1
|
Jeong I, Cho EJ, Yook JS, Choi Y, Park DH, Kang JH, Lee SH, Seo DY, Jung SJ, Kwak HB. Mitochondrial Adaptations in Aging Skeletal Muscle: Implications for Resistance Exercise Training to Treat Sarcopenia. Life (Basel) 2024; 14:962. [PMID: 39202704 PMCID: PMC11355854 DOI: 10.3390/life14080962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Sarcopenia, the age-related decline in muscle mass and function, poses a significant health challenge as the global population ages. Mitochondrial dysfunction is a key factor in sarcopenia, as evidenced by the role of mitochondrial reactive oxygen species (mtROS) in mitochondrial biogenesis and dynamics, as well as mitophagy. Resistance exercise training (RET) is a well-established intervention for sarcopenia; however, its effects on the mitochondria in aging skeletal muscles remain unclear. This review aims to elucidate the relationship between mitochondrial dynamics and sarcopenia, with a specific focus on the implications of RET. Although aerobic exercise training (AET) has traditionally been viewed as more effective for mitochondrial enhancement, emerging evidence suggests that RET may also confer beneficial effects. Here, we highlight the potential of RET to modulate mtROS, drive mitochondrial biogenesis, optimize mitochondrial dynamics, and promote mitophagy in aging skeletal muscles. Understanding this interplay offers insights for combating sarcopenia and preserving skeletal muscle health in aging individuals.
Collapse
Affiliation(s)
- Ilyoung Jeong
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
| | - Eun-Jeong Cho
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
| | - Jang-Soo Yook
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
| | - Youngju Choi
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Institute of Specialized Teaching and Research, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| | - Ju-Hee Kang
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Seok-Hun Lee
- Combat Institute of Australia, Leederville, WA 6007, Australia;
| | - Dae-Yun Seo
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Support Center, Inje University, Busan 47392, Republic of Korea
| | - Su-Jeen Jung
- Department of Leisure Sports, Seoil University, Seoul 02192, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
2
|
Li Y, Tian X, Luo J, Bao T, Wang S, Wu X. Molecular mechanisms of aging and anti-aging strategies. Cell Commun Signal 2024; 22:285. [PMID: 38790068 PMCID: PMC11118732 DOI: 10.1186/s12964-024-01663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Aging is a complex and multifaceted process involving a variety of interrelated molecular mechanisms and cellular systems. Phenotypically, the biological aging process is accompanied by a gradual loss of cellular function and the systemic deterioration of multiple tissues, resulting in susceptibility to aging-related diseases. Emerging evidence suggests that aging is closely associated with telomere attrition, DNA damage, mitochondrial dysfunction, loss of nicotinamide adenine dinucleotide levels, impaired macro-autophagy, stem cell exhaustion, inflammation, loss of protein balance, deregulated nutrient sensing, altered intercellular communication, and dysbiosis. These age-related changes may be alleviated by intervention strategies, such as calorie restriction, improved sleep quality, enhanced physical activity, and targeted longevity genes. In this review, we summarise the key historical progress in the exploration of important causes of aging and anti-aging strategies in recent decades, which provides a basis for further understanding of the reversibility of aging phenotypes, the application prospect of synthetic biotechnology in anti-aging therapy is also prospected.
Collapse
Affiliation(s)
- Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Xutong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Juyue Luo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
3
|
Wong JJ, Ho JS, Teo LLY, Wee HN, Chua KV, Ching J, Gao F, Tan SY, Tan RS, Kovalik JP, Koh AS. Effects of short-term moderate intensity exercise on the serum metabolome in older adults: a pilot randomized controlled trial. COMMUNICATIONS MEDICINE 2024; 4:80. [PMID: 38704414 PMCID: PMC11069586 DOI: 10.1038/s43856-024-00507-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND We previously reported changes in the serum metabolome associated with impaired myocardial relaxation in an asymptomatic older community cohort. In this prospective parallel-group randomized control pilot trial, we subjected community adults without cardiovascular disease to exercise intervention and evaluated the effects on serum metabolomics. METHODS Between February 2019 to November 2019, thirty (83% females) middle-aged adults (53 ± 4 years) were randomized with sex stratification to either twelve weeks of moderate-intensity exercise training (Intervention) (n = 15) or Control (n = 15). The Intervention group underwent once-weekly aerobic and strength training sessions for 60 min each in a dedicated cardiac exercise laboratory for twelve weeks (ClinicalTrials.gov: NCT03617653). Serial measurements were taken pre- and post-intervention, including serum sampling for metabolomic analyses. RESULTS Twenty-nine adults completed the study (Intervention n = 14; Control n = 15). Long-chain acylcarnitine C20:2-OH/C18:2-DC was reduced in the Intervention group by a magnitude of 0.714 but increased in the Control group by a magnitude of 1.742 (mean difference -1.028 age-adjusted p = 0.004). Among Controls, alanine correlated with left ventricular mass index (r = 0.529, age-adjusted p = 0.018) while aspartate correlated with Lateral e' (r = -764, age-adjusted p = 0.016). C20:3 correlated with E/e' ratio fold-change in the Intervention group (r = -0.653, age-adjusted p = 0.004). Among Controls, C20:2/C18:2 (r = 0.795, age-adjusted p = 0.005) and C20:2-OH/C18:2-DC fold-change (r = 0.742, age-adjusted p = 0.030) correlated with change in E/A ratio. CONCLUSIONS Corresponding relationships between serum metabolites and cardiac function in response to exercise intervention provided pilot observations. Future investigations into cellular fuel oxidation or central carbon metabolism pathways that jointly impact the heart and related metabolic systems may be critical in preventive trials.
Collapse
Affiliation(s)
- Jie Jun Wong
- National Heart Centre Singapore, Singapore, Singapore
| | - Jien Sze Ho
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Louis L Y Teo
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | | | | | | | - Fei Gao
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Swee Yaw Tan
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Ru-San Tan
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Jean-Paul Kovalik
- Duke-NUS Medical School, Singapore, Singapore
- Singapore General Hospital, Singapore, Singapore
| | - Angela S Koh
- National Heart Centre Singapore, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
4
|
Liu X, Zhang X, Zhao L, Long J, Feng Z, Su J, Gao F, Liu J. Mitochondria as a sensor, a central hub and a biological clock in psychological stress-accelerated aging. Ageing Res Rev 2024; 93:102145. [PMID: 38030089 DOI: 10.1016/j.arr.2023.102145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
The theory that oxidative damage caused by mitochondrial free radicals leads to aging has brought mitochondria into the forefront of aging research. Psychological stress that encompasses many different experiences and exposures across the lifespan has been identified as a catalyst for accelerated aging. Mitochondria, known for their dynamic nature and adaptability, function as a highly sensitive stress sensor and central hub in the process of accelerated aging. In this review, we explore how mitochondria as sensors respond to psychological stress and contribute to the molecular processes in accelerated aging by viewing mitochondria as hormonal, mechanosensitive and immune suborganelles. This understanding of the key role played by mitochondria and their close association with accelerated aging helps us to distinguish normal aging from accelerated aging, correct misconceptions in aging studies, and develop strategies such as exercise and mitochondria-targeted nutrients and drugs for slowing down accelerated aging, and also hold promise for prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Xuyun Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Lin Zhao
- Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| |
Collapse
|
5
|
Yılmaz A, Bahtiyar N, Doğan Mollaoğlu A, Zengin K, Taskin HE, Karimova A, Baykara O, Ulutin T, Onaran I. Mitochondrial Common Deletion Level in Adipose Tissue Is Not Associated with Obesity but Is Associated with a Structural Change in Triglycerides as Revealed by FTIR Spectroscopy. Med Princ Pract 2023; 33:74-82. [PMID: 38016428 PMCID: PMC10896617 DOI: 10.1159/000535443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE Several studies have shown that mitochondrial metabolism may be disrupted if the rate of the specific 4,977 bp deletion of mitochondrial DNA (mtDNA) reaches a threshold. This study aimed to investigate the possible associations between the mtDNA4977 deletion load and obesity-related metabolic abnormalities in the adipose tissue. METHODS The study included thirty obese individuals, who underwent bariatric surgery, and twelve control subjects. mtDNA4977 deletion, adenine nucleotides, and lactate levels, which show the bioenergetic status were evaluated in visceral adipose tissues. Fourier transform infrared (FTIR) spectroscopy was used to investigate the structural variations and composition of adipose tissues in the context of deletion load. RESULTS There were no differences between the two groups in terms of mtDNA4977 deletion, adenine nucleotides, and lactate levels. The FTIR spectra indicated a few obesity-related alterations in adipose tissues that were not related to the mtDNA deletion load. Also, statistical analysis showed a correlation between the deletion load and a band shift of 1,744 cm-1, which assigns C = O stretching of the carbonyl group of the ester group in triglycerides and other esterified fatty acids, although it is not associated with obesity. CONCLUSIONS Our data suggest that the mtDNA4977 deletion in visceral adipose tissues of obese individuals do not have a significant impact on the bioenergetic status. However, the increased accumulation of deletion may be associated with a specific change in the ester bond, indicating structural differences in the lipids. These findings shed light on our understanding of the tissue-specific distribution of mtDNA deletions and obesity-related adipose tissue pathogeneses.
Collapse
Affiliation(s)
- Ayda Yılmaz
- Department of Anesthesia, Vocational School of Health Services, Demiroglu Bilim University, Istanbul, Turkey
| | - Nurten Bahtiyar
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayça Doğan Mollaoğlu
- Department of Physiology, Faculty of Medicine, Altinbaş University, Istanbul, Turkey
| | - Kagan Zengin
- Department of General Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Halit Eren Taskin
- Department of General Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayla Karimova
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Onur Baykara
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ilhan Onaran
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
6
|
Wang J, Tai J, Zhang W, He K, Lan H, Liu H. Comparison of seven complete mitochondrial genomes from Lamprologus and Neolamprologus (Chordata, Teleostei, Perciformes) and the phylogenetic implications for Cichlidae. Zookeys 2023; 1184:115-132. [PMID: 38314327 PMCID: PMC10838552 DOI: 10.3897/zookeys.1184.107091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/27/2023] [Indexed: 02/06/2024] Open
Abstract
In this study, mitochondrial genomes (mitogenomes) of seven cichlid species (Lamprologuskungweensis, L.meleagris, L.ornatipinnis, Neolamprologusbrevis, N.caudopunctatus, N.leleupi, and N.similis) are characterized for the first time. The newly sequenced mitogenomes contained 37 typical genes [13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs) and 22 transfer RNA genes (tRNAs)]. The mitogenomes were 16,562 ~ 16,587 bp in length with an A + T composition of 52.1~58.8%. The cichlid mitogenomes had a comparable nucleotide composition, A + T content was higher than the G + C content. The AT-skews of most mitogenomes were inconspicuously positive and the GC-skews were negative, indicating higher occurrences of C than G. Most PCGs started with the conventional start codon, ATN. There was no essential difference in the codon usage patterns of these seven species. Using Ka/Ks, we found the fastest-evolving gene were atp8. But the results of p-distance indicated that the fastest-evolving gene was nad6. Phylogenetic analysis revealed that L.meleagris did not cluster with Lamprologus species, but with species from the genus Neolamprologus. The novel information obtained about these mitogenomes will contribute to elucidating the complex relationships among cichlid species.
