1
|
Andrade EF, Poester VR, Esperon BM, Trápaga MR, Hidalgo JED, Ferreira FB, de Souza MM, Severo CB, Groll AV, Xavier MO. Pathogenic Aspergillus spp. and Candida spp. in coastal waters from southern Brazil: an one health approach. Braz J Microbiol 2025; 56:179-189. [PMID: 39792331 PMCID: PMC11885216 DOI: 10.1007/s42770-024-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/19/2024] [Indexed: 01/12/2025] Open
Abstract
Aspergillus and Candida are ubiquitous fungi included in the group of high priority in the World Health Organization list of fungal pathogens. They are found in various ecosystems and the environmental role in increasing the resistance to antifungals has been shown. Thus, we aimed to determine the occurrence of Aspergillus spp. and Candida spp. pathogenic species in water samples from a coastal ecosystem from southern Brazil, and its antifungal susceptibility profile. Water samples were collected monthly at three environmental sites, over 25 months. Abiotic parameters of the water samples were analyzed as well as antifungal susceptibility. Aspergillus spp. and Candida spp. were detected in 44% (n = 33/75) and 40% (n = 30/75) respectively of the samples, totaling 67 and 96 isolates. Section Fumigati and C. parapsilosis were the most section/species isolated. Triazole resistance was detected in 3% of the Aspergillus spp. (2/67) and in 1% of the Candida spp. (1/96) isolates. Our study contributes with data showing that coastal aquatic environments can serve as a source of infection of resistant fungal isolates, proving the need for environmental surveillance and monitoring of fungal resistance in the One Health perspective.
Collapse
Affiliation(s)
- Emília Ferreira Andrade
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
- Laboratório de Micologia, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
| | - Vanice Rodrigues Poester
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
- Laboratório de Micologia, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
| | - Bruna Muradás Esperon
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
- Laboratório de Micologia, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
| | - Mariana Rodrigues Trápaga
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
- Laboratório de Micologia, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
| | - Jéssica Estefânia Dávila Hidalgo
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
- Laboratório de Micologia, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
| | - Fabiana Barreiros Ferreira
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
| | - Manuel Macedo de Souza
- Programa de Pesquisas Ecológicas de Longa Duração - Sítio do Estuário da Lagoa dos Patos e costa Adjacente (PELD-ELPA) da Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
| | | | - Andrea Von Groll
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
| | - Melissa Orzechowski Xavier
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil.
- Laboratório de Micologia, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil.
- Laboratório de Micologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua General Osório, s/n, Centro, Rio Grande, Rio Grande do Sul, CEP 96200-400, Brasil.
| |
Collapse
|
2
|
Lewis JA, Frost VJ, Heard MJ. Examining the potential impacts of a coastal renourishment project on the presence and abundance of Escherichia coli. PLoS One 2024; 19:e0304061. [PMID: 38787843 PMCID: PMC11125542 DOI: 10.1371/journal.pone.0304061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Erosion poses a significant threat to oceanic beaches worldwide. To combat this threat, management agencies often utilize renourishment, which supplements eroded beaches with offsite sand. This process can alter the physical characteristics of the beach and can influence the presence and abundance of microbial communities. In this study, we examined how an oceanic beach renourishment project may have impacted the presence and abundance of Escherichia coli (E. coli), a common bacteria species, and sand grain size, a sediment characteristic that can influence bacterial persistence. Using an observational field approach, we quantified the presence and abundance of E. coli in sand (from sub-tidal, intertidal, and dune zones on the beach) and water samples at study sites in both renourished and non-renourished sections of Folly Beach, South Carolina, USA in 2014 and 2015. In addition, we also measured how renourishment may have impacted sand grain size by quantifying the relative frequency of grain sizes (from sub-tidal, intertidal, and dune zones on the beach) at both renourished and non-renourished sites. Using this approach, we found that E. coli was present in sand samples in all zones of the beach and at each of our study sites in both years of sampling but never in water samples. Additionally, we found that in comparison to non-renourished sections, renourished sites had significantly higher abundances of E. coli and coarser sand grains in the intertidal zone, which is where renourished sand is typically placed. However, these differences were only present in 2014 and were not detected when we resampled the study sites in 2015. Collectively, our findings show that E. coli can be commonly found in this sandy beach microbial community. In addition, our results suggest that renourishment has the potential to alter both the physical structure of the beach and the microbial community but that these impacts may be short-lived.
Collapse
Affiliation(s)
- Jordan A. Lewis
- Department of Biology, Winthrop University, Rock Hill, South Carolina, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Victoria J. Frost
- Department of Biology, Winthrop University, Rock Hill, South Carolina, United States of America
| | - Matthew J. Heard
- Department of Biology, Belmont University, Nashville, Tennessee, United States of America
| |
Collapse
|
3
|
Selvarajan R, Sibanda T, Ullah H, Abia ALK. Beach sand mycobiome: The silent threat of pathogenic fungi and toxic metal contamination for beachgoers. MARINE POLLUTION BULLETIN 2024; 198:115895. [PMID: 38101061 DOI: 10.1016/j.marpolbul.2023.115895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Emphasis is always placed on bacterial but not fungal pathogens in marine environments. We analysed the fungal diversity, functional predictions, and toxic metals and metalloids contamination in beach sand from different South African locations. Results revealed a diverse fungal community, with Ascomycota, Rozellomycota, and Basidiomycota being the dominant phyla. Functional predictions highlighted fungal metabolic pathways related to of carbohydrates, amino acids, and lipids, in different beach samples. Elevated concentrations of toxic metals and metalloids were detected in Central and Harbour beach sands, likely due to anthropogenic activities. Correlations among different elements were observed, suggesting complex interactions in the coastal environment. Fungal pathogens like Cladosporium, Fusarium, Aspergillus, and Candida in beach sands raise potential public health risk concerns. Therefore, monitoring fungal diversity (including pathogens) alongside bacterial contamination in beach environments is imperative. The results contribute to understanding fungal community dynamics, functional potential, toxic metal and metalloid contamination, and potential risks associated with beach sand ecosystems.
Collapse
Affiliation(s)
- Ramganesh Selvarajan
- Institute of Deep Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China; Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, South Africa.
| | - Timothy Sibanda
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| | - Habib Ullah
- Institute of Deep Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Environmental Research Foundation, Westville 3630, South Africa.
| |
Collapse
|
4
|
Deligios M, Mazzarello V, Fiamma M, Barac A, Diana L, Ferrari M, Murgia M, Paglietti B, Rubino S. Seasonal Variation in Fungi in Beach Sand in Summertime: Stintino (Italy). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7134. [PMID: 38063564 PMCID: PMC10706741 DOI: 10.3390/ijerph20237134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND The goal of this study was to monitor the microbial biodiversity in beach sand that is heavily visited by tourists during the summer, and to determinate whether the high presence of bathers (around 5000 per day) can modify sand microbial composition. METHODS Between 2016 and 2020, 150 sand samples were collected from nine different points at La Pelosa beach in Sardinia, Italy. Non-culturing methods were used; DNA extraction and meta-barcode sequencing were performed. All samples were analyzed with sequencing methods for 16S and ITS sequences. RESULTS Fungal genera differ on the three beaches and in the winter/summer zones. The ITS sequence showed the most common presence of Candida during summer and Paradendryphiella in the winter. The greatest diversity was found in the dune during winter, while in other parts of the beach, there are differences between bacteria and fungi, particularly in the wash zone during the winter, with high diversity for 16S sequences but low diversity for ITS sequences. CONCLUSIONS It appears reasonable that the sands, even on non-urban beaches, should be included in health monitoring programs in addition to the waters, and that access to them should be regulated by limiting the number of bathers with the aim of reducing the presence of pathogenic fungal species.
Collapse
Affiliation(s)
- Massimo Deligios
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.D.); (V.M.); (L.D.); (M.M.); (B.P.)
| | - Vittorio Mazzarello
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.D.); (V.M.); (L.D.); (M.M.); (B.P.)
| | - Maura Fiamma
- Laboratorio Analisi, Ospedale “San Francesco”, ASSL Nuoro, 08100 Sardinia, Italy;
| | - Aleksandra Barac
- Clinic for Infectious and Tropical Diseases, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Lorenzo Diana
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.D.); (V.M.); (L.D.); (M.M.); (B.P.)
| | - Marco Ferrari
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.D.); (V.M.); (L.D.); (M.M.); (B.P.)
| | - Manuela Murgia
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.D.); (V.M.); (L.D.); (M.M.); (B.P.)
| | - Bianca Paglietti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.D.); (V.M.); (L.D.); (M.M.); (B.P.)
| | - Salvatore Rubino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.D.); (V.M.); (L.D.); (M.M.); (B.P.)
| |
Collapse
|
5
|
Brandão J, Valério E, Weiskerger C, Veríssimo C, Sarioglou K, Novak Babič M, Solo-Gabriele HM, Sabino R, Rebelo MT. Strategies for Monitoring Microbial Life in Beach Sand for Protection of Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095710. [PMID: 37174228 PMCID: PMC10178049 DOI: 10.3390/ijerph20095710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The 2021 revised guidelines of the World Health Organization recommend monitoring the quality of sand in addition to water at recreational beaches. This review provides background information about the types of beaches, the characteristics of sand, and the microbiological parameters that should be measured. Analytical approaches are described for quantifying fungi and fecal indicator bacteria from beach sand. The review addresses strategies to assess beach sand quality, monitoring approaches, sand remediation, and the proposed way forward for beach sand monitoring programs. In the proposed way forward, recommendations are provided for acceptable levels of fungi given their distribution in the environment. Additional recommendations include evaluating FIB distributions at beaches globally to assess acceptable ranges of FIB levels, similar to those proposed for fungi.
