1
|
Souza-Leal BD, Martins MDF, Hernandes JC, Costa PG, Bianchini A. Tissue bioaccumulation and distribution of organic contaminants in Brazilian guitarfish Pseudobatos horkelii reveal a concerning impact of contraceptive hormones and fecal sterols. MARINE POLLUTION BULLETIN 2025; 212:117582. [PMID: 39855061 DOI: 10.1016/j.marpolbul.2025.117582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
The critically endangered Brazilian guitarfish faces significant threats from environmental contamination. Assessing the impacts of such stressor is paramount from a conservational perspective. This study investigated the concentrations, distribution and accumulation patterns of organic contaminants in pregnant Brazilian guitarfish Pseudobatos horkelii. Blood, gill, gonad, liver, and muscle concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers, fecal sterols, and synthetic hormones used as human contraceptives were assessed. Synthetic hormones, especially D-norgestrel, showed the highest concentrations, mainly in the liver. Together with the results of fecal sterols, this finding suggests that guitarfish are exposed to sewage discharge. OCPs, especially hexachlorobenzene, mirex, endosulfans, and drins, showed considerably high concentrations, indicating the relevance of agricultural inputs. PCBs presented significant concentrations in the muscle, indicating long-term exposure, in contrast with other analytes that were primarily concentrated in the liver. These results have conservational implications, since contaminants analyzed herein have endocrine disruptive effects.
Collapse
Affiliation(s)
- Brenda de Souza-Leal
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | | | | | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
2
|
Piazza CE, Mattos JJ, Lima D, Siebert MN, Zacchi FL, Dos Reis ÍMM, Ferrari FL, Balsanelli E, Toledo-Silva G, de Souza EM, Bainy ACD. Hepatic transcriptome, transcriptional effects and antioxidant responses in Poecilia vivipara exposed to sanitary sewage. MARINE POLLUTION BULLETIN 2024; 203:116426. [PMID: 38692005 DOI: 10.1016/j.marpolbul.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Aquatic environments are subject to threats from multiple human activities, particularly through the release of untreated sanitary sewage into the coastal environments. These effluents contain a large group of natural or synthetic compounds referred to as emerging contaminants. Monitoring the types and quantities of toxic substances in the environment, especially complex mixtures, is an exhausting and challenging task. Integrative effect-based tools, such as biomarkers, are recommended for environmental quality monitoring programs. In this study, fish Poecilia vivipara were exposed for 24 and 96 h to raw untreated sewage diluted 33 % (v/v) in order to identify hepatic genes to be used as molecular biomarkers. Through a de novo hepatic transcriptome assembly, using Illumina MiSeq, 54,285 sequences were assembled creating a reference transcriptome for this guppy species. Transcripts involved in biotransformation systems, antioxidant defenses, ABC transporters, nuclear and xenobiotic receptors were identified and evaluated by qPCR. Sanitary sewage induced transcriptional changes in AhR, PXR, CYP2K1, CYP3A30, NQO1, UGT1A1, GSTa3, GSTmu, ST1C1, SOD, ABCC1 and SOX9 genes from liver of fish, particularly after 96 h of exposure. Changes in hepatic enzyme activities were also observed. The enzymes showed differences in fish exposed to both periods, while in the gills there was a prevalence of significant results after 96 h. The observed differences were associated to gender and/or to sewage exposure. The obtained results support the use of P. vivipara as sentinel and model organism for ecotoxicological studies and evidence the importance of understanding the differential responses associated to gender.
Collapse
Affiliation(s)
- Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research, NEPAQ, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Ísis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Fernanda Luiza Ferrari
- Bioinformatics Laboratory, Cell Biology, Embriology and Genetics Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Balsanelli
- Department of Biochemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Guilherme Toledo-Silva
- Bioinformatics Laboratory, Cell Biology, Embriology and Genetics Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
Zhang S, Ye X, Lin X, Zeng X, Meng S, Luo W, Yu F, Peng T, Huang T, Li J, Hu Z. Novel insights into aerobic 17β-estradiol degradation by enriched microbial communities from mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133045. [PMID: 38016312 DOI: 10.1016/j.jhazmat.2023.133045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023]
Abstract
Various persistent organic pollutants (POPs) including estrogens are often enriched in mangrove regions. This research investigated the estrogens pollution levels in six mangroves located in the Southern China. The estrogen levels were found to be in the range of 5.3-24.9 ng/g dry weight, suggesting that these mangroves had been seriously contaminated. The bacterial communities under estrogen stress were further enriched by supplementing 17β-estradiol (E2) as the sole carbon source. The enriched bacterial communities showed an excellent E2 degradation capacity > 95 %. These communities were able to transform E2 into estrone (E1), 4-hydroxy-estrone, and keto-estrone, etc. 16 S rDNA sequencing and metagenomics analysis revealed that bacterial taxa Oleiagrimonas, Pseudomonas, Terrimonas, and Nitratireductor etc. were the main contributors to estrogen degradation. Moreover, the genes involved in E2 degradation were enriched in the microbial communities, including the genes encoding 17β-hydroxysteroid dehydrogenase, estrone 4-hydroxylase, etc. Finally, the analyses of functional genes and binning genomes demonstrated that E2 was degraded by bacterial communities via dehydrogenation into E1 by 17β-hydroxysteroid dehydrogenase. E1 was then catabolically converted to 3aα-H-4α(3'-propanoate)- 7aβ-methylhexahydro-1,5-indanedione via 4,5-seco pathway. Alternatively, E1 could also be hydroxylated to keto-estrone, followed by B-ring cleavage. This study provides novel insights into the biodegradation of E2 by the bacterial communities in estrogen-contaminated mangroves.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Xueying Ye
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; School of Life Sciences, Huizhou University, Huizhou 510607, China
| | - Xianbin Lin
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Xiangwei Zeng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Wenqi Luo
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Fei Yu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Jin Li
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; College of Life Sciences, China West Normal University, Nanchong 637002, China.
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
4
|
Guerreiro FDC, Alves TC, Saldaña-Serrano M, Gomes CHADM, Lima DD, Bastolla CLV, Ferreira CP, Bitschinski D, Rutkoski CF, Grott SC, Israel NG, Lüchmann KH, Marques MRF, Melo CMRD, Bainy ACD, Almeida EAD. Integrating pollutant levels and biochemical biomarkers in oysters (Crassostrea rhizophorae and Crassostrea gasar) indicates anthropic impacts on marine environments along the coast of Santa Catarina state, Brazil. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106309. [PMID: 38169221 DOI: 10.1016/j.marenvres.2023.106309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
This study aimed to carry out a general diagnosis of the contamination of the coastal marine environment of the Santa Catarina state (SC, Brazil) by different classes of environmental pollutants, as well as to evaluate possible adverse effects of the contaminants on biochemical biomarkers of oysters, Crassostrea gasar and Crassostrea rhizophorae. 107 chemicals were evaluated in water, sediment and oyster samples from nine sites along the coastline of SC. We also examined various biochemical biomarkers in the oysters' gills and digestive glands to assess potential effects of contaminants. In general, the northern and central regions of the littoral of SC presented higher occurrences and magnitudes of contaminants than the southern region, which is probably related to higher urbanization of center and northern areas of the littoral. The biomarker analysis in the oysters reflected these contamination patterns, with more significant alterations observed in regions with higher levels of pollutants. Our results may serve as a first baseline for future and more extensive monitoring actions and follow-up of the degree of contamination in the state, allowing for inspection actions and management of areas most affected by marine pollutants.
