1
|
Dwivedi M, Jindal D, Jose S, Hasan S, Nayak P. Elements in trace amount with a significant role in human physiology: a tumor pathophysiological and diagnostic aspects. J Drug Target 2024; 32:270-286. [PMID: 38251986 DOI: 10.1080/1061186x.2024.2309572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Cancer has a devastating impact globally regardless of gender, age, and community, which continues its severity to the population due to the lack of efficient strategy for the cancer diagnosis and treatment. According to the World Health Organisation report, one out of six people dies due to this deadly cancer and we need effective strategies to regulate it. In this context, trace element has a very hidden and unexplored role and require more attention from investigators. The variation in concentration of trace elements was observed during comparative studies on a cancer patient and a healthy person making them an effective target for cancer regulation. The percentage of trace elements present in the human body depends on environmental exposure, food habits, and habitats and could be instrumental in the early diagnosis of cancer. In this review, we have conducted inclusive analytics on trace elements associated with the various types of cancers and explored the several methods involved in their analysis. Further, intricacies in the correlation of trace elements with prominent cancers like prostate cancer, breast cancer, and leukaemia are represented in this review. This comprehensive information on trace elements proposes their role during cancer and as biomarkers in cancer diagnosis.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
- Research Cell, Amity University Uttar Pradesh, Lucknow, India
| | - Divya Jindal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Sandra Jose
- MET's School of Engineering, Thrissur, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Pradeep Nayak
- Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Bithi N, Ricks D, Walker BS, Law C, Johnson-Davis KL. Method validation of an inductively coupled plasma mass spectrometry (ICP-MS) assay for the analysis of magnesium, copper and zinc in red blood cells. J Mass Spectrom Adv Clin Lab 2024; 34:21-27. [PMID: 39469428 PMCID: PMC11513474 DOI: 10.1016/j.jmsacl.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Background Laboratory measurements of trace elements such as magnesium (Mg), copper (Cu), and zinc (Zn) in red blood cells (RBCs) are essential for assessing nutritional status and diagnosing metal toxicity. The purpose of this study was to develop and validate an ICP-MS method for quantifying these elements in RBCs. Methods Packed RBCs were aliquoted and diluted in an alkaline diluent solution containing internal standards, 0.1 % Triton X-100, 0.1 % EDTA, and 1 % ammonium hydroxide. The resulting diluted specimen was analyzed using inductively coupled plasma mass spectrometry (ICP-MS) to quantitatively determine the levels of Mg, Cu, and Zn. The method underwent validation for accuracy, precision, method comparison, linearity, analytical sensitivity, and carryover. Additionally, retrospective data were analyzed, and non-parametric reference intervals were calculated. Results Accuracy and linearity fell within the expected range of ≤±15 % for all analytes. Within-run, between-run, and total imprecision were ≤15 % coefficient of variation. All other validation experiments met the established acceptance criteria. Retrospective data analysis was conducted on patient samples using the method. The application of Tukey's HSD test for multiple comparisons revealed statistically significant mean differences (p < 0.05) in Mg, Cu, and Zn concentrations between all pairwise groups of age and sex, except for the mean Cu concentration in adult males versus females and the mean Mg concentrations in adult versus minor males. Conclusions The presented method was successfully validated and met the criteria for clinical use. Retrospective data analysis of patient results demonstrated the method's suitability for assessing nutritional deficiency and toxicity.
Collapse
Affiliation(s)
- Nazmin Bithi
- Department of Pathology, University of Utah Health, Salt Lake City, UT, United States
| | - Daniel Ricks
- Harris Regional Hospital, Sylva, NC, United States
| | - Brandon S. Walker
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Christian Law
- ARUP Laboratories, Salt Lake City, UT, United States
| | - Kamisha L. Johnson-Davis
- Department of Pathology, University of Utah Health, Salt Lake City, UT, United States
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| |
Collapse
|
3
|
Noh D, Lee H, Lee S, Sun IC, Yoon HY. Copper-Based Nanomedicines for Cuproptosis-Mediated Effective Cancer Treatment. Biomater Res 2024; 28:0094. [PMID: 39430913 PMCID: PMC11486892 DOI: 10.34133/bmr.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
The recent discovery of cuproptosis, a novel copper-ion-induced cell death pathway, has suggested the novel therapeutic potential for treating heterogeneous and drug-resistant cancers. Currently, copper ionophore-based therapeutics have been designed to treat cancers, utilizing copper ions as a strategic tool to impede tumor proliferation and promote cellular demise. However, limitations of copper ionophore-based therapies include nontargeted delivery of copper ions, low tumor accumulation, and short half-life. Strategies to enhance specificity involve targeting intracellular cuproptosis mechanisms using nanotechnology-based drugs. Additionally, the importance of exploring combination therapies cannot be overstated, as they are a key strategy in improving the efficacy of cancer treatments. Recent studies have reported the anticancer effects of nanomedicines that can induce cuproptosis of cancer both in vitro and in vivo. These cuproptosis-targeted nanomedicines could improve delivery efficiency with the pharmacokinetic properties of copper ion, resulting in increasing cuproptosis-based anticancer effects. This review will summarize the intricate nexus between copper ion and carcinogenesis, examining the pivotal roles of copper homeostasis and its dysregulation in cancer progression and fatality. Furthermore, we will introduce the latest advances in cuproptosis-targeted nanomedicines for cancer treatment. Finally, the challenges in cuproptosis-based nanomedicines will be discussed for future development directions.
Collapse
Affiliation(s)
- Dahye Noh
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School,
University of Science and Technology (UST), Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hokyung Lee
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy,
Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sangmin Lee
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy,
Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - In-Cheol Sun
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School,
University of Science and Technology (UST), Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
4
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Sun Y, Jin Z, Zhang J, Wu H, Li X, Zhao L, Peng W. Association Between Copper Intake and Migraine: a National Cross-sectional Study. Biol Trace Elem Res 2024; 202:4387-4397. [PMID: 38123763 DOI: 10.1007/s12011-023-04027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Migraine is a common clinical neurological disorder that adversely affects humans and society. The relationship between copper intake and migraine has been less studied and controversial. The purpose of this study was to determine the relationship between copper intake and migraine and to guide dietary interventions. The data for this study were obtained from the National Health and Nutrition Examination Survey (NHANES) database from 1999 to 2004, involving a total of 12,724 participants. The relationship between copper intake and migraine was examined using weighted multivariate logistic regression models, and smooth-fit curves were plotted to explore the relationship. After non-linear relationships were found, recursive algorithms and two-stage linear regression models were used to calculate inflection points. Stratified analyses were also performed to explore population differences. In the model corrected for all covariates, the OR (95% CI) of copper intake with migraine was 1.19 (0.97, 1.46), which was not statistically significant. However, the results of the linear trend test suggested that their relationship might be non-linear. Smooth-fit curves confirmed the non-linear relationship between copper intake and migraine, and an inflection point (0.98 mg/day) was identified. There was no statistical significance before the inflection point, but after the inflection point, copper intake was positively associated with migraine attacks. Stratified analyses showed that this non-linear relationship persisted in females, people under 45 years old, and people with BMI less than 30. In this large cross-sectional study, we found a non-linear correlation between copper intake and migraine.
Collapse
Affiliation(s)
- Yiyan Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhi Jin
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Junqing Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hongyun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaotong Li
- The First Clinical School of Shandong, University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Leiyong Zhao
- Department of Psychiatry, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| | - Wei Peng
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
6
|
Yang Y, Wu J, Wang L, Ji G, Dang Y. Copper homeostasis and cuproptosis in health and disease. MedComm (Beijing) 2024; 5:e724. [PMID: 39290254 PMCID: PMC11406047 DOI: 10.1002/mco2.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Copper is a vital trace element in human physiology, essential for the synthesis of numerous crucial metabolic enzymes and facilitation of various biological processes. Regulation of copper levels within a narrow range is imperative for maintaining metabolic homeostasis. Numerous studies have demonstrated the significant roles of copper homeostasis and cuproptosis in health and disease pathogenesis. However, a comprehensive and up-to-date systematic review in this domain remains absent. This review aims to consolidate recent advancements in understanding the roles of cuproptosis and copper homeostasis in health and disease, focusing on the underlying mechanisms and potential therapeutic interventions. Dysregulation of copper homeostasis, manifesting as either copper excess or deficiency, is implicated in the etiology of various diseases. Cuproptosis, a recently identified form of cell death, is characterized by intracellular copper overload. This phenomenon mediates a diverse array of evolutionary processes in organisms, spanning from health to disease, and is implicated in genetic disorders, liver diseases, neurodegenerative disorders, and various cancers. This review provides a comprehensive summary of the pathogenic mechanisms underlying cuproptosis and copper homeostasis, along with associated targeted therapeutic agents. Furthermore, it explores future research directions with the potential to yield significant advancements in disease treatment, health management, and disease prevention.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| | - Jiaxuan Wu
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine University of Ottawa Ottawa Ontario Canada
- China-Canada Centre of Research for Digestive Diseases University of Ottawa Ottawa Ontario Canada
| | - Guang Ji
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| | - Yanqi Dang
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| |
Collapse
|
7
|
Hao D, Luo W, Yan Y, Zhou J. Focus on cuproptosis: Exploring new mechanisms and therapeutic application prospects of cuproptosis regulation. Biomed Pharmacother 2024; 178:117182. [PMID: 39053428 DOI: 10.1016/j.biopha.2024.117182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cuproptosis is a novel form of regulated cell death, which plays an important role in the physiological and pathological processes of the human body. Despite the increasing research on cuproptosis-related genes (CRGs) and their correlation with diseases, the pathogenesis of cuproptosis-related diseases remains unclear. Furthermore, there is a lack of reviews on the emerging technologies for regulating cuproptosis in disease treatment. This study delves into the copper-induced cell death mechanism, distinguishing cuproptosis from mechanisms like oxidative stress, glutathione synthesis inhibition, and ubiquitin-proteasome system inhibition. Several long-standing mysteries of diseases such as Wilson's disease and Menkes disease may be attributed to the occurrence of cuproptosis. In addition, we also review the detection indicators related to cuproptosis, providing targets for the diagnosis of cuproptosis-related diseases, and summarize the application value of cuproptosis in tumor therapy to better elucidate the impact of copper in cell death and diseases, and thus to promote the application prospects and possible strategies of cuproptosis-related substances, such as copper ion chelators, copper ion carriers, and copper nanomaterials, in disease therapy.
Collapse
Affiliation(s)
- Donglin Hao
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Wei Luo
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| |
Collapse
|
8
|
Yang Y, Li Q, Chen J, Guo Y, Cai Y, Zhao W, Su S, Sang A. A cuproptosis-related prognostic signature for guiding clinical diagnosis and treatment in uveal melanoma patients. Heliyon 2024; 10:e36324. [PMID: 39247274 PMCID: PMC11378888 DOI: 10.1016/j.heliyon.2024.e36324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Background Cuproptosis, one of the most recently discovered forms of cell death, is induced by the disruption of copper binding to the mitochondrial respiratory acylation components. However, the mechanism underlying cuproptosis in uveal melanoma (UM) has not yet been adequately studied. Methods RNA and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed cuproptosis-related genes were identified by R software. A prognostic signature was constructed by applying LASSO regression and Cox regression models. The associations between the signature and the immune microenvironment, overall survival, and drug sensitivity were studied. In addition, qPCR and Western blotting were performed on UM cells and RPE cell lines to verify the expression levels of the genes encoding dihydrolipoamide dehydrogenase (DLD) and dihydrolipoamide S-succinyltransferase (DLST) in UM cases. Results Using a cuproptosis-related prognostic signature, UM samples were classified into high- and low-risk groups. A significant difference in overall survival between the two risk groups was evident. Receiver operating characteristic curves demonstrated that the signature is a reliable predictor of prognosis. Immune cell infiltration, drug sensitivity, and immune checkpoint expression were analysed. Significant immune difference between the two high-risk groups was found, and the high expression of immune checkpoints in high-risk groups suggests significant immunotherapy potential. In addition, drug sensitivity analysis experiments suggest that erlotinib may be a potential treatment for high-risk patients. The results of in vitro experiments confirmed that DLD and DLST had higher expression levels in UM cell lines. Conclusions The prognostic signature developed in this study is a reliable biomarker for predicting the prognosis of UM and may serve as a tool for personalised treatment of patients with UM.