Collapse
Affiliation(s)
- João Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
- Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal
| | - Elisabete Valério
- Department of Environmental Health, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
- Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal
| | - Chelsea Weiskerger
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct. Room A127, East Lansing, MI 48824, USA
| | - Cristina Veríssimo
- Department of Transmittable Diseases, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Konstantina Sarioglou
- Department of Environmental Health, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Monika Novak Babič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL 33146, USA
| | - Raquel Sabino
- Department of Transmittable Diseases, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Maria Teresa Rebelo
- Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Barber C, Crank K, Papp K, Innes GK, Schmitz BW, Chavez J, Rossi A, Gerrity D. Community-Scale Wastewater Surveillance of Candida auris during an Ongoing Outbreak in Southern Nevada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1755-1763. [PMID: 36656763 PMCID: PMC9893721 DOI: 10.1021/acs.est.2c07763] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 05/29/2023]
Abstract
Candida auris is an opportunistic fungal pathogen and an emerging global public health threat, given its high mortality among infected individuals, antifungal resistance, and persistence in healthcare environments. This study explored the applicability of wastewater surveillance for C. auris in a metropolitan area with reported outbreaks across multiple healthcare facilities. Influent or primary effluent samples were collected over 10 weeks from seven sewersheds in Southern Nevada. Pelleted solids were analyzed using an adapted quantitative polymerase chain reaction (qPCR) assay targeting the ITS2 region of the C. auris genome. Positive detection was observed in 72 of 91 samples (79%), with higher detection frequencies in sewersheds serving healthcare facilities involved in the outbreak (94 vs 20% sample positivity). Influent wastewater concentrations ranged from 2.8 to 5.7 log10 gene copies per liter (gc/L), and primary clarification achieved an average log reduction value (LRV) of 1.24 ± 0.34. Presumptive negative surface water and wastewater controls were non-detect. These results demonstrate that wastewater surveillance may assist in tracking the spread of C. auris and serve as an early warning tool for public health action. These findings provide the foundation for future application of wastewater-based epidemiology (WBE) to community- or facility-level surveillance of C. auris and other high consequence, healthcare-associated infectious agents.
Collapse
Affiliation(s)
- Casey Barber
- School
of Public Health, University of Nevada Las
Vegas, 4700 S. Maryland Parkway, Las Vegas, Nevada 89119, United States
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Katherine Crank
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Katerina Papp
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Gabriel K. Innes
- Yuma
Center of Excellence for Desert Agriculture (YCEDA), University of Arizona, 6425 W. 8th Street, Yuma, Arizona 85364, United States
| | - Bradley W. Schmitz
- Yuma
Center of Excellence for Desert Agriculture (YCEDA), University of Arizona, 6425 W. 8th Street, Yuma, Arizona 85364, United States
| | - Jorge Chavez
- Utah
Department of Health and Human Services, Utah Public Health Laboratory, 4431 South 2700 West, Taylorsville, Utah 84129, United States
| | - Alessandro Rossi
- Utah
Department of Health and Human Services, Utah Public Health Laboratory, 4431 South 2700 West, Taylorsville, Utah 84129, United States
| | - Daniel Gerrity
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| |
Collapse
|
7
|
Lee JW, Seo CW, Lee W, Kim JS, Park KH, Cho Y, Lim YW. Diversity and Dynamics of Marine Arenicolous Fungi in Three Seasides of the Korean Peninsula. J Microbiol 2023; 61:63-82. [PMID: 36715871 DOI: 10.1007/s12275-023-00011-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 01/31/2023]
Abstract
Various arenicolous fungal species have been detected from the beach sand in the coastal area. However, little has been revealed regarding their distribution and dynamics. To investigate the overall diversity of marine arenicolous fungi (MAFs) in Korea and whether the composition of MAFs is affected by ocean currents, we isolated and analyzed the fungal community from the western, southern, and eastern seasides of the Korean Peninsula. In total, 603 strains were isolated and identified as 259 species based on appropriate molecular markers for each genus (ITS, BenA, CaM, tef1, and act). The composition of MAFs showed differences among the seasides. Our results indicate that many MAFs inhabit the beach sand on the Korean Peninsula, and the composition of MAFs is also affected by ocean currents flowing along each coast.
Collapse
Affiliation(s)
- Jun Won Lee
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Wan Seo
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wonjun Lee
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Seon Kim
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki Hyeong Park
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonhee Cho
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Woon Lim
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Moazeni M, Hedayati MT, Haghani I, Abastabar M, Jahantigh AS, Kheshteh M, Nabili M, Brandão J. Caspian Sea Mycosands: The Variety and Abundance of Medically Important Fungi in Beach Sand and Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:459. [PMID: 36612783 PMCID: PMC9819998 DOI: 10.3390/ijerph20010459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Samples from a total of 67 stations, distributed amongst 32 cities along the Caspian Sea coastline, were collected during the summer of 2021 on sunny days. The samples were collected from each station, including both dry/wet sand and shoreline water. The grown samples were primarily analyzed for the macro/microscopic morphologic features of the fungi. Moreover, identification by PCR-RFLP was performed for yeasts, dermatophytes, and Aspergillus sp. strains. Antifungal susceptibility tests were performed for probable-isolated Aspergillus and Candida sp. A total of 268 samples were collected, from which 181 (67.54%) isolates were recovered. Yeast-like fungi and potential pathogenic black fungi were detected in 12 (6.6%) and 20 (11%) of the sand (dry/wet) samples. Potential pathogenic hyaline fungi were identified in 136 (75.1%) samples, in which Aspergillus sp. was the predominant genus and was detected in 76/136 (47.8%) samples as follows: A. section Flavi n = 44/76 (57.9%), A. section Nigri n = 19/76 (25%), A. section Nidulantes n = 9/76 (11.8%), and A. section Fumigati n = 4/76 (5.3%). The most effective azole antifungal agent was different per section: in A. section Fumigati, PSZ; in Aspergillus section Nigri, ITZ and ISZ; in A. section Flavi, EFZ; and in A. section Nidulantes, ISZ. Candida isolates were susceptible to the antifungals tested.
Collapse
Affiliation(s)
- Maryam Moazeni
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Mohammad Taghi Hedayati
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | | | - Maryam Kheshteh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Mojtaba Nabili
- Department of Medical Laboratory Sciences, Faculty of Medicine, Sari Branch, Islamic Azad University, Sari 48161-19318, Iran
| | - João Brandão
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, University of Lisbon, 1649-004 Lisbon, Portugal
| |
Collapse
|
9
|
Carducci A, Federigi I, Balestri E, Lardicci C, Castelli A, Maltagliati F, Zhao H, Menicagli V, Valente R, De Battisti D, Verani M. Virus contamination and infectivity in beach environment: Focus on sand and stranded material. MARINE POLLUTION BULLETIN 2022; 185:114342. [PMID: 36395711 DOI: 10.1016/j.marpolbul.2022.114342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
To assess the exposure of beachgoers to viruses, a study on seawater, sand, and beach-stranded material was carried out, searching for human viruses, fecal indicator organisms, and total fungi. Moreover, for the first time, the genome persistence and infectivity of two model viruses was studied in laboratory-spiked sand and seawater samples during a one-week experiment. Viral genome was detected in 13.6 % of the environmental samples, but it was not infectious (Human Adenovirus - HAdV, and enterovirus). Norovirus and SARS-CoV-2 were not detected. The most contaminated samples were from sand and close to riverine discharges. In lab-scale experiments, the infectivity of HAdV5 decreased by ~1.5-Log10 in a week, the one of Human Coronavirus-229E disappeared in <3 h in sand. The genome of both viruses persisted throughout the experiment. Our results confirm viral contamination of the beach and suggest HAdV as an index pathogen for beach monitoring and quantitative risk assessment.
Collapse
Affiliation(s)
- Annalaura Carducci
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| | - Ileana Federigi
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy.
| | - Elena Balestri
- Unit of Marine Biology and Ecology, Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy
| | - Claudio Lardicci
- Department of Earth Sciences, University of Pisa, via S. Maria 53, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Pisa, Italy
| | - Alberto Castelli
- Unit of Marine Biology and Ecology, Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy
| | - Ferruccio Maltagliati
- Unit of Marine Biology and Ecology, Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy
| | - Hongrui Zhao
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| | - Virginia Menicagli
- Unit of Marine Biology and Ecology, Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Pisa, Italy
| | - Rossella Valente
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| | - Davide De Battisti
- Unit of Marine Biology and Ecology, Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy; Department of Biology, Chioggia Hydrobiological Station Umberto D'Ancona, University of Padova, Chioggia, Italy
| | - Marco Verani
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| |
Collapse
|
10
|
Novak Babič M, Gunde-Cimerman N, Breskvar M, Džeroski S, Brandão J. Occurrence, Diversity and Anti-Fungal Resistance of Fungi in Sand of an Urban Beach in Slovenia—Environmental Monitoring with Possible Health Risk Implications. J Fungi (Basel) 2022; 8:jof8080860. [PMID: 36012848 PMCID: PMC9410438 DOI: 10.3390/jof8080860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Beach safety regulation is based on faecal indicators in water, leaving out sand and fungi, whose presence in both matrices has often been reported. To study the abundance, diversity and possible fluctuations of mycobiota, fungi from sand and seawater were isolated from the Portorož beach (Slovenia) during a 1-year period. Sand analyses yielded 64 species of 43 genera, whereas seawater samples yielded 29 species of 18 genera. Environmental and taxonomical data of fungal communities were analysed using machine learning approaches. Changes in the air and water temperature, sunshine hours, humidity and precipitation, air pressure and wind speed appeared to affect mycobiota. The core genera Aphanoascus, Aspergillus, Fusarium, Bisifusarium, Penicillium, Talaromyces, and Rhizopus were found to compose a stable community within sand, although their presence and abundance fluctuated along with weather changes. Aspergillus spp. were the most abundant and thus tested against nine antimycotics using Sensititre Yeast One kit. Aspergillus niger and A. welwitschiae isolates were found to be resistant to amphotericin B. Additionally, four possible human pollution indicators were isolated during the bathing season, including Meyerozyma, which can be used in beach microbial regulation. Our findings provide the foundations for additional research on sand and seawater mycobiota and show the potential effect of global warming and extreme weather events on fungi in sand and sea.