Collapse
Affiliation(s)
- Jiachen Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, ChinaNanjing Forestry UniversityNanjingChina
| | - Jingzhe Tai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, ChinaNanjing Forestry UniversityNanjingChina
| | - Wenwen Zhang
- Institute of Environmental Sciences, Ministry of Ecology and Environment of China State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains Research Center for Biodiversity Conservation and Biosafety, Nanjing 210042, ChinaInstitute of Environmental Sciences, Ministry of Ecology and Environment of China State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains Research Center for Biodiversity Conservation and BiosafetyNanjingChina
| | - Ke He
- Zhejiang Agriculture and Forestry University, Hangzhou 311300, ChinaZhejiang Agriculture and Forestry UniversityHangzhouChina
| | - Hong Lan
- Zhejiang Open University, Hangzhou 310012, ChinaZhejiang Open UniversityHangzhouChina
| | - Hongyi Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
7
|
Liu X, Li X, Wei W, Fan Y, Guo Z, Duan X, Zhou X, Yang Y, Wang W. The polymorphisms in cGAS-STING pathway are associated with mitochondrial DNA copy number in coke oven workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1070-1080. [PMID: 35546785 DOI: 10.1080/09603123.2022.2071418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the interaction effects of Polycyclic aromatic hydrocarbons (PAHs) exposure and variants in cGAS-STING genes on mitochondrial DNA copy number (mtDNAcn) in workers. METHODS The mtDNAcn was determined by real-time quantitative polymerase-chain reaction in 544 PAHs-exposed workers and 238 office workers. The polymorphisms were detected by flight mass spectrometry. RESULTS The mtDNAcn in PAHs exposure group was significantly lower than non-occupational exposure population (P < 0.00). The cGAS rs610913 CA+AA had significant interaction effects with STING rs11554776 GG+GA (P = 0.035), rs7380824 CC+CT (P = 0.026), and rs78233829 GC+CC (P = 0.034) on mtDNAcn. The generalized linear model results showed that the influencing factors of mtDNAcn include PAHs exposure (P < 0.001) and the interaction of PAHs exposure and cGAS rs 311678 AA+AG (P = 0.047). CONCLUSION The influencing factors of mtDNAcn include PAHs exposure and the interaction of PAHs exposure and cGAS rs 311678 AA+AG.
Collapse
Affiliation(s)
- Xiaohua Liu
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinling Li
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wan Wei
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yahui Fan
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhifeng Guo
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoran Duan
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoshan Zhou
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wang
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Vallbona-Garcia A, Hamers IHJ, van Tienen FHJ, Ochoteco-Asensio J, Berendschot TTJM, de Coo IFM, Benedikter BJ, Webers CAB, Smeets HJM, Gorgels TGMF. Low mitochondrial DNA copy number in buffy coat DNA of primary open-angle glaucoma patients. Exp Eye Res 2023; 232:109500. [PMID: 37178956 DOI: 10.1016/j.exer.2023.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/22/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Primary open-angle glaucoma (POAG) is characterized by optic nerve degeneration and irreversible loss of retinal ganglion cells (RGCs). The pathophysiology is not fully understood. Since RGCs have a high energy demand, suboptimal mitochondrial function may put the survival of these neurons at risk. In the present study, we explored whether mtDNA copy number or mtDNA deletions could reveal a mitochondrial component in POAG pathophysiology. Buffy coat DNA was isolated from EDTA blood of age- and sex-matched study groups, namely POAG patients with high intraocular pressure (IOP) at diagnosis (high tension glaucoma: HTG; n = 97), normal tension glaucoma patients (NTG, n = 37), ocular hypertensive controls (n = 9), and cataract controls (without glaucoma; n = 32), all without remarkable comorbidities. The number of mtDNA copies was assessed through qPCR quantification of the mitochondrial D-loop and nuclear B2M gene. Presence of the common 4977 base pair mtDNA deletion was assessed by a highly sensitive breakpoint PCR. Analysis showed that HTG patients had a lower number of mtDNA copies per nuclear DNA than NTG patients (p-value <0.01, Dunn test) and controls (p-value <0.001, Dunn test). The common 4977 base pair mtDNA deletion was not detected in any of the participants. A lower mtDNA copy number in blood of HTG patients suggests a role for a genetically defined, deficient mtDNA replication in the pathology of HTG. This may cause a low number of mtDNA copies in RGCs, which together with aging and high IOP, may lead to mitochondrial dysfunction, and contribute to glaucoma pathology.
Collapse
Affiliation(s)
- Antoni Vallbona-Garcia
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Ilse H J Hamers
- Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands
| | - Florence H J van Tienen
- Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | - Tos T J M Berendschot
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Irenaeus F M de Coo
- Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands
| | - Birke J Benedikter
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
9
|
Salmón P, Dawson NJ, Millet C, Selman C, Monaghan P. Mitochondrial function declines with age within individuals but is not linked to the pattern of growth or mortality risk in zebra finch. Aging Cell 2023:e13822. [PMID: 36938671 DOI: 10.1111/acel.13822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/21/2023] Open
Abstract
Mitochondrial dysfunction is considered a highly conserved hallmark of ageing. However, most of the studies in both model and non-model organisms are cross-sectional in design; therefore, little is known, at the individual level, on how mitochondrial function changes with age, its link to early developmental conditions or its relationship with survival. Here we manipulated the postnatal growth in zebra finches (Taeniopygia guttata) via dietary modification that induced accelerated growth without changing adult body size. In the same individuals, we examined blood cells mitochondrial functioning (mainly erythrocytes) when they were young (ca. 36 weeks) and again in mid-aged (ca. 91 weeks) adulthood. Mitochondrial function was strongly influenced by age but not by postnatal growth conditions. Across all groups, within individual ROUTINE respiration, OXPHOS and OXPHOS coupling efficiency significantly declined with age, while LEAK respiration increased. However, we found no link between mitochondrial function and the probability of survival into relatively old age (ca. 4 years). Our results suggest that the association between accelerated growth and reduced longevity, evident in this as in other species, is not attributable to age-related changes in any of the measured mitochondrial function traits.
Collapse
Affiliation(s)
- Pablo Salmón
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.,Institute of Avian Research "Vogelwarte Helgoland", Wilhelmshaven, Germany
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Caroline Millet
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Colin Selman
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Ozes B, Tong L, Myers M, Moss K, Ridgley A, Sahenk Z. AAV1.NT-3 gene therapy prevents age-related sarcopenia. Aging (Albany NY) 2023; 15:1306-1329. [PMID: 36897179 PMCID: PMC10042697 DOI: 10.18632/aging.204577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Sarcopenia is progressive loss of muscle mass and strength, occurring during normal aging with significant consequences on the quality of life for elderly. Neurotrophin 3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulating axon regeneration and myelination. NT-3 is involved in the maintenance of neuromuscular junction (NMJ) integrity, restoration of impaired radial growth of muscle fibers through activation of the Akt/mTOR pathway. We tested the efficacy of NT-3 gene transfer therapy in wild type (WT)-aged C57BL/6 mice, a model for natural aging and sarcopenia, via intramuscular injection 1 × 1011 vg AAV1.tMCK.NT-3, at 18 months of age. The treatment efficacy was assessed at 6 months post-injection using run to exhaustion and rotarod tests, in vivo muscle contractility assay, and histopathological studies of the peripheral nervous system, including NMJ connectivity and muscle. AAV1.NT-3 gene therapy in WT-aged C57BL/6 mice resulted in functional and in vivo muscle physiology improvements, supported by quantitative histology from muscle, peripheral nerves and NMJ. Hindlimb and forelimb muscles in the untreated cohort showed the presence of a muscle- and sex-dependent remodeling and fiber size decrease with aging, which was normalized toward values obtained from 10 months old WT mice with treatment. The molecular studies assessing the NT-3 effect on the oxidative state of distal hindlimb muscles, accompanied by western blot analyses for mTORC1 activation were in accordance with the histological findings. Considering the cost and quality of life to the individual, we believe our study has important implications for management of age-related sarcopenia.
Collapse
Affiliation(s)
- Burcak Ozes
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Lingying Tong
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Morgan Myers
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Kyle Moss
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Alicia Ridgley
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Zarife Sahenk
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH 43205, USA
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
11
|
Alhowail A. Mechanisms Underlying Cognitive Impairment Induced by Prenatal Alcohol Exposure. Brain Sci 2022; 12:brainsci12121667. [PMID: 36552126 PMCID: PMC9775935 DOI: 10.3390/brainsci12121667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Alcohol is one of the most commonly used illicit substances among pregnant women. Clinical and experimental studies have revealed that prenatal alcohol exposure affects fetal brain development and ultimately results in the persistent impairment of the offspring's cognitive functions. Despite this, the rate of alcohol use among pregnant women has been progressively increasing. Various aspects of human and animal behavior, including learning and memory, are dependent on complex interactions between multiple mechanisms, such as receptor function, mitochondrial function, and protein kinase activation, which are especially vulnerable to alterations during the developmental period. Thus, the exploration of the mechanisms that are altered in response to prenatal alcohol exposure is necessary to develop an understanding of how homeostatic imbalance and various long-term neurobehavioral impairments manifest following alcohol abuse during pregnancy. There is evidence that prenatal alcohol exposure results in vast alterations in mechanisms such as long-term potentiation, mitochondrial function, and protein kinase activation in the brain of offspring. However, to the best of our knowledge, there are very few recent reviews that focus on the cognitive effects of prenatal alcohol exposure and the associated mechanisms. Therefore, in this review, we aim to provide a comprehensive summary of the recently reported alterations to various mechanisms following alcohol exposure during pregnancy, and to draw potential associations with behavioral changes in affected offspring.