Collapse
Affiliation(s)
- Ying Yang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Qixuan Li
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jia Chen
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yangchen Guo
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yu Cai
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Wenmin Zhao
- Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Shu Su
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Aimin Sang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| |
Collapse
|
9
|
Vana F, Szabo Z, Masarik M, Kratochvilova M. The interplay of transition metals in ferroptosis and pyroptosis. Cell Div 2024; 19:24. [PMID: 39097717 PMCID: PMC11297737 DOI: 10.1186/s13008-024-00127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Abstract
Cell death is one of the most important mechanisms of maintaining homeostasis in our body. Ferroptosis and pyroptosis are forms of necrosis-like cell death. These cell death modalities play key roles in the pathophysiology of cancer, cardiovascular, neurological diseases, and other pathologies. Transition metals are abundant group of elements in all living organisms. This paper presents a summary of ferroptosis and pyroptosis pathways and their connection to significant transition metals, namely zinc (Zn), copper (Cu), molybdenum (Mo), lead (Pb), cobalt (Co), iron (Fe), cadmium (Cd), nickel (Ni), mercury (Hg), uranium (U), platinum (Pt), and one crucial element, selenium (Se). Authors aim to summarize the up-to-date knowledge of this topic.In this review, there are categorized and highlighted the most common patterns in the alterations of ferroptosis and pyroptosis by transition metals. Special attention is given to zinc since collected data support its dual nature of action in both ferroptosis and pyroptosis. All findings are presented together with a brief description of major biochemical pathways involving mentioned metals and are visualized in attached comprehensive figures.This work concludes that the majority of disruptions in the studied metals' homeostasis impacts cell fate, influencing both death and survival of cells in the complex system of altered pathways. Therefore, this summary opens up the space for further research.
Collapse
Affiliation(s)
- Frantisek Vana
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Zoltan Szabo
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
10
|
Luo S, Luo R, Deng G, Huang F, Lei Z. Programmed cell death, from liver Ischemia-Reperfusion injury perspective: An overview. Heliyon 2024; 10:e32480. [PMID: 39040334 PMCID: PMC11260932 DOI: 10.1016/j.heliyon.2024.e32480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024] Open
Abstract
Liver ischemia-reperfusion injury (LIRI) commonly occurs in liver resection, liver transplantation, shock, and other hemorrhagic conditions, resulting in profound local and systemic effects via associated inflammatory responses and hepatic cell death. Hepatocyte death is a significant component of LIRI and its mechanism was previously thought to be limited to apoptosis and necrosis. With the discovery of novel types of programmed cell death (PCD), necroptosis, ferroptosis, pyroptosis, autophagy, NETosis, and parthanatos have been shown to be involved in LIRI. Understanding the mechanisms underlying cell death following LIRI is indispensable to mitigating the widespread effects of LIRI. Here, we review the roles of different PCD and discuss potential therapy in LIRI.
Collapse
Affiliation(s)
- Shaobin Luo
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Rongkun Luo
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Gang Deng
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Feizhou Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Zhao Lei
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| |
Collapse
|
11
|
Hiremath SD, Kumar N, Banerjee S. Metal Ion Responsive Luminescent Bio-Templated Co-Assemblies: Label-Free Detection of Multi-Metal Ions in Aqueous Media. Chem Asian J 2024; 19:e202400291. [PMID: 38695635 DOI: 10.1002/asia.202400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Indexed: 06/10/2024]
Abstract
Recently, anionic bio-templates have emerged as promising platforms for designing dynamic and stimuli-responsive chromophoric assemblies capable of light harvesting in aqueous media thereby mimicking natural photosynthesis. Here, we present multi-metal ion-responsive luminescent co-assemblies between cationic pyrene-imidazolium amphiphile and anionic bio-templates (ATP, heparin, and DNA) in aqueous media. The anionic bio-templates enhance Förster resonance energy transfer (FRET) in the co-assemblies, with pyrene serving as an excellent donor for generating tunable multi-luminescent materials with embedded acceptor dyes. However, a significant loss in energy transfer towards acceptor dyes was observed in the presence of various metal ions, attributed to excimeric emission quenching facilitated by electron transfer between the pyrene chromophore and metal ions. Interestingly, detailed studies revealed that only ATP-based co-assemblies exhibited quenching phenomena in the presence of metal ions, contrasting with heparin and ctDNA co-assemblies. Additionally, label-free detection of multi-metal ions in aqueous environments, such as Fe2+, Fe3+, and Cu2+ ions, was successfully achieved with lower detection limits of 0.01 μM (3 ppb), 0.12 μM (30 ppb), and 0.58 μM (150 ppb) respectively. These co-assemblies hold significant promise for practical applications in environmental and biomedical sensing, enabling sensitive monitoring of metal ion concentrations.
Collapse
Affiliation(s)
- Sharanabasava D Hiremath
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, India
| | - Nitish Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, India
| | - Supratim Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, India
| |
Collapse
|
12
|
Thamizhan P, Jadhav SE, Jadhav PS, Chaudhary P, Choubey PK, Singh VK, Dutta N. Influence of Select Dietary Trace Minerals and their Levels on Growth Performance, Nutrient Utilization and Minerals Balance in Male Goats. Biol Trace Elem Res 2024; 202:3097-3106. [PMID: 37840063 DOI: 10.1007/s12011-023-03915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
A study was conducted on eighteen male goats to evaluate the effect of incremental levels of select dietary trace minerals on growth performance, nutrient utilization and minerals balance. Animals (16.65 ± 0.53 kg average BW) were randomly divided into three groups and fed a basal diet to meet the requirement of all the nutrients except select trace minerals for 60 days. Groups were T1 (0.204 ppm Se, 35.29 ppm Zn, 7.37 ppm Cu, 39.79 ppm Mn), T2 (0.504 ppm Se, 55.29 ppm Zn, 17.37 ppm Cu, 59.79 ppm Mn), and T3 (0.804 ppm Se, 75.29 ppm Zn, 27.37 ppm Cu, 79.79 ppm Mn). Daily dry matter intake (DMI) (% BW) was lower (P < 0.05) in T3 as compared to other groups however, average daily gain (ADG) in body weight (P = 0.113) and feed: gain ratio (P = 0.102) showed subtle improvement in T2 and T3 groups. Feeding of higher levels of select trace minerals did not affect the intake and digestibility of nutrients, or plane of nutrition, however, the digestibility of non-fiber carbohydrates (NFC) increased (P = 0.004) in T2 and T3 groups than T1. The balance of N, Ca, P and Cu did not differ among the groups but balance of Zn, Mn and Se increased in T2 and T3 groups than T1 group. It is concluded that feeding higher levels of Zn (75.29 ppm), Cu (27.37 ppm), Mn (79.79 ppm) and Se (0.804 ppm) in combination, improved NFC digestibility, retention of Zn, Mn and Se and had subtle beneficial effects on the growth performance of male goats.
Collapse
Affiliation(s)
- P Thamizhan
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Sunil Ekanath Jadhav
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India.
| | - Pranav Sunil Jadhav
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Pramod Chaudhary
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Pankaj Kumar Choubey
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Vijay Kumar Singh
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Acharya Narendra Dev University of Agriculture and Technology, Kumarganj, 224 229, India
| | - Narayan Dutta
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| |
Collapse
|
13
|
Zhang Z, Tang H, Du T, Yang D. The impact of copper on bone metabolism. J Orthop Translat 2024; 47:125-131. [PMID: 39021399 PMCID: PMC466973 DOI: 10.1016/j.jot.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Copper is an essential trace element for the human body. Abnormalities in copper metabolism can lead to bone defects, mainly by directly affecting the viability of osteoblasts and osteoclasts and their bone remodeling function, or indirectly regulating bone metabolism by influencing enzyme activities as cofactors. Copper ions released from biological materials can affect osteoblasts and osteoclasts, either directly or indirectly by modulating the inflammatory response, oxidative stress, and rapamycin signaling. This review presents an overview of recent progress in the impact of copper on bone metabolism. Translational potential of this article: The impact of copper on bone metabolism can provide insights into clinical application of copper-containing supplements and biomaterials.
Collapse
Affiliation(s)
- Zihan Zhang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Huixue Tang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Tingting Du
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Di Yang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| |
Collapse
|
14
|
Pan Z, Huang L, Gan Y, Xia Y, Yu W. The Molecular Mechanisms of Cuproptosis and Small-Molecule Drug Design in Diabetes Mellitus. Molecules 2024; 29:2852. [PMID: 38930917 PMCID: PMC11206814 DOI: 10.3390/molecules29122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
In the field of human health research, the homeostasis of copper (Cu) is receiving increased attention due to its connection to pathological conditions, including diabetes mellitus (DM). Recent studies have demonstrated that proteins associated with Cu homeostasis, such as ATOX1, FDX1, ATP7A, ATPB, SLC31A1, p53, and UPS, also contribute to DM. Cuproptosis, characterized by Cu homeostasis dysregulation and Cu overload, has been found to cause the oligomerization of lipoylated proteins in mitochondria, loss of iron-sulfur protein, depletion of glutathione, production of reactive oxygen species, and cell death. Further research into how cuproptosis affects DM is essential to uncover its mechanism of action and identify effective interventions. In this article, we review the molecular mechanism of Cu homeostasis and the role of cuproptosis in the pathogenesis of DM. The study of small-molecule drugs that affect these proteins offers the possibility of moving from symptomatic treatment to treating the underlying causes of DM.