Collapse
Affiliation(s)
- Monika Novak Babič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
- Correspondence: (M.N.B.); (J.B.)
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Martin Breskvar
- Department of Knowledge Technologies, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Sašo Džeroski
- Department of Knowledge Technologies, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - João Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1600-609 Lisbon, Portugal
- Centre for Environmental and Marine Studies (CESAM)—Department of Animal Biology, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Correspondence: (M.N.B.); (J.B.)
| |
Collapse
|
11
|
Microbial Source Tracking as a Method of Determination of Beach Sand Contamination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137934. [PMID: 35805592 PMCID: PMC9265816 DOI: 10.3390/ijerph19137934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023]
Abstract
Beach sand may act as a reservoir for numerous microorganisms, including enteric pathogens. Several of these pathogens originate in human or animal feces, which may pose a public health risk. In August 2019, high levels of fecal indicator bacteria (FIB) were detected in the sand of the Azorean beach Prainha, Terceira Island, Portugal. Remediation measures were promptly implemented, including sand removal and the spraying of chlorine to restore the sand quality. To determine the source of the fecal contamination, during the first campaign, supratidal sand samples were collected from several sites along the beach, followed by microbial source tracking (MST) analyses of Bacteroides marker genes for five animal species, including humans. Some of the sampling sites revealed the presence of marker genes from dogs, seagulls, and ruminants. Making use of the information on biological sources originating partially from dogs, the municipality enforced restrictive measures for dog-walking at the beach. Subsequent sampling campaigns detected low FIB contamination due to the mitigation and remediation measures that were undertaken. This is the first case study where the MST approach was used to determine the contamination sources in the supratidal sand of a coastal beach. Our results show that MST can be an essential tool to determine sources of fecal contamination in the sand. This study shows the importance of holistic management of beaches that should go beyond water quality monitoring for FIB, putting forth evidence for beach sand monitoring.
Collapse
|
12
|
Velez P, Walker AK, González MC, Subash S. Narayanan S, Nakagiri A. In depth review of the ecology of arenicolous marine fungi. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Brandão J, Weiskerger C, Valério E, Pitkänen T, Meriläinen P, Avolio L, Heaney CD, Sadowsky MJ. Climate Change Impacts on Microbiota in Beach Sand and Water: Looking Ahead. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1444. [PMID: 35162479 PMCID: PMC8834802 DOI: 10.3390/ijerph19031444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/05/2022]
Abstract
Beach sand and water have both shown relevance for human health and their microbiology have been the subjects of study for decades. Recently, the World Health Organization recommended that recreational beach sands be added to the matrices monitored for enterococci and Fungi. Global climate change is affecting beach microbial contamination, via changes to conditions like water temperature, sea level, precipitation, and waves. In addition, the world is changing, and humans travel and relocate, often carrying endemic allochthonous microbiota. Coastal areas are amongst the most frequent relocation choices, especially in regions where desertification is taking place. A warmer future will likely require looking beyond the use of traditional water quality indicators to protect human health, in order to guarantee that waterways are safe to use for bathing and recreation. Finally, since sand is a complex matrix, an alternative set of microbial standards is necessary to guarantee that the health of beach users is protected from both sand and water contaminants. We need to plan for the future safer use of beaches by adapting regulations to a climate-changing world.
Collapse
Affiliation(s)
- João Brandão
- Department of Environmental Health, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal;
- Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Chelsea Weiskerger
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA;
| | - Elisabete Valério
- Department of Environmental Health, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal;
- Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Tarja Pitkänen
- Department of Health Security, The Finnish Institute for Health and Welfare, 70210 Kuopio, Finland; (T.P.); (P.M.)
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00100 Helsinki, Finland
| | - Päivi Meriläinen
- Department of Health Security, The Finnish Institute for Health and Welfare, 70210 Kuopio, Finland; (T.P.); (P.M.)
| | - Lindsay Avolio
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; (L.A.); (C.D.H.)
| | - Christopher D. Heaney
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; (L.A.); (C.D.H.)
| | - Michael J. Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA;
- Department of Soil, Water & Climate, University of Minnesota, St. Paul, MN 55108, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
14
|
Segal E, Elad D. Human and Zoonotic Dermatophytoses: Epidemiological Aspects. Front Microbiol 2021; 12:713532. [PMID: 34421872 PMCID: PMC8378940 DOI: 10.3389/fmicb.2021.713532] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction Dermatophytes are a group of molds characterized by the ability to produce keratinases, thereby carving out for themselves specific ecological niches. Their traditional division into three genera, Trichophyton, Microsporum, and Epidermophyton has been expanded to nine and the species in each genus were modified. Dermatophytes are among the most prevalent causes of human and animal mycoses. Their epidemiology is influenced by various factors. These factors may be evolutive such as the predilected environment of the fungus, namely, humans (anthropophilic), animals (zoophilic), or environment (geophilic), is evolutionary and thus may require centuries to develop. Many other factors, however, result from a variety of causes, affecting the epidemiology of dermatophytoses within a shorter time frame. Objective This review aims at summarizing the factors that have modified the epidemiology of dermatophytoses during the last decades. Results Geographic and climatic conditions, demography such as age and gender, migration, socio-economic conditions, lifestyle, and the environment have had an impact on changes in the epidemiology of dermatophytoses, as have changes in the pattern of human interaction with animals, including pets, farm, and wild animals. A typical example of such changes is the increased prevalence of Trichophyton tonsurans, which spread from Latin America to the United States and subsequently becoming a frequent etiological agent of tinea capitis in Africa, Middle East, and other areas. Conclusion The comprehension of the epidemiology of dermatophytoses has a major bearing on their prevention and treatment. Since it is undergoing continuous changes, periodic assessments of the most recent developments of this topic are required. This article aims at providing such an overview.
Collapse
Affiliation(s)
- Esther Segal
- Sackler School of Medicine, Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Elad
- Department of Clinical Bacteriology and Mycology, Kimron Veterinary Institute, Bet Dagan, Israel
| |
Collapse
|
15
|
Brandão J, Gangneux JP, Arikan-Akdagli S, Barac A, Bostanaru AC, Brito S, Bull M, Çerikçioğlu N, Chapman B, Efstratiou MA, Ergin Ç, Frenkel M, Gitto A, Gonçalves CI, Guégan H, Gunde-Cimerman N, Güran M, Irinyi L, Jonikaitė E, Kataržytė M, Klingspor L, Mares M, Meijer WG, Melchers WJG, Meletiadis J, Meyer W, Nastasa V, Babič MN, Ogunc D, Ozhak B, Prigitano A, Ranque S, Rusu RO, Sabino R, Sampaio A, Silva S, Stephens JH, Tehupeiory-Kooreman M, Tortorano AM, Velegraki A, Veríssimo C, Wunderlich GC, Segal E. Mycosands: Fungal diversity and abundance in beach sand and recreational waters - Relevance to human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146598. [PMID: 33812107 DOI: 10.1016/j.scitotenv.2021.146598] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The goal of most studies published on sand contaminants is to gather and discuss knowledge to avoid faecal contamination of water by run-offs and tide-retractions. Other life forms in the sand, however, are seldom studied but always pointed out as relevant. The Mycosands initiative was created to generate data on fungi in beach sands and waters, of both coastal and freshwater inland bathing sites. A team of medical mycologists and water quality specialists explored the sand culturable mycobiota of 91 bathing sites, and water of 67 of these, spanning from the Atlantic to the Eastern Mediterranean coasts, including the Italian lakes and the Adriatic, Baltic, and Black Seas. Sydney (Australia) was also included in the study. Thirteen countries took part in the initiative. The present study considered several fungal parameters (all fungi, several species of the genus Aspergillus and Candida and the genera themselves, plus other yeasts, allergenic fungi, dematiaceous fungi and dermatophytes). The study considered four variables that the team expected would influence the results of the analytical parameters, such as coast or inland location, urban and non-urban sites, period of the year, geographical proximity and type of sediment. The genera most frequently found were Aspergillus spp., Candida spp., Fusarium spp. and Cryptococcus spp. both in sand and in water. A site-blind median was found to be 89 Colony-Forming Units (CFU) of fungi per gram of sand in coastal and inland freshwaters, with variability between 0 and 6400 CFU/g. For freshwater sites, that number was 201.7 CFU/g (0, 6400 CFU/g (p = 0.01)) and for coastal sites was 76.7 CFU/g (0, 3497.5 CFU/g). For coastal waters and all waters, the median was 0 CFU/ml (0, 1592 CFU/ml) and for freshwaters 6.7 (0, 310.0) CFU/ml (p < 0.001). The results advocate that beaches should be monitored for fungi for safer use and better management.