Collapse
Affiliation(s)
- Fernando de Campos Guerreiro
- Programa de Pós-Graduação em Biodiversidae, Centro de Estudos em Ecotoxicologia Aquática (CETAq)., Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil
| | - Thiago Caíque Alves
- Programa de Pós-Graduação em Biodiversidae, Centro de Estudos em Ecotoxicologia Aquática (CETAq)., Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil
| | - Miguel Saldaña-Serrano
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica - LABCAI, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | | | - Daína de Lima
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica - LABCAI, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica - LABCAI, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Clarissa Pellegrini Ferreira
- Departamento de Engenharia de Pesca e Ciências Biológicas - DEPB, Universidade do Estado de Santa Catarina - UDESC, Laguna, Brazil
| | - Daiane Bitschinski
- Programa de Pós-Graduação em Biodiversidae, Centro de Estudos em Ecotoxicologia Aquática (CETAq)., Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil
| | - Camila Fatima Rutkoski
- Programa de Pós-Graduação em Biodiversidae, Centro de Estudos em Ecotoxicologia Aquática (CETAq)., Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil
| | - Suelen Cristina Grott
- Programa de Pós-Graduação em Biodiversidae, Centro de Estudos em Ecotoxicologia Aquática (CETAq)., Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil
| | - Nicole Grasmuk Israel
- Programa de Pós-Graduação em Biodiversidae, Centro de Estudos em Ecotoxicologia Aquática (CETAq)., Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil
| | - Karim Hahn Lüchmann
- Departamento de Engenharia de Pesca e Ciências Biológicas - DEPB, Universidade do Estado de Santa Catarina - UDESC, Laguna, Brazil
| | - Maria Risoleta Freire Marques
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica - LABCAI, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | | | - Afonso Celso Dias Bainy
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica - LABCAI, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Eduardo Alves de Almeida
- Programa de Pós-Graduação em Biodiversidae, Centro de Estudos em Ecotoxicologia Aquática (CETAq)., Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil; Departamento de Ciências Naturais, Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil.
| |
Collapse
|
5
|
Mosca A, Manco M, Braghini MR, Cianfarani S, Maggiore G, Alisi A, Vania A. Environment, Endocrine Disruptors, and Fatty Liver Disease Associated with Metabolic Dysfunction (MASLD). Metabolites 2024; 14:71. [PMID: 38276306 PMCID: PMC10819942 DOI: 10.3390/metabo14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Ecological theories suggest that environmental factors significantly influence obesity risk and related syndemic morbidities, including metabolically abnormal obesity associated with nonalcoholic fatty liver disease (MASLD). These factors encompass anthropogenic influences and endocrine-disrupting chemicals (EDCs), synergistically interacting to induce metabolic discrepancies, notably in early life, and disrupt metabolic processes in adulthood. This review focuses on endocrine disruptors affecting a child's MASLD risk, independent of their role as obesogens and thus regardless of their impact on adipogenesis. The liver plays a pivotal role in metabolic and detoxification processes, where various lipophilic endocrine-disrupting molecules accumulate in fatty liver parenchyma, exacerbating inflammation and functioning as new anthropogenics that perpetuate chronic low-grade inflammation, especially insulin resistance, crucial in the pathogenesis of MASLD.
Collapse
Affiliation(s)
- Antonella Mosca
- Hepatology and Liver Transplant Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Melania Manco
- Preventive and Predictive Medicine Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Maria Rita Braghini
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.B.); (A.A.)
| | - Stefano Cianfarani
- Endocrinology and Diabetes Unit, Bambino Gesù Pediatric Hospital, 00165 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Women’s and Children’s Health, Karolinska Institutet, University Hospital, Solnavägen 1, Solna, 171 77 Stockholm, Sweden
| | - Giuseppe Maggiore
- Hepatology and Liver Transplant Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.B.); (A.A.)
| | | |
Collapse
|
6
|
Odinga ES, Zhou X, Mbao EO, Ali Q, Waigi MG, Shiraku ML, Ling W. Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. CHEMOSPHERE 2022; 308:136370. [PMID: 36113656 DOI: 10.1016/j.chemosphere.2022.136370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past two decades, steroidal estrogens (SEs) such as 17α-ethylestradiol (EE2), 17β-estradiol (E2),17α-estradiol (17α-E2), estriol (E3) and estrone (E1) have elicited worldwide attention due to their potentially harmful effects on human health and aquatic organisms even at low concentration ng/L. Natural steroidal estrogens exhibit greater endocrine disruption potency due to their high binding effect on nuclear estrogen receptors (ER). However, less has been explored regarding their associated environmental risks and fate. A comprehensive bibliometric study of the current research status of SEs was conducted using the Web of Science to assess the development trends and current knowledge of SEs in the last two decades, from 2001 to 2021 October. The number of publications has tremendously increased from 2003 to 2021. We summarized the contamination status and the associated ecological risks of SEs in different environmental compartments. The results revealed that SEs are ubiquitous in surface waters and natural SEs are most studied. We further carried out an in-depth evaluation and synthesis of major research hotspots and the dominant SEs in the matrices were E1, 17β-E2, 17α-E2, E3 and EE2. Nonetheless, investigations of SEs in soils, groundwater, and sediments remain scarce. This study elucidates SEs distribution, toxicological risks, ecological fate and mitigation measures, which will be beneficial for future monitoring, management, and risk assessment. Further studies are recommended to assess the toxicological risks of different SEs in complex environmental matrices to pursue a more precise and holistic quantitative estimation of estrogenic risk.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Evance Omondi Mbao
- Department of Geosciences and the Environment, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Margaret L Shiraku
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Souza IS, Santos FR, Martins DA, Morais PCV, Gama AF, Nascimento RF, Cavalcante RM, Abessa DMS. Dealing with complex contamination scenarios: using a multi-geochemical approach to assess environmental quality and identify pollution sources in a semi-arid estuary from Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:567. [PMID: 35792964 DOI: 10.1007/s10661-022-10238-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The Jundiaí-Potengi Estuary (EJP) is located on the semi-arid coast of northeastern Brazil and is influenced by multiple sources of contamination. The sediment quality of EJP was assessed by using a multi-geochemical approach during the dry and wet seasons. Sediments were analyzed for concentrations of nutrients, metals, polycyclic aromatic hydrocarbons (PAHs), pesticides, hormones (natural and synthetic), and sterols. The results were integrated by multivariate methods. The sediment was altered by the presence of contaminants from anthropogenic and natural sources. The middle and lower estuarine areas were considered more degraded in both seasons. In these regions, metals, hormones, sterols, and PAHs were found, indicating that these regions are severely affected by industrial, sanitary and aquaculture effluents, combustion of fossil fuels, and oil spills. The upstream region was contaminated by pesticides. The contamination pattern along the EJP shows the prevalence of local sources which continuously release the chemicals into the estuary. Worse conditions occurred during the rainy season, when the runoff from urban and rural areas is more intense and carries a greater load of contaminants to the EJP.
Collapse
Affiliation(s)
- Ivanildo S Souza
- Federal Institute of Education, Science and Technology of Rio Grande Do Norte (IFRN), Av. Senador Salgado Filho, 1559, Natal, RN, 59015-000, Brazil.