Collapse
Affiliation(s)
- Zhaowen Pan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Z.P.); (Y.G.)
| | - Lan Huang
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China;
| | - Yuanyuan Gan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Z.P.); (Y.G.)
| | - Yan Xia
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China;
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Z.P.); (Y.G.)
| |
Collapse
|
15
|
Wu S, Wu J, Yu H, Zhang J, Huang J, Zhou L, Deng L, Li H. Varying ratios of M/G in alginate to modulate macrophages polarization and its application for wound healing in diabetic. Int J Biol Macromol 2024; 270:132387. [PMID: 38759850 DOI: 10.1016/j.ijbiomac.2024.132387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Alginate (SA) comprises repeating unis of β-1, 4 linked β-D-mannuronic acid (M) and α-L-guloronic acid (G) in varying proportions. The M/G ratio greatly impacts its anti-inflammatory properties in tissue healing wound, as less knowledge reported. This study examined the performances of both SA and SA hydrogel crosslinked with copper ions (SA-Cu) with different M/G ratios are studied. SA with higher M/G ratios stimulated macrophage migration and shifted from M0 to the pro-inflammatory Ml phenotype, while lower M/G ratios shifted from M1 to the pro-repair M2 phenotype. Furthermore, SA-Cu hydrogels with lower M/G ratios exhibited enhanced cross-linking degree, mechanical and rheological properties, as well Cu releasing rate. The reason may be attributed to a relative easy binding between Cu ions and G unit among Cu ions, M unit and G unit. In vitro cell evaluation showed that SA-Cu hydrogel with M/G ratio of 1:1 activated M2 macrophages and up-regulated anti-inflammatory cytokines expression more effectively than those of SA-Cu ratios (2:1) and (1:2). In vivo, SA-Cu hydrogel with M/G ratio of 1:1 expedited diabetic wound healing, accelerating infiltration and phenotype shift of M2 macrophages, and enhancing anti-inflammatory factors, epithelialization and collagen deposition in healing phases. This research highlights the significant role of M/G ratios in SA materials in influencing macrophage behavior and inflammatory responses, which would benefit its application field.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou 510630, China; Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Jiacheng Wu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Hai Yu
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou 510630, China
| | - Jinrong Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou 510630, China
| | - Jianan Huang
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou 510630, China
| | - Lin Zhou
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Liehua Deng
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou 510630, China; Department of Dermatology, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China.
| | - Hong Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
16
|
Li Q, Wang T, Zhou Y, Shi J. Cuproptosis in lung cancer: mechanisms and therapeutic potential. Mol Cell Biochem 2024; 479:1487-1499. [PMID: 37480450 DOI: 10.1007/s11010-023-04815-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Cuproptosis, a recently identified form of cell death that differs from other forms, is induced by the disruption of the binding of copper to mitochondrial respiratory acylation components. Inducing cell cuproptosis and targeting cell copper death pathways are considered potential directions for treating tumor diseases. We have provided a detailed introduction to the metabolic process of copper. In addition, this study attempts to clarify and summarize the relationships between cuproptosis and therapeutic targets and signaling pathways of lung cancer. This review aims to summarize the theoretical achievements for translating the results of lung cancer and cuproptosis experiments into clinical treatment.
Collapse
Affiliation(s)
- Qixuan Li
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianyi Wang
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- School of Public Health, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
17
|
Qasrawi R, Sgahir S, Nemer M, Halaikah M, Badrasawi M, Amro M, Vicuna Polo S, Abu Al-Halawa D, Mujahed D, Nasreddine L, Elmadfa I, Atari S, Al-Jawaldeh A. Investigating the Association between Nutrient Intake and Food Insecurity among Children and Adolescents in Palestine Using Machine Learning Techniques. CHILDREN (BASEL, SWITZERLAND) 2024; 11:625. [PMID: 38929205 PMCID: PMC11202236 DOI: 10.3390/children11060625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 06/28/2024]
Abstract
Food insecurity is a public health concern that affects children worldwide, yet it represents a particular burden for low- and middle-income countries. This study aims to utilize machine learning to identify the associations between food insecurity and nutrient intake among children aged 5 to 18 years. The study's sample encompassed 1040 participants selected from a 2022 food insecurity household conducted in the West Bank, Palestine. The results indicated that food insecurity was significantly associated with dietary nutrient intake and sociodemographic factors, such as age, gender, income, and location. Indeed, 18.2% of the children were found to be food-insecure. A significant correlation was evidenced between inadequate consumption of various nutrients below the recommended dietary allowance and food insecurity. Specifically, insufficient protein, vitamin C, fiber, vitamin B12, vitamin B5, vitamin A, vitamin B1, manganese, and copper intake were found to have the highest rates of food insecurity. In addition, children residing in refugee camps experienced significantly higher rates of food insecurity. The findings emphasize the multilayered nature of food insecurity and its impact on children, emphasizing the need for personalized interventions addressing nutrient deficiencies and socioeconomic factors to improve children's health and well-being.
Collapse
Affiliation(s)
- Radwan Qasrawi
- Department of Computer Sciences, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
- Department of Computer Engineering, Istinye University, Istanbul 34010, Turkey
| | - Sabri Sgahir
- Department of Nutrition and Food Technology, College of Agriculture, Hebron University, Hebron P.O. Box 40, Palestine
| | - Maysaa Nemer
- Institute of Community and Public Health, Birzeit University, Ramallah P.O. Box 14, Palestine
| | - Mousa Halaikah
- Nutrition Department, Ministry of Health, Ramallah P.O. Box 4284, Palestine
| | - Manal Badrasawi
- Nutrition and Food Technology Department, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Malak Amro
- Department of Computer Sciences, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
| | - Stephanny Vicuna Polo
- Department of Computer Sciences, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
| | - Diala Abu Al-Halawa
- Faculty of Medicine, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
| | - Doa’a Mujahed
- Department of Nutrition and Food Technology, College of Agriculture, Hebron University, Hebron P.O. Box 40, Palestine
| | - Lara Nasreddine
- Nutrition and Food Sciences Department, Faculty of Agriculture and Food Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ibrahim Elmadfa
- Department of Nutrition, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Siham Atari
- Department of Computer Sciences, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
| | - Ayoub Al-Jawaldeh
- Regional Office for the Eastern Mediterranean, World Health Organization, Cairo 7608, Egypt
| |
Collapse
|
18
|
Yang B, Yang J, Zhang K. A cuproptosis-related signature predicts prognosis and indicates cross-talk with immunocyte in ovarian cancer. Discov Oncol 2024; 15:141. [PMID: 38696071 PMCID: PMC11065839 DOI: 10.1007/s12672-024-00981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
PURPOSE Cuproptosis, programmed cell death by intracellular copper-mediated lipoylated protein aggregation, is involved in various tumorigenesis and drug resistance abilities by mediating the tumor microenvironment. Previous studies have demonstrated that serum copper levels are higher in OC patients than in normal subjects. However, the exact relationship between cuproptosis and ovarian cancer progression remains to be further elucidated. METHODS The Cancer Genome Atlas (TCGA) and gene expression omnibus (GEO) datasets were utilized to establish a cuproptosis-related prognostic signature in ovarian cancer. Subsequently, the bulk RNA-seq analysis and single-cell RNA-seq analysis were used to identify the relationship between signature with immune cell infiltration, chemotherapy, and cuproptosis-related scoring (CuRS) system. Finally, the potential biological functional roles of target genes in cuproptosis were validated in vitro. RESULTS By using LASSO-Cox regression analysis to establish the cuproptosis-related prognostic model, our works demonstrated the accuracy and efficiency of our model in the TCGA (583 OC patients) and GEO (260 OC patients) OC cohorts, and the high-scoring groups showed worse survival outcomes. Notably, there were substantial differences between the high and low-risk groups in extensive respects, such as the activating transcription factors, cell pseudotime features, cell intercommunication patterns, immunocytes infiltration, chemotherapy response, and potential drug resistance. KIF26B was selected to construct a prognostic model from the identified 33 prognosis-related genes, and high expression of KIF26B predicted poorer prognosis in ovarian cancer. Ultimately, further in vitro experiments demonstrated that KIF26B participated in the proliferation and cisplatin resistance of OC cells. Knockdown of KIF26B increased the sensitivity of OC cells to elesclomol, a cuproptosis agonists. CONCLUSION This study constructed a new cuproptosis-related gene signature that has a good prognostic capacity in assessing the outcome of OC patients. This study enhances our understanding of cuproptosis associated with ovarian cancer aggressiveness, cross-talk with immunocytes, and serves as a novel chemotherapy strategy.
Collapse
Affiliation(s)
- Bikang Yang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Juan Yang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Keqiang Zhang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Han J, Luo J, Wang C, Kapilevich L, Zhang XA. Roles and mechanisms of copper homeostasis and cuproptosis in osteoarticular diseases. Biomed Pharmacother 2024; 174:116570. [PMID: 38599063 DOI: 10.1016/j.biopha.2024.116570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Copper is an essential trace element in the human body that is extensively distributed throughout various tissues. The appropriate level of copper is crucial to maintaining the life activities of the human body, and the excess and deficiency of copper can lead to various diseases. The copper levels in the human body are regulated by copper homeostasis, which maintains appropriate levels of copper in tissues and cells by controlling its absorption, transport, and storage. Cuproptosis is a distinct form of cell death induced by the excessive accumulation of intracellular copper. Copper homeostasis and cuproptosis has recently elicited increased attention in the realm of human health. Cuproptosis has emerged as a promising avenue for cancer therapy. Studies concerning osteoarticular diseases have elucidated the intricate interplay among copper homeostasis, cuproptosis, and the onset of osteoarticular diseases. Copper dysregulation and cuproptosis cause abnormal bone and cartilage metabolism, affecting related cells. This phenomenon assumes a critical role in the pathophysiological processes underpinning various osteoarticular diseases, with implications for inflammatory and immune responses. While early Cu-modulating agents have shown promise in clinical settings, additional research and advancements are warranted to enhance their efficacy. In this review, we summarize the effects and potential mechanisms of copper homeostasis and cuproptosis on bone and cartilage, as well as their regulatory roles in the pathological mechanism of osteoarticular diseases (e.g., osteosarcoma (OS), osteoarthritis (OA), and rheumatoid arthritis (RA)). We also discuss the clinical-application prospects of copper-targeting strategy, which may provide new ideas for the diagnosis and treatment of osteoarticular diseases.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Jiayi Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Cuijing Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk State University, Tomsk 634050, Russia
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China.
| |
Collapse
|
20
|
Morabbi A, Karimian M. Trace and essential elements as vital components to improve the performance of the male reproductive system: Implications in cell signaling pathways. J Trace Elem Med Biol 2024; 83:127403. [PMID: 38340548 DOI: 10.1016/j.jtemb.2024.127403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Successful male fertilization requires the main processes such as normal spermatogenesis, sperm capacitation, hyperactivation, and acrosome reaction. The progress of these processes depends on some endogenous and exogenous factors. So, the optimal level of ions and essential and rare elements such as selenium, zinc, copper, iron, manganese, calcium, and so on in various types of cells of the reproductive system could affect conception and male fertility rates. The function of trace elements in the male reproductive system could be exerted through some cellular and molecular processes, such as the management of active oxygen species, involvement in the action of membrane channels, regulation of enzyme activity, regulation of gene expression and hormone levels, and modulation of signaling cascades. In this review, we aim to summarize the available evidence on the role of trace elements in improving male reproductive performance. Also, special attention is paid to the cellular aspects and the involved molecular signaling cascades.
Collapse
Affiliation(s)
- Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
21
|
Wu CC, Li CJ, Lin LT, Lin PH, Wen ZH, Cheng JT, Tsui KH. Cuproptosis-Related Gene FDX1 Identified as a Potential Target for Human Ovarian Aging. Reprod Sci 2024:10.1007/s43032-024-01573-0. [PMID: 38689081 DOI: 10.1007/s43032-024-01573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Cuproptosis is a recently discovered mode of cell death that has garnered attention due to its association with various diseases. However, the intricate genetic relationship between cuproptosis and ovarian aging has remained largely unexplored. This study aimed to bridge this knowledge gap by leveraging data sets related to ovarian aging and cuproptosis. Through comprehensive bioinformatics analyses, facilitated by R software, we uncovered FDX1 as a potential cuproptosis-related gene with relevance to ovarian aging. To gain insights into FDX1's role, we conducted spatial transcriptome analyses in the ovaries of both young and aged female mice. These experiments revealed a significant reduction in FDX1 expression in the aging group compared to the young group. To substantiate these findings at the genetic level, we turned to clinical infertility biopsies. Impressively, we observed consistent results in biopsies from elderly infertile patients, reinforcing the link between FDX1 and ovarian aging. Moreover, we delved into the pharmacogenomics of ovarian cell lines and discovered that FDX1 expression levels were intricately associated with heightened sensitivity to specific small molecule drugs. This observation suggests that modulating FDX1 could potentially be a strategy to influence drug responses in ovarian-related therapies. In sum, this study marks a pioneering effort in identifying FDX1 as a cuproptosis-related gene implicated in ovarian aging. These findings hold substantial promise, not only in shedding light on the underlying mechanisms of ovarian aging but also in positioning FDX1 as a potential diagnostic biomarker and therapeutic target. With further research, FDX1 could play a pivotal role in advancing precision medicine and therapies for ovarian-related conditions.