Collapse
Affiliation(s)
- J Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for Environmental and Marine Studies (CESAM) - Department of Animal Biology, University of Lisbon, Lisbon, Portugal.
| | - J P Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - S Arikan-Akdagli
- Mycology Laboratory at Department of Medical Microbiology of Hacettepe University Medical School, Ankara, Turkey
| | - A Barac
- Clinical Centre of Serbia, Clinic for Infectious and Tropical Diseases, Faculty of Medicine, University of Belgrade, Serbia
| | - A C Bostanaru
- Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine of Iasi, Romania
| | - S Brito
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - M Bull
- Quantal Bioscience, North Parramatta, Australia
| | - N Çerikçioğlu
- Mycology Laboratory at Department of Medical Microbiology of Marmara University Medical School, Istanbul, Turkey
| | - B Chapman
- Quantal Bioscience, North Parramatta, Australia
| | - M A Efstratiou
- Department of Marine Sciences, University of the Aegean, University Hill, Mytilene, Greece
| | - Ç Ergin
- Department of Medical Microbiology, Medical Faculty, Pamukkale University, Denizli, Turkey
| | - M Frenkel
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Gitto
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Ireland; UCD Earth Institute, University College Dublin, Ireland; UCD Conway Institute, University College Dublin, Ireland
| | - C I Gonçalves
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - H Guégan
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - N Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - M Güran
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, Northern Cyprus, Mersin 10, Turkey
| | - L Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Disease and Microbiology, Sydney Medical School, Westmead Clinical School, Westmead Hospital, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - E Jonikaitė
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
| | - M Kataržytė
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
| | - L Klingspor
- Division of Clinical Microbiology, Department of Laboratory Medicin, Karolinska Institutet, Stockholm, Sweden
| | - M Mares
- Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine of Iasi, Romania
| | - W G Meijer
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Ireland; UCD Earth Institute, University College Dublin, Ireland; UCD Conway Institute, University College Dublin, Ireland
| | - W J G Melchers
- Medical Microbiology, Radboud University Medical Centre (Radboudumc), Nijmegen, the Netherlands
| | - J Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - W Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Disease and Microbiology, Sydney Medical School, Westmead Clinical School, Westmead Hospital, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - V Nastasa
- Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine of Iasi, Romania
| | - M Novak Babič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - D Ogunc
- Department of Medical Microbiology, Akdeniz University Medical School, Antalya, Turkey
| | - B Ozhak
- Department of Medical Microbiology, Akdeniz University Medical School, Antalya, Turkey
| | - A Prigitano
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - S Ranque
- Aix Marseille Univ, IHU-Méditerranée Infection, AP-HM, IRD, SSA, VITROME, Marseille, France
| | - R O Rusu
- Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine of Iasi, Romania
| | - R Sabino
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - A Sampaio
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, Vila Real, Portugal
| | - S Silva
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - J H Stephens
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Ireland; UCD Earth Institute, University College Dublin, Ireland; UCD Conway Institute, University College Dublin, Ireland
| | - M Tehupeiory-Kooreman
- Medical Microbiology, Radboud University Medical Centre (Radboudumc), Nijmegen, the Netherlands
| | - A M Tortorano
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - A Velegraki
- Mycology Research Laboratory and UOA/HCPF Culture Collection, Microbiology Department, Medical School, National and Kapodistrian University of Athens, Athens, Greece and Mycology Laboratory, BIOMEDICINE S.A., Athens, Greece
| | - C Veríssimo
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - G C Wunderlich
- Quantal Bioscience, North Parramatta, Australia; Molecular Mycology Research Laboratory, Centre for Infectious Disease and Microbiology, Sydney Medical School, Westmead Clinical School, Westmead Hospital, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - E Segal
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Plant debris are hotbeds for pathogenic bacteria on recreational sandy beaches. Sci Rep 2021; 11:11496. [PMID: 34075178 PMCID: PMC8169675 DOI: 10.1038/s41598-021-91066-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/17/2021] [Indexed: 11/09/2022] Open
Abstract
On recreational sandy beaches, there are guidelines for the management of bacterial pollution in coastal waters regarding untreated sewage, urban wastewater, and industrial wastewater. However, terrestrial plant debris on coastal beaches can be abundant especially after floods and whilst it has rarely been considered a concern, the bacterial population associated with this type of pollution from the viewpoint of public health has not been adequately assessed. In this study, microbes associated with plant debris drifting onto Kizaki Beach in Japan were monitored for 8 months throughout the rainy season, summer, typhoon season, and winter. Here we show that faecal-indicator bacteria in the plant debris and sand under the debris were significantly higher than the number of faecal bacteria in the sand after a 2015 typhoon. When we focused on specific pathogenic bacteria, Brevundimonas vesicularis and Pseudomonas alcaligenes were commonly detected only in the plant debris and sand under the debris during the survey period. The prompt removal of plant debris would therefore help create safer beaches.
Collapse
|
17
|
Frenkel M, Yunik Y, Fleker M, Blum SE, Sionov E, Elad D, Serhan H, Segal E. Fungi in sands of Mediterranean Sea beaches of Israel-Potential relevance to human health and well-being. Mycoses 2020; 63:1255-1261. [PMID: 32829491 DOI: 10.1111/myc.13144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Sand of sea harbour bacteria that may cause enteric and other infections in humans, and are controlled by regulatory measures. Data on fungi in sea sand are scarce. Thus, an international group of mycologists was formed to explore fungal flora in sand of various waterbodies. OBJECTIVES The aim was to explore fungal sand contamination in beaches of the Israeli Mediterranean Sea Coast, regarding possible impact on human health in three aspects: (a) faecal contamination, as judged by presence of the human enteric fungi; (b) contamination by fungi, causing dermal infections; (c) and the presence of moulds, causing respiratory allergies and pose a risk for infection in immunocompromised individuals. METHODS The study included sand screen of six urban beaches from north to south of the Israeli Mediterranean Coast. Sand samples were extracted by water, and the water wash was cultured and quantitated. The fungi were identified phenotypically, by MALDI-TOF MS system and ITS sequencing. RESULTS The screen revealed that about 80% of the isolates were moulds and about 20% yeasts. The mould species included opportunistic pathogens and potential allergens: Aspergillus fumigatus, Fusarium and Mucorales species. Yeast isolates included Candida, Cryptococcus and Rhodotorula species. CONCLUSIONS (a) Fungi are contaminating Israeli Mediterranean sand beaches; (b) the contaminating fungi include various yeast and mould species; (c) some of the yeasts and mould species found in sand are known opportunistic pathogens, or respiratory allergens; (d) the data could serve as basis for initiating regulatory measures to control fungal contamination of sand for the benefit of public health.
Collapse
Affiliation(s)
- Michael Frenkel
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaron Yunik
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Fleker
- Department of Clinical Bacteriology and Mycology, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Shlomo E Blum
- Department of Clinical Bacteriology and Mycology, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Edward Sionov
- Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Daniel Elad
- Department of Clinical Bacteriology and Mycology, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Hanan Serhan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Esther Segal
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Brandão J, Albergaria I, Albuquerque J, José S, Grossinho J, Ferreira FC, Raposo A, Rodrigues R, Silva C, Jordao L, Sousa M, Rebelo MH, Veríssimo C, Sabino R, Amaro T, Cardoso F, Patrão-Costa M, Solo-Gabriele H. Untreated sewage contamination of beach sand from a leaking underground sewage system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140237. [PMID: 32927553 DOI: 10.1016/j.scitotenv.2020.140237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Thirty people (mostly children) experienced an episode of skin rash days after a sand sifting beach operation at Porto Pim Beach in Faial, Azores during June 2019. An environmental and epidemiologic investigation was conducted to identify the cause of the outbreak of skin rash. The epidemiologic investigation found that some of the patients experiencing symptoms had never entered the beach water. During the pollution period and throughout the epidemiologic investigation, faecal indicator bacteria levels (94 CFU/100 ml for intestinal enterococci and 61 CFU/100 ml for Escherichia coli) in water remained under the limits used for the ninety-five percentile calculation of an Excellent coastal and transitional bathing water defined in the Portuguese Legislation (100 CFU/100 ml for intestinal enterococci and 250 CFU/100 ml for Escherichia coli). Thus sand contact was considered as a likely primary exposure route. Sand microbiological analysis for faecal indicator organisms and electron microscopy strongly suggested faecal contamination. Chemical analysis of the sand also revealed a concomitant substance compatible with sodium-hypochlorite as analysed using gas chromatography and subsequently confirmed by free chlorine analysis. Inspection of the toilet facilities and sewage disposal system revealed a leaking sewage distribution box. Collectively, results suggest that the cause of the outbreak was the leaking underground sewage distribution box that serviced the beach toilet facilities (40 m from beach), where sodium-hypochlorite was used for cleaning and disinfection. This sewage then contaminated the surficial sands to which beach goers were exposed. Chlorine being an irritant substance, was believed to have been the cause of the symptoms given the sudden presentation and dissipation of skin rashes. No gastro-intestinal illness was reported during this episode and during the following 30 days. Like water, beach sand should also be monitored for safety, especially for areas serviced by aged infrastructure.