Collapse
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim 51452, Saudi Arabia
| |
Collapse
|
12
|
Kumar V, Kim SH, Bishayee K. Dysfunctional Glucose Metabolism in Alzheimer’s Disease Onset and Potential Pharmacological Interventions. Int J Mol Sci 2022; 23:ijms23179540. [PMID: 36076944 PMCID: PMC9455726 DOI: 10.3390/ijms23179540] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related dementia. The alteration in metabolic characteristics determines the prognosis. Patients at risk show reduced glucose uptake in the brain. Additionally, type 2 diabetes mellitus increases the risk of AD with increasing age. Therefore, changes in glucose uptake in the cerebral cortex may predict the histopathological diagnosis of AD. The shifts in glucose uptake and metabolism, insulin resistance, oxidative stress, and abnormal autophagy advance the pathogenesis of AD syndrome. Here, we summarize the role of altered glucose metabolism in type 2 diabetes for AD prognosis. Additionally, we discuss diagnosis and potential pharmacological interventions for glucose metabolism defects in AD to encourage the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - So-Hyeon Kim
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Kausik Bishayee
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: or
| |
Collapse
|
13
|
Mitochondrial DNA Profiling by Fractal Lacunarity to Characterize the Senescent Phenotype as Normal Aging or Pathological Aging. FRACTAL AND FRACTIONAL 2022. [DOI: 10.3390/fractalfract6040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biocomplexity, chaos, and fractality can explain the heterogeneity of aging individuals by regarding longevity as a “secondary product” of the evolution of a dynamic nonlinear system. Genetic-environmental interactions drive the individual senescent phenotype toward normal, pathological, or successful aging. Mitochondrial dysfunctions and mitochondrial DNA (mtDNA) mutations represent a possible mechanism shared by disease(s) and the aging process. This study aims to characterize the senescent phenotype and discriminate between normal (nA) and pathological (pA) aging by mtDNA mutation profiling. MtDNA sequences from hospitalized and non-hospitalized subjects (age-range: 65–89 years) were analyzed and compared to the revised Cambridge Reference Sequence (rCRS). Fractal properties of mtDNA sequences were displayed by chaos game representation (CGR) method, previously modified to deal with heteroplasmy. Fractal lacunarity analysis was applied to characterize the senescent phenotype on the basis of mtDNA sequence mutations. Lacunarity parameter β, from our hyperbola model function, was statistically different (p < 0.01) between the nA and pA groups. Parameter β cut-off value at 1.26 × 10−3 identifies 78% nA and 80% pA subjects. This also agrees with the presence of MT-CO gene variants, peculiar to nA (C9546m, 83%) and pA (T9900w, 80%) mtDNA, respectively. Fractal lacunarity can discriminate the senescent phenotype evolving as normal or pathological aging by individual mtDNA mutation profile.
Collapse
|
14
|
Abstract
Mitochondria are the main source of energy used to maintain cellular homeostasis. This aspect of mitochondrial biology underlies their putative role in age-associated tissue dysfunction. Proper functioning of the electron transport chain (ETC), which is partially encoded by the extra-nuclear mitochondrial genome (mtDNA), is key to maintaining this energy production. The acquisition of de novo somatic mutations that interrupt the function of the ETC have long been associated with aging and common diseases of the elderly. Yet, despite over 30 years of study, the exact role(s) mtDNA mutations play in driving aging and its associated pathologies remains under considerable debate. Furthermore, even fundamental aspects of age-related mtDNA mutagenesis, such as when mutations arise during aging, where and how often they occur across tissues, and the specific mechanisms that give rise to them, remain poorly understood. In this review, we address the current understanding of the somatic mtDNA mutations, with an emphasis of when, where, and how these mutations arise during aging. Additionally, we highlight current limitations in our knowledge and critically evaluate the controversies stemming from these limitations. Lastly, we highlight new and emerging technologies that offer potential ways forward in increasing our understanding of somatic mtDNA mutagenesis in the aging process.
Collapse
Affiliation(s)
- Monica Sanchez-Contreras
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
15
|
Lim RMH, Koh AS. Cardiovascular Aging and Physical Activity: Insights From Metabolomics. Front Cardiovasc Med 2021; 8:728228. [PMID: 34616784 PMCID: PMC8488139 DOI: 10.3389/fcvm.2021.728228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
The purpose of this review is to explore how metabolomics can help uncover mechanisms through which physical activity may influence the progression of cardiovascular aging. Cardiovascular aging is a process of functional and structural changes in older adults which can progress to cardiovascular disease. Metabolomics profiling is an investigative tool that can track the diverse changes which occur in human biochemistry with physical activity and aging. This mini review will summarize published investigations in metabolomics and physical activity, with a specific focus on the metabolic pathways that connect physical activity with cardiovascular aging.
Collapse
Affiliation(s)
| | - Angela S Koh
- National Heart Centre Singapore, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
16
|
YAF2-Mediated YY1-Sirtuin6 Interactions Responsible for Mitochondrial Downregulation in Aging Tunicates. Mol Cell Biol 2021; 41:e0004721. [PMID: 33875574 DOI: 10.1128/mcb.00047-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In budding tunicates, aging accompanies a decrease in the gene expression of mitochondrial transcription factor A (Tfam), and the in vivo transfection of Tfam mRNA stimulates the mitochondrial respiratory activity of aged animals. The gene expression of both the transcriptional repressor Yin-Yang-1 (YY1) and corepressor Sirtuin6 (Sirt6) increased during aging, and the cotransfection of synthetic mRNA of YY1 and Sirt6 synergistically downregulated Tfam gene expression. Pulldown assays of proteins indicated that YY1-associated factor 2 (YAF2) was associated with both YY1 and SIRT6. Protein cross-linking confirmed that YAF2 bound YY1 and SIRT6 with a molar ratio of 1:1. YY1 was bound to CCAT- or ACAT-containing oligonucleotides in the 5' flanking region of the Tfam gene. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) showed that SIRT6 specifically induced the histone H3 lysine 9 (H3K9) deacetylation of the Tfam upstream region. YY1 and YAF2 accelerated SIRT6-induced H3K9 deacetylation. YY1 and Sirt6 mRNA transfection attenuated mitochondrial respiratory gene expression and blocked MitoTracker fluorescence. In contrast, the SIRT6 inhibitor and Tfam mRNA antagonized the inhibitory effects of YY1 and Sirt6, indicating that Tfam acts on mitochondria downstream of YY1 and Sirt6. We concluded that in the budding tunicate Polyandrocarpa misakiensis, YY1 recruits SIRT6 via YAF2 to the TFAM gene, resulting in aging-related mitochondrial downregulation.
Collapse
|
17
|
Horvath O, Ordog K, Bruszt K, Kalman N, Kovacs D, Radnai B, Gallyas F, Toth K, Halmosi R, Deres L. Modulation of Mitochondrial Quality Control Processes by BGP-15 in Oxidative Stress Scenarios: From Cell Culture to Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6643871. [PMID: 33728024 PMCID: PMC7937466 DOI: 10.1155/2021/6643871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a complex chronic clinical disease characterized by among others the damage of the mitochondrial network. The disruption of the mitochondrial quality control and the imbalance in fusion-fission processes lead to a lack of energy supply and, finally, to cell death. BGP-15 (O-[3-piperidino-2-hydroxy-1-propyl]-nicotinic acid amidoxime dihydrochloride) is an insulin sensitizer molecule and has a cytoprotective effect in a wide variety of experimental models. In our recent work, we aimed to clarify the mitochondrial protective effects of BGP-15 in a hypertension-induced heart failure model and "in vitro." Spontaneously hypertensive rats (SHRs) received BGP-15 or placebo for 18 weeks. BGP-15 treatment preserved the normal mitochondrial ultrastructure and enhanced the mitochondrial fusion. Neonatal rat cardiomyocytes (NRCMs) were stressed by hydrogen-peroxide. BGP-15 treatment inhibited the mitochondrial fission processes, promoted mitochondrial fusion, maintained the integrity of the mitochondrial genome, and moreover enhanced the de novo biogenesis of the mitochondria. As a result of these effects, BGP-15 treatment also supports the maintenance of mitochondrial function through the preservation of the mitochondrial structure during hydrogen peroxide-induced oxidative stress as well as in an "in vivo" heart failure model. It offers the possibility, which pharmacological modulation of mitochondrial quality control under oxidative stress could be a novel therapeutic approach in heart failure.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Culture Techniques
- Citrate (si)-Synthase/metabolism
- DNA/metabolism
- DNA Damage
- DNA, Mitochondrial/genetics
- Dynamins/metabolism
- Electron Transport/drug effects
- Energy Metabolism/drug effects
- Genome, Mitochondrial
- Heart Failure/etiology
- Heart Failure/pathology
- Hypertension/complications
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/ultrastructure
- Mitochondrial Dynamics
- Mitochondrial Proteins/metabolism
- Myocardium/pathology
- Myocardium/ultrastructure
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Natriuretic Peptide, Brain/metabolism
- Organelle Biogenesis
- Oxidative Stress/drug effects
- Oximes/administration & dosage
- Oximes/chemistry
- Oximes/pharmacology
- Oxygen Consumption/drug effects
- Piperidines/administration & dosage
- Piperidines/chemistry
- Piperidines/pharmacology
- Rats, Inbred SHR
- Rats, Inbred WKY
- Rats
Collapse
Affiliation(s)
- Orsolya Horvath
- 1st Department of Medicine, University of Pecs, Medical School, Pecs, Hungary
- Szentágothai Research Centre, University of Pecs, Pecs, Hungary
| | - Katalin Ordog
- 1st Department of Medicine, University of Pecs, Medical School, Pecs, Hungary
- Szentágothai Research Centre, University of Pecs, Pecs, Hungary
| | - Kitti Bruszt
- 1st Department of Medicine, University of Pecs, Medical School, Pecs, Hungary
- Szentágothai Research Centre, University of Pecs, Pecs, Hungary
| | - Nikoletta Kalman
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Dominika Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Balazs Radnai
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Ferenc Gallyas
- Szentágothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
| | - Kalman Toth
- 1st Department of Medicine, University of Pecs, Medical School, Pecs, Hungary
- Szentágothai Research Centre, University of Pecs, Pecs, Hungary
| | - Robert Halmosi
- 1st Department of Medicine, University of Pecs, Medical School, Pecs, Hungary
- Szentágothai Research Centre, University of Pecs, Pecs, Hungary
| | - Laszlo Deres
- 1st Department of Medicine, University of Pecs, Medical School, Pecs, Hungary
- Szentágothai Research Centre, University of Pecs, Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
| |
Collapse
|
18
|
Mitochondrial Dysfunction in Parkinson's Disease: Focus on Mitochondrial DNA. Biomedicines 2020; 8:biomedicines8120591. [PMID: 33321831 PMCID: PMC7763033 DOI: 10.3390/biomedicines8120591] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria, the energy stations of the cell, are the only extranuclear organelles, containing their own (mitochondrial) DNA (mtDNA) and the protein synthesizing machinery. The location of mtDNA in close proximity to the oxidative phosphorylation system of the inner mitochondrial membrane, the main source of reactive oxygen species (ROS), is an important factor responsible for its much higher mutation rate than nuclear DNA. Being more vulnerable to damage than nuclear DNA, mtDNA accumulates mutations, crucial for the development of mitochondrial dysfunction playing a key role in the pathogenesis of various diseases. Good evidence exists that some mtDNA mutations are associated with increased risk of Parkinson’s disease (PD), the movement disorder resulted from the degenerative loss of dopaminergic neurons of substantia nigra. Although their direct impact on mitochondrial function/dysfunction needs further investigation, results of various studies performed using cells isolated from PD patients or their mitochondria (cybrids) suggest their functional importance. Studies involving mtDNA mutator mice also demonstrated the importance of mtDNA deletions, which could also originate from abnormalities induced by mutations in nuclear encoded proteins needed for mtDNA replication (e.g., polymerase γ). However, proteomic studies revealed only a few mitochondrial proteins encoded by mtDNA which were downregulated in various PD models. This suggests nuclear suppression of the mitochondrial defects, which obviously involve cross-talk between nuclear and mitochondrial genomes for maintenance of mitochondrial functioning.
