosome 21 "paint" probes), along with immunocytochemistry and cell sorting, we present evidence for chromosome gain and loss in the human brain. Chromosome 21 aneuploid cells constitute approximately 4% of the estimated one trillion cells in the human brain and include non-neuronal cells and postmitotic neurons identified by the neuronspecific nuclear protein marker. In comparison, human interphase lymphocytes present chromosome 21 aneuploidy rates of 0.6%. Together, these data demonstrate that human brain cells (both neurons and non-neuronal cells) can be aneuploid and that the resulting genetic mosaicism is a normal feature of the human CNS.
Collapse
Affiliation(s)
- Stevens K Rehen
- Helen L. Dorris Child and Adolescent Neuropsychiatric Disorder Institute, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Klinger RY, Blum JL, Hearn B, Lebow B, Niklason LE. Relevance and safety of telomerase for human tissue engineering. Proc Natl Acad Sci U S A 2006; 103:2500-5. [PMID: 16477025 PMCID: PMC1413782 DOI: 10.1073/pnas.0508184103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering holds the promise of replacing damaged or diseased tissues and organs. The use of autologous donor cells is often not feasible because of the limited replicative lifespan of cells, particularly those derived from elderly patients. Proliferative arrest can be overcome by the ectopic expression of telomerase via human telomerase reverse transcriptase (hTERT) gene transfection. To study the efficacy and safety of this potentially valuable technology, we used differentiated vascular smooth muscle cells (SMC) and vascular tissue engineering as a model system. Although we previously demonstrated that vessels engineered with telomerase-expressing SMC had improved mechanics over those grown with control cells, it is critical to assess the phenotypic impact of telomerase expression in donor cells, because telomerase up-regulation is observed in >95% of human malignancies. To study the impact of telomerase in tissue engineering, expression of hTERT was retrovirally induced in SMC from eight elderly patients and one young donor. In hTERT SMC, significant lifespan extension beyond that of control was achieved without population doubling time acceleration. Karyotype changes were seen in both control and hTERT SMC but were not clonal nor representative of cancerous change. hTERT cells also failed to show evidence of neoplastic transformation in functional assays of tumorigenicity. In addition, the impact of donor age on cellular behavior, particularly the synthetic capability of SMC, was not affected by hTERT expression. Hence, this tissue engineering model system highlights the impact of donor age on cellular synthetic function that appears to be independent of lifespan extension by hTERT.
Collapse
MESH Headings
- Blood Vessels/cytology
- Blood Vessels/enzymology
- Blood Vessels/physiology
- Cell Culture Techniques/methods
- Cell Transformation, Neoplastic
- Chromosome Aberrations
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/physiology
- Retroviridae/genetics
- Telomerase/genetics
- Telomerase/metabolism
- Telomere/enzymology
- Telomere/genetics
- Tissue Engineering/methods
- Transfection
Collapse
Affiliation(s)
- Rebecca Y. Klinger
- *Department of Biomedical Engineering, Duke University, Durham, NC 27708; and
| | - Juliana L. Blum
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - Bevin Hearn
- *Department of Biomedical Engineering, Duke University, Durham, NC 27708; and
| | - Benjamin Lebow
- *Department of Biomedical Engineering, Duke University, Durham, NC 27708; and
| | - Laura E. Niklason
- *Department of Biomedical Engineering, Duke University, Durham, NC 27708; and
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Amiel A, Goldzak G, Gaber E, Yosef G, Fejgin MD, Yukla M, Lishner M. Random aneuploidy and telomere capture in chronic lymphocytic leukemia and chronic myeloid leukemia patients. ACTA ACUST UNITED AC 2005; 163:12-6. [PMID: 16271950 DOI: 10.1016/j.cancergencyto.2005.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 11/25/2022]
Abstract
Telomeric regions of the human genome are of particular interest, because rearrangements of these regions are difficult to identify by conventional chromosome banding technology. With the advent of molecular cytogenetic techniques such as fluorescence in situ hybridization (FISH), it has been possible to investigate the terminus in cytogenetically visible terminal deletions and telomere rearrangements. We investigated telomere capture and aneuploidy rates in chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) patients, as well as in healthy control subsets. Using a FISH technique, we estimated the random aneuploidy and telomere capture of the 21q22, SNRPN, and 15qter loci. Higher aneuploidy rates were found in the leukocytes of CLL and CML patients, compared with the control group, for the 21q22 and SNRPN loci. There was no difference in the aneuploidy rate between the CML and CLL groups. Telomere capture was found in the two groups (CLL and CML), but not in the control group. We propose that the telomere capture phenomenon is much more common than has been reported in the literature; however, its prognostic significance is yet to be established.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Aneuploidy
- Bone Marrow Cells/pathology
- Chromosome Mapping
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 21
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Middle Aged
- Telomere/genetics
- Translocation, Genetic
- Trisomy
Collapse
Affiliation(s)
- A Amiel
- Genetic Institute, Meir Medical Center, Kfar-Saba 44281, Israel.
| | | | | | | | | | | | | |
Collapse
|