- Institute of Marine Sciences, Federal University of Ceará, Av. Abolição, 3207, Fortaleza, CE, 60165-081, Brazil.
| | - Felipe R Santos
- Institute of Marine Sciences, Federal University of Ceará, Av. Abolição, 3207, Fortaleza, CE, 60165-081, Brazil
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, Campus do Pici, BL 340, Fortaleza, Ceará, 60455760, Brazil
- Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191, São Paulo, SP, 05508-120, Brazil
| | - Davi A Martins
- Institute of Marine Sciences, Federal University of Ceará, Av. Abolição, 3207, Fortaleza, CE, 60165-081, Brazil
| | - Pollyana C V Morais
- Institute of Marine Sciences, Federal University of Ceará, Av. Abolição, 3207, Fortaleza, CE, 60165-081, Brazil
| | - Allyne F Gama
- Institute of Marine Sciences, Federal University of Ceará, Av. Abolição, 3207, Fortaleza, CE, 60165-081, Brazil
| | - Ronaldo F Nascimento
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, Campus do Pici, BL 340, Fortaleza, Ceará, 60455760, Brazil
| | - Rivelino M Cavalcante
- Institute of Marine Sciences, Federal University of Ceará, Av. Abolição, 3207, Fortaleza, CE, 60165-081, Brazil
| | - Denis M S Abessa
- Institute of Marine Sciences, Federal University of Ceará, Av. Abolição, 3207, Fortaleza, CE, 60165-081, Brazil
- São Paulo State University - UNESP, Praça Infante Dom Henrique, s/n., São Vicente, SP, 11330-900, Brazil
| |
Collapse
|
8
|
Bai L, Liu X, Hua K, Tian L, Wang C, Jiang H. Microbial processing of autochthonous organic matter controls the biodegradation of 17α-ethinylestradiol in lake sediments under anoxic conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118760. [PMID: 34971738 DOI: 10.1016/j.envpol.2021.118760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/02/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The decay of algal biomass and aquatic plants in freshwater lakes leads to the overproduction of autochthonous organic matter (OM) and the exhaustion of dissolved oxygen, impacting the microbial community and subsequent biodegradation of emerging contaminants in sediment. This study explored how the microbial processing of aquatic plant- and algal-derived OM (POM and AOM) mediates 17α-ethinylestradiol (EE2) biodegradation in the anoxic sediments of Lake Taihu in China. In four months of microcosm incubations, the increased concentrations of protein-like substances in AOM and POM exhibited temporary activation on microbial metabolic enzyme activity (fluorescein diacetate hydrolase and dehydrogenase) and significantly promoted the carbon mineralization with iron reduction (P < 0.001). These in turn increased the EE2 biodegradation efficiency to 77-90 ng g-1 in the anoxic sediment. However, a higher EE2 biodegradation of 109 ng g-1 was achieved with the humic acid augmentation containing more quinone-like compounds, showing a weaker substrate-priming effect but accelerated redox cycling of iron and organic substrates in the later period of incubation. The microbial analysis further revealed that the quinone-like compounds in OM were more closely associated with microbial electron transfer and strengthened their interspecies syntrophic cooperation favorable to contaminant biodegradation, even though the connective members exposed to protein-like components upregulated more functional genes related to organic carbon and xenobiotics metabolism and biodegradation. Our findings will help predict the fate of estrogens in various sedimentary environments under increasing eutrophication and further climate change scenarios.
Collapse
Affiliation(s)
- Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xin Liu
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ke Hua
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Linqi Tian
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
9
|
Klaic M, Jirsa F. 17α-Ethinylestradiol (EE2): concentrations in the environment and methods for wastewater treatment – an update. RSC Adv 2022; 12:12794-12805. [PMID: 35496331 PMCID: PMC9044539 DOI: 10.1039/d2ra00915c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
17α-Ethinylestradiol (EE2) is a frequently used drug and an endocrine disruptive substance. Adverse effects on biota have been reported when they are exposed to this substance in the environment. The last review on EE2 in the environment was published in 2014. Since then, well above 70 studies on EE2 and related substances have been published. The aim of this review was therefore to bring together recent data with earlier ones. The topics emphasized were observable trends of environmental levels of EE2 and methods to reduce EE2 levels in wastewater, before it can enter the environment. This should give an overview of the recent knowledge and developments regarding these environmental aspects of EE2. In the studies discussed, EE2 levels in surface waters were well detectable in many countries, both above and below the predicted no effect concentration (PNEC) of 0.035 ng L−1, although analytical methods used for the quantification often are unsatisfactory regarding their limit of detection. To support the degradation of EE2 prior to entry into the environment, appropriate treatment methods could help to control the emissions of EE2. Several methods for the reduction of EE2 levels of up to 100% removal efficiency were reported recently and are of chemical, biological, adsorptive or ion-exchange nature. Depending on the required properties like initial EE2 concentration or treatment duration, several promising methods are available. 17α-Ethinylestradiol (EE2) is a frequently used drug and an endocrine disruptive substance.![]()
Collapse
Affiliation(s)
- Marko Klaic
- Department of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Franz Jirsa
- Department of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Department of Zoology, University of Johannesburg, Auckland Park, 2006 Johannesburg, South Africa
| |
Collapse
|
10
|
Zhong R, Zou H, Gao J, Wang T, Bu Q, Wang ZL, Hu M, Wang Z. A critical review on the distribution and ecological risk assessment of steroid hormones in the environment in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147452. [PMID: 33975111 DOI: 10.1016/j.scitotenv.2021.147452] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
During past two decades, steroid hormones have raised significant public concerns due to their potential adverse effects on the hormonal functions of aquatic organisms and humans. Considering China being a big producer and consumer of steroid hormones, we summarize the current contamination status of steroid hormones in different environmental compartments in China, and preliminarily assess the associated risks to ecological systems. The results show that steroid hormones are ubiquitously present in Chinese surface waters where estrogens are the most studied steroids compared with androgens, progestogens and glucocorticoids. Estrone (E1), 17β-estradiol (17β-E2) and estriol (E3) are generally the dominant steroid estrogens in Chinese surface waters, whereas for the other steroids, androsterone (ADR), epi-androsterone (EADR), progesterone (PGT), cortisol (CRL) and cortisone (CRN) have relatively large contributions. Meanwhile, the investigations for the other environmental media such as particles, sediments, soils and groundwater have been limited, as well as for steroid conjugates and metabolites. The median risk quotients of most steroid hormones in surface waters and sediments are lower than 1, indicating low to moderate risks to local organisms. This review provides a full picture of steroid distribution and ecological risks in China, which may be useful for future monitoring and risk assessment. More studies may focus on the analysis of steroid conjugates, metabolites, solid phase fractions, analytical method development and acute/chronic toxicities in different matrices to pursue a more precise and holistic risk assessment.
Collapse
Affiliation(s)
- Ruyue Zhong
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387 Tianjin, PR China
| | - Hongyan Zou
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387 Tianjin, PR China.
| | - Jian Gao
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387 Tianjin, PR China
| | - Tao Wang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387 Tianjin, PR China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology, Beijing 100083, PR China.
| | - Zhong-Liang Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China.
| | - Meng Hu
- School of Forensic Medicine, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong 030600, China
| | - Zhanyun Wang
- Chair of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
11
|
You HH, Song G. Review of endocrine disruptors on male and female reproductive systems. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109002. [PMID: 33610819 DOI: 10.1016/j.cbpc.2021.109002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022]
Abstract
Endocrine disruptors (EDs) interfere with different hormonal and metabolic processes and disrupt the development of organs and tissues, as well as the reproductive system. In toxicology research, various animal models have been utilized to compare and characterize the effects of EDs. We reviewed studies assessing the effect of ED exposure in humans, zebrafish, and mouse models and the adverse effects of EDs on male and female reproductive systems. This review outlines the distinctive morphological characteristics, as well as gene expression, factors, and mechanisms that are known to occur in response to EDs. In each animal model, disturbances in the reproductive system were associated with certain factors of apoptosis, the hypothalamic-pituitary-gonadal axis, estrogen receptor pathway-induced meiotic disruption, and steroidogenesis. The effects of bisphenol A, phthalate, and 17α-ethinylestradiol have been investigated in animal models, each providing supporting outcomes and elaborating the key regulators of male and female reproductive systems.