Collapse
|
19
|
Lewsey SC, Weiss K, Schär M, Zhang Y, Bottomley PA, Samuel TJ, Xue QL, Steinberg A, Walston JD, Gerstenblith G, Weiss RG. Exercise intolerance and rapid skeletal muscle energetic decline in human age-associated frailty. JCI Insight 2020; 5:141246. [PMID: 32941181 PMCID: PMC7605538 DOI: 10.1172/jci.insight.141246] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Physical frailty in older individuals is characterized by subjective symptoms of fatigue and exercise intolerance (EI). Objective abnormalities in skeletal muscle (SM) mitochondrial high-energy phosphate (HEP) metabolism contribute to EI in inherited myopathies; however, their presence or link to EI in the frail older adult is unknown. METHODS Here, we studied 3 groups of ambulatory, community-dwelling adults with no history of significant coronary disease: frail older (FO) individuals (81 ± 2.7 years, mean ± SEM), nonfrail older (NFO) individuals (79 ± 2.0 years), and healthy middle-aged individuals, who served as controls (CONT, 51 ± 2.1 years). Lower extremity SM HEP levels and mitochondrial function were measured with 31P magnetic resonance (MR) techniques during graded multistage plantar flexion exercise (PFE). EI was quantified by a 6-minute walk (6MW) and peak oxygen consumption during cardiopulmonary testing (peak VO2). RESULTS During graded exercise, FO, NFO, and CONT individuals all fatigued at similar SM HEP levels, as measured by 31P-MR. However, FO individuals fatigued fastest, with several-fold higher rates of PFE-induced HEP decline that correlated closely with shorter exercise duration in the MR scanner and with 6MW distance and lower peak oxygen consumption on cardiopulmonary testing (P < 0.001 for all). SM mitochondrial oxidative capacity was lower in older individuals and correlated with rapid HEP decline but less closely with EI. CONCLUSION Several-fold faster SM energetic decline during exercise occurs in FO individuals and correlates closely with multiple measures of EI. Rapid energetic decline represents an objective, functional measure of SM metabolic changes and a potential new target for mitigating frailty-associated physical limitations. FUNDING This work was supported by NIH R21 AG045634, R01 AG063661, R01 HL61912, the Johns Hopkins University Claude D. Pepper Older Americans Independence Center P30AG021334, and the Clarence Doodeman Endowment in Cardiology at Johns Hopkins. Rapid exercise-induced skeletal muscle high-energy phosphate decline occurs in frail, older individuals and is closely linked to exercise intolerance and fatigue.
Collapse
Affiliation(s)
| | - Kilian Weiss
- Division of Cardiology, Department of Medicine, and.,Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Philips Healthcare Germany, Hamburg, Germany
| | - Michael Schär
- Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yi Zhang
- Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Paul A Bottomley
- Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Qian-Li Xue
- Divison of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Jeremy D Walston
- Divison of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
20
|
Aas V, Thoresen GH, Rustan AC, Lund J. Substrate oxidation in primary human skeletal muscle cells is influenced by donor age. Cell Tissue Res 2020; 382:599-608. [PMID: 32897419 PMCID: PMC7683494 DOI: 10.1007/s00441-020-03275-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/07/2020] [Indexed: 12/21/2022]
Abstract
Primary human myotubes represent an alternative system to intact skeletal muscle for the study of human diseases related to changes in muscle energy metabolism. This work aimed to study if fatty acid and glucose metabolism in human myotubes in vitro were related to muscle of origin, donor gender, age, or body mass index (BMI). Myotubes from a total of 82 donors were established from three different skeletal muscles, i.e., musculus vastus lateralis, musculus obliquus internus abdominis, and musculi interspinales, and cellular energy metabolism was evaluated. Multiple linear regression analyses showed that donor age had a significant effect on glucose and oleic acid oxidation after correcting for gender, BMI, and muscle of origin. Donor BMI was the only significant contributor to cellular oleic acid uptake, whereas cellular glucose uptake did not rely on any of the variables examined. Despite the effect of age on substrate oxidation, cellular mRNA expression of pyruvate dehydrogenase kinase 4 (PDK4) and peroxisome proliferator–activated receptor gamma coactivator 1 alpha (PPARGC1A) did not correlate with donor age. In conclusion, donor age significantly impacts substrate oxidation in cultured human myotubes, whereas donor BMI affects cellular oleic acid uptake.
Collapse
Affiliation(s)
- Vigdis Aas
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.
| |
Collapse
|
21
|
Di Ciaula A, Portincasa P. The environment as a determinant of successful aging or frailty. Mech Ageing Dev 2020; 188:111244. [PMID: 32335099 DOI: 10.1016/j.mad.2020.111244] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
The number of elderly persons is rising rapidly, and healthspan is a key factor in determining the well-being of individuals and the sustainability of national health systems. Environmental health is crucial for a "successful aging". Complex relationships between environmental factors and non-communicable diseases play a major role, causing or accelerating disabilities. Besides genetic factors, aging results from the concurrence of several environmental factors starting from early (i.e. in utero) life, able to increase susceptibility to diseases in adulthood, and to promote frailty in the elderly. In aged people, an unhealthy environment contributes to a fast and early decline and increases vulnerability. Exposure to pollutants facilitates the onset and progression of cardiovascular, respiratory, metabolic and neurologic diseases through direct effects and epigenetic mechanisms negatively affecting biological age. Healthy diet, healthy environment and constant physical activity could counteract, at least in part, the negative effects of environmental stressors. Almost all environmental factors generating detrimental effects on aging are modifiable, with relevant implications in terms of primary prevention measures potentially leading to decreased frailty, to an increase in the number of years lived without diseases or disability, and to a significant reduction in health expenditure.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy; Division of Internal Medicine, Hospital of Bisceglie (ASL BAT), Bisceglie, Italy; International Society of Doctors for Environment (ISDE).
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
22
|
Gao N, Huang Z, Liu H, Hou J, Liu X. Advances on the toxicity of uranium to different organisms. CHEMOSPHERE 2019; 237:124548. [PMID: 31549660 DOI: 10.1016/j.chemosphere.2019.124548] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 05/10/2023]
Abstract
The extensive application of radioactive element uranium (U) and its compounds in the nuclear industry has significantly increased the risk of exposure to the environment. Therefore, research on the safety risks and toxicity mechanisms of U exposure has received increasing attention. This paper reviews the toxic effects of U on different species under different conditions, and summarizes the potential toxicity mechanisms. Under the exposure of U, reactive oxygen species (ROS) produced in cells will damage membrane structure in cells, and inhibit respiratory chain reaction by reducing the production of NADH and ATP. It also induce the expression of apoptosis factors such as Bcl-2, Bid, Bax, and caspase family to cause apoptosis cascade reaction, leading to DNA degradation and cell death. We innovatively list some methods to reduce the toxicity of U because some microorganisms can precipitate uranyl ions through biomineralization or reduction processes. Our work provides a solid foundation for further risk assessment of U.
Collapse
Affiliation(s)
- Ning Gao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Zhihui Huang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Haiqiang Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Xinhui Liu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong Province, China
| |
Collapse
|
23
|
Central metabolism of functionally heterogeneous mesenchymal stromal cells. Sci Rep 2019; 9:15420. [PMID: 31659213 PMCID: PMC6817850 DOI: 10.1038/s41598-019-51937-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Metabolism and mitochondrial biology have gained a prominent role as determinants of stem cell fate and function. In the context of regenerative medicine, innovative parameters predictive of therapeutic efficacy could be drawn from the association of metabolic or mitochondrial parameters to different degrees of stemness and differentiation potentials. Herein, this possibility was addressed in human mesenchymal stromal/stem cells (hMSC) previously shown to differ in lifespan and telomere length. First, these hMSC were shown to possess significantly distinct proliferation rate, senescence status and differentiation capacity. More potential hMSC were associated to higher mitochondrial (mt) DNA copy number and lower mtDNA methylation. In addition, they showed higher expression levels of oxidative phosphorylation subunits. Consistently, they exhibited higher coupled oxygen consumption rate and lower transcription of glycolysis-related genes, glucose consumption and lactate production. All these data pointed at oxidative phosphorylation-based central metabolism as a feature of higher stemness-associated hMSC phenotypes. Consistently, reduction of mitochondrial activity by complex I and III inhibitors in higher stemness-associated hMSC triggered senescence. Finally, functionally higher stemness-associated hMSC showed metabolic plasticity when challenged by glucose or glutamine shortage, which mimic bioenergetics switches that hMSC must undergo after transplantation or during self-renewal and differentiation. Altogether, these results hint at metabolic and mitochondrial parameters that could be implemented to identify stem cells endowed with superior growth and differentiation potential.
Collapse
|
24
|
Suryadevara V, Huang L, Kim SJ, Cheresh P, Shaaya M, Bandela M, Fu P, Feghali-Bostwick C, Di Paolo G, Kamp DW, Natarajan V. Role of phospholipase D in bleomycin-induced mitochondrial reactive oxygen species generation, mitochondrial DNA damage, and pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2019; 317:L175-L187. [PMID: 31090437 DOI: 10.1152/ajplung.00320.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a pernicious lung disease characterized by alveolar epithelial apoptosis, dysregulated repair of epithelial injury, scar formation, and respiratory failure. In this study, we identified phospholipase D (PLD)-generated phosphatidic acid (PA) signaling in the development of pulmonary fibrosis (PF). Of the PLD isoenzymes, the protein expression of PLD2, but not PLD1, was upregulated in lung tissues from IPF patients and bleomycin challenged mice. Both PLD1 (Pld1-/-)- and PLD2 (Pld2-/-)-deficient mice were protected against bleomycin-induced lung inflammation and fibrosis, thereby establishing the role of PLD in fibrogenesis. The role of PLD1 and PLD2 in bleomycin-induced lung epithelial injury was investigated by infecting bronchial airway epithelial cells (Beas2B) with catalytically inactive mutants of PLD (hPLD1-K898R or mPld2-K758R) or downregulation of expression of PLD1 or PLD2 with siRNA. Bleomycin stimulated mitochondrial (mt) superoxide production, mtDNA damage, and apoptosis in Beas2B cells, which was attenuated by the catalytically inactive mutants of PLD or PLD2 siRNA. These results show a role for PLD1 and PLD2 in bleomycin-induced generation of mt reactive oxygen species, mt DNA damage, and apoptosis of lung epithelial cells in mice. Thus, PLD may be a novel therapeutic target in ameliorating experimental PF in mice.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois
| | - Longshuang Huang
- Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois
| | - Seok-Jo Kim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine and the Jesse Brown VA Medical Center , Chicago, Illinois
| | - Paul Cheresh
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine and the Jesse Brown VA Medical Center , Chicago, Illinois
| | - Mark Shaaya
- Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois
| | - Mounica Bandela
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois
| | | | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center , New York, New York
| | - David W Kamp
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine and the Jesse Brown VA Medical Center , Chicago, Illinois
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois.,Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| |
Collapse
|
25
|
Bennett JP. Medical hypothesis: Neurodegenerative diseases arise from oxidative damage to electron tunneling proteins in mitochondria. Med Hypotheses 2019; 127:1-4. [PMID: 31088629 DOI: 10.1016/j.mehy.2019.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/15/2022]
Abstract
Mitochondria likely arose from serial endosymbiosis by early eukaryotic cells and control electron flow to molecular oxygen to facilitate energy transformation. Mitochondria translate between the quantum and macroscopic worlds and utilize quantum tunneling of electrons to reduce activation energy barriers to electron flow. Electron tunneling has been extensively characterized in Complex I of the electron transport chain. Age-related increases in oxidative damage to these electron tunneling systems may account for decreased energy storage found in aged and neurodegenerative disease tissues, such as those from sufferers of amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD). This hypothesis is testable. If correct, this hypothesis supports pre-symptomatic, mitochondrially-directed oxygen free radical scavenging therapies.