Collapse
Affiliation(s)
- J Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal; Centre for Environmental and Marine Studies (CESAM) - Department of Animal Biology, University of Lisboa, Lisboa, Portugal.
| | - I Albergaria
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | | | - S José
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - J Grossinho
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - F C Ferreira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - A Raposo
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - R Rodrigues
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - C Silva
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - L Jordao
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - M Sousa
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - M H Rebelo
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - C Veríssimo
- Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - R Sabino
- Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - T Amaro
- Unidade de Saúde da Ilha do Faial, Vista Alegre, Horta, Portugal
| | - F Cardoso
- Direção Regional dos Assuntos do Mar, Secretaria Regional do Mar, Ciência e Tecnologia, Governo Regional dos Açores, Horta, Açores, Portugal
| | - M Patrão-Costa
- Direção Regional dos Assuntos do Mar, Secretaria Regional do Mar, Ciência e Tecnologia, Governo Regional dos Açores, Horta, Açores, Portugal
| | - H Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
19
|
de Faria LV, do Carmo PHF, da Costa MC, Peres NTA, Rodrigues Chagas IA, Furst C, Ferreira GF, Costa AO, Santos DA. Acanthamoeba castellanii as an alternative interaction model for the dermatophyte Trichophyton rubrum. Mycoses 2020; 63:1331-1340. [PMID: 32869415 DOI: 10.1111/myc.13173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Trichophyton rubrum (Tr) is the main aetiological agent of human dermatophytosis, being isolated from the environment and keratinised tissues. In the environment, Tr can interact with other organisms, such as free-living amoebas (FLA), which can act as an alternative host system to study the interaction between microbes and phagocytic cells. OBJECTIVES To characterise the Acanthamoeba castellanii (ALX)-Tr interaction. METHODS Interaction was characterised in three conditions: trophozoites (PYG), late (PYG/NES) and early (NES) encystation stimulus, evaluating encystation kinetics, phagocytosis, exocytosis and fungicidal activity dynamics. RESULTS Tr was able to induce ALX encystation and be internalised by ALX. The number of internalised conidia was high at 1 hour, and ALX presented fungicidal activity with increased intracellular ROS production and exocytosis. In PYG/NES, phagocytosis and ROS production were reduced, with decreased ALX's fungicidal activity. However, in NES there was an increased fungal engulfment, and a reduced ROS production and higher fungal burden. Furthermore, exogenous mannose decreased phagocytosis of Tr conidia, and divalent cations induced ROS production and increased ALX's fungicidal activity. Interestingly, phagocytosis was reduced in the presence of cytoskeleton inhibitor, but exocytosis was increased, suggesting that Tr conidia may have alternative pathways to escape ALX's cells. CONCLUSION A castellanii is a proper model for studying Tr-FLA interaction, since ALX can engulf, produce ROS and kill Tr, and all these parameters are influenced by an encystation stimulus and divalent cations. Moreover, this interaction is likely to occur in the environment implicating in the adaptation to environmental stressful conditions in both organisms.
Collapse
Affiliation(s)
- Lucas V de Faria
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo H F do Carmo
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marliete C da Costa
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nalu T A Peres
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabela A Rodrigues Chagas
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cinthia Furst
- Departamento de Patologia, Centro Ciências da Saúde, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Gabriella F Ferreira
- Programa Multicêntrico de Pós Graduação em Bioquímica e Biologia Molecular, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Adriana O Costa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel A Santos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
20
|
Nevers MB, Byappanahalli MN, Nakatsu CH, Kinzelman JL, Phanikumar MS, Shively DA, Spoljaric AM. Interaction of bacterial communities and indicators of water quality in shoreline sand, sediment, and water of Lake Michigan. WATER RESEARCH 2020; 178:115671. [PMID: 32380294 DOI: 10.1016/j.watres.2020.115671] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
Shoreline sand harbors high concentrations of fecal indicator bacteria (FIB) that may be resuspended into the water column through washing and resuspension. Studies have explored coastal processes that influence this sand-water flux for FIB, but little is known about how microbial markers of contamination or the bacterial community interact in the sand-water interface. In this study, we take a three-tiered approach to explore the relationship between bacteria in sand, sediment, and overlying water at three shoreline sites and two associated rivers along an extended freshwater shoreline. Samples were collected over two years and analyzed for FIB, two microbial source tracking (MST) markers (Catellicoccus marimammalium, Gull2; Bacteroides HF183), and targeted metagenomic 16S rRNA gene analysis. FIB was much higher in sand than in water at all three sites. Gull2 marker was abundant in shoreline sand and water while HF183 marker was mostly present in rivers. Overall bacterial communities were dissimilar between sand/sediment and water, indicating little interaction. Sediment composition was generally unfavorable to bacterial resuspension. Results show that FIB and MST markers were effective estimates of short-term conditions at these locations, and bacterial communities in sand and sediment reflected longer-term conditions. Findings are useful for locating contamination sources and targeting restoration by evaluating scope of shoreline degradation.
Collapse
Affiliation(s)
- Meredith B Nevers
- U.S. Geological Survey, Great Lakes Science Center, 1574 North 300 East, Chesterton, IN, 46304, USA.
| | | | - Cindy H Nakatsu
- Purdue University, Department of Agronomy, 915 W State Street, West Lafayette, IN, 47907, USA.
| | - Julie L Kinzelman
- City of Racine Public Health Department, 730 Washington Ave., Racine, WI, 53403, USA.
| | - Mantha S Phanikumar
- Michigan State University, Department of Civil and Environmental Engineering, East Lansing, MI, 48824, USA.
| | - Dawn A Shively
- Michigan State University, Department of Civil and Environmental Engineering, East Lansing, MI, 48824, USA.
| | - Ashley M Spoljaric
- Michigan State University, Department of Civil and Environmental Engineering, East Lansing, MI, 48824, USA.
| |
Collapse
|
21
|
Weiskerger CJ, Brandão J, Ahmed W, Aslan A, Avolio L, Badgley BD, Boehm AB, Edge TA, Fleisher JM, Heaney CD, Jordao L, Kinzelman JL, Klaus JS, Kleinheinz GT, Meriläinen P, Nshimyimana JP, Phanikumar MS, Piggot AM, Pitkänen T, Robinson C, Sadowsky MJ, Staley C, Staley ZR, Symonds EM, Vogel LJ, Yamahara KM, Whitman RL, Solo-Gabriele HM, Harwood VJ. Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sand. WATER RESEARCH 2019; 162:456-470. [PMID: 31301475 DOI: 10.1016/j.watres.2019.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 05/16/2023]
Abstract
Although infectious disease risk from recreational exposure to waterborne pathogens has been an active area of research for decades, beach sand is a relatively unexplored habitat for the persistence of pathogens and fecal indicator bacteria (FIB). Beach sand, biofilms, and water all present unique advantages and challenges to pathogen introduction, growth, and persistence. These dynamics are further complicated by continuous exchange between sand and water habitats. Models of FIB and pathogen fate and transport at beaches can help predict the risk of infectious disease from beach use, but knowledge gaps with respect to decay and growth rates of pathogens in beach habitats impede robust modeling. Climatic variability adds further complexity to predictive modeling because extreme weather events, warming water, and sea level change may increase human exposure to waterborne pathogens and alter relationships between FIB and pathogens. In addition, population growth and urbanization will exacerbate contamination events and increase the potential for human exposure. The cumulative effects of anthropogenic changes will alter microbial population dynamics in beach habitats and the assumptions and relationships used in quantitative microbial risk assessment (QMRA) and process-based models. Here, we review our current understanding of microbial populations and transport dynamics across the sand-water continuum at beaches, how these dynamics can be modeled, and how global change factors (e.g., climate and land use) should be integrated into more accurate beachscape-based models.
Collapse
Affiliation(s)
- Chelsea J Weiskerger
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - João Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal; Centre for Environmental and Marine Studies (CESAM) - Department of Animal Biology, University of Lisboa, Lisboa, Portugal.
| | - Warish Ahmed
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Ecosciences Precinct, 41 Boogo Road, Dutton Park, Old, 4102, Australia
| | - Asli Aslan
- Department of Environmental Health Sciences, Georgia Southern University, Statesboro, GA, USA
| | - Lindsay Avolio
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Brian D Badgley
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Thomas A Edge
- Department of Biology, McMaster University, Ontario, Canada
| | - Jay M Fleisher
- College of Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Christopher D Heaney
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Luisa Jordao
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | | | - James S Klaus
- Department of Marine Geosciences, University of Miami, Miami, FL, USA
| | | | - Päivi Meriläinen
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | | | - Mantha S Phanikumar
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Alan M Piggot
- Department of Earth and Environment, Florida International University, Miami, FL, USA
| | - Tarja Pitkänen
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Clare Robinson
- Department of Civil and Environmental Engineering, Western University, London, Ontario, Canada
| | - Michael J Sadowsky
- BioTechnology Institute and Departments of Soil, Water, & Climate, and Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | | | | | - Erin M Symonds
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | - Laura J Vogel
- Department of Civil and Environmental Engineering, Western University, London, Ontario, Canada
| | - Kevan M Yamahara
- Monterrey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Richard L Whitman
- Great Lakes Science Center, United States Geological Survey, Chesterton, IN, USA
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
22
|
Maciel NO, Johann S, Brandão LR, Kucharíková S, Morais CG, Oliveira AP, Freitas GJ, Borelli BM, Pellizzari FM, Santos DA, Van Dijck P, Rosa CA. Occurrence, antifungal susceptibility, and virulence factors of opportunistic yeasts isolated from Brazilian beaches. Mem Inst Oswaldo Cruz 2019; 114:e180566. [PMID: 30892381 PMCID: PMC6419412 DOI: 10.1590/0074-02760180566] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/15/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Opportunistic pathogenic yeast species are frequently associated with water
habitats that have pollution sources of human or animal origin.
Candida albicans has already been suggested as a faecal
indicator microorganism for aquatic environments. OBJECTIVES The goal of this study was to investigate the occurrence of C.
albicans and other opportunistic yeasts in sand and seawater
samples from beaches in Brazil to assess their correlation with
Escherichia coli, and to characterise the pathogenic
potential of the yeast isolates. METHODS Opportunistic species (yeasts that grow at 37ºC) were isolated from sand and
seawater samples from eight beaches in Brazil during the summer and the
winter. Opportunistic yeast species were evaluated for their susceptibility
to antifungal drugs, virulence factors, and the in vitro
and in vivo biofilm formation. Strains were selected to
carry out virulence tests using BALB/c mice. FINDINGS Several water samples could be classified as inappropriate for primary
contact recreation in relation to E. coli densities.
C. albicans was isolated in low densities. Of the 144
opportunistic yeasts evaluated, 61% displayed resistance or dose-dependent
sensitivity to at least one tested drug, and 40% produced proteinase.
Strains of C. albicans and Kodamaea ohmeri
exhibited the highest rates of adhesion to buccal epithelial cells. All the
C. albicans strains that were tested were able to
undergo morphogenesis and form a biofilm on catheter fragments in both
in vitro and in vivo experiments. It
was possible to confirm the pathogenic potential of three of these strains
during the disseminated infection test. MAIN CONCLUSIONS The identification of opportunistic yeast species in seawater and sand
samples from Brazilian beaches suggest a potential risk to the health of
people who use these environments for recreational purposes.