Collapse
Affiliation(s)
- Hyekyoung Hannah You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Moreira IS, Lebel A, Peng X, Castro PML, Gonçalves D. Sediments in the mangrove areas contribute to the removal of endocrine disrupting chemicals in coastal sediments of Macau SAR, China, and harbour microbial communities capable of degrading E2, EE2, BPA and BPS. Biodegradation 2021; 32:511-529. [PMID: 34037892 DOI: 10.1007/s10532-021-09948-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
The occurrence of endocrine disrupting chemicals (EDCs) is a major issue for marine and coastal environments in the proximity of urban areas. The occurrence of EDCs in the Pearl River Delta region is well documented but specific data related to Macao is unavailable. The levels of bisphenol-A (BPA), estrone (E1), 17α-estradiol (αE2), 17β-estradiol (E2), estriol (E3), and 17α-ethynylestradiol (EE2) were measured in sediment samples collected along the coastline of Macao. BPA was found in all 45 collected samples with lower BPA concentrations associated to the presence of mangrove trees. Biodegradation assays were performed to evaluate the capacity of the microbial communities of the surveyed ecosystems to degrade BPA and its analogue BPS. Using sediments collected at a WWTP discharge point as inoculum, at a concentration of 2 mg l-1 complete removal of BPA was observed within 6 days, whereas for the same concentration BPS removal was of 95% after 10 days, which is particularly interesting since this compound is considered recalcitrant to biodegradation and likely to accumulate in the environment. Supplementation with BPA improved the degradation of bisphenol-S (BPS). Aiming at the isolation of EDCs-degrading bacteria, enrichments were established with sediments supplied with BPA, BPS, E2 and EE2, which led to the isolation of a bacterial strain, identified as Rhodoccoccus sp. ED55, able to degrade the four compounds at different extents. The isolated strain represents a valuable candidate for bioremediation of contaminated soils and waters.
Collapse
Affiliation(s)
- Irina S Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Alexandre Lebel
- Institute of Science and Environment, University of Saint Joseph, Rua de Londres 106, Macau S.A.R., China
| | - Xianzhi Peng
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Wushan, Tianhe District, Guangzhou, 510640, GD, China
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - David Gonçalves
- Institute of Science and Environment, University of Saint Joseph, Rua de Londres 106, Macau S.A.R., China
| |
Collapse
|
13
|
Katibi KK, Yunos KF, Che Man H, Aris AZ, bin Mohd Nor MZ, binti Azis RS. Recent Advances in the Rejection of Endocrine-Disrupting Compounds from Water Using Membrane and Membrane Bioreactor Technologies: A Review. Polymers (Basel) 2021; 13:392. [PMID: 33513670 PMCID: PMC7865700 DOI: 10.3390/polym13030392] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Water is a critical resource necessary for life to be sustained, and its availability should be secured, appropriated, and easily obtainable. The continual detection of endocrine-disrupting chemicals (EDCs) (ng/L or µg/L) in water and wastewater has attracted critical concerns among the regulatory authorities and general public, due to its associated public health, ecological risks, and a threat to global water quality. Presently, there is a lack of stringent discharge standards regulating the emerging multiclass contaminants to obviate its possible undesirable impacts. The conventional treatment processes have reportedly ineffectual in eliminating the persistent EDCs pollutants, necessitating the researchers to develop alternative treatment methods. Occurrences of the EDCs and the attributed effects on humans and the environment are adequately reviewed. It indicated that comprehensive information on the recent advances in the rejection of EDCs via a novel membrane and membrane bioreactor (MBR) treatment techniques are still lacking. This paper critically studies and reports on recent advances in the membrane and MBR treatment methods for removing EDCs, fouling challenges, and its mitigation strategies. The removal mechanisms and the operating factors influencing the EDCs remediation were also examined. Membranes and MBR approaches have proven successful and viable to eliminate various EDCs contaminants.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete 23431, Nigeria;
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Khairul Faezah Yunos
- Department of Food and Process Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Hasfalina Che Man
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Material Processing and Technology Laboratory (MPTL), Institute of Advance Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Mohd Zuhair bin Mohd Nor
- Department of Food and Process Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Rabaah Syahidah binti Azis
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| |
Collapse
|
14
|
Piazza CE, Mattos JJ, de Toledo-Silva G, Flores-Nunes F, Tadra-Sfeir MZ, Trevisan R, Bittencourt AC, Bícego MC, Taniguchi S, Marques MRF, Dafré AL, Bianchini A, Souza EMD, Bainy ACD. Transcriptional effects in the estuarine guppy Poecilia vivipara exposed to sanitary sewage in laboratory and in situ. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109411. [PMID: 31299475 DOI: 10.1016/j.ecoenv.2019.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The urban growth has increased sanitary sewage discharges in coastal ecosystems, negatively affecting the aquatic biota. Mangroves, one of the most human-affected coastal biomes, are areas for reproduction and nursing of several species. In order to evaluate the effects of sanitary sewage effluents in mangrove species, this study assessed the hepatic transcriptional responses of guppy fish Poecilia vivipara exposed to sanitary sewage 33% (v:v), using suppressive subtraction hybridization (SSH), high throughput sequencing of RNA (Ion-proton) and quantification of transcript levels by qPCR of some identified genes in fish kept in a sewage-contaminated environment. Genes identified are related predominantly to xenobiotic biotransformation, immune system and sexual differentiation. The qPCR results confirmed the induction of cytochrome P450 1A (CYP1A), glutathione S transferase A-like (GST A-like) methyltransferase (MET) and UDP glycosyltransferase 1A (UDPGT1A), and repression of complement component C3 (C3), doublesex and mab-3 related transcription factor 1 (DMRT1), and transferrin (TF) in the laboratory experiment. In the field exposure, the transcript levels of CYP1A, DMRT1, MET, GST A-like and UDPGT1A were higher in fishes exposed at the contaminated sites compared to the reference site. Chemical analysis in fish from the laboratory and in situ experiments, and surface sediment from the sewage-contaminated sites revealed relevant levels of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCBs) and linear alkylbenzenes (LABs). These data reinforce the use of P. vivipara as a sentinel for monitoring environmental contamination in coastal regions.
Collapse
Affiliation(s)
- Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research, NEPAQ, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme de Toledo-Silva
- Bioinformatics Laboratory, Cell Biology, Embriology and Genetics Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | | | - Rafael Trevisan
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Arnaldo Cechinel Bittencourt
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Maria Risoleta Freire Marques
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Alcir Luiz Dafré
- Laboratory of Cellular Defenses, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Adalto Bianchini
- Department of Physiological Sciences, Federal University of Rio Grande Foundation, Rio Grande, Brazil
| | | | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
15
|
Tran TKA, Yu RMK, Islam R, Nguyen THT, Bui TLH, Kong RYC, O'Connor WA, Leusch FDL, Andrew-Priestley M, MacFarlane GR. The utility of vitellogenin as a biomarker of estrogenic endocrine disrupting chemicals in molluscs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:1067-1078. [PMID: 31091639 DOI: 10.1016/j.envpol.2019.02.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Estrogenic endocrine disrupting chemicals (EDCs) are natural hormones, synthetic compounds or industrial chemicals that mimic estrogens due to their structural similarity with estrogen's functional moieties. They typically enter aquatic environments through wastewater treatment plant effluents or runoff from intensive livestock operations. Globally, most natural and synthetic estrogens in receiving aquatic environments are in the low ng/L range, while industrial chemicals (such as bisphenol A, nonylphenol and octylphenol) are present in the μg to low mg/L range. These environmental concentrations often exceed laboratory-based predicted no effect concentrations (PNECs) and have been evidenced to cause negative reproductive impacts on resident aquatic biota. In vertebrates, such as fish, a well-established indicator of estrogen-mediated endocrine disruption is overexpression of the egg yolk protein precursor vitellogenin (Vtg) in males. Although the vertebrate Vtg has high sensitivity and specificity to estrogens, and the molecular basis of its estrogen inducibility has been well studied, there is growing ethical concern over the use of vertebrate animals for contaminant monitoring. The potential utility of the invertebrate Vtg as a biomonitor for environmental estrogens has therefore gained increasing attention. Here we review evidence providing support that the molluscan Vtg holds promise as an invertebrate biomarker for exposure to estrogens. Unlike vertebrates, estrogen signalling in invertebrates remains largely unclarified and the classical genomic pathway only partially explains estrogen-mediated activation of Vtg. In light of this, in the latter part of this review, we summarise recent progress towards understanding the molecular mechanisms underlying the activation of the molluscan Vtg gene by estrogens and present a hypothetical model of the interplay between genomic and non-genomic pathways in the transcriptional regulation of the gene.