Collapse
Affiliation(s)
- Chia-Chun Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
| | - Pei-Hsuan Lin
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
| | - Kuan-Hao Tsui
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan.
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
22
|
Jirau-Colón H, Jiménez-Vélez BD. PM 2.5 Extracts Induce INFγ-Independent Activation of CIITA, MHCII, and Increases Inflammation in Human Bronchial Epithelium. TOXICS 2024; 12:292. [PMID: 38668515 PMCID: PMC11054084 DOI: 10.3390/toxics12040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/29/2024]
Abstract
The capacity of particulate matter (PM) to enhance and stimulate the expression of pro-inflammatory mediators has been previously demonstrated in non-antigen-presenting cells (human bronchial epithelia). Nonetheless, many proposed mechanisms for this are extrapolated from known canonical molecular pathways. This work evaluates a possible mechanism for inflammatory exacerbation after exposure to PM2.5 (from Puerto Rico) and CuSO4, using human bronchial epithelial cells (BEAS-2B) as a model. The induction of CIITA, MHCII genes, and various pro-inflammatory mediators was investigated. Among these, the phosphorylation of STAT1 Y701 was significantly induced after 4 h of PM2.5 exposure, concurrent with a slight increase in CIITA and HLA-DRα mRNA levels. INFγ mRNA levels remained low amidst exposure time, while IL-6 levels significantly increased at earlier times. IL-8 remained low, as expected from attenuation by IL-6 in the known INFγ-independent inflammation pathway. The effects of CuSO4 showed an increase in HLA-DRα expression after 8 h, an increase in STAT1 at 1 h, and RF1 at 8 h We hypothesize and show evidence that an inflammatory response due to PM2.5 extract exposure in human bronchial epithelia can be induced early via an alternate non-canonical pathway in the absence of INFγ.
Collapse
Affiliation(s)
- Héctor Jirau-Colón
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Center for Environmental and Toxicological Research, Biochemistry Department, San Juan 00935, Puerto Rico
| | - Braulio D. Jiménez-Vélez
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Center for Environmental and Toxicological Research, Biochemistry Department, San Juan 00935, Puerto Rico
| |
Collapse
|
23
|
Yin T, Ji D, Su X, Zhou X, Wang X, He S, Jiang T, Yue X, Zhang H, Zhang Y, Peng J, Zou W, Liang D, Liu Y, Du Y, Zhang Z, Liang C, Cao Y. Using Bayesian and weighted regression to evaluate the association of idiopathic oligoastenoteratozoospermia with seminal plasma metal mixtures. CHEMOSPHERE 2024; 351:141202. [PMID: 38237779 DOI: 10.1016/j.chemosphere.2024.141202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Idiopathic oligoastenoteratozoospermia (iOAT) affects 30% of infertile men of reproductive age. However, the associations between Cr, Fe, Cu, Se or Co levels and iOAT risk have not been determined. This research aimed to assess the associations between Cr, Fe, Cu, Se and Co levels as well as their mixtures in seminal plasma and the risk of iOAT and severe iOAT. Therefore, a case‒control study including 823 participants (416 iOAT patients and 407 controls) recruited from October 2021 to August 2022 at the reproductive medicine center of the First Affiliated Hospital of Anhui Medical University was conducted in Anhui, China. The concentrations of Cr, Fe, Cu, Se and Co in seminal plasma were detected via inductively coupled plasma‒mass spectrometry. Binary logistic regression models were used to assess the associations between the levels of Cr, Fe, Cu, Se and Co and the risk of iOAT and severe iOAT; additionally, Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regressions were performed to evaluate the joint effect of seminal plasma levels of Cr, Fe, Cu, Se and Co on the risk of iOAT and explore which elements contributed most to the relationship. We found significant associations between the concentrations of Fe, Cu and Se in seminal plasma and iOAT risk after adjusting for covariates (Fe, lowest tertile vs. second tertile: aOR = 1.86, 95% CI = 1.31, 2.64; Cu, lowest tertile vs. second tertile: aOR = 1.95, 95% CI = 1.37, 2.76; Se, lowest tertile vs. second tertile: aOR = 1.65, 95% CI = 1.17, 2.35). A lower Se concentration in seminal plasma (lowest tertile vs. second tertile: aOR = 1.84, 95% CI = 1.10, 3.10) was positively associated with the risk of severe iOAT. Additionally, we also observed an association between the concentration of Cr in seminal plasma and the risk of iOAT before adjusting for covariates (Cr, third tertile vs. lowest tertile: OR=1.44, 95% CI: 1.03, 2.02). According to the BKMR analyses, the risk of iOAT increased when the overall concentrations were less than the 25th percentile. The results from the WQS regression indicated that a negative WQS index was significantly associated with the iOAT risk, while a positive WQS index was not. Se and Fe had significant weights in the negative direction. In conclusion, lower Cu, Fe and Se levels in seminal plasma were positively associated with iOAT risk, while higher Cr levels in seminal plasma were positively associated with iOAT risk according to the single element model, and lower levels of Se were related to a greater risk of severe iOAT; when comprehensively considering all the results from BKMR and WQS regression, Fe, Se and Cr levels contributed most to this relationship.
Collapse
Affiliation(s)
- Tao Yin
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Ji
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xun Su
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinyu Zhou
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xin Wang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shitao He
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinyu Yue
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ying Zhang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Peng
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Weiwei Zou
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dan Liang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yajing Liu
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chunmei Liang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
24
|
Anwar A, Khan FU, Younas W, Zaman M, Noorullah M, Li L, Zuberi A, Wang Y. Reduced toxic effects of nano‑copper sulfate in comparison of bulk CuSO 4 on biochemical parameters in the Rohu (Labeo rohita). Toxicol In Vitro 2024; 95:105766. [PMID: 38104743 DOI: 10.1016/j.tiv.2023.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Considering the wide application of nanoparticles in various fields of life and growing concern regarding their toxic effects, the present study was designed with the aim to evaluate the potential risks of using copper sulfate nanoparticles (CuSO4-NPs) in comparison to bulk form. Nanoparticles of CuSO4, having mean size of 73 nm were prepared by ball milling method, and fingerlings of Labeo rohita were exposed to two levels, 20 and 100 μg L-1 of CuSO4 in both bulk and nano forms for 28 days and their comparative effects on the metallothioneins (MTs), heat shock proteins 70 (HSP 70), lipid profile, cholesterol (CHOL) and triglyceraldehyde (TG) levels, activities of some metabolic enzymes Alanine transaminase (ALT), Aspartate transaminase (AST) Akaline phosphatase (ALP), and genes expressions of HSP-70, TNF-α and IL1-ß were investigated. CuSO4 showed the concentration and particle type dependent effects. The over expression of HSPs and MTs, significant decreases in CHOL, TG, low density lipid (LDL) levels and ALP activity, while significant increases in high density lipid (HDL)level as well as ALT and AST activities and HSP-70, TNF-α and IL1-β expressions were observed in response to higher concentration of both bulk and nano form of copper sulfate. At lower concentration (20 μg L-1), however, only bulk form showed toxicity. Thus, low concentrations of CuSO4-NPs pose negligible threat to freshwater fish.
Collapse
Affiliation(s)
- Azka Anwar
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fahim Ullah Khan
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Waqar Younas
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhib Zaman
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Noorullah
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Li'ang Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Amina Zuberi
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
25
|
Thakur GK, Shankar H, Arora TK, Kulkarni B. Role of mineral nutrients other than iron in pregnancy: under recognized opportunities to improve maternal/fetal outcomes: a literature review. Arch Gynecol Obstet 2024; 309:895-905. [PMID: 37698602 DOI: 10.1007/s00404-023-07183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Anemia during pregnancy is an important global health concern, affecting 40% of women worldwide, and iron deficiency shares a significant proportion of the burden. From conception to birth, pregnancy is a period when women undergo metabolic and physiological changes. The nutritional needs are higher during pregnancy; thus, adequate nutrition is essential to maintain fetal growth and development. However, adverse effects due to deficiency in nutrition during pregnancy can result in maternal, fetal and neonatal complications. Despite the multifactorial etiology of anemia, iron deficiency is assumed as the primary cause of anemia during pregnancy and hence, mitigation strategy pivots around it for anemia management. Therefore, excluding other contributors, a single-micronutrient approach with iron supplements remains a myopic approach and this can exacerbate iron deficiency anemia. Micronutrient deficiencies are of particular concern as they may pose a silent threat to the survival and well-being of reproductive-age women and their infants. AIM Micronutrients, especially trace minerals, play a myriad of roles in pregnancy, and the lack of each one causes adverse complications to both the mother and the fetus. In this review paper, we attempt to piece together available information regarding the adverse effects of abnormal trace mineral levels along with iron deficiency on the mother and the fetus. METHOD A non-systematic literature search in PubMed, Google Scholar, and the Cochrane databases, for publications on minerals and vitamins during pregnancy and the possible influence of supplements on pregnancy outcomes. CONCLUSION Micronutrient deficiency exacerbates the pregnancy-induced anemia and other adverse birth outcomes. Micronutrient supplementation during pregnancy can combat anemia as well as reduce a number of adverse pregnancy outcomes in a comprehensive manner.
Collapse
Affiliation(s)
- Gaurav Kr Thakur
- RBMCH Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Hari Shankar
- Central Procurement Cell, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India.
| | - Taruna K Arora
- RBMCH Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India.
| | - Bharati Kulkarni
- RBMCH Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
26
|
Squitti R, Pal A, Dhar A, Shamim MA, Ventriglia M, Simonelli I, Rani I, Sharma A, Rizzo G, Tondolo V, Goswami K, Rongioletti M. Serum copper status of patients with colorectal cancer: A systematic review and meta-analysis. J Trace Elem Med Biol 2024; 82:127370. [PMID: 38159434 DOI: 10.1016/j.jtemb.2023.127370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide and a public health problem. Several clinical studies have shown that copper (Cu) is involved in carcinogenesis, possibly via cuproptosis, a new form of programmed cell death, but the conclusions from published reports are inconsistent. This study aimed at evaluating the potential of Cu dysregulation as a CRC susceptibility factor. METHODS In this systematic review and meta-analysis, we searched Cochrane Library, EBSCOhost, EMBASE, ProQuest, PubMed/MEDLINE, Scopus, and Web of Science for studies reporting serum Cu concentrations in CRC patients and controls from articles published till June 2023. The studies included reported measurements of serum/plasma/blood Cu levels. Meta-analyses were performed as well as study quality, heterogeneity, and small study effects were assessed. Based on a random effects model, summary standardized mean differences (SMDs) and the corresponding 95% confidence intervals (95% CIs) were applied to compare the levels of Cu between CRC patients and controls. RESULTS 26 studies with a pooled total of9628 participants and 2578 CRC cases were included. The pooled SMD was equal to 0.85 (95% CIs -0.44; 2.14) showing that the CRC patients had higher mean Cu levels than the control subjects, but the difference was not significant (p = 0.185) and the heterogeneity was very high, I2 = 97.9% (95% CIs: 97.5-98.3%; p < 0.001). CONCLUSION The pooled results were inconclusive, likely due to discordant results and inaccuracy in reporting data of some studies; further research is needed to establish whether Cu dysregulation might contribute to the CRC risk and whether it might reflect different CRC grades.