Collapse
Affiliation(s)
- James P Bennett
- Neurodegeneration Therapeutics, Inc., 3050A Berkmar Drive, Charlottesville, VA 22901-3450, United States.
| |
Collapse
|
26
|
Li Y, Zhao X, Hu Y, Sun H, He Z, Yuan J, Cai H, Sun Y, Huang X, Kong W, Kong W. Age-associated decline in Nrf2 signaling and associated mtDNA damage may be involved in the degeneration of the auditory cortex: Implications for central presbycusis. Int J Mol Med 2018; 42:3371-3385. [PMID: 30272261 PMCID: PMC6202109 DOI: 10.3892/ijmm.2018.3907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/19/2018] [Indexed: 11/15/2022] Open
Abstract
Central presbycusis is the most common sensory disorder in the elderly population, however, the underlying molecular mechanism remains unclear. NF‑E2‑related factor 2 (Nrf2) is a key transcription factor in the cellular response to oxidative stress, however, the role of Nrf2 in central presbycusis remains to be elucidated. The aim of the present study was to investigate the pathogenesis of central presbycusis using a mimetic aging model induced by D‑galactose (D‑gal) in vivo and in vitro. The degeneration of the cell was determined with transmission electron microscopy, terminal deoxynucleotidyl transferase‑mediated deoxyuridine 5'‑triphosphate nick‑end labeling staining, and senescence‑associated β‑galactosidase staining. The expression of protein was detected by western blotting and immunofluorescence. The quantification of the mitochondrial DNA (mtDNA) 4,834‑base pair (bp) deletion and mRNA was detected by TaqMan quantitative polymerase chain reaction (qPCR) and reverse transcription‑qPCR respectively. Cell apoptosis and intracellular ROS in vitro were determined with flow cytometry. The levels of nuclear Nrf2, and the mRNA levels of Nrf2‑regulated antioxidant genes, were downregulated in the auditory cortex of aging rats, which was accompanied by an increase in 8‑hydroxy‑2'‑deoxyguanosine formation, an accumulation of mtDNA 4,834‑bp deletion, and neuron degeneration. In addition, oltipraz, a typical Nrf2 activator, was found to protect cells against D‑gal‑induced mtDNA damage and mitochondrial dysfunction by activating Nrf2 target genes in vitro. It was also observed that activating Nrf2 with oltipraz inhibited cell apoptosis and delayed senescence. Taken together, the data of the present study suggested that the age‑associated decline in Nrf2 signaling activity and the associated mtDNA damage in the auditory cortex may be implicated in the degeneration of the auditory cortex. Therefore, the restoration of Nrf2 signaling activity may represent a potential therapeutic strategy for central presbycusis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua Cai
- Department of Otolaryngology
| | - Yu Sun
- Department of Otolaryngology
| | | | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | | |
Collapse
|
27
|
Update on mitochondria and muscle aging: all wrong roads lead to sarcopenia. Biol Chem 2018; 399:421-436. [DOI: 10.1515/hsz-2017-0331] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022]
Abstract
Abstract
Sarcopenia is a well-known geriatric syndrome that has been endorsed over the years as a biomarker allowing for the discrimination, at a clinical level, of biological from chronological age. Multiple candidate mechanisms have been linked to muscle degeneration during sarcopenia. Among them, there is wide consensus on the central role played by the loss of mitochondrial integrity in myocytes, secondary to dysfunctional quality control mechanisms. Indeed, mitochondria establish direct or indirect contacts with other cellular components (e.g. endoplasmic reticulum, peroxisomes, lysosomes/vacuoles) as well as the extracellular environment through the release of several biomolecules. The functional implications of these interactions in the context of muscle physiology and sarcopenia are not yet fully appreciated and represent a promising area of investigation. Here, we present an overview of recent findings concerning the interrelation between mitochondrial quality control processes, inflammation and the metabolic regulation of muscle mass in the pathogenesis of sarcopenia highlighting those pathways that may be exploited for developing preventive and therapeutic interventions against muscle aging.
Collapse
|
28
|
Abstract
As the popular adage goes, all diseases run into old age and almost all physiological changes are associated with alterations in gene expression, irrespective of whether they are causal or consequential. Therefore, the quest for mechanisms that delay ageing and decrease age-associated diseases has propelled researchers to unravel regulatory factors that lead to changes in chromatin structure and function, which ultimately results in deregulated gene expression. It is therefore essential to bring together literature, which until recently has investigated gene expression and chromatin independently. With advances in biomedical research and the emergence of epigenetic regulators as potential therapeutic targets, enhancing our understanding of mechanisms that 'derail' transcription and identification of causal genes/pathways during ageing will have a significant impact. In this context, this chapter aims to not only summarize the key features of age-associated changes in epigenetics and transcription, but also identifies gaps in the field and proposes aspects that need to be investigated in the future.
Collapse
|
29
|
Lee HY, Lee JS, Alves T, Ladiges W, Rabinovitch PS, Jurczak MJ, Choi CS, Shulman GI, Samuel VT. Mitochondrial-Targeted Catalase Protects Against High-Fat Diet-Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation. Diabetes 2017; 66:2072-2081. [PMID: 28476930 PMCID: PMC5521865 DOI: 10.2337/db16-1334] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/30/2017] [Indexed: 01/06/2023]
Abstract
We explored the role of reactive oxygen species (ROS) in the pathogenesis of muscle insulin resistance. We assessed insulin action in vivo with a hyperinsulinemic-euglycemic clamp in mice expressing a mitochondrial-targeted catalase (MCAT) that were fed regular chow (RC) or a high-fat diet (HFD) or underwent an acute infusion of a lipid emulsion. RC-fed MCAT mice were similar to littermate wild-type (WT) mice. However, HFD-fed MCAT mice were protected from diet-induced insulin resistance. In contrast, an acute lipid infusion caused muscle insulin resistance in both MCAT and WT mice. ROS production was decreased in both HFD-fed and lipid-infused MCAT mice and cannot explain the divergent response in insulin action. MCAT mice had subtly increased energy expenditure and muscle fat oxidation with decreased intramuscular diacylglycerol (DAG) accumulation, protein kinase C-θ (PKCθ) activation, and impaired insulin signaling with HFD. In contrast, the insulin resistance with the acute lipid infusion was associated with increased muscle DAG content in both WT and MCAT mice. These studies suggest that altering muscle mitochondrial ROS production does not directly alter the development of lipid-induced insulin resistance. However, the altered energy balance in HFD-fed MCAT mice protected them from DAG accumulation, PKCθ activation, and impaired muscle insulin signaling.
Collapse
Affiliation(s)
- Hui-Young Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Jae Sung Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Korea
| | - Tiago Alves
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Warren Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | | | - Michael J Jurczak
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Cheol Soo Choi
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Varman T Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Veterans Affairs Medical Center, West Haven, CT
| |
Collapse
|
30
|
Budni J, Garcez ML, Mina F, Bellettini-Santos T, da Silva S, Luz APD, Schiavo GL, Batista-Silva H, Scaini G, Streck EL, Quevedo J. The oral administration of D-galactose induces abnormalities within the mitochondrial respiratory chain in the brain of rats. Metab Brain Dis 2017; 32:811-817. [PMID: 28236040 DOI: 10.1007/s11011-017-9972-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022]
Abstract
D-Galactose (D-gal) chronic administration via intraperitoneal and subcutaneous routes has been used as a model of aging and Alzheimer disease in rodents. Intraperitoneal and subcutaneous administration of D-gal causes memory impairments, a reduction in the neurogenesis of adult mice, an increase in the levels of the amyloid precursor protein and oxidative damage; However, the effects of oral D-gal remain unclear. The aim of this study was to evaluate whether the oral administration of D-gal induces abnormalities within the mitochondrial respiratory chain of rats. Male Wistar rats (4 months old) received D-gal (100 mg/kg v.o.), during the 1st, 2nd, 4th, 6th or 8th weeks by oral gavage. The activity of the mitochondrial respiratory chain complexes was measured in the 1st, 2nd, 4th, 6th and 8th weeks after the administration of D-gal. The activity of the respiratory chain complex I was found to have increased in the prefrontal cortex and hippocampus in the 1st, 6th and 8th weeks, while the activity of the respiratory chain complex II increased in the 1st, 2nd, 4th, 6th and 8th weeks within the hippocampus and in the 2nd, 4th, 6th and 8th weeks within the prefrontal cortex. The activity of complex II-III increased within the prefrontal cortex and hippocampus in each week of oral D-gal treatment. The activity of complex IV increased within the prefrontal cortex and hippocampus in the 1st, 2nd, 6th and 8th weeks of treatment. After 4 weeks of treatment the activity increased only in hippocampus. In conclusion, the present study showed that the oral administration of D-gal increased the activity of the mitochondrial respiratory chain complexes I, II, II-III and IV in the prefrontal cortex and hippocampus. Furthermore, the administration of D-gal via the oral route seems to cause the alterations in the mitochondrial respiratory complexes observed in brain neurodegeneration.