Collapse
Affiliation(s)
- Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Institute for Agriculture and Resources, Vinh University, Viet Nam
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Rafiquel Islam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Thi Hong Tham Nguyen
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Institute for Agriculture and Resources, Vinh University, Viet Nam
| | - Thi Lien Ha Bui
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Division of Experimental Biology, Research Institute for Aquaculture No 2, Viet Nam
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, China
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith School of Environment and Science, Griffith University, QLD, 4111, Australia
| | | | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
16
|
Pusceddu FH, Sugauara LE, de Marchi MR, Choueri RB, Castro ÍB. Estrogen levels in surface sediments from a multi-impacted Brazilian estuarine system. MARINE POLLUTION BULLETIN 2019; 142:576-580. [PMID: 31232341 DOI: 10.1016/j.marpolbul.2019.03.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 05/22/2023]
Abstract
Estrogen levels were assessed in surface sediments from one of the most industrialized and urbanized estuarine systems in Latin America (SSES, Santos and São Vicente estuarine system). Estriol (E3) presented quantifiable levels in all sampled sites, ranging from 20.9 ng g-1 to 694.2 ng g-1. 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) were also detected in almost all sampled sites. The highest concentration of E2 was 23.9 ng g-1, whereas high levels of EE2 86.3 ng g-1. The occurrence of estrogens in SSES was diffuse and partially related to a domestic sewage outfall. Estrogens were also found in areas with substantial contribution of sanitary effluents from domiciles not covered by sanitation services. Our results reinforce that studies on environmental contamination by estrogens should not be spatially limited to the vicinities of point sources. These results contribute to raise awareness on the need of a formal approach to assess ecological risks of estrogens in the SSES.
Collapse
Affiliation(s)
| | - Lucy Elaine Sugauara
- Departamento de Química Analítica, Instituto de Química, Univ. Estadual Paulista, Araraquara, Brazil
| | - Mary Rodrigues de Marchi
- Departamento de Química Analítica, Instituto de Química, Univ. Estadual Paulista, Araraquara, Brazil
| | | | - Ítalo Braga Castro
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Santos, Brazil
| |
Collapse
|
17
|
Santos FR, Martins DA, Morais PCV, Oliveira AHB, Gama AF, Nascimento RF, Choi-Lima KF, Moreira LB, Abessa DMS, Nelson RK, Reddy CM, Swarthout RF, Cavalcante RM. Influence of anthropogenic activities and risk assessment on protected mangrove forest using traditional and emerging molecular markers (Ceará coast, northeastern Brazil). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:877-888. [PMID: 30625674 DOI: 10.1016/j.scitotenv.2018.11.380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/17/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Anthropogenic molecular markers were used to assess chemicals inputs and ecological risks associated from multiple sources to sediments in one of the largest tropical mangrove forests of South America, with a particular focus on lesser studied compounds resulting from rural activities. Total concentrations ranged from 23.4 to 228.2 ng g-1 for polycyclic aromatic hydrocarbons (∑PAHs), 750.4 to 5912.5 ng g-1 for aliphatic hydrocarbons (∑AHs), 32.4 to 696.6 ng g-1 for pesticides (∑pesticides), 23.1 to 2109.7 ng g-1 for coprostanol and sterols (∑sterols), 139.3 to 580.2 ng g-1 for naturals hormones (∑natural hormones) and 334.1 to 823.4 ng g-1 for synthetics hormones (∑synthetic hormones). The PAHs and AHs used as traditional anthropogenic markers showed a mixture between natural and anthropogenic sources, related mainly to inputs from higher plants, phytoplankton and both, biomass and petroleum combustion. Rural activities linked to agricultural pest control are the predominant source of pesticides, although minor inputs from pesticides used in urban public health campaigns and household activities were also detected. Synthetic hormones levels are two to three orders of magnitude greater than natural hormones levels and no correlations were observed between the main sewage markers and synthetic hormone concentrations, rural activities such as animal husbandry, which use drugs in management, may be the predominant anthropogenic sources of these compounds in the region. Traditional markers failed to detect ecological risks in rural areas, where synthetic substances (e.g. pesticides and hormones) are widely used and introduced in the environment.
Collapse
Affiliation(s)
- Felipe R Santos
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, 05508-120 São Paulo, SP, Brazil.
| | - Davi A Martins
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil
| | - Pollyana C V Morais
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil
| | - André H B Oliveira
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Allyne F Gama
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil
| | - Ronaldo F Nascimento
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Katherine F Choi-Lima
- Centro de Investigação em Ecotoxicologia Aquática e Poluição (NEPEA), São Paulo State University (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n., CEP 11330-900 São Vicente, SP, Brazil
| | - Lucas Buruaem Moreira
- Centro de Investigação em Ecotoxicologia Aquática e Poluição (NEPEA), São Paulo State University (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n., CEP 11330-900 São Vicente, SP, Brazil
| | - Denis M S Abessa
- Centro de Investigação em Ecotoxicologia Aquática e Poluição (NEPEA), São Paulo State University (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n., CEP 11330-900 São Vicente, SP, Brazil
| | - Robert K Nelson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole road, MA 02543, United States of America
| | - Christopher M Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole road, MA 02543, United States of America
| | - Robert F Swarthout
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole road, MA 02543, United States of America
| | - Rivelino M Cavalcante
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil.
| |
Collapse
|
18
|
Lima MFB, Fernandes GM, Oliveira AHB, Morais PCV, Marques EV, Santos FR, Nascimento RF, Swarthout RF, Nelson RK, Reddy CM, Cavalcante RM. Emerging and traditional organic markers: Baseline study showing the influence of untraditional anthropogenic activities on coastal zones with multiple activities (Ceará coast, Northeast Brazil). MARINE POLLUTION BULLETIN 2019; 139:256-262. [PMID: 30686426 DOI: 10.1016/j.marpolbul.2018.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 11/21/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Molecular markers are useful tools to characterize natural and anthropogenic impacts on coastal zones. Distribution of n-alkanes showed that the Pacoti River was predominantly influenced by terrigenous input. Distribution of polycyclic aromatic hydrocarbon (PAH) indices showed a mix of natural sources, especially pyrogenic influences. Sterol and hormone levels showed sewage discharge. Integrated geographic assessment showed that pyrogenic process and sewage discharge are predominant along the river because of natural and different anthropogenic activities. The upstream region is influenced by rural activities such as livestock and discharge from the sewage treatment plant, whereas the estuarine region is influenced by urban and industrial activities, predominantly the discharge of treated or untreated sewage, vehicle traffic, and manufacture of red ceramics. On the other hand, on the river mouth, there is the predominance of aquaculture activities. Traditional anthropogenic markers are not sufficient for producing a comprehensive assessment of anthropogenic impacts in areas with multiple activities.