Collapse
Affiliation(s)
- Rosanna Squitti
- Department of Laboratory Science, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy.
| | - Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India
| | - Aninda Dhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India
| | | | - Mariacarla Ventriglia
- Clinical Research Centre, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy
| | - Ilaria Simonelli
- Clinical Research Centre, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Ambala, India
| | - Aaina Sharma
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India
| | - Gianluca Rizzo
- Digestive and Colorectal Surgery, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy; Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Vincenzo Tondolo
- Digestive and Colorectal Surgery, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy; Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Kalyan Goswami
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India
| | - Mauro Rongioletti
- Department of Laboratory Science, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy
| |
Collapse
|
27
|
Ban XX, Wan H, Wan XX, Tan YT, Hu XM, Ban HX, Chen XY, Huang K, Zhang Q, Xiong K. Copper Metabolism and Cuproptosis: Molecular Mechanisms and Therapeutic Perspectives in Neurodegenerative Diseases. Curr Med Sci 2024; 44:28-50. [PMID: 38336987 DOI: 10.1007/s11596-024-2832-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 02/12/2024]
Abstract
Copper is an essential trace element, and plays a vital role in numerous physiological processes within the human body. During normal metabolism, the human body maintains copper homeostasis. Copper deficiency or excess can adversely affect cellular function. Therefore, copper homeostasis is stringently regulated. Recent studies suggest that copper can trigger a specific form of cell death, namely, cuproptosis, which is triggered by excessive levels of intracellular copper. Cuproptosis induces the aggregation of mitochondrial lipoylated proteins, and the loss of iron-sulfur cluster proteins. In neurodegenerative diseases, the pathogenesis and progression of neurological disorders are linked to copper homeostasis. This review summarizes the advances in copper homeostasis and cuproptosis in the nervous system and neurodegenerative diseases. This offers research perspectives that provide new insights into the targeted treatment of neurodegenerative diseases based on cuproptosis.
Collapse
Affiliation(s)
- Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Ya-Ting Tan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Hong-Xia Ban
- Affiliated Hospital, Inner Mongolia Medical University, Hohhot, 010050, China
| | - Xin-Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 430013, China.
| |
Collapse
|
28
|
Liu N, Chen M. Crosstalk between ferroptosis and cuproptosis: From mechanism to potential clinical application. Biomed Pharmacother 2024; 171:116115. [PMID: 38181713 DOI: 10.1016/j.biopha.2023.116115] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Ferroptosis and cuproptosis, regulated forms of cell death resulting from metal ion accumulation, are closely related in terms of occurrence, cell metabolism, signaling pathways, and drug resistance. Notably, it is now understood that these processes play crucial roles in regulating physiological and pathological processes, especially in tumor development. Consequently, ferroptosis and cuproptosis have gained increasing significance as potential targets for anti-cancer drug development. This article systematically outlines the molecular mechanisms and cross-talk components of both ferroptosis and cuproptosis, elucidating their impacts on cancer. Furthermore, it investigates the clinical perspective of targeted ferroptosis and cuproptosis in cancer chemotherapy, immunotherapy, and radiotherapy. Our discussion extends to a comparative analysis of nanoparticles developed based on the mechanisms of ferroptosis and cuproptosis in cancer, contrasting them with current conventional therapies. Opportunities and challenges in cancer treatment are explored, emphasizing the potential therapeutic direction of co-targeting ferroptosis and cuproptosis. The article also attempts to analyze the clinical applications of this co-targeting approach for cancer treatment while summarizing the existing barriers that require overcoming.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
29
|
Kilinç Y, Zaman BT, Bakirdere S, Özdoğan N. Dual techniques for trace copper determination: DES/Dithizone based liquid phase microextraction-flame atomic absorption spectrophotometry and digital image based colorimetric probe. Food Chem 2024; 432:137244. [PMID: 37659325 DOI: 10.1016/j.foodchem.2023.137244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
In this study, a sample preparation procedure was developed to preconcentrate copper ions from aqueous samples for determination by flame atomic absorption spectrometry (FAAS) and digital image based colorimetry (DIC) systems. This was achieved by complexing copper ions with dithizone (Cu-DZ) and extracting the complex from aqueous solution in a single step. For the DES/DZ-FAAS system, a low detection limit of 2.3 ng mL-1 was recorded over a broad and linear working range. For the DIC system, the linear relationship between the change in red color intensity of the red-green-blue (RGB) color scale and the concentration of copper in the Cu-DZ complex was utilized for the validation of the method. The DIC system also recorded a broad and linear working range with a satisfactory detection limit of 14.7 ng mL-1. Spike recovery experiments performed with eucalyptus tea extracts yielded high recovery results in the range of 91-107%.
Collapse
Affiliation(s)
- Yağmur Kilinç
- Zonguldak Bülent Ecevit University, Institute of Science, Department of Environmental Engineering, 67100 Zonguldak, Türkiye
| | - Buse Tuğba Zaman
- Yıldız Technical University, Chemistry Department, 34210 İstanbul, Türkiye
| | - Sezgin Bakirdere
- Yıldız Technical University, Chemistry Department, 34210 İstanbul, Türkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670 Çankaya, Ankara, Türkiye.
| | - Nizamettin Özdoğan
- Zonguldak Bülent Ecevit University, Institute of Science, Department of Environmental Engineering, 67100 Zonguldak, Türkiye.
| |
Collapse
|
30
|
Zhong G, Wang X, Li J, Xie Z, Wu Q, Chen J, Wang Y, Chen Z, Cao X, Li T, Liu J, Wang Q. Insights Into the Role of Copper in Neurodegenerative Diseases and the Therapeutic Potential of Natural Compounds. Curr Neuropharmacol 2024; 22:1650-1671. [PMID: 38037913 PMCID: PMC11284712 DOI: 10.2174/1570159x22666231103085859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 12/02/2023] Open
Abstract
Neurodegenerative diseases encompass a collection of neurological disorders originating from the progressive degeneration of neurons, resulting in the dysfunction of neurons. Unfortunately, effective therapeutic interventions for these diseases are presently lacking. Copper (Cu), a crucial trace element within the human body, assumes a pivotal role in various biological metabolic processes, including energy metabolism, antioxidant defense, and neurotransmission. These processes are vital for the sustenance, growth, and development of organisms. Mounting evidence suggests that disrupted copper homeostasis contributes to numerous age-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), Menkes disease (MD), prion diseases, and multiple sclerosis (MS). This comprehensive review investigates the connection between the imbalance of copper homeostasis and neurodegenerative diseases, summarizing pertinent drugs and therapies that ameliorate neuropathological changes, motor deficits, and cognitive impairments in these conditions through the modulation of copper metabolism. These interventions include Metal-Protein Attenuating Compounds (MPACs), copper chelators, copper supplements, and zinc salts. Moreover, this review highlights the potential of active compounds derived from natural plant medicines to enhance neurodegenerative disease outcomes by regulating copper homeostasis. Among these compounds, polyphenols are particularly abundant. Consequently, this review holds significant implications for the future development of innovative drugs targeting the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhouyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiqing Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziying Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
31
|
Aliko V, Vasjari L, Ibrahimi E, Impellitteri F, Karaj A, Gjonaj G, Piccione G, Arfuso F, Faggio C, Istifli ES. "From shadows to shores"-quantitative analysis of CuO nanoparticle-induced apoptosis and DNA damage in fish erythrocytes: A multimodal approach combining experimental, image-based quantification, docking and molecular dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167698. [PMID: 37832669 DOI: 10.1016/j.scitotenv.2023.167698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
The usage of copper (II) oxide nanoparticles (CuO NPs) has significantly expanded across industries and biomedical fields. However, the potential toxic effects on non-target organisms and humans lack comprehensive understanding due to limited research on molecular mechanisms. With this study, by combining the 96 h in vivo exposure of crucian carp fish, Carassius carassius, to sub-lethal CuO NPs doses (0.5 and 1 mg/dL) with image-based quantification, and docking and molecular dynamics approaches, we aimed to understand the mechanism of CuO NPs-induced cyto-genotoxicity in the fish erythrocytes. The results revealed that both doses of copper NPs used were toxic to erythrocytes causing oxidative stress response and serious red blood cell morphological abnormalities, and genotoxicity. Docking and 10-ns molecular dynamics confirmed favorable interactions (ΔG = -2.07 kcal mol-1) and structural stability of Band3-CuO NP complex, mainly through formation of H-bonds, implying the potential of CuO NPs to induce mitotic nuclear abnormalities in C. carassius erythrocytes via Band3 inhibition. Moreover, conventional and multiple ligand simultaneous docking with DNA revealed that single, double and triple CuO NPs bind preferentially to AT-rich regions consistently in the minor grooves of DNA. Of note, the DNA-binding strength subtantially increased (ΔG = -2.13 kcal mol-1, ΔG = -4.08 kcal mol-1, and ΔG = -6.03 kcal mol-1, respectively) with an increasing number of docked CuO NPs, suggesting that direct structural perturbation on DNA could also count for the molecular basis of in-vivo induced DNA damage in C. carassius erythrocytes. This study introduces the novel term "erythrotope" to describe comprehensive red blood cell morphological abnormalities. It proves to be a reliable and cost-effective biomarker for evaluating allostatic erythrocyte load in response to metallic nanoparticle exposure, serving as a distinctive fingerprint to assess fish erythrocyte health and physiological fitness.
Collapse
Affiliation(s)
- Valbona Aliko
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania.
| | - Ledia Vasjari
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania.
| | - Eliana Ibrahimi
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania.
| | - Federica Impellitteri
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy.
| | - Ambra Karaj
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania.
| | - Grejsi Gjonaj
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania.
| | - Giuseppe Piccione
- University of Messina, Department of Veterinary Sciences, Messina, Italy.
| | - Francesca Arfuso
- University of Messina, Department of Veterinary Sciences, Messina, Italy.