Collapse
Affiliation(s)
- Josiane Budni
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil.
| | - Michelle Lima Garcez
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Francielle Mina
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Tatiani Bellettini-Santos
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Sabrina da Silva
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Aline Pereira da Luz
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Gustavo Luiz Schiavo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Hemily Batista-Silva
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Giselli Scaini
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Emílio Luiz Streck
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
31
|
Regulatory cis- and trans-elements of mitochondrial D-loop-driven reporter genes in budding tunicates. Mitochondrion 2017; 35:59-69. [PMID: 28526334 DOI: 10.1016/j.mito.2017.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/13/2017] [Accepted: 05/12/2017] [Indexed: 11/22/2022]
Abstract
To unveil the underlying mechanism of mitochondrial gene regulation associated with ageing and budding in the tunicate Polyandrocarpa misakiensis, mitochondrial non-coding-region (NCR)-containing reporter genes were constructed. PmNCR2.3K/GFP was expressed spatiotemporally in a pattern quite similar to mitochondrial 16SrRNA. The reporter gene expression was sensitive to high dose of rifampicin similar to mitochondrial genes, suggesting that the transcription indeed occurs in mitochondria. However, the gene expression also occurred in vivo in the cell nucleus and in vitro in the nuclear extracts. Mitochondrial transcription factor A (PmTFAM) enhanced reporter gene expression, depending on the NCR length. A budding-specific polypeptide TC14-3 is an epigenetic histone methylation inducer. It heavily enhanced reporter gene expression that was interfered by histone methylation inhibitors and PmTFAM RNAi. Our results indicate for the first time that the nuclear histone methylation is involved in mitochondrial gene activity via TFAM gene regulation.
Collapse
|
32
|
Mercken EM, Capri M, Carboneau BA, Conte M, Heidler J, Santoro A, Martin-Montalvo A, Gonzalez-Freire M, Khraiwesh H, González-Reyes JA, Moaddel R, Zhang Y, Becker KG, Villalba JM, Mattison JA, Wittig I, Franceschi C, de Cabo R. Conserved and species-specific molecular denominators in mammalian skeletal muscle aging. NPJ Aging Mech Dis 2017. [PMID: 28649426 PMCID: PMC5460213 DOI: 10.1038/s41514-017-0009-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aging is a complex phenomenon involving functional decline in multiple physiological systems. We undertook a comparative analysis of skeletal muscle from four different species, i.e. mice, rats, rhesus monkeys, and humans, at three different representative stages during their lifespan (young, middle, and old) to identify pathways that modulate function and healthspan. Gene expression profiling and computational analysis revealed that pathway complexity increases from mice to humans, and as mammals age, there is predominantly an upregulation of pathways in all species. Two downregulated pathways, the electron transport chain and oxidative phosphorylation, were common among all four species in response to aging. Quantitative PCR, biochemical analysis, mitochondrial DNA measurements, and electron microscopy revealed a conserved age-dependent decrease in mitochondrial content, and a reduction in oxidative phosphorylation complexes in monkeys and humans. Western blot analysis of key proteins in mitochondrial biogenesis discovered that (i) an imbalance toward mitochondrial fusion occurs in aged skeletal muscle and (ii) mitophagy is not overtly affected, presumably leading to the observed accumulation of abnormally large, damaged mitochondria with age. Select transcript expression analysis uncovered that the skeletal inflammatory profile differentially increases with age, but is most pronounced in humans, while increased oxidative stress (as assessed by protein carbonyl adducts and 4-hydroxynonenal) is common among all species. Expression studies also found that there is unique dysregulation of the nutrient sensing pathways among the different species with age. The identification of conserved pathways indicates common molecular mechanisms intrinsic to health and lifespan, whereas the recognition of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process. Aging is a complex phenomenon involving functional declines in multiple physiological systems with the passage of time. Focusing on skeletal muscle, a group of international scientists identified pathways involved in healthspan and by determining global gene expression profiles across species they exposed common mechanisms fundamental to the aging process. Their experimental design involved comparative analysis of mice, rats, rhesus monkeys and humans, targeting three key time points during their respective lifespans. Pathways related to oxidative stress, inflammation and nutrient signaling, which function collectively to affect the quality and status of mitochondria, emerged across all species in an age-influenced manner. The identification of conserved pathways reveals molecular mechanisms intrinsic to health and survival, whereas the unveiling of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.
Collapse
Affiliation(s)
- Evi M Mercken
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, 40126 Bologna, Italy
| | - Bethany A Carboneau
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, 40126 Bologna, Italy
| | - Juliana Heidler
- Functional Proteomics, SFB815 Core Unit, Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, 40126 Bologna, Italy
| | - Alejandro Martin-Montalvo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Marta Gonzalez-Freire
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Husam Khraiwesh
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Campus Rabanales Edificio Severo Ochoa, 3ª planta, 14014 Córdoba, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Campus Rabanales Edificio Severo Ochoa, 3ª planta, 14014 Córdoba, Spain
| | - Ruin Moaddel
- Bioanalytical and Drug Development Unit, National institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - José M Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Campus Rabanales Edificio Severo Ochoa, 3ª planta, 14014 Córdoba, Spain
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Poolesville, MD 20837 USA
| | - Ilka Wittig
- Functional Proteomics, SFB815 Core Unit, Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| |
Collapse
|
33
|
Chen X, Zhao X, Cai H, Sun H, Hu Y, Huang X, Kong W, Kong W. The role of sodium hydrosulfide in attenuating the aging process via PI3K/AKT and CaMKKβ/AMPK pathways. Redox Biol 2017; 12:987-1003. [PMID: 28499253 PMCID: PMC5429232 DOI: 10.1016/j.redox.2017.04.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 12/01/2022] Open
Abstract
Age-related dysfunction of the central auditory system, known as central presbycusis, is characterized by defects in speech perception and sound localization. It is important to determine the pathogenesis of central presbycusis in order to explore a feasible and effective intervention method. Recent work has provided fascinating insight into the beneficial function of H2S on oxidative stress and stress-related disease. In this study, we investigated the pathogenesis of central presbycusis and tried to explore the mechanism of H2S action on different aspects of aging by utilizing a mimetic aging rat and senescent cellular model. Our results indicate that NaHS decreased oxidative stress and apoptosis levels in an aging model via CaMKKβ and PI3K/AKT signaling pathways. Moreover, we found that NaHS restored the decreased activity of antioxidants such as GSH, SOD and CAT in the aging model in vivo and in vitro by regulating CaMKKβ and PI3K/AKT. Mitochondria function was preserved by NaHS, as indicated by the following: DNA POLG and OGG-1, the base excision repair enzymes in mitochondrial, were upregulated; OXPHOS activity was downregulated; mitochondrial membrane potential was restored; ATP production was increased; and mtDNA damage, indicated by the common deletion (CD), declined. These effects were also achieved by activating CaMKKβ/AMPK and PI3K/AKT signaling pathways. Lastly, protein homeostasis, indicated by HSP90 alpha, was strengthened by NaHS via CaMKKβ and PI3K/AKT. Our findings demonstrate that the ability to resist oxidative stress and mitochondria function are both decreased as aging developed; however, NaHS, a novel free radical scavenger and mitochondrial protective agent, precludes the process of oxidative damage by activating CaMKKβ and PI3K/AKT. This study might provide a therapeutic target for aging and age-related disease.
Collapse
Affiliation(s)
- Xubo Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyan Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Cai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujuan Hu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang Huang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
34
|
Lalia AZ, Dasari S, Robinson MM, Abid H, Morse DM, Klaus KA, Lanza IR. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults. Aging (Albany NY) 2017; 9:1096-1129. [PMID: 28379838 PMCID: PMC5425117 DOI: 10.18632/aging.101210] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/17/2017] [Indexed: 12/18/2022]
Abstract
Omega-3 polyunsaturated fatty acids (n3-PUFA) are recognized for their anti-inflammatory effects and may be beneficial in the context of sarcopenia. We determined the influence of n3-PUFA on muscle mitochondrial physiology and protein metabolism in older adults. Twelve young (18-35 years) and older (65-85 years) men and women were studied at baseline. Older adults were studied again following n3-PUFA supplementation (3.9g/day, 16 weeks). Muscle biopsies were used to evaluate respiratory capacity (high resolution respirometry) and oxidant emissions (spectrofluorometry) in isolated mitochondria. Maximal respiration was significantly lower in older compared to young. n3-PUFA did not change respiration, but significantly reduced oxidant emissions. Participants performed a single bout of resistance exercise, followed by biopsies at 15 and 18 hours post exercise. Several genes involved in muscle protein turnover were significantly altered in older adults at baseline and following exercise, yet muscle protein synthesis was similar between age groups under both conditions. Following n3-PUFA supplementation, mixed muscle, mitochondrial, and sarcoplasmic protein synthesis rates were increased in older adults before exercise. n3-PUFA increased post-exercise mitochondrial and myofibrillar protein synthesis in older adults. These results demonstrate that n3-PUFA reduce mitochondrial oxidant emissions, increase postabsorptive muscle protein synthesis, and enhance anabolic responses to exercise in older adults.
Collapse
Affiliation(s)
- Antigoni Z. Lalia
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Surendra Dasari
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Matthew M. Robinson
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Hinnah Abid
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Dawn M. Morse
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Katherine A. Klaus
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Ian R. Lanza
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
35
|
Pestronk A, Keeling R, Choksi R. Sarcopenia, age, atrophy, and myopathy: Mitochondrial oxidative enzyme activities. Muscle Nerve 2017; 56:122-128. [PMID: 27759889 DOI: 10.1002/mus.25442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 12/21/2022]
Abstract
INTRODUCTION We studied mitochondrial impairment as a factor in the pathologic equivalent of sarcopenia, muscle fiber atrophy associated with increased age. METHODS Mitochondrial oxidative enzyme activities and coenzyme Q10 levels were measured in frozen human proximal limb muscles with combined age and atrophy, age alone, atrophy alone, denervation, immune myopathies, and mitochondrial disorders with ophthalmoplegia. RESULTS Sarcopenia (age and atrophy) had reduced mean activities of mitochondrial Complexes I, II, and II+III, with severe reduction of Complex I activity in 54% of patients. Atrophy, and specific denervation atrophy, had similar patterns of changes. Age alone had moderately reduced Complex I activity. Mitochondrial myopathies had mildly lower Complex IV activity. Immune myopathies had unchanged enzyme activities. CONCLUSIONS Mitochondrial oxidative enzyme activities, especially Complex I, but also Complexes II and II+III, are reduced in muscles with the pathologic equivalent of sarcopenia. Individually, atrophy and age have different patterns of oxidative enzyme changes. Muscle Nerve 56: 122-128, 2017.