Collapse
Affiliation(s)
- Marcielly F B Lima
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, 60165-081 Fortaleza, CE, Brazil
| | - Gabrielle M Fernandes
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, 60165-081 Fortaleza, CE, Brazil
| | - Andre H B Oliveira
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, 60165-081 Fortaleza, CE, Brazil; Department of Chemistry, Federal University of Ceará, Av. Humberto Monte, SN-PICI, 60000-000 Fortaleza, CE, Brazil
| | - Pollyana C V Morais
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, 60165-081 Fortaleza, CE, Brazil
| | - Elissandra V Marques
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, 60165-081 Fortaleza, CE, Brazil
| | - Felipe R Santos
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, 60165-081 Fortaleza, CE, Brazil; Oceanographic Institute, University of São Paulo (IOUSP), Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Ronaldo F Nascimento
- Department of Chemistry, Federal University of Ceará, Av. Humberto Monte, SN-PICI, 60000-000 Fortaleza, CE, Brazil
| | - Robert F Swarthout
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, United States of America
| | - Robert K Nelson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, United States of America
| | - Christopher M Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, United States of America
| | - Rivelino M Cavalcante
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, 60165-081 Fortaleza, CE, Brazil.
| |
Collapse
|
19
|
de Morais PCV, Gama AF, Fernandes GM, Oliveira AHB, Lima MFB, Dos Santos FR, Martins DA, Nascimento RF, Cavalcante RM. Emerging and Traditional Organic Markers in Areas with Multiple Anthropogenic Activities: Development of an Analytical Protocol and Its Application in Environmental Assessment Studies. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:66-76. [PMID: 30374587 DOI: 10.1007/s00128-018-2475-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
This work describes the development of an analytical protocol combining cleanup by liquid-solid extraction and GC-MS for the determination of emerging and traditional multi-molecular markers. The procedure was used for the environmental assessment of a coastal region with multiple human activities. Global recovery rates ranged from 45.49% to 119.4% for the 46 substances analyzed: pesticides (73.7%-97.7%), PAHs (52.5%-93.7%), sterols (66.7%-119.4%) and natural and synthetic hormones (45.5%-119.1%) and the rates were compared to those reported in studies on both individual classes and multi-classes of contaminants. The analytical protocol demonstrated satisfactory efficiency and could be used successfully in environmental assessments and source assignment studies. The environmental assessment study revealed that the Acaraú River in northeastern Brazil is influenced by the combination of urban and rural activities. The sources of PAHs are vehicular traffic and the burning of biomass; pesticides stem from pest control in agribusiness and public health campaigns; sterols and hormones stem from a combination of natural inputs, human sewage (treated and raw) and animal husbandry activities.
Collapse
Affiliation(s)
- Pollyana C V de Morais
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil.
| | - Allyne F Gama
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil
| | - Gabrielle M Fernandes
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil
| | - Andre H B Oliveira
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil
| | - Marcielly F B Lima
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil
| | - Felipe R Dos Santos
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil
| | - Davi A Martins
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil
| | - Ronaldo F Nascimento
- Laboratory of Traces Analysis (LAT) - Department of Chemistry, Federal University of Ceará, Fortaleza, CE, CEP: 60000-000, Brazil
| | - Rivelino M Cavalcante
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil.
| |
Collapse
|
20
|
Abessa DMS, Albuquerque HC, Morais LG, Araújo GS, Fonseca TG, Cruz ACF, Campos BG, Camargo JBDA, Gusso-Choueri PK, Perina FC, Choueri RB, Buruaem LM. Pollution status of marine protected areas worldwide and the consequent toxic effects are unknown. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1450-1459. [PMID: 30292154 DOI: 10.1016/j.envpol.2018.09.129] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Chemical pollution is considered a factor that may threaten marine protected areas (MPAs), and recent studies have found contamination and associated biological effects in some MPAs. However, organized data on this topic are lacking. This study reviewed the literature on pollution in MPAs in order to compile data, determine whether MPAs are influenced by pollution and, whenever possible, describe how they are being affected by contaminants. The results show that the pollution status is unknown in most MPAs worldwide. When any information is available, it is often insufficient to diagnose the threats to biodiversity or to support further actions. More robust and extensive information is available on a small number of MPAs, and much less information is available regarding the negative effects of pollution. More than 80% of the areas studied exhibited evidence of contamination at potentially toxic concentrations or were found to have a status that produced toxic effects on the biota. The scientific community is encouraged to study pollution in MPAs worldwide.
Collapse
Affiliation(s)
- Denis M S Abessa
- Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), São Vicente, SP, CEP 11330-900, Brazil.
| | - Heitor C Albuquerque
- Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), São Vicente, SP, CEP 11330-900, Brazil
| | - Lucas G Morais
- Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), São Vicente, SP, CEP 11330-900, Brazil
| | - Giuliana S Araújo
- Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), São Vicente, SP, CEP 11330-900, Brazil; Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Aveiro, 3810-193, Portugal
| | - Tainá G Fonseca
- Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), São Vicente, SP, CEP 11330-900, Brazil; Centro de Investigação Marinha e Ambiental (CIMA), Universidade do Algarve, Faro, 8005-139, Portugal
| | - Ana C F Cruz
- Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), São Vicente, SP, CEP 11330-900, Brazil
| | - Bruno G Campos
- Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), São Vicente, SP, CEP 11330-900, Brazil
| | - Julia B D A Camargo
- Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), São Vicente, SP, CEP 11330-900, Brazil; Instituto Oceanográfico, Universidade de São Paulo (USP), São Paulo, SP, CEP 05508-900, Brazil
| | - Paloma K Gusso-Choueri
- Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), São Vicente, SP, CEP 11330-900, Brazil
| | - Fernando C Perina
- Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), São Vicente, SP, CEP 11330-900, Brazil
| | - Rodrigo B Choueri
- Instituto do Mar, Universidade Federal de São Paulo (UNIFESP), Santos, SP, CEP 11070-100, Brazil
| | - Lucas M Buruaem
- Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), São Vicente, SP, CEP 11330-900, Brazil
| |
Collapse
|
21
|
Dos Santos DM, Buruaem L, Gonçalves RM, Williams M, Abessa DMS, Kookana R, de Marchi MRR. Multiresidue determination and predicted risk assessment of contaminants of emerging concern in marine sediments from the vicinities of submarine sewage outfalls. MARINE POLLUTION BULLETIN 2018; 129:299-307. [PMID: 29680552 DOI: 10.1016/j.marpolbul.2018.02.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Submarine sewage outfalls (SSOs) are considered the main input source of contaminants of emerging concern continuously released in coastal areas, with the potential to cause adverse effects for aquatic organisms. This work presents the investigation of nine endocrine disrupting chemicals (EDCs) and 26 pharmaceutically active chemicals (PhACs) in marine sediments within the vicinities of 7 SSOs along the São Paulo State Coast (Brazil). Method optimization for the multi-residue determination by GC-MS/MS and LC-MS/MS using QuEChERS extraction/clean-up are discussed. Results demonstrate the occurrence of EDCs in concentrations ranging from less than method quantification limits (MQL) to 72.5 ng g-1 in sediments. All PhACs were <MQLs. Nonylphenol was the most ubiquitous compound and the diversity of EDCs increased with an increase in populations serviced by SSOs. The predicted environmental risk assessment considering measured environmental concentrations and ecotoxicity endpoints from literature suggest a high-risk potential in some of the investigated SSOs.