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy.
| | - Erman S Istifli
- University of Cukurova, Faculty of Science and Literature, Department of Biology, Adana, Turkey
| |
Collapse
|
32
|
Sharma R, Sharma N, Prashar A, Hansa A, Asgari Lajayer B, Price GW. Unraveling the plethora of toxicological implications of nanoparticles on living organisms and recent insights into different remediation strategies: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167697. [PMID: 37832694 DOI: 10.1016/j.scitotenv.2023.167697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Increased use of nanoscale particles have benefited many industries, including medicine, electronics, and environmental cleaning. These particles provide higher material performance, greater reactivity, and improved drug delivery. However, the main concern is the generation of nanowastes that can spread in different environmental matrices, posing threat to our environment and human health. Nanoparticles (NPs) have the potential to enter the food chain through a variety of pathways, including agriculture, food processing, packaging, and environmental contamination. These particles can negatively impact plant and animal physiology and growth. Due to the assessment of their environmental damage, nanoparticles are the particles of size between 1 and 100 nm that is the recent topic to be discussed. Nanoparticles' absorption, distribution, and toxicity to plants and animals can all be significantly influenced by their size, shape, and surface chemistry. Due to their absorptive capacity and potential to combine with other harmful substances, they can alter the metabolic pathways of living organisms. Nevertheless, despite the continuous research and availability of data, there are still knowledge gaps related to the ecotoxicology, prevalence and workable ways to address the impact of nanoparticles. This review focuses on the impact of nanoparticles on different organisms and the application of advanced techniques to remediate ecosystems using hyperaccumulator plant species. Future considerations are explored around nano-phytoremediation, as an eco-friendly, convenient and cost effective technology that can be applied at field scales.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India.
| | - Nindhia Sharma
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Abhinav Prashar
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Abish Hansa
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | | | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
33
|
Fang C, Peng Z, Sang Y, Ren Z, Ding H, Yuan H, Hu K. Copper in Cancer: from transition metal to potential target. Hum Cell 2024; 37:85-100. [PMID: 37751026 DOI: 10.1007/s13577-023-00985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
In recent years, with the continuous in-depth exploration of the molecular mechanisms of tumorigenesis, numerous potential new targets for cancer treatment have been identified, some of which have been further developed in clinical practice and have produced positive outcomes. Notably, researchers' initial motivation for studying copper metabolism in cancer stems from the fact that copper is a necessary trace element for organisms and is closely connected to body growth and metabolism. Moreover, over the past few decades, considerable progress has been made in understanding the molecular processes and correlations between copper and cancer. Certain achievements have been made in the development and use of relevant clinical medications. The concept of "cuproptosis," a novel concept that differs from previous forms of cell death, was first proposed by a group of scientists last year, offering fresh perspectives on the targeting capabilities of copper in the treatment of cancer. In this review, we introduced the fundamental physiological functions of copper, the key components of copper metabolism, and a summary of the current research contributions on the connection between copper and cancer. In addition, the development of new copper-based nanomaterials and their associated mechanisms of action are discussed. Finally, we described how the susceptibility of cancer cells to this metallic nutrition could be leveraged to further improve the existing cancer treatment paradigm in the new setting.
Collapse
Affiliation(s)
- Can Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Zhiwei Peng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Yaru Sang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zihao Ren
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Huiming Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Haibo Yuan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Kongwang Hu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China.
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
34
|
Li H, Wang Y, Li G, Xiong J, Qin L, Wen Q, Yue C. Integrative analysis of cuproptosis-associated genes for predicting immunotherapy response in single-cell and multi-cohort studies. J Gene Med 2024; 26:e3600. [PMID: 37776237 DOI: 10.1002/jgm.3600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND The role of genes associated with the cuproptosis cell signaling pathway in prognosis and immunotherapy in ovarian cancer (OC) has been extensively investigated. In this study, we aimed to explore these mechanisms and establish a prognostic model for patients with OC using bioinformatics techniques. METHODS We obtained the single cell sequencing data of ovarian cancer from the Gene Expression Omnibus (GEO) database and preprocessed the data. We analyzed a variety of factors including cuproptosis cell signal score, transcription factors, tumorigenesis and progression signals, gene set variation analysis (GSVA) and intercellular communication. Differential gene analysis was performed between groups with high and low cuproptosis cell signal scores, as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Using bulk RNA sequencing data from The Cancer Genome Atlas, we used the least absolute shrinkage and selection operator (LASSO)-Cox algorithm to develop cuproptosis cell signaling pathword-related gene signatures and validated them with GEO ovarian cancer datasets. In addition, we analyzed the inherent rules of the genes involved in building the model using a variety of bioinformatics methods, including immune-related analyses and single nucleotide polymorphisms. Molecular docking is used to screen potential therapeutic drugs. To confirm the analysis results, we performed various wet experiments such as western blot, cell counting kit 8 (CCK8) and clonogenesis tests to verify the role of the Von Willebrand Factor (VWF) gene in two ovarian cancer cell lines. RESULTS Based on single-cell data analysis, we found that endothelial cells and fibroblasts showed active substance synthesis and signaling pathway activation in OC, which further promoted immune cell suppression, cancer cell proliferation and metastasis. Ovarian cancer has a high tendency to metastasize, and cancer cells cooperate with other cells to promote disease progression. We developed a signature consisting of eight cuproptosis-related genes (CRGs) (MAGEF1, DNPH1, RARRES1, NBL1, IFI27, VWF, OLFML3 and IGFBP4) that predicted overall survival in patients with ovarian cancer. The validity of this model is verified in an external GEO validation set. We observed active infiltrating states of immune cells in both the high- and low-risk groups, although the specific cells, genes and pathways of activation differed. Gene mutation analysis revealed that TP53 is the most frequently mutated gene in ovarian cancer. We also predict small molecule drugs associated with CRGs and identify several potential candidates. VWF was identified as an oncogene in ovarian cancer, and the protein was expressed at significantly higher levels in tumor samples than in normal samples. The high-score model of the cuproptosis cell signaling pathway was associated with the sensitivity of OC patients to immunotherapy. CONCLUSIONS Our study provides greater insight into the mechanisms of action of genes associated with the cuproptosis cell signaling pathway in ovarian cancer, highlighting potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Hua Li
- Department of Nursing, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yichen Wang
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guangxiao Li
- Department of Nursing, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jian Xiong
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | | | - Qirong Wen
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chaomin Yue
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
Guo P, Niu Z, Zhang D, Zhao F, Li J, Lu T, Qin X, Liu S, Li Z, Li Y, Li S. Potential impact of cuproptosis-related genes on tumor immunity in esophageal carcinoma. Aging (Albany NY) 2023; 15:15535-15556. [PMID: 38159255 PMCID: PMC10781504 DOI: 10.18632/aging.205391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024]
Abstract
Cuproptosis involves a direct interaction with the tricarboxylic acid (TCA) lipid acylation components. This process intricately intersects with post-transcriptional lipid acylation (LA) and is linked to mitochondrial respiration and LA metabolism. Copper ions form direct bonds with acylated DLAT, promoting DLAT oligomerization, reducing Fe-S cluster proteins, and inducing a protein-triggered toxic stress response that culminates in cell demise. Simultaneously, the importance of immune contexture in cancer progression and treatment has significantly increased. We assessed the expression of cuproptosis-related genes (CRGs) across TCGA and validated our findings using the GEO data. Consensus clustering divided esophageal cancer (ESCA) patients into two clusters based on the expression of 7 CRGs. We evaluated the expression of immune checkpoint inhibitor (ICI) targets and calculated the elevated tumor mutational burden (TMB). Weighted gene co-expression network analysis (WGCNA) identified genes associated with the expression of CRGs and immunity. Cluster 1 exhibited increased immune infiltration, higher expression of ICI targets, higher TMB, and a higher incidence of deficiency in mismatch repair-microsatellite instability-high status. WGCNA analysis identified 14 genes associated with the expression of CRGs and immune scores. ROC analysis revealed specific hub genes with strong predictive capabilities. The expression levels of SLC6A3, MITD1, and PDHA1 varied across different pathological stages; CCS, LIPT2, PDHB, and PDHA1 showed variation in response to radiation therapy; MITD1 and PDHA1 exhibited differences related to the pathological M stages of ESCA. CRGs influence the immune contexture and can potentially transform cold tumors into hot tumors in ESCA patients.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Graduate school of Hebei Medical University, Shijiazhuang, China
| | - Zemiao Niu
- Graduate school of Hebei Medical University, Shijiazhuang, China
| | - Dengfeng Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Graduate school of Hebei Medical University, Shijiazhuang, China
| | - Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Graduate school of Hebei Medical University, Shijiazhuang, China
| | - Jing Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Graduate school of Hebei Medical University, Shijiazhuang, China
| | - Tianxing Lu
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuebo Qin
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, China
| | - Shiquan Liu
- Department of Thoracic Surgery, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zhirong Li
- Clinical Laboratory Center, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
36
|
Li Y, Du Y, Zhou Y, Chen Q, Luo Z, Ren Y, Chen X, Chen G. Iron and copper: critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal 2023; 21:327. [PMID: 37974196 PMCID: PMC10652626 DOI: 10.1186/s12964-023-01267-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 11/19/2023] Open
Abstract
Regulated cell death (RCD) is a regulable cell death that involves well-organized signaling cascades and molecular mechanisms. RCD is implicated in fundamental processes such as organ production and tissue remodeling, removing superfluous structures or cells, and regulating cell numbers. Previous studies have not been able to reveal the complete mechanisms, and novel methods of RCD are constantly being proposed. Two metal ions, iron (Fe) and copper (Cu) are essential factors leading to RCDs that not only induce ferroptosis and cuproptosis, respectively but also lead to cell impairment and eventually diverse cell death. This review summarizes the direct and indirect mechanisms by which Fe and Cu impede cell growth and the various forms of RCD mediated by these two metals. Moreover, we aimed to delineate the interrelationships between these RCDs with the distinct pathways of ferroptosis and cuproptosis, shedding light on the complex and intricate mechanisms that govern cellular survival and death. Finally, the prospects outlined in this review suggest a novel approach for investigating cell death, which may involve integrating current therapeutic strategies and offer a promising solution to overcome drug resistance in certain diseases. Video Abstract.
Collapse
Affiliation(s)
- Yu Li
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P.R. China
| | - Yuhui Du
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P.R. China
| | - Yujie Zhou
- Basic Science Institute, Sungkyunkwan University, Suwon, South Korea
| | - Qianhui Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhijie Luo
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yufan Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xudan Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guoan Chen
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P.R. China.
| |
Collapse
|
37
|
Munk DE, Vendelbo MH, Kirk FT, Rewitz KS, Bender DA, Vase KH, Munk OL, Vilstrup H, Ott P, Sandahl TD. Distribution of non-ceruloplasmin-bound copper after i.v. 64Cu injection studied with PET/CT in patients with Wilson disease. JHEP Rep 2023; 5:100916. [PMID: 37886434 PMCID: PMC10597763 DOI: 10.1016/j.jhepr.2023.100916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 10/28/2023] Open
Abstract
Background & Aims In Wilson disease (WD), copper accumulation and increased non-ceruloplasmin-bound copper in plasma lead to liver and brain pathology. To better understand the fate of non-ceruloplasmin-bound copper, we used PET/CT to examine the whole-body distribution of intravenously injected 64-copper (64Cu). Methods Eight patients with WD, five heterozygotes, and nine healthy controls were examined by dynamic PET/CT for 90 min and static PET/CT up to 20 h after injection. We measured 64Cu activity in blood and tissue and quantified the kinetics by compartmental analysis. Results Initially, a large fraction of injected 64Cu was distributed to extrahepatic tissues, especially skeletal muscle. Thus, across groups, extrahepatic tissues accounted for 45-58% of the injected dose (%ID) after 10 min, and 45-55% after 1 h. Kinetic analysis showed rapid exchange of 64Cu between blood and muscle as well as adipose tissue, with 64Cu retention in a secondary compartment, possibly mitochondria. This way, muscle and adipose tissue may protect the brain from spikes in non-ceruloplasmin-bound copper. Tiny amounts of cerebral 64Cu were detected (0.2%ID after 90 min and 0.3%ID after 6 h), suggesting tight control of cerebral copper in accordance with a cerebral clearance that is 2-3-fold lower than in muscle. Compared to controls, patients with WD accumulated more hepatic copper 6-20 h after injection, and also renal copper at 6 h. Conclusion Non-ceruloplasmin-bound copper is initially distributed into a number of tissues before being redistributed slowly to the eliminating organ, the liver. Cerebral uptake of copper is extremely slow and likely highly regulated. Our findings provide new insights into the mechanisms of copper control. Impact and implications Maintaining non-ceruloplasmin-bound copper within the normal range is an important treatment goal in WD as this "free" copper is considered toxic to the liver and brain. We found that intravenously injected non-ceruloplasmin-bound copper quickly distributed to a number of tissues, especially skeletal muscle, subcutaneous fat, and the liver, while uptake into the brain was slow. This study offers new insights into the mechanisms of copper control, which may encourage further research into potential new treatment targets. Clinical trial number 2016-001975-59.