Collapse
Affiliation(s)
- Alan Pestronk
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, Saint Louis, Missouri, 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Richard Keeling
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, Saint Louis, Missouri, 63110, USA
| | - Rati Choksi
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, Saint Louis, Missouri, 63110, USA
| |
Collapse
|
36
|
Gusdon AM, Callio J, Distefano G, O'Doherty RM, Goodpaster BH, Coen PM, Chu CT. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice. Exp Gerontol 2017; 90:1-13. [PMID: 28108329 DOI: 10.1016/j.exger.2017.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 01/06/2023]
Abstract
Exercise is known to have numerous beneficial effects. Recent studies indicate that exercise improves mitochondrial energetics not only in skeletal muscle but also in other tissues. While exercise elicits positive effects on memory, neurogenesis, and synaptic plasticity, the effects of exercise on brain mitochondrial energetics remain relatively unknown. Herein, we studied the effects of exercise training in old and young mice on brain mitochondrial energetics, in comparison to known effects on peripheral tissues that utilize fatty acid oxidation. Exercise improved the capacity for muscle and liver to oxidize palmitate in old mice, but not young mice. In the brain, exercise increased rates of respiration and reactive oxygen species (ROS) production in the old group only while utilizing complex I substrates, effects that were not seen in the young group. Coupled complex I to III enzymatic activity was significantly increased in old trained versus untrained mice with no effect on coupled II to III enzymatic activity. Mitochondrial protein content and markers of mitochondrial biogenesis (PGC-1α and TFAM) were not affected by exercise training in the brain, in contrast to the skeletal muscle of old mice. Brain levels of the autophagy marker LC3-II and protein levels of other signaling proteins that regulate metabolism or transport (BDNF, HSP60, phosphorylated mTOR, FNDC5, SIRT3) were not significantly altered. Old exercised mice showed a significant increase in DRP1 protein levels in the brain without changes in phosphorylation, while MFN2 and OPA1 protein levels were unchanged. Our results suggest that exercise training in old mice can improve brain mitochondrial function through effects on electron transport chain function and mitochondrial dynamics without increasing mitochondrial biogenesis.
Collapse
Affiliation(s)
- Aaron M Gusdon
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, United States; Department of Neurology, NewYork-Presbyterian Hospital, Weill Cornell Medical College, United States
| | - Jason Callio
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, United States
| | - Giovanna Distefano
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, United States; Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States
| | - Robert M O'Doherty
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, United States; Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States
| | - Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, United States; Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States.
| | - Charleen T Chu
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, United States.
| |
Collapse
|
37
|
Ziaaldini MM, Hosseini SR, Fathi M. Mitochondrial adaptations in aged skeletal muscle: effect of exercise training. Physiol Res 2016; 66:1-14. [PMID: 27982690 DOI: 10.33549/physiolres.933329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aging process is associated with a decline in mitochondrial functions. Mitochondria dysfunction is involved in initiation and progression of many health problems including neuromuscular, metabolic and cardiovascular diseases. It is well known that endurance exercise improves mitochondrial function, especially in the elderly. However, recent studies have demonstrated that resistance training lead also to substantial increases in mitochondrial function in skeletal muscle. A comprehensive understanding of the cellular mechanisms involved in the skeletal muscle mitochondrial adaptations to exercise training in healthy elderly subjects, can help practitioners to design and prescribe more effective exercise trainings.
Collapse
Affiliation(s)
- M M Ziaaldini
- Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | | |
Collapse
|
38
|
Kent JA, Fitzgerald LF. In vivo mitochondrial function in aging skeletal muscle: capacity, flux, and patterns of use. J Appl Physiol (1985) 2016; 121:996-1003. [PMID: 27539499 DOI: 10.1152/japplphysiol.00583.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/17/2016] [Indexed: 01/31/2023] Open
Abstract
Because of the fundamental dependence of mammalian life on adequate mitochondrial function, the question of how and why mitochondria change in old age is the target of intense study. Given the importance of skeletal muscle for the support of mobility and health, this question extends to the need to understand mitochondrial changes in the muscle of older adults, as well. We and others have focused on clarifying the age-related changes in human skeletal muscle mitochondrial function in vivo. These changes include both the maximal capacity for oxidative production of energy (ATP), as well as the relative use of mitochondrial ATP production for powering muscular activity. It has been known for nearly 50 yr that muscle mitochondrial content is highly plastic; exercise training can induce an ∼2-fold increase in mitochondrial content, while disuse has the opposite effect. Here, we suggest that a portion of the age-related changes in mitochondrial function that have been reported are likely the result of behavioral effects, as physical activity influences have not always been accounted for. Further, there is emerging evidence that various muscles may be affected differently by age-related changes in physical activity and movement patterns. In this review, we will focus on age-related changes in oxidative capacity and flux measured in vivo in human skeletal muscle.
Collapse
Affiliation(s)
- Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Liam F Fitzgerald
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
39
|
The risk of embryo-endometrium asynchrony increases with maternal age after ovarian stimulation and IVF. Reprod Biomed Online 2016; 33:50-5. [DOI: 10.1016/j.rbmo.2016.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 11/20/2022]
|
40
|
Carter HN, Chen CCW, Hood DA. Mitochondria, muscle health, and exercise with advancing age. Physiology (Bethesda) 2016; 30:208-23. [PMID: 25933821 DOI: 10.1152/physiol.00039.2014] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle health is dependent on the optimal function of its mitochondria. With advancing age, decrements in numerous mitochondrial variables are evident in muscle. Part of this decline is due to reduced physical activity, whereas the remainder appears to be attributed to age-related alterations in mitochondrial synthesis and degradation. Exercise is an important strategy to stimulate mitochondrial adaptations in older individuals to foster improvements in muscle function and quality of life.
Collapse
Affiliation(s)
- Heather N Carter
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Chris C W Chen
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Zhang YG, Wang L, Kaifu T, Li J, Li X, Li L. Featured Article: Accelerated decline of physical strength in peroxiredoxin-3 knockout mice. Exp Biol Med (Maywood) 2016; 241:1395-400. [PMID: 27037278 DOI: 10.1177/1535370216642039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/05/2016] [Indexed: 12/25/2022] Open
Abstract
As a member of peroxiredoxin family, peroxiredoxin-3 plays a major role in the control of mitochondrial level of reactive oxygen species. During the breeding of experimental mice, we noticed that the peroxiredoxin-3 knockout mice were listless with aging. In the present study, we compared the swimming exercise performance and oxidative status between peroxiredoxin-3 knockout mice (n = 15) and wild-type littermates (n = 15). At the age of 10 months, the physical strength of peroxiredoxin-3 knockout mice was much lower than the wild-type littermates. Increased oxidative damage and decreased mitochondrial DNA copy number of the animal skeletal muscles were observed in peroxiredoxin-3 knockout mice as compared to that in the wild-type littermates. In addition, we found increased apoptotic cells in the brains of peroxiredoxin-3 knockout mice. Our results suggest that the deficiency of peroxiredoxin-3 induces accelerated oxidative stress and mitochondrial impairment, resulting in the decrease of energy supply and cellular activities. Peroxiredoxin-3 might be involved in the inhibition of aging process.
Collapse
Affiliation(s)
- Yong-Gang Zhang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, China
| | - Li Wang
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Tomonori Kaifu
- Division of Experimental Animal Immunology, Research Institute for Biomedical Science, Tokyo University of Science, Chiba 278-0022, Japan
| | - Jingmin Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Xiaoyan Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Lianqin Li
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| |
Collapse
|
42
|
Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Morán M, Emanuele E, Joyner MJ, Lucia A. Exercise attenuates the major hallmarks of aging. Rejuvenation Res 2016; 18:57-89. [PMID: 25431878 DOI: 10.1089/rej.2014.1623] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regular exercise has multi-system anti-aging effects. Here we summarize how exercise impacts the major hallmarks of aging. We propose that, besides searching for novel pharmaceutical targets of the aging process, more research efforts should be devoted to gaining insights into the molecular mediators of the benefits of exercise and to implement effective exercise interventions for elderly people.
Collapse
Affiliation(s)
- Nuria Garatachea
- 1 Faculty of Health and Sport Science, University of Zaragoza , Huesca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The current therapy for patients with stable systolic heart failure is largely limited to treatments that interfere with neurohormonal activation. Critical pathophysiological hallmarks of heart failure are an energetic deficit and oxidative stress, and both may be the result of mitochondrial dysfunction. This dysfunction is not (only) the result of defect within mitochondria per se, but is in particular traced to defects in intermediary metabolism and of the regulatory interplay between excitation-contraction coupling and mitochondrial energetics, where defects of cytosolic calcium and sodium handling in failing hearts may play important roles. In the past years, several therapies targeting mitochondria have emerged with promising results in preclinical models. Here, we discuss the mechanisms and results of these mitochondria-targeted therapies, but also of interventions that were not primarily thought to target mitochondria but may have important impact on mitochondrial biology as well, such as iron and exercise. Future research should be directed at further delineating the details of mitochondrial dysfunction in patients with heart failure to further optimize these treatments.
Collapse
|
44
|
Budni J, Pacheco R, da Silva S, Garcez ML, Mina F, Bellettini-Santos T, de Medeiros J, Voss BC, Steckert AV, Valvassori SDS, Quevedo J. Oral administration of d-galactose induces cognitive impairments and oxidative damage in rats. Behav Brain Res 2015; 302:35-43. [PMID: 26748256 DOI: 10.1016/j.bbr.2015.12.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/20/2015] [Accepted: 12/25/2015] [Indexed: 12/12/2022]
Abstract
d-Galactose (d-gal) is a reducing sugar that can be used to mimic the characteristics of aging in rodents; however, the effects of d-gal administration by oral route are not clear. Therefore, the aim of this study was to elucidate if the oral administration of d-gal induces cognitive impairments, neuronal loss, and oxidative damage, mimicking an animal model of aging. Male adult Wistar rats (4 months old) received d-gal (100mg/kg) via the oral route for a period of 1, 2, 4, 6 or 8 weeks. The results showed cognitive impairments in the open-field test in the 4th and 6th weeks after d-gal administration, as well as an impairment in spatial memory in the radial maze test after the 6th week of d-gal administration. The results indicated increase of levels of thiobarbituric acid reactive species-TBARS-and carbonyl group content in the prefrontal cortex from the 4th week, and in all weeks of d-gal administration, respectively. An increase in the levels of TBARS and carbonyl group content was observed in the hippocampus over the entire period of d-gal treatment. In the 8th week of d-gal administration, we also observed reductions in synaptophysin and TAU protein levels in the prefrontal cortex. Thus, d-gal given by oral route caused cognitive impairments which were accompanied by oxidative damage. Therefore, these results indicate that orally administered d-gal can induce the behavioral and neurochemical alterations that are observed in the natural aging process. However, oral d-gal effect in rats deserve further studies to be better described.
Collapse
Affiliation(s)
- Josiane Budni
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
| | - Robson Pacheco
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Sabrina da Silva
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Michelle Lima Garcez
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Francielle Mina
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Tatiani Bellettini-Santos
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Jesiel de Medeiros
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Bruna Constantino Voss
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Amanda Valnier Steckert
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Samira da Silva Valvassori
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Sinalização Neural e Psicofarmacologia, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA; Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
45
|
Zapico SC, Ubelaker DH. Relationship Between Mitochondrial DNA Mutations and Aging. Estimation of Age-at-death. J Gerontol A Biol Sci Med Sci 2015; 71:445-50. [PMID: 26286606 DOI: 10.1093/gerona/glv115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/17/2015] [Indexed: 01/09/2023] Open
Abstract
Some studies have pointed to the relationship between mitochondrial DNA (mtDNA) mutations and age in different tissues, which are potentially interesting in aging research and in forensic identification because they could help to improve the estimation of age-at-death. The present study aims to evaluate the mutations in mtDNA from dentin and pulp and their relation with age. Healthy erupted third molars were extracted from individuals from two Spanish populations, aged 20-70. When analyzing the amplification of hypervariable region 2 of the mtDNA by real-time polymerase chain reaction, a negative strong linear correlation was found between the mtDNA amplification and age in dentin from both populations. In contrast, a significant correlation between mtDNA amplification and age in pulp was not discovered, probably due to the majority of the mitochondria are placed in dentin. A difference in mtDNA damage between these two populations was also detected, indicating the role of ancestry as a component. The findings from this research enrich the current studies related to aging and mitochondrial damage and provide a new quantitative tool for estimating the age-at-death that, in combination with traditional age markers, could improve identification accuracy in forensic cases.