Collapse
Affiliation(s)
- Dayana M Dos Santos
- Institute of Chemistry, Univ. Estadual Paulista- UNESP, Araraquara, São Paulo, Brazil; Chemistry Department, State University of Londrina-UEL, Londrina, Paraná, Brazil.
| | - Lucas Buruaem
- Biosciences Institute, Univ. Estadual Paulista- UNESP, São Vicente, São Paulo, Brazil
| | - Renato M Gonçalves
- Institute of Chemistry, Univ. Estadual Paulista- UNESP, Araraquara, São Paulo, Brazil
| | - Mike Williams
- CSIRO Land and Water, Urrbrae, South Australia, Australia
| | - Denis M S Abessa
- Biosciences Institute, Univ. Estadual Paulista- UNESP, São Vicente, São Paulo, Brazil
| | - Rai Kookana
- CSIRO Land and Water, Urrbrae, South Australia, Australia
| | - Mary Rosa R de Marchi
- Institute of Chemistry, Univ. Estadual Paulista- UNESP, Araraquara, São Paulo, Brazil
| |
Collapse
|
22
|
Smolarz K, Hallmann A, Zabrzańska S, Pietrasik A. Elevated gonadal atresia as biomarker of endocrine disruptors: Field and experimental studies using Mytilus trossulus (L.) and 17-alpha ethinylestradiol (EE2). MARINE POLLUTION BULLETIN 2017; 120:58-67. [PMID: 28477987 DOI: 10.1016/j.marpolbul.2017.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
In the present work we compared the type and frequency of gonadal abnormalities among Mytilus trossulus populations from the Gulf of Gdańsk, Baltic Sea. Observed histopathologies were grouped as regressive changes (RC, gonadal atresia (GA) and regression (GR)), progressive changes (PC, gonadal tumors) and intersex. Sex-based and spatial differences in frequency of RC were found, with the highest frequency of RC and PC found in mussels from polluted station B followed by mussels from station A located near a purification plant outlet. Bivalves from the reference area had the lowest frequency of RC. In order to confirm biomarker applicability of RC, an exposure experiment with model xenoestrogen 17α-ethinylestradiol (EE2) was performed. The exposure of M. trossulus to 50 and 500ngdL-1 of EE2 resulted in an increased frequency of gonadal regression and atresia, including melanized hemocytes infiltration in seminiferous tubules. We thus suggest that these changes can serve as biomarkers of endocrine disrupting compounds in biomonitoring studies.
Collapse
Affiliation(s)
- Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdańsk, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, ul. Dębinki 1, 80-211 Gdańsk, Poland
| | - Sandra Zabrzańska
- Department of Marine Ecosystem Functioning, University of Gdańsk, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Pietrasik
- Department of Marine Biotechnology, University of Gdańsk, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
23
|
Nazari E, Suja F. Effects of 17β-estradiol (E2) on aqueous organisms and its treatment problem: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2016; 31:465-491. [PMID: 27883330 DOI: 10.1515/reveh-2016-0040] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/13/2016] [Indexed: 05/18/2023]
Abstract
Natural estrogens, estrone (E1), 17β-estradiol (E2) and estriol (E3) are endocrine disrupting chemicals (EDCs) that are discharged consistently and directly into surface waters with wastewater treatment plants (WWPTs) effluents, disposal sludges and in storm-water runoff. The most common and highest potential natural estrogen that causes estrogen activity in wastewater influent is E2. This review describes and attempts to summarize the main problems involved in the removal of E2 from WWTP by traditional processes, which fundamentally rely on activated sludge and provide an insufficient treatment for E2, as well as advanced oxidation processes (AOPs) that are applied in tertiary section treatment works. Biological processes affect and play an important role in the degradation of E2. However, some investigations have reported that operations that rely on high retention times have low efficiencies. Although advanced treatment technologies are available, their cost and operational considerations do not make them sustainable solutions. Therefore, E2 is still being released into aqueous areas, as shown in this study that investigates results from different countries. E2 is present on the watch list of substances in the Water Framework Directive (WFD) of the European Union since 2013 and the minimum acceptable concentration of it is 0.4 ng/L.
Collapse
|
24
|
Zhou LJ, Zhang BB, Zhao YG, Wu QL. Occurrence, spatiotemporal distribution, and ecological risks of steroids in a large shallow Chinese lake, Lake Taihu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:68-79. [PMID: 26994795 DOI: 10.1016/j.scitotenv.2016.03.059] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
UNLABELLED Steroids have been frequently detected in surface waters, and might pose adverse effects on aquatic organisms. However, little information is available regarding the occurrence and spatiotemporal distribution of steroids in lake environments. In addition to pollution sources, the occurrence and spatiotemporal distribution of steroids in lake environments might be related to lake types (shallow or deep), lake hydrodynamics, and sorption-desorption processes in the water-sediment systems. In this study, the occurrence, spatiotemporal distribution, and ecological risks of 36 steroids in a large shallow lake were evaluated by investigating surface water and sediment samples at 32 sites in Lake Taihu over two seasons. Twelve and 15 analytes were detected in aqueous and sedimentary phases, respectively, with total concentrations ranging from 0.86 to 116ng/L (water) and from 0.82 to 16.2ng/g (sediment, dry weight). Temporal variations of steroid concentrations in the water and sediments were statistically significant, with higher concentrations in winter. High concentrations of steroids were found in the seriously polluted bays rather than in the pelagic zone of the lake. Strong lake currents might mix pelagic waters, resulting in similar concentrations of steroids in the pelagic zone. Mass balance analysis showed that sediments in shallow lakes are in general an important sink for steroids. Steroids in the surface water and sediments of Lake Taihu might pose potential risks to aquatic organisms. Overall, our study indicated that the concentrations and spatiotemporal distribution of steroids in the large shallow lake are influenced simultaneously by pollution sources and lake hydrodynamics. CAPSULE Steroids in the large shallow Lake Taihu showed clear temporal and spatial variations and lake sediments may be a potential sink of steroids.
Collapse
Affiliation(s)
- Li-Jun Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
| | - Bei-Bei Zhang
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Provincial Environmental Monitoring Center, Nanjing, China
| | - Yong-Gang Zhao
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Provincial Environmental Monitoring Center, Nanjing, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; Sino-Danish Center for Education and Science, University of Chinese Academy of Sciences, China.
| |
Collapse
|
25
|
Fabbri E, Franzellitti S. Human pharmaceuticals in the marine environment: Focus on exposure and biological effects in animal species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:799-812. [PMID: 26111460 DOI: 10.1002/etc.3131] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/16/2015] [Accepted: 06/23/2015] [Indexed: 05/17/2023]
Abstract
Marine waters have been poorly investigated for the occurrence of pharmaceutical contamination. Recent data confirm that pharmaceuticals occur widely in marine and coastal environments; therefore, assessment of potential risk to marine species needs further efforts. The present study represents the first extensive review of pharmaceutical contamination in marine environments addressing the effects on the marine biota analyzed at the molecular, cellular, and individual levels. Because pharmaceuticals differ from conventional pollutants, being designed to interact with specific physiological pathways at low doses, the most recent evidence on modes of action and physiological alterations on marine animal species are discussed. Data on spatial distributions of pharmaceuticals in waters and sediments, as well as bioaccumulation rates, are also presented. The present review also seeks to expand knowledge of how the quality of coastal and marine environments could be efficiently monitored to anticipate possible health and environmental risks.
Collapse
Affiliation(s)
- Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, Ravenna, Italy
| | - Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, Ravenna, Italy
| |
Collapse
|
26
|
Johnson EL, Weinersmith KL, Earley RL. Changes in reproductive physiology of mangrove rivulus Kryptolebias marmoratus following exposure to environmentally relevant doses of ethinyl oestradiol. JOURNAL OF FISH BIOLOGY 2016; 88:774-786. [PMID: 26563824 DOI: 10.1111/jfb.12814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 09/18/2015] [Indexed: 06/05/2023]
Abstract
Kryptolebias marmoratus exposed to 4 ng l(-1) of ethinyl oestradiol (EE2) for 30 days experienced significant changes in endogenous 17β-oestradiol (E2) and 11-ketotestosterone (KT) and qualitative changes in gonad morphology. Both hermaphrodites and males showed a significant decrease in E2, whereas only males exhibited a significant decrease in KT. Exposure to EE2 resulted in a decrease in spermatid and spermatocyte density in males and an increase in the number of early stage oocytes in hermaphrodites.