Collapse
Affiliation(s)
- Natália Op Maciel
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Belo Horizonte, MG, Brasil
| | - Susana Johann
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Belo Horizonte, MG, Brasil
| | - Luciana R Brandão
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Belo Horizonte, MG, Brasil
| | - Sona Kucharíková
- VIB-KU Leuven Centre for Microbiology, Leuven, Belgium.,Institute of Botany and Microbiology, KU Leuven Laboratory of Molecular Cell Biology, Leuven, Belgium
| | - Camila G Morais
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Belo Horizonte, MG, Brasil
| | - Alexandre P Oliveira
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Belo Horizonte, MG, Brasil
| | - Gustavo Jc Freitas
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Belo Horizonte, MG, Brasil
| | - Beatriz M Borelli
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Belo Horizonte, MG, Brasil
| | - Franciane M Pellizzari
- Universidade Estadual do Paraná, Laboratório de Ficologia e Qualidade de Água Marinha, Curitiba, PR, Brasil
| | - Daniel A Santos
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Belo Horizonte, MG, Brasil
| | - Patrick Van Dijck
- VIB-KU Leuven Centre for Microbiology, Leuven, Belgium.,Institute of Botany and Microbiology, KU Leuven Laboratory of Molecular Cell Biology, Leuven, Belgium
| | - Carlos A Rosa
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Belo Horizonte, MG, Brasil
| |
Collapse
|
23
|
Suzuki Y, Teranishi K, Matsuwaki T, Nukazawa K, Ogura Y. Effects of bacterial pollution caused by a strong typhoon event and the restoration of a recreational beach: Transitions of fecal bacterial counts and bacterial flora in beach sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:52-61. [PMID: 29852447 DOI: 10.1016/j.scitotenv.2018.05.265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
To determine the effects of bacteria pollution associated with a strong typhoon event and to assess the restoration of the normal bacterial flora, we used conventional filtration methods and nextgeneration sequencing of 16S rRNA genes to analyze the transition of fecal and total bacterial counts in water and core sand samples collected from a recreational beach. Immediately after the typhoon event, Escherichia coli counts increased to 82 CFU/100 g in the surface beach sand. E. coli was detected through the surface to sand 85-cm deep at the land side point (10-m land side from the high-water line). However, E. coli disappeared within a month from the land side point. The composition of the bacterial flora in the beach sand at the land point was directly influenced by the typhoon event. Pseudomonas was the most prevalent genus throughout the sand layers (0-102-cm deep) during the typhoon event. After 3 months, the population of Pseudomonas significantly decreased, and the predominant genus in the surface layer was Kaistobacter, although Pseudomonas was the major genus in the 17- to 85-cm layer. When the beach conditions stabilized, the number of pollutant Pseudomonas among the 10 most abundant genera decreased to lower than the limit of detection. The bacterial population of the sand was subsequently restored to the most populous pre-event orders at the land point. A land-side beach, where users directly contact the sand, was significantly affected by bacterial pollution caused by a strong typhoon event. We show here that the normal bacterial flora of the surface sand was restored within 1 month.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan.
| | - Kotaro Teranishi
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan
| | - Tomonori Matsuwaki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan
| | - Kei Nukazawa
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Maidashi Higashi-ku 3-1-1, Fukuoka 812-8582, Japan
| |
Collapse
|
24
|
Romão D, Staley C, Ferreira F, Rodrigues R, Sabino R, Veríssimo C, Wang P, Sadowsky M, Brandão J. Next-generation sequencing and culture-based techniques offer complementary insights into fungi and prokaryotes in beach sands. MARINE POLLUTION BULLETIN 2017; 119:351-358. [PMID: 28442200 DOI: 10.1016/j.marpolbul.2017.04.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
A next-generation sequencing (NGS) approach, in conjunction with culture-based methods, was used to examine fungal and prokaryotic communities for the presence of potential pathogens in beach sands throughout Portugal. Culture-based fungal enumeration revealed low and variable concentrations of the species targeted (yeasts and dermatophytes), which were underrepresented in the community characterized by NGS targeting the ITS1 region. Conversely, NGS indicated that the potentially pathogenic species Purpureocillium liliacinum comprised nearly the entire fungal community. Culturable fecal indicator bacterial concentrations were low throughout the study and unrelated to communities characterized by NGS. Notably, the prokaryotic communities characterized revealed a considerable abundance of archaea. Results highlight differences in communities between methods in beach sand monitoring but indicate the techniques offer complementary insights. Thus, there is a need to leverage culture-based methods with NGS methods, using a toolbox approach, to determine appropriate targets and metrics for beach sand monitoring to adequately protect public health.
Collapse
Affiliation(s)
- Daniela Romão
- Water and Soils Unit - Department of Environmental Health, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Christopher Staley
- BioTechnology Institute, University of Minnesota, Saint Paul, MN 55108, United States
| | - Filipa Ferreira
- Water and Soils Unit - Department of Environmental Health, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Raquel Rodrigues
- Water and Soils Unit - Department of Environmental Health, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Raquel Sabino
- Reference Unit for Parasitic and Fungal Infections - Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Cristina Veríssimo
- Reference Unit for Parasitic and Fungal Infections - Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Ping Wang
- BioTechnology Institute, University of Minnesota, Saint Paul, MN 55108, United States
| | - Michael Sadowsky
- BioTechnology Institute, University of Minnesota, Saint Paul, MN 55108, United States; Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, United States.
| | - João Brandão
- Water and Soils Unit - Department of Environmental Health, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal.
| |
Collapse
|
25
|
Xie Y, Qiu N, Wang G. Toward a better guard of coastal water safety-Microbial distribution in coastal water and their facile detection. MARINE POLLUTION BULLETIN 2017; 118:5-16. [PMID: 28215556 DOI: 10.1016/j.marpolbul.2017.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/19/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
Prosperous development in marine-based tourism has raised increasing concerns over the sanitary quality of coastal waters with potential microbial contamination. The World Health Organization has set stringent standards over a list of pathogenic microorganisms posing potential threats to people with frequent coastal water exposure and has asked for efficient detection procedures for pathogen facile identification. Inspection of survey events regarding the occurrence of marine pathogens in recreational beaches in recent years has reinforced the need for the development of a rapid identification procedure. In this review, we examine the possibility of recruiting uniform molecular assays to identify different marine pathogens and the feasibility of appropriate biomarkers, including enterochelin biosynthetic genes, for general toxicity assays. The focus is not only on bacterial pathogens but also on other groups of infectious pathogens. The ultimate goal is the development of a handy method to more efficiently and rapidly detect marine pathogens.
Collapse
Affiliation(s)
- Yunxuan Xie
- Tianjin University Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Ning Qiu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Guangyi Wang
- Tianjin University Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
26
|
Abreu R, Figueira C, Romão D, Brandão J, Freitas MC, Andrade C, Calado G, Ferreira C, Campos A, Prada S. Sediment characteristics and microbiological contamination of beach sand - A case-study in the archipelago of Madeira. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:627-638. [PMID: 27585431 DOI: 10.1016/j.scitotenv.2016.08.160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 05/06/2023]
Abstract
Beach sand can harbour pathogenic and opportunistic microorganisms, as well as faecal indicator bacteria that influence directly the bathing water quality. Pathogenic and opportunistic microorganisms often raise concern of exposure during beach related recreational activities. In this work, three different types of sandy beaches (natural basaltic, natural calcareous and artificial calcareous) of the Archipelago of Madeira (Portugal) were sampled for bacterial and fungal contaminants and grain size distribution, during four years (2010-2013). Following an extreme weather event in 2010, the faecal indicator bacteria levels spiked, returning to base levels shortly thereafter. The same phenomenon occurred with fungi, where potentially pathogenic fungi were the dominant group. Yeast-like fungi and dermatophytes were, however, mainly associated to months of higher usage by recreational users. Statistical analysis showed higher contamination of sediment in artificial beaches compared to natural beaches and granulometry and chemical composition of sand did not influence in the microbial loads. Instead, bather density and the influence of coastal protection structures needed to maintain the volume of artificial beach sand regarding the removal potential of wave induced currents are obvious influencing factors.
Collapse
Affiliation(s)
- Roberto Abreu
- Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Madeira, Portugal
| | - Celso Figueira
- Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Madeira, Portugal.