Collapse
Affiliation(s)
- Sara C Zapico
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington DC.
| | - Douglas H Ubelaker
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington DC
| |
Collapse
|
46
|
Hood DA, Tryon LD, Vainshtein A, Memme J, Chen C, Pauly M, Crilly MJ, Carter H. Exercise and the Regulation of Mitochondrial Turnover. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:99-127. [PMID: 26477912 DOI: 10.1016/bs.pmbts.2015.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exercise is a well-known stimulus for the expansion of the mitochondrial pool within skeletal muscle. Mitochondria have a remarkable ability to remodel their networks and can respond to an array of signaling stimuli following contractile activity to adapt to the metabolic demands of the tissue, synthesizing proteins to expand the mitochondrial reticulum. In addition, when they become dysfunctional, these organelles can be recycled by a specialized intracellular system. The signals regulating this mitochondrial life cycle of synthesis and degradation during exercise are still an area of great research interest. As mitochondrial turnover has valuable consequences in physical performance, in addition to metabolic health, disease, and aging, consideration of the signals which control this cycle is vital. This review focuses on the regulation of mitochondrial turnover in skeletal muscle and summarizes our current understanding of the impact that exercise has in modulating this process.
Collapse
Affiliation(s)
- David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.
| | - Liam D Tryon
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Anna Vainshtein
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Jonathan Memme
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Chris Chen
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Marion Pauly
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Matthew J Crilly
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Heather Carter
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Mitochondrial responsibility in ageing process: innocent, suspect or guilty. Biogerontology 2015; 16:599-620. [PMID: 26105157 DOI: 10.1007/s10522-015-9585-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/13/2015] [Indexed: 12/22/2022]
Abstract
Ageing is accompanied by the accumulation of damaged molecules in cells due to the injury produced by external and internal stressors. Among them, reactive oxygen species produced by cell metabolism, inflammation or other enzymatic processes are considered key factors. However, later research has demonstrated that a general mitochondrial dysfunction affecting electron transport chain activity, mitochondrial biogenesis and turnover, apoptosis, etc., seems to be in a central position to explain ageing. This key role is based on several effects from mitochondrial-derived ROS production to the essential maintenance of balanced metabolic activities in old organisms. Several studies have demonstrated caloric restriction, exercise or bioactive compounds mainly found in plants, are able to affect the activity and turnover of mitochondria by increasing biogenesis and mitophagy, especially in postmitotic tissues. Then, it seems that mitochondria are in the centre of metabolic procedures to be modified to lengthen life- or health-span. In this review we show the importance of mitochondria to explain the ageing process in different models or organisms (e.g. yeast, worm, fruitfly and mice). We discuss if the cause of aging is dependent on mitochondrial dysfunction of if the mitochondrial changes observed with age are a consequence of events taking place outside the mitochondrial compartment.
Collapse
|
48
|
Sun HY, Hu YJ, Zhao XY, Zhong Y, Zeng LL, Chen XB, Yuan J, Wu J, Sun Y, Kong W, Kong WJ. Age-related changes in mitochondrial antioxidant enzyme Trx2 and TXNIP-Trx2-ASK1 signal pathways in the auditory cortex of a mimetic aging rat model: changes to Trx2 in the auditory cortex. FEBS J 2015; 282:2758-74. [PMID: 25996168 DOI: 10.1111/febs.13324] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/10/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022]
Abstract
Age-associated degeneration in the central auditory system, which is defined as central presbycusis, can impair sound localization and speech perception. Research has shown that oxidative stress plays a central role in the pathological process of central presbycusis. Thioredoxin 2 (Trx2), one member of thioredoxin family, plays a key role in regulating the homeostasis of cellular reactive oxygen species and anti-apoptosis. The purpose of this study was to explore the association between Trx2 and the phenotype of central presbycusis using a mimetic aging animal model induced by long-term exposure to d-galactose (d-Gal). We also explored changes in thioredoxin-interacting protein (TXNIP), apoptosis signal regulating kinase 1 (ASK1) and phosphorylated ASK1 (p-ASK1) expression, as well as the Trx2-TXNIP/Trx2-ASK1 binding complex in the auditory cortex of mimetic aging rats. Our results demonstrate that, compared with control groups, the levels of Trx2 and Trx2-ASK1 binding complex were significantly reduced, whereas TXNIP, ASK1 p-ASK1 expression, and Trx2-TXNIP binding complex were significantly increased in the auditory cortex of the mimetic aging groups. Our results indicated that changes in Trx2 and the TXNIP-Trx2-ASK1 signal pathway may participate in the pathogenesis of central presbycusis.
Collapse
Affiliation(s)
- Hai-Ying Sun
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Juan Hu
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Yan Zhao
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhong
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Ling Zeng
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, China
| | - Xu-Bo Chen
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Yuan
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease, Ministry of Education, Wuhan, China
| |
Collapse
|
49
|
Ashar FN, Moes A, Moore AZ, Grove ML, Chaves PH, Coresh J, Newman AB, Matteini AM, Bandeen-Roche K, Boerwinkle E, Walston JD, Arking DE. Association of mitochondrial DNA levels with frailty and all-cause mortality. J Mol Med (Berl) 2015; 93:177-186. [PMID: 25471480 PMCID: PMC4319988 DOI: 10.1007/s00109-014-1233-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/18/2014] [Indexed: 12/23/2022]
Abstract
Mitochondrial function is altered with age and variants in mitochondrial DNA (mtDNA) modulate risk for several age-related disease states. However, the association of mtDNA copy number, a readily available marker which reflects mitochondrial depletion, energy reserves, and oxidative stress, on aging and mortality in the general population has not been addressed. To assess the association between mtDNA copy number and two primary outcomes--prevalent frailty and all-cause mortality--we utilize data from participants who were from two multicenter, multiethnic, community-based, prospective studies--the Cardiovascular Health Study (CHS) (1989-2006) and the Atherosclerosis Risk in Communities (ARIC) study (1987-2013). A total of 4892 participants (43.3% men) from CHS and 11,509 participants (44.9% men) from ARIC self-identifying as white or black were included in the analysis. mtDNA copy number, the trait of interest, was measured using a qPCR-based method in CHS and an array-based method in ARIC from DNA isolated from whole blood in participants from both cohorts. In race-stratified meta-analyses, we observe a significant inverse association of mtDNA copy number with age and higher mtDNA copy number in women relative to men. Lower mtDNA copy number was also significantly associated with prevalent frailty in white participants from CHS (OR 0.91, 95% CI 0.85-0.97). Additionally, mtDNA copy number was a strong independent predictor of all-cause mortality in an age- and sex-adjusted, race-stratified analysis of 16,401 participants from both cohorts with a pooled hazard ratio of 1.47 (95% CI 1.33-1.62) for the lowest quintile of mtDNA copy number relative to the highest quintile. Key messages: Mitochondrial DNA (mtDNA) copy number is associated with age and sex. Lower mtDNA copy number is also associated with prevalent frailty. mtDNA copy number is a significant predictor of all-cause mortality in a multiethnic population.
Collapse
Affiliation(s)
- Foram N. Ashar
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Anna Moes
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Ann Z. Moore
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Megan L. Grove
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030, USA
| | - Paulo H.M. Chaves
- Benjamin Leon Center for Geriatric Research and Education and Department of Medicine, Florida International University, 11200 SW 8 St, Miami, FL 33174, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Anne B. Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Amy M. Matteini
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Karen Bandeen-Roche
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030, USA
| | - Jeremy D. Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Dan E. Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
50
|
van Leeuwen N, Beekman M, Deelen J, van den Akker EB, de Craen AJM, Slagboom PE, ’t Hart LM. Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9629. [PMID: 24554339 PMCID: PMC4082602 DOI: 10.1007/s11357-014-9629-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/05/2014] [Indexed: 05/02/2023]
Abstract
Long-lived individuals delay aging and age-related diseases like diabetes, hypertension, and cardiovascular disease. The exact underlying mechanisms are largely unknown, but enhanced mitochondrial biogenesis and preservation of mitochondrial function have been suggested to explain healthy ageing. We investigated whether individuals belonging to long-lived families have altered mitochondrial DNA (mtDNA) content, as a biomarker of mitochondrial biogenesis and measured expression of genes regulating mitochondrial biogenesis. mtDNA and nuclear DNA (nDNA) levels were measured in blood samples from 2,734 participants from the Leiden Longevity Study: 704 nonagenarian siblings, 1,388 of their middle-aged offspring and 642 controls. We confirmed a negative correlation of mtDNA content in blood with age and a higher content in females. The middle-aged offspring had, on average, lower levels of mtDNA than controls and the nonagenarian siblings had an even lower mtDNA content (mtDNA/nDNA ratio = 0.744 ± 0.065, 0.767 ± 0.058 and 0.698 ± 0.074, respectively; p controls-offspring = 3.4 × 10(-12), p controls-nonagenarians = 6.5 × 10(-6)), which was independent of the confounding effects of age and gender. Subsequently, we examined in a subset of the study the expression in blood of two genes regulating mitochondrial biogenesis, YY1 and PGC-1α. We found a positive association of YY1 expression and mtDNA content in controls. The observed absence of such an association in the offspring suggests an altered regulation of mitochondrial biogenesis in the members of long-lived families. In conclusion, in this study, we show that mtDNA content decreases with age and that low mtDNA content is associated with familial longevity. Our data suggest that preservation of mitochondrial function rather than enhancing mitochondrial biogenesis is a characteristic of long-lived families.
Collapse
Affiliation(s)
- N. van Leeuwen
- />Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - M. Beekman
- />Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- />Netherlands Consortium for Healthy Ageing, Leiden University Medical Center, Leiden, The Netherlands
| | - J. Deelen
- />Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- />Netherlands Consortium for Healthy Ageing, Leiden University Medical Center, Leiden, The Netherlands
| | - E. B. van den Akker
- />Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- />The Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - A. J. M. de Craen
- />Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - P. E. Slagboom
- />Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- />Netherlands Consortium for Healthy Ageing, Leiden University Medical Center, Leiden, The Netherlands
| | - L. M. ’t Hart
- />Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
- />Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|