Collapse
Affiliation(s)
- Ditte Emilie Munk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Mikkel Holm Vendelbo
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Frederik Teicher Kirk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Karina Stubkjær Rewitz
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Dirk Andreas Bender
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Karina Højrup Vase
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Ott
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
38
|
Wang Q, Sun J, Chen T, Song S, Hou Y, Feng L, Fan C, Li M. Ferroptosis, Pyroptosis, and Cuproptosis in Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3564-3587. [PMID: 37703318 DOI: 10.1021/acschemneuro.3c00343] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia, is a neurodegenerative disorder characterized by progressive cognitive dysfunction. Epidemiological investigation has demonstrated that, after cardiovascular and cerebrovascular diseases, tumors, and other causes, AD has become a major health issue affecting elderly individuals, with its mortality rate acutely increasing each year. Regulatory cell death is the active and orderly death of genetically determined cells, which is ubiquitous in the development of living organisms and is crucial to the regulation of life homeostasis. With extensive research on regulatory cell death in AD, increasing evidence has revealed that ferroptosis, pyroptosis, and cuproptosis are closely related to the occurrence, development, and prognosis of AD. This paper will review the molecular mechanisms of ferroptosis, pyroptosis, and cuproptosis and their regulatory roles in AD to explore potential therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Qi Wang
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Jingyi Sun
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Tian Chen
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Siyu Song
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Yajun Hou
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Lina Feng
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Cundong Fan
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Mingquan Li
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
- Department of Neurology, The Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| |
Collapse
|
39
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
40
|
Chillon TS, Demircan K, Hackler J, Heller RA, Kaghazian P, Moghaddam A, Schomburg L. Combined copper and zinc deficiency is associated with reduced SARS-CoV-2 immunization response to BNT162b2 vaccination. Heliyon 2023; 9:e20919. [PMID: 37886755 PMCID: PMC10597833 DOI: 10.1016/j.heliyon.2023.e20919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The essential trace elements copper, selenium and zinc are of relevance for immunity and immune response to vaccination. In this longitudinal study, adult healthcare workers (n = 126) received two doses of an mRNA vaccine (BNT162b2), and longitudinal serum samples were prepared. Vaccine-induced antibodies and their neutralizing activity were analyzed, and the trace elements copper, zinc, and selenium along with the copper transporter ceruloplasmin were measured. Subjects with combined deficiency of copper and zinc, i.e. both in the lowest tertiles at baseline, displayed particularly low antibody titers at three (Double Q1: 13 AU/mL vs. not double Q1: 29 AU/mL) and six (Double Q1: 200 AU/mL vs. not double Q1: 425 AU/mL) weeks after vaccination (p < 0.05). The results indicate the potential importance of an adequate trace element status of copper and zinc for raising a strong vaccine-induced SARS-CoV-2 antibody response, and highlights the importance of considering combined micronutrient insufficiencies, as single deficiencies may synergize.
Collapse
Affiliation(s)
- Thilo Samson Chillon
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| | - Kamil Demircan
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| | - Julian Hackler
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| | - Raban A. Heller
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
- Bundeswehr Hospital Berlin, Clinic of Traumatology and Orthopaedics, D-10115 Berlin, Germany
| | - Peyman Kaghazian
- Orthopedic and Trauma Surgery, Frohsinnstraße 12, D-63739 Aschaffenburg, Germany
| | - Arash Moghaddam
- Orthopedic and Trauma Surgery, Frohsinnstraße 12, D-63739 Aschaffenburg, Germany
| | - Lutz Schomburg
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| |
Collapse
|
41
|
Sun F, Pan XF, Hu Y, Xie J, Cui W, Ye YX, Wang Y, Yang X, Wu P, Yuan J, Yang Y, Pan A, Chen D. Metal Exposure during Early Pregnancy and Risk of Gestational Diabetes Mellitus: Mixture Effect and Mediation by Phospholipid Fatty Acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13778-13792. [PMID: 37656932 DOI: 10.1021/acs.est.3c04065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Despite existing studies exploring the association between metal exposure and gestational diabetes mellitus (GDM), most of them have focused on a single metal or a small mixture of metals. Our prospective work investigated the joint and independent effects of early gestational exposure to 17 essential and nonessential metals on the GDM risk and potential mediation by plasma phospholipid fatty acids (PLFAs) based on a nested case-control study established with 335 GDM cases and 670 randomly matched healthy controls. The Bayesian kernel machine regression (BKMR) and quantile g-computation analyses demonstrated a joint effect from metal co-exposure on GDM risk. BKMR with hierarchical variable selection indicated that the group of essential metals was more strongly associated with GDM than the group of nonessential metals with group posterior inclusion probabilities (PIPs) of 0.979 and 0.672, respectively. Cu (0.988) and Ga (0.570) had the largest conditional PIPs within each group. We also observed significant mediation effects of selected unsaturated PLFAs on Cu-GDM and Ga-GDM associations. KEGG enrichment analysis further revealed significant enrichment in the biosynthesis of unsaturated PLFAs. C18:1 n-7 exhibited the largest proportion of mediation in both associations (23.8 and 22.9%). Collectively, our work demonstrated the joint effect of early gestational metal exposure on GDM risk and identified Cu and Ga as the key species to the joint effect. The findings lay a solid ground for further validation through multicenter investigations and mechanism exploration via laboratory studies.
Collapse
Affiliation(s)
- Fengjiang Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiong-Fei Pan
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, and National Medical Product Administration Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University and Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu 610041, Sichuan, China
| | - Yongxia Hu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jinxin Xie
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Wenxuan Cui
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yi-Xiang Ye
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xue Yang
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, and National Medical Product Administration Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University and Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu 610041, Sichuan, China
| | - Ping Wu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jiaying Yuan
- Department of Science and Education, Shuangliu Maternal and Child Health Hospital, Chengdu 610200, Sichuan, China
| | - Yan Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
- Synergy Innovation Institute of GDUT, Shantou 515041, Guangdong, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
42
|
Bian C, Zheng Z, Su J, Chang S, Yu H, Bao J, Xin Y, Jiang X. Copper homeostasis and cuproptosis in tumor pathogenesis and therapeutic strategies. Front Pharmacol 2023; 14:1271613. [PMID: 37767404 PMCID: PMC10520736 DOI: 10.3389/fphar.2023.1271613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Copper is an indispensable micronutrient for the development and replication of all eukaryotes, and its redox properties are both harmful and beneficial to cells. An imbalance in copper homeostasis is thought to be involved in carcinogenesis. Importantly, cancer cell proliferation, angiogenesis, and metastasis cannot be separated from the effects of copper. Cuproposis is a copper-dependent form of cell death that differs from other existing modalities of regulatory cell death. The role of cuproptosis in the pathogenesis of the nervous and cardiovascular systems has been widely studied; however, its impact on malignant tumors is yet to be fully understood from a clinical perspective. Exploring signaling pathways related to cuproptosis will undoubtedly provide a new perspective for the development of anti-tumor drugs in the future. Here, we systematically review the systemic and cellular metabolic processes of copper and the regulatory mechanisms of cuproptosis in cancer. In addition, we discuss the possibility of targeting copper ion drugs to prolong the survival of cancer patients, with an emphasis on the most representative copper ionophores and chelators. We suggest that attention should be paid to the potential value of copper in the treatment of specific cancers.
Collapse
Affiliation(s)
- Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Huiyuan Yu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jindian Bao
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
43
|
Zhuo X, Liu Z, Aishajiang R, Wang T, Yu D. Recent Progress of Copper-Based Nanomaterials in Tumor-Targeted Photothermal Therapy/Photodynamic Therapy. Pharmaceutics 2023; 15:2293. [PMID: 37765262 PMCID: PMC10534922 DOI: 10.3390/pharmaceutics15092293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology, an emerging and promising therapeutic tool, may improve the effectiveness of phototherapy (PT) in antitumor therapy because of the development of nanomaterials (NMs) with light-absorbing properties. The tumor-targeted PTs, such as photothermal therapy (PTT) and photodynamic therapy (PDT), transform light energy into heat and produce reactive oxygen species (ROS) that accumulate at the tumor site. The increase in ROS levels induces oxidative stress (OS) during carcinogenesis and disease development. Because of the localized surface plasmon resonance (LSPR) feature of copper (Cu), a vital trace element in the human body, Cu-based NMs can exhibit good near-infrared (NIR) absorption and excellent photothermal properties. In the tumor microenvironment (TME), Cu2+ combines with H2O2 to produce O2 that is reduced to Cu1+ by glutathione (GSH), causing a Fenton-like reaction that reduces tumor hypoxia and simultaneously generates ROS to eliminate tumor cells in conjunction with PTT/PDT. Compared with other therapeutic modalities, PTT/PDT can precisely target tumor location to kill tumor cells. Moreover, multiple treatment modalities can be combined with PTT/PDT to treat a tumor using Cu-based NMs. Herein, we reviewed and briefly summarized the mechanisms of actions of tumor-targeted PTT/PDT and the role of Cu, generated from Cu-based NMs, in PTs. Furthermore, we described the Cu-based NMs used in PTT/PDT applications.