| | - Daniela Romão
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - João Brandão
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - M Conceição Freitas
- Faculdade de Ciências da Universidade de Lisboa, Instituto Dom Luis, Bloco C6, 3° piso, Campo Grande, 1749-016 Lisboa, Portugal
| | - César Andrade
- Faculdade de Ciências da Universidade de Lisboa, Instituto Dom Luis, Bloco C6, 3° piso, Campo Grande, 1749-016 Lisboa, Portugal
| | - Graça Calado
- Laboratório de Saúde Pública, IASaúde, Rua das Pretas n° 1, 9004-515 Funchal, Portugal
| | - Carmen Ferreira
- Laboratório Regional de Veterinária e Segurança Alimentar, Caminho das Quebradas de Baixo n° 79, 9000-254 Funchal, Portugal
| | - Ana Campos
- Laboratório Regional de Veterinária e Segurança Alimentar, Caminho das Quebradas de Baixo n° 79, 9000-254 Funchal, Portugal
| | - Susana Prada
- Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Madeira, Portugal; Centro de Vulcanologia e Avaliação de Riscos Geológicos, Universidade dos Açores, 9501-801 Ponta Delgada, Açores, Portugal
| |
Collapse
|
27
|
Yee TL, Tajuddin R, Mohamed Nor NMI, Mohd MH, Zakaria L. Filamentous ascomycete and basidiomycete fungi from beach sand. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2016. [DOI: 10.1007/s12210-016-0535-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Lamparelli CC, Pogreba-Brown K, Verhougstraete M, Sato MIZ, Bruni ADC, Wade TJ, Eisenberg JNS. Are fecal indicator bacteria appropriate measures of recreational water risks in the tropics: A cohort study of beach goers in Brazil? WATER RESEARCH 2015; 87:59-68. [PMID: 26378732 DOI: 10.1016/j.watres.2015.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/23/2015] [Accepted: 09/01/2015] [Indexed: 05/13/2023]
Abstract
Regulating recreational water exposure to pathogens within the tropics is a major public health and economic concern. Although numerous epidemiological studies estimating the risk to recreational marine water exposure have been conducted since the 1950s, few studies have been done in the tropics. Furthermore, many have suggested that the use of fecal indicator bacteria for monitoring recreational water quality in temperate regions is not appropriate in the tropics. We analyzed a large cohort study of five beaches in Sao Paulo, Brazil, conducted during consecutive weekends in the summer of 1999 that estimated risk to water, sand, and food exposures. Enterococci and Escherichia coli concentrations were measured each day of the study. Elevated risks were estimated for both swimming (OR = 1.36 95% CI: 1.05-1.58) and sand contact (OR = 1.29 95% CI 1.05-1.58). A 1 log increase in enterococci concentration was associated with an 11% increase in risk (OR = 1.11 95% CI: 1.04-1.19). For E. coli a 1-log increase in concentration was associated with 19% increase in risk (OR = 1.19 95% CI: 1.14-1.28). Most countries with beaches in the tropics are lower or middle income countries (LMIC) and rely on tourism as a major source of income. We present data that suggests fecal indicator bacteria such as enterococci are an appropriate indicator of risk in tropical urban settings where contamination is coming from predominantly human sources. Additional studies in tropical settings could help inform and refine guidelines for safe use of recreational waters.
Collapse
Affiliation(s)
| | - Kristen Pogreba-Brown
- The University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, USA.
| | - Marc Verhougstraete
- The University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Community, Environment and Policy, USA.
| | - Maria Inês Zanoli Sato
- Environmental Analysis Department, Environmental Company of Sao Paulo State (CETESB), Sao Paulo, Brazil.
| | - Antonio de Castro Bruni
- Vehicle Emission Analysis Sector, Environmental Company of Sao Paulo State (CETESB), Sao Paulo, Brazil.
| | - Timothy J Wade
- United States Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Joseph N S Eisenberg
- University of Michigan, School of Public Health, Department of Epidemiology, USA.
| |
Collapse
|
29
|
Romão D, Sabino R, Veríssimo C, Viegas C, Barroso H, Duarte A, Solo-Gabriele H, Gunde-Cimerman N, Babič MN, Marom T, Brandão J. Children and Sand Play: Screening of Potential Harmful Microorganisms in Sandboxes, Parks, and Beaches. CURRENT FUNGAL INFECTION REPORTS 2015. [DOI: 10.1007/s12281-015-0230-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Segal E, Frenkel M. Dermatophyte infections in environmental contexts. Res Microbiol 2015; 166:564-9. [PMID: 25634072 DOI: 10.1016/j.resmic.2014.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
Fungal dermal diseases caused by the molds of the Dermatophyte family are among the most frequent infectious diseases affecting quality of life. There are 3 attributed sources of infection by Dermatophytes:1) humans; 2) animals and 3) soil. Dermatophytes posses the ability to utilize keratin from human and animal tissues, or debris from dead animal sources found in soil, such as feathers, skin or nails. Hence, Dermatophytes are abundant in different ecological niches. All 3 groups can infect humans, causing dermatophytoses manifested in different clinical entities involving skin, hair or nails. The mode of infection of the Dermatophytes is via direct or indirect contact. Dermatophytes are found universally, however the relative prevalence of dermatophytoses caused by different Dermatophytes may vary in different geographic areas according to climatic conditions or lifestyle. Thus, studies in different geographic areas assessing the specific fungal etiology involved are of epidemiological relevance serving as baseline information for management of dermatophytoses at the local level. The present article will focus, mostly, on epidemiological data from published surveys conducted in different geographic/climatic areas analyzing the prevalence of specific Dermatophyte species in regard to gender, age, type of infection in context of environmental factors.
Collapse
Affiliation(s)
- Esther Segal
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Michael Frenkel
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
31
|
Whitman R, Harwood VJ, Edge TA, Nevers M, Byappanahalli M, Vijayavel K, Brandão J, Sadowsky MJ, Alm EW, Crowe A, Ferguson D, Ge Z, Halliday E, Kinzelman J, Kleinheinz G, Przybyla-Kelly K, Staley C, Staley Z, Solo-Gabriele HM. Microbes in Beach Sands: Integrating Environment, Ecology and Public Health. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2014; 13:329-368. [PMID: 25383070 PMCID: PMC4219924 DOI: 10.1007/s11157-014-9340-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Beach sand is a habitat that supports many microbes, including viruses, bacteria, fungi and protozoa (micropsammon). The apparently inhospitable conditions of beach sand environments belie the thriving communities found there. Physical factors, such as water availability and protection from insolation; biological factors, such as competition, predation, and biofilm formation; and nutrient availability all contribute to the characteristics of the micropsammon. Sand microbial communities include autochthonous species/phylotypes indigenous to the environment. Allochthonous microbes, including fecal indicator bacteria (FIB) and waterborne pathogens, are deposited via waves, runoff, air, or animals. The fate of these microbes ranges from death, to transient persistence and/or replication, to establishment of thriving populations (naturalization) and integration in the autochthonous community. Transport of the micropsammon within the habitat occurs both horizontally across the beach, and vertically from the sand surface and ground water table, as well as at various scales including interstitial flow within sand pores, sediment transport for particle-associated microbes, and the large-scale processes of wave action and terrestrial runoff. The concept of beach sand as a microbial habitat and reservoir of FIB and pathogens has begun to influence our thinking about human health effects associated with sand exposure and recreational water use. A variety of pathogens have been reported from beach sands, and recent epidemiology studies have found some evidence of health risks associated with sand exposure. Persistent or replicating populations of FIB and enteric pathogens have consequences for watershed/beach management strategies and regulatory standards for safe beaches. This review summarizes our understanding of the community structure, ecology, fate, transport, and public health implications of microbes in beach sand. It concludes with recommendations for future work in this vastly under-studied area.
Collapse
Affiliation(s)
- Richard Whitman
- Great Lakes Science Center, United States Geological Survey, 1100 N. Mineral Springs Road, Porter, IN 46304, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, SCA 110, 4202 E. Fowler Ave. Tampa, FL 33620, USA
| | - Thomas A. Edge
- Canada Centre for Inland Waters, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, Canada L7R 4A6
| | - Meredith Nevers
- Great Lakes Science Center, United States Geological Survey, 1100 N. Mineral Springs Road, Porter, IN 46304, USA
| | - Muruleedhara Byappanahalli
- Great Lakes Science Center, United States Geological Survey, 1100 N. Mineral Springs Road, Porter, IN 46304, USA
| | - Kannappan Vijayavel
- Environmental Health Division, Ottawa County Health Department, 12251 James Street, Suite 200, Holland, MI, 49424, USA
- Remediation and Redevelopment Division, Department of Environmental Quality, State of Michigan, 525 W. Allegan St., Lansing, MI 48909. USA
| | - João Brandão
- Reference Unit for Systemic Infections and Zoonosis, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz 1649-016 Lisboa, Portugal
| | - Michael J. Sadowsky
- Department of Soil, Water, and Climate, BioTechnology Institute, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Elizabeth Wheeler Alm
- Department of Biology & Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI 48859
| | - Allan Crowe
- Canada Centre for Inland Waters, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, Canada L7R 4A6
| | - Donna Ferguson
- Environmental Health Sciences Department, Fielding School of Public Health, University of California Los Angeles, California 90024, USA
| | - Zhongfu Ge
- Great Lakes Science Center, United States Geological Survey, 1100 N. Mineral Springs Road, Porter, IN 46304, USA
| | | | - Julie Kinzelman
- Department of Public Health, City of Racine, 730 Washington Avenue, Room 109, Racine, WI 53403, USA
| | - Greg Kleinheinz
- Environmental Research and Innovation Centre, University of Wisconsin – Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA
| | - Kasia Przybyla-Kelly
- Great Lakes Science Center, United States Geological Survey, 1100 N. Mineral Springs Road, Porter, IN 46304, USA
| | - Christopher Staley
- Department of Soil, Water, and Climate, BioTechnology Institute, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Zachery Staley
- Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond St., London, ON N6A 3K7, Canada
| | - Helena M. Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Drive, McArthur Building Room 252, Coral Gables, FL 33146, USA and, Oceans and Human Health Center, University of Miami Rosenstiel, School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| |
Collapse
|
32
|
Sabino R, Verissimo C, Parada H, Brandao J, Viegas C, Carolino E, Clemons KV, Stevens DA. Molecular screening of 246 Portuguese Aspergillus isolates among different clinical and environmental sources. Med Mycol 2014; 52:519-29. [DOI: 10.1093/mmy/myu006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
33
|
Sabino R, Rodrigues R, Costa I, Carneiro C, Cunha M, Duarte A, Faria N, Ferreira FC, Gargaté MJ, Júlio C, Martins ML, Nevers MB, Oleastro M, Solo-Gabriele H, Veríssimo C, Viegas C, Whitman RL, Brandão J. Routine screening of harmful microorganisms in beach sands: implications to public health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:1062-1069. [PMID: 24355396 DOI: 10.1016/j.scitotenv.2013.11.091] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/29/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
Beaches worldwide provide recreational opportunities to hundreds of millions of people and serve as important components of coastal economies. Beach water is often monitored for microbiological quality to detect the presence of indicators of human sewage contamination so as to prevent public health outbreaks associated with water contact. However, growing evidence suggests that beach sand can harbor microbes harmful to human health, often in concentrations greater than the beach water. Currently, there are no standards for monitoring, sampling, analyzing, or managing beach sand quality. In addition to indicator microbes, growing evidence has identified pathogenic bacteria, viruses, and fungi in a variety of beach sands worldwide. The public health threat associated with these populations through direct and indirect contact is unknown because so little research has been conducted relating to health outcomes associated with sand quality. In this manuscript, we present the consensus findings of a workshop of experts convened in Lisbon, Portugal to discuss the current state of knowledge on beach sand microbiological quality and to develop suggestions for standardizing the evaluation of sand at coastal beaches. The expert group at the "Microareias 2012" workshop recommends that 1) beach sand should be screened for a variety of pathogens harmful to human health, and sand monitoring should then be initiated alongside regular water monitoring; 2) sampling and analysis protocols should be standardized to allow proper comparisons among beach locations; and 3) further studies are needed to estimate human health risk with exposure to contaminated beach sand. Much of the manuscript is focused on research specific to Portugal, but similar results have been found elsewhere, and the findings have worldwide implications.
Collapse
Affiliation(s)
- R Sabino
- Reference Unit for Systemic Infections and Zoonosis, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Portugal
| | - R Rodrigues
- Microbiology Laboratory, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Portugal
| | - I Costa
- Laboratory of Molecular Biology, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - C Carneiro
- REQUIMTE/Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
| | - M Cunha
- Portuguese Environment Agency, Environment Reference Laboratory, Portugal
| | - A Duarte
- Faculty of Pharmacy, iMed.UL-Research Institute for Medicines and Pharmaceutical Sciences, University of Lisboa, Portugal
| | - N Faria
- Microbiology Laboratory, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Portugal
| | - F C Ferreira
- Microbiology Laboratory, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Portugal
| | - M J Gargaté
- Reference Unit for Systemic Infections and Zoonosis, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Portugal
| | - C Júlio
- Reference Unit for Gastro-intestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Portugal
| | - M L Martins
- Unit of Medical Microbiology, Instituto de Higiene e Medicina Tropical-Centro de Recursos Microbiológicos (CREM), Universidade Nova de Lisboa (UNL), Portugal
| | - M B Nevers
- United States Geological Survey, Great Lakes Science Center, Porter, IN, USA
| | - M Oleastro
- Laboratory of Molecular Biology, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - H Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - C Veríssimo
- Reference Unit for Systemic Infections and Zoonosis, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Portugal
| | - C Viegas
- Lisbon School of Health Technology, Polytechnic Institute of Lisboa, Portugal
| | - R L Whitman
- United States Geological Survey, Great Lakes Science Center, Porter, IN, USA
| | - J Brandão
- Reference Unit for Systemic Infections and Zoonosis, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Portugal.
| |
Collapse
|
34
|
Sousa ACA, Almeida JRSL, Pereira CC, Ramiro Pastorinho M, Pereira ÂMC, Nogueira AJA, Taborda-Barata L, Teixeira JP, Correia ACM, Alves A. Characterization of fungal communities in house dust samples collected from central Portugal-a preliminary survey. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:972-982. [PMID: 25072728 DOI: 10.1080/15287394.2014.911137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
House dust is a repository and concentrator of many chemical and biological agents including fungi. Considering that dust acts as a long-term reservoir of airborne fungi and that cumulative exposure is more relevant to potential health problems than single-day or short-term exposure, characterization of fungal communities in dust samples is of paramount importance. In the present study, the fungal composition of Portuguese house dust samples was determined. A total of 28 samples were obtained from vacuum cleaner deposits from households located in central Portugal. DNA was extracted from dust samples and fungal communities were analyzed using a culture-independent polymerase chain reaction (PCR)- denaturing gradient gel electrophoresis (DGGE) approach. Cultural analyses were also performed in order to identify the viable fungi species present in selected samples. Fungal diversity, reported as the number of operational taxonomic units (OTU), varied between 9 and 56 OTU. This analysis of viable fungi showed that Aspergillus was the most abundant genus, followed by Penicillium, Mucor, and Rhizomucor. Trichoderma, Chrysosporium, Fusarium, Rhizopus, and Stachybotrys were found in a limited number of houses. Our results demonstrated that dust is, in fact, home for a diverse and heterogeneous fungal community and that some of the species found are known allergic agents with severe negative impacts on human health.
Collapse
Affiliation(s)
- Ana C A Sousa
- a Department of Biology & CESAM , University of Aveiro , Aveiro , Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pereira E, Figueira C, Aguiar N, Vasconcelos R, Vasconcelos S, Calado G, Brandão J, Prada S. Microbiological and mycological beach sand quality in a volcanic environment: Madeira archipelago, Portugal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 461-462:469-479. [PMID: 23747562 DOI: 10.1016/j.scitotenv.2013.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/10/2013] [Accepted: 05/10/2013] [Indexed: 06/02/2023]
Abstract
Madeira forms a mid-Atlantic volcanic archipelago, whose economy is largely dependent on tourism. There, one can encounter different types of sand beach: natural basaltic, natural calcareous and artificial calcareous. Microbiological and mycological quality of the sand was analyzed in two different years. Bacterial indicators were detected in higher number in 2010 (36.7% of the samples) than in 2011 (9.1%). Mycological indicators were detected in a similar percentage of samples in 2010 (68.3%) and 2011 (75%), even though the total number of colonies detected in 2010 was much higher (827 in 41 samples) than in 2011 (427 in 66 samples). Enterococci and potentially pathogenic and allergenic fungi (particularly Penicillium sp.) were the most common indicators detected in both years. Candida sp. yeast was also commonly detected in the samples. The analysis of the 3rd quartile and maximum numbers of all indicators in samples showed that artificial beaches tend to be more contaminated than the natural ones. However, a significant difference between the variables was lacking. More monitoring data (number of bathers, sea birds, radiation intensity variation, and a greater number of samples) should be collected in order to confirm if these differences are significant. In general, the sand quality in the archipelago's beaches was good. As the sand may be a vector of diseases, an international common set of indicators and values and a compatible methodologies for assessing sand contamination, should be defined, in order to provide the bather's with an indication of beach sand quality, rather than only the water.
Collapse
Affiliation(s)
- Elisabete Pereira
- Universidade da Madeira, Caminho da Penteada, 9020-105 Funchal, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Goodwin KD, McNay M, Cao Y, Ebentier D, Madison M, Griffith JF. A multi-beach study of Staphylococcus aureus, MRSA, and enterococci in seawater and beach sand. WATER RESEARCH 2012; 46:4195-4207. [PMID: 22652414 DOI: 10.1016/j.watres.2012.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 04/01/2012] [Accepted: 04/02/2012] [Indexed: 06/01/2023]
Abstract
Incidences of Staphylococcus aureus and methicillin resistant S. aureus (MRSA) have risen worldwide prompting a need to better understand routes of human exposure and whether standard bacterial water quality monitoring practices adequately account for this potential threat. Beach water and sand samples were analyzed during summer months for S. aureus, enterococci, and MRSA at three southern California beaches (Avalon, Doheny, Malibu Surfrider). S. aureus frequently was detected in samples of seawater (59%, n = 328) and beach sand (53%, n = 358). MRSA sometimes was detected in seawater (1.6%, n = 366) and sand (2.7%, n = 366) at relatively low concentrations. Site specific differences were observed, with Avalon Beach presenting the highest concentrations of S. aureus and Malibu Surfrider the lowest in both seawater and sand. S. aureus concentrations in seawater and sand were correlated to each other and to a variety of other parameters. Multiple linear regression on the combined beach data indicated that significant explanatory variables for S. aureus in seawater were S. aureus in sand, water temperature, enterococci in seawater, and the number of swimmers. In sand, S. aureus concentrations were related to S. aureus in seawater, water temperature, enterococci in seawater, and inversely to surf height classification. Only the correlation to water temperature held for individually analyzed beaches and for S. aureus concentrations in both seawater and sand. To provide context for these results, the prevalence of S. aureus in sand was compared to published fomite studies, and results suggested that beach prevalence was similar to that in homes.
Collapse
Affiliation(s)
- Kelly D Goodwin
- National Oceanic and Atmospheric Administration, AOML, 4301 Rickenbacker Cswy, Miami, FL 33149, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Shibata T, Solo-Gabriele HM. Quantitative microbial risk assessment of human illness from exposure to marine beach sand. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2799-805. [PMID: 22296573 PMCID: PMC9785598 DOI: 10.1021/es203638x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Currently no U.S. federal guideline is available for assessing risk of illness from sand at recreational sites. The objectives of this study were to compute a reference level guideline for pathogens in beach sand and to compare these reference levels with measurements from a beach impacted by nonpoint sources of contamination. Reference levels were computed using quantitative microbial risk assessment (QMRA) coupled with Monte Carlo simulations. In order to reach an equivalent level of risk of illness as set by the U.S. EPA for marine water exposure (1.9 × 10(-2)), levels would need to be at least about 10 oocysts/g (about 1 oocyst/g for a pica child) for Cryptosporidium, about 5 MPN/g (about 1 MPN/g for pica) for enterovirus, and less than 10(6) CFU/g for S. aureus. Pathogen levels measured in sand at a nonpoint source recreational beach were lower than the reference levels. More research is needed in evaluating risk from yeast and helminth exposures as well as in identifying acceptable levels of risk for skin infections associated with sand exposures.
Collapse
Affiliation(s)
- Tomoyuki Shibata
- Institute for the Study of the Environment, Sustainability, & Energy and School of Nursing & Health Studies, Northern Illinois University, DeKalb, Illinois, United States.
| | | |
Collapse
|