Collapse
Affiliation(s)
| | | | | | - Tiejun Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| |
Collapse
|
44
|
Tang X, Yan Z, Miao Y, Ha W, Li Z, Yang L, Mi D. Copper in cancer: from limiting nutrient to therapeutic target. Front Oncol 2023; 13:1209156. [PMID: 37427098 PMCID: PMC10327296 DOI: 10.3389/fonc.2023.1209156] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
As an essential nutrient, copper's redox properties are both beneficial and toxic to cells. Therefore, leveraging the characteristics of copper-dependent diseases or using copper toxicity to treat copper-sensitive diseases may offer new strategies for specific disease treatments. In particular, copper concentration is typically higher in cancer cells, making copper a critical limiting nutrient for cancer cell growth and proliferation. Hence, intervening in copper metabolism specific to cancer cells may become a potential tumor treatment strategy, directly impacting tumor growth and metastasis. In this review, we discuss the metabolism of copper in the body and summarize research progress on the role of copper in promoting tumor cell growth or inducing programmed cell death in tumor cells. Additionally, we elucidate the role of copper-related drugs in cancer treatment, intending to provide new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zaihua Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yandong Miao
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Wuhua Ha
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Zheng Li
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lixia Yang
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Denghai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
45
|
Zhang X, Zhou Y, Hu J, Yu X, Xu H, Ba Z, Zhang H, Sun Y, Wang R, Du X, Mou R, Li X, Zhu J, Xie R. Comprehensive analysis identifies cuproptosis-related gene DLAT as a potential prognostic and immunological biomarker in pancreatic adenocarcinoma. BMC Cancer 2023; 23:560. [PMID: 37330494 DOI: 10.1186/s12885-023-11042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Cuproptosis is a regulated cell death form associated with tumor progression, clinical outcomes, and immune response. However, the role of cuproptosis in pancreatic adenocarcinoma (PAAD) remains unclear. This study aims to investigate the implications of cuproptosis-related genes (CRGs) in PAAD by integrated bioinformatic methods and clinical validation. METHODS Gene expression data and clinical information were downloaded from UCSC Xena platform. We analyzed the expression, mutation, methylation, and correlations of CRGs in PAAD. Then, based on the expression profiles of CRGs, patients were divided into 3 groups by consensus clustering algorithm. Dihydrolipoamide acetyltransferase (DLAT) was chosen for further exploration, including prognostic analysis, co-expression analysis, functional enrichment analysis, and immune landscape analysis. The DLAT-based risk model was established by Cox and LASSO regression analysis in the training cohort, and then verified in the validation cohort. Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) assays were performed to examine the expression levels of DLAT in vitro and in vivo, respectively. RESULTS Most CRGs were highly expressed in PAAD. Among these genes, increased DLAT could serve as an independent risk factor for survival. Co-expression network and functional enrichment analysis indicated that DLAT was engaged in multiple tumor-related pathways. Moreover, DLAT expression was positively correlated with diverse immunological characteristics, such as immune cell infiltration, cancer-immunity cycle, immunotherapy-predicted pathways, and inhibitory immune checkpoints. Submap analysis demonstrated that DLAT-high patients were more responsive to immunotherapeutic agents. Notably, the DLAT-based risk score model possessed high accuracy in predicting prognosis. Finally, the upregulated expression of DLAT was verified by RT-qPCR and IHC assays. CONCLUSIONS We developed a DLAT-based model to predict patients' clinical outcomes and demonstrated that DLAT was a promising prognostic and immunological biomarker in PAAD, thereby providing a new possibility for tumor therapy.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yuxin Zhou
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiahe Hu
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xuefeng Yu
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Haitao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhichang Ba
- Medical Imaging Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Haoxin Zhang
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanan Sun
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Rongfang Wang
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xinlian Du
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Ruishu Mou
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xuedong Li
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiuxin Zhu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Rui Xie
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
46
|
Sajjad H, Sajjad A, Haya RT, Khan MM, Zia M. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology. Comp Biochem Physiol C Toxicol Pharmacol 2023; 271:109682. [PMID: 37328134 DOI: 10.1016/j.cbpc.2023.109682] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/21/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have received increasing interest due to their distinctive properties, including small particle size, high surface area, and reactivity. Due to these properties, their applications have been expanded rapidly in various areas such as biomedical properties, industrial catalysts, gas sensors, electronic materials, and environmental remediation. However, because of these widespread uses, there is now an increased risk of human exposure, which could lead to short- and long-term toxicity. This review addresses the underlying toxicity mechanisms of CuO NPs in cells which include reactive oxygen species generation, leaching of Cu ion, coordination effects, non-homeostasis effect, autophagy, and inflammation. In addition, different key factors responsible for toxicity, characterization, surface modification, dissolution, NPs dose, exposure pathways and environment are discussed to understand the toxicological impact of CuO NPs. In vitro and in vivo studies have shown that CuO NPs cause oxidative stress, cytotoxicity, genotoxicity, immunotoxicity, neurotoxicity, and inflammation in bacterial, algal, fish, rodents, and human cell lines. Therefore, to make CuO NPs a more suitable candidate for various applications, it is essential to address their potential toxic effects, and hence, more studies should be done on the long-term and chronic impacts of CuO NPs at different concentrations to assure the safe usage of CuO NPs.
Collapse
Affiliation(s)
- Humna Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rida Tul Haya
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
47
|
Zhang Y, Zhou J, Li H, Liu Y, Li J. Prediction of risk and clinical outcome of cuproptosis in lung squamous carcinoma. BMC Pulm Med 2023; 23:205. [PMID: 37308925 PMCID: PMC10258956 DOI: 10.1186/s12890-023-02490-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is an important subtype of non-small cell lung cancer. Its special clinicopathological features and molecular background determine the limitations of its treatment. A recent study published on Science defined a newly regulatory cell death (RCD) form - cuproptosis. Which manifested as an excessive intracellular copper accumulation, mitochondrial respiration-dependent, protein acylation-mediated cell death. Different from apoptosis, pyroptosis, necroptosis, ferroptosis and other forms of regulatory cell death (RCD). The imbalance of copper homeostasis in vivo will trigger cytotoxicity and further affect the occurrence and progression of tumors. Our study is the first to predict the prognosis and immune landscape of cuproptosis-related genes (CRGs) in LUSC. METHODS The RNA-seq profiles and clinical data of LUSC patients were downloaded from TCGA and GEO databases and then combined into a novel cohort. R language packages are used to analyze and process the data, and CRGs related to the prognosis of LUSC were screened according to the differentially expressed genes (DEGs). After analyzed the tumor mutation burden (TMB), copy number variation (CNV) and CRGs interaction network. Based on CRGs and DEGs, cluster analysis was used to classify LUSC patients twice. The selected key genes were used to construct a CRGs prognostic model to further analyze the correlation between LUSC immune cell infiltration and immunity. Through the risk score and clinical factors, a more accurate nomogram was further constructed. Finally, the drug sensitivity of CRGs in LUSC was analyzed. RESULTS Patients with LUSC were divided into different cuproptosis subtypes and gene clusters, showing different levels of immune infiltration. The risk score showed that the high-risk group had higher tumor microenvironment score, lower tumor mutation load frequency and worse prognosis than the low-risk group. In addition, the high-risk group was more sensitive to vinorelbine, cisplatin, paclitaxel, doxorubicin, etoposide and other drugs. CONCLUSIONS Through bioinformatics analysis, we successfully constructed a prognostic risk assessment model based on CRGs, which can not only accurately predict the prognosis of LUSC patients, but also evaluate the patient 's immune infiltration status and sensitivity to chemotherapy drugs. This model shows satisfactory predictive results and provides a reference for subsequent tumor immunotherapy.
Collapse
Affiliation(s)
| | - Jia Zhou
- Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxi, China
| | - Hong Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yaobang Liu
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jinping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
48
|
Górska A, Markiewicz-Gospodarek A, Markiewicz R, Chilimoniuk Z, Borowski B, Trubalski M, Czarnek K. Distribution of Iron, Copper, Zinc and Cadmium in Glia, Their Influence on Glial Cells and Relationship with Neurodegenerative Diseases. Brain Sci 2023; 13:911. [PMID: 37371389 DOI: 10.3390/brainsci13060911] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Recent data on the distribution and influence of copper, zinc and cadmium in glial cells are summarized. This review also examines the relationship between those metals and their role in neurodegenerative diseases like Alzheimer disease, multiple sclerosis, Parkinson disease and Amyotrophic lateral sclerosis, which have become a great challenge for today's physicians. The studies suggest that among glial cells, iron has the highest concentration in oligodendrocytes, copper in astrocytes and zinc in the glia of hippocampus and cortex. Previous studies have shown neurotoxic effects of copper, iron and manganese, while zinc can have a bidirectional effect, i.e., neurotoxic but also neuroprotective effects depending on the dose and disease state. Recent data point to the association of metals with neurodegeneration through their role in the modulation of protein aggregation. Metals can accumulate in the brain with aging and may be associated with age-related diseases.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Human Anatomy, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland
| | | | - Renata Markiewicz
- Department of Psychiatric Nursing, Medical University of Lublin, 18 Szkolna St., 20-124 Lublin, Poland
| | - Zuzanna Chilimoniuk
- Student Scientific Group at the Department of Family Medicine, 6a (SPSK1) Langiewicza St., 20-032 Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Mateusz Trubalski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Katarzyna Czarnek
- Institute of Health Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
| |
Collapse
|
49
|
Lubiński J, Lener MR, Marciniak W, Pietrzak S, Derkacz R, Cybulski C, Gronwald J, Dębniak T, Jakubowska A, Huzarski T, Matuszczak M, Pullella K, Sun P, Narod SA. Serum Essential Elements and Survival after Cancer Diagnosis. Nutrients 2023; 15:nu15112611. [PMID: 37299574 DOI: 10.3390/nu15112611] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
In a prospective study, we measured the associations between three serum elements (Se, Zn and Cu) and the prognosis of 1475 patients with four different types of cancer (breast, prostate, lung and larynx) from University Hospitals in Szczecin, Poland. The elements were measured in serum taken after diagnosis and prior to treatment. Patients were followed from the date of diagnosis until death from any cause or until the last follow-up date (mean years of follow-up: 6.0-9.8 years, according to site). Kaplan-Meier curves were constructed for all cancers combined and for each cancer separately. Age-adjusted hazard ratios (HRs) were estimated using Cox regression. The outcome was all-cause mortality. A Se level in the highest quartile was also associated with a reduced mortality (HR = 0.66; 95%CI 0.49-0.88; p = 0.005) in all-cause mortality for all cancers combined. Zn level in the highest quartile was also associated with reduced mortality (HR = 0.55; 95%CI 0.41-0.75; p = 0.0001). In contrast, a Cu level in the highest quartile was associated with an increase in mortality (HR = 1.91; 95%CI 1.56-2.08; p = 0.0001). Three serum elements-selenium, zinc and copper-are associated with the prognosis of different types of cancer.
Collapse
Affiliation(s)
- Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
| | - Marcin R Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
| | - Sandra Pietrzak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
- Department of Clinical Genetics and Pathology, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Góra, Poland
| | - Milena Matuszczak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Katherine Pullella
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Women's College Research Institute, Toronto, ON M5S 1B2, Canada
| | - Ping Sun
- Women's College Research Institute, Toronto, ON M5S 1B2, Canada
| | - Steven A Narod
- Women's College Research Institute, Toronto, ON M5S 1B2, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| |
Collapse
|
50
|
Jena AB, Samal RR, Bhol NK, Duttaroy AK. Cellular Red-Ox system in health and disease: The latest update. Biomed Pharmacother 2023; 162:114606. [PMID: 36989716 DOI: 10.1016/j.biopha.2023.114606] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cells are continually exposed to reactive oxygen species (ROS) generated during cellular metabolism. Apoptosis, necrosis, and autophagy are biological processes involving a feedback cycle that causes ROS molecules to induce oxidative stress. To adapt to ROS exposure, living cells develop various defense mechanisms to neutralize and use ROS as a signaling molecule. The cellular redox networks combine signaling pathways that regulate cell metabolism, energy, cell survival, and cell death. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) are essential antioxidant enzymes that are required for scavenging ROS in various cell compartments and response to stressful situations. Among the non-enzymatic defenses, vitamin C, glutathione (GSH), polyphenols, carotenoids, vitamin E, etc., are also essential. This review article describes how ROS are produced as byproducts of oxidation/reduction (redox) processes and how the antioxidants defense system is directly or indirectly engaged in scavenging ROS. In addition, we used computational methods to determine the comparative profile of binding energies of several antioxidants with antioxidant enzymes. The computational analysis demonstrates that antioxidants with a high affinity for antioxidant enzymes regulate their structures.
Collapse
Affiliation(s)
- Atala Bihari Jena
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rashmi Rekha Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India
| | - Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| |
Collapse
|