Collapse
Affiliation(s)
- E L Johnson
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, Tuscaloosa, AL 35487, U.S.A
| | - K L Weinersmith
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, TX 77005, U.S.A
| | - R L Earley
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, Tuscaloosa, AL 35487, U.S.A
| |
Collapse
|
27
|
Dauner ALL, Martins CC. Spatial and temporal distribution of aliphatic hydrocarbons and linear alkylbenzenes in the particulate phase from a subtropical estuary (Guaratuba Bay, SW Atlantic) under seasonal population fluctuation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 536:750-760. [PMID: 26254075 DOI: 10.1016/j.scitotenv.2015.07.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/14/2015] [Accepted: 07/20/2015] [Indexed: 06/04/2023]
Abstract
Guaratuba Bay, a subtropical estuary located in the SW Atlantic, is under variable anthropogenic pressure throughout the year. Samples of surficial suspended particulate matter (SPM) were collected at 22 sites during three different periods to evaluate the temporal and spatial variability of aliphatic hydrocarbons (AHs) and linear alkylbenzenes (LABs). These compounds were determined by gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC/MS). The spatial distributions of both compound classes were similar and varied among the sampling campaigns. Generally, the highest concentrations were observed during the austral summer, highlighting the importance of the increased human influence during this season. The compound distributions were also affected by the natural geochemical processes of organic matter accumulation. AHs were associated with petroleum, derived from boat and vehicle traffic, and biogenic sources, related to mangrove forests and autochthonous production. The LAB composition evidenced preferential degradation processes during the austral summer.
Collapse
Affiliation(s)
- Ana Lúcia L Dauner
- Centro de Estudos do Mar da Universidade Federal do Paraná, P.O. Box 61, 83255-976 Pontal do Paraná, PR, Brazil; Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos (PGSISCO) da Universidade Federal do Paraná, P.O. Box 61, 83255-976 Pontal do Paraná, PR, Brazil.
| | - César C Martins
- Centro de Estudos do Mar da Universidade Federal do Paraná, P.O. Box 61, 83255-976 Pontal do Paraná, PR, Brazil.
| |
Collapse
|
28
|
Ke X, Wang C, Zhang H, Zhang Y, Gui S. Characterization of estrogenic receptor agonists and evaluation of estrogenic activity in the sediments of Liaohe River protected areas. MARINE POLLUTION BULLETIN 2015; 100:176-181. [PMID: 26388445 DOI: 10.1016/j.marpolbul.2015.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Abstract
Estrogenic activity of 12 sediment samples from Liaohe River protected areas was evaluated by the recombinant yeast bioassays. The bioassay-derived 17β-estradiol equivalents of crude extracts (Bio-EEQcrudes) were between 52.2 and 207.6pg/g dry weight. The most concerned estrogenic receptor (ER) agonists including estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol (EE2), 4-nonylphenols (4-NP), bisphenol A (BPA), and organochlorine pesticides (OCPs) were determined. The concentrations of E1, E2, E3, EE2, BPA, andΣ10OCPs ranged up to 203.3pg/g, 185.8pg/g, 237.7pg/g, 188.5pg/g, 51.0ng/g, and 3.6ng/g, respectively. Taken together with polarity-based fractionation, in vitro bioassay and chemical analysis, it indicated that E1, E2, and EE2 were the predominant ER agonists and were mainly from the discharge of domestic wastewater and breeding wastewater. Meanwhile, this study showed that the establishment of protected areas had not obviously reduced the ecological risk caused by ER agonists in Liaohe River protected areas sediments.
Collapse
Affiliation(s)
- Xin Ke
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| | - Chunyong Wang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| | - Haijun Zhang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| | - Yun Zhang
- College of Land and Environment, Shenyang Agriculture University, Shenyang 110161, China.
| | - Shaofeng Gui
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| |
Collapse
|
29
|
Adsorption Removal of Environmental Hormones of Dimethyl Phthalate Using Novel Magnetic Adsorbent. ScientificWorldJournal 2015; 2015:903706. [PMID: 26258169 PMCID: PMC4519534 DOI: 10.1155/2015/903706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/16/2015] [Indexed: 12/12/2022] Open
Abstract
Magnetic polyvinyl alcohol adsorbent M-PVAL was employed to remove and concentrate dimethyl phthalate DMP. The M-PVAL was prepared after sequential syntheses of magnetic Fe3O4 (M) and polyvinyl acetate (M-PVAC). The saturated magnetizations of M, M-PVAC, and M-PVAL are 57.2, 26.0, and 43.2 emu g−1 with superparamagnetism, respectively. The average size of M-PVAL by number is 0.75 μm in micro size. Adsorption experiments include three cases: (1) adjustment of initial pH (pH0) of solution to 5, (2) no adjustment of pH0 with value in 6.04–6.64, and (3) adjusted pH0 = 7. The corresponding saturated amounts of adsorption of unimolecular layer of Langmuir isotherm are 4.01, 5.21, and 4.22 mg g−1, respectively. Values of heterogeneity factor of Freundlich isotherm are 2.59, 2.19, and 2.59 which are greater than 1, revealing the favorable adsorption of DMP/M-PVAL system. Values of adsorption activation energy per mole of Dubinin-Radushkevich isotherm are, respectively, of low values of 7.04, 6.48, and 7.19 kJ mol−1, indicating the natural occurring of the adsorption process studied. The tiny size of adsorbent makes the adsorption take place easily while its superparamagnetism is beneficial for the separation and recovery of micro adsorbent from liquid by applying magnetic field after completion of adsorption.
Collapse
|
30
|
Nie M, Yan C, Dong W, Liu M, Zhou J, Yang Y. Occurrence, distribution and risk assessment of estrogens in surface water, suspended particulate matter, and sediments of the Yangtze Estuary. CHEMOSPHERE 2015; 127:109-116. [PMID: 25676496 DOI: 10.1016/j.chemosphere.2015.01.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 01/16/2015] [Indexed: 06/04/2023]
Abstract
The occurrence and distribution of six selected estrogen compounds were investigated in samples of surface water, suspended particulate matter (SPM), and sediment in the Yangtze Estuary and its coastal areas over four seasons. With the exception of 17α-ethinylestradiol (EE2), all estrogens were detected at least once in all three phases with bisphenol A (BPA) and estriol (E3) as the dominant estrogens in all phases. EE2 was not detected in any surface water samples. In addition, the highest total estrogen concentrations were found in January in all phases, which could be due to the low flow conditions and temperature during this season. A significant positive correlation was found between total estrogen concentrations and organic carbon (OC) contents, both in the water phase and solid phase (i.e. SPM and sediment), indicating the vital role played by OC. Based on a yeast estrogen screen (YES) bioassay, the higher estrogenic risk was found in the SPM and sediment phase when compared to the water phase. These results were confirmed by a risk assessment which revealed that the Yangtze Estuary was displayed a low to high risk over the seasons for all selected estrogens.
Collapse
Affiliation(s)
- Minghua Nie
- Key Laboratory of Geographic Information Science of the Ministry of Education, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Department of Geosciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Caixia Yan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Department of Geosciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Junliang Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Department of Geosciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
31
|
Ruan A, Zhao Y, Liu C, Zong F, Yu Z. Effects of 17β-estradiol on emissions of greenhouse gases in simulative natural water body. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:977-982. [PMID: 25639264 DOI: 10.1002/etc.2882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/17/2014] [Accepted: 12/31/2015] [Indexed: 06/04/2023]
Abstract
Environmental estrogens are widely spread across the world and are increasingly thought of as serious contaminators. The present study looks at the influence of different concentrations of 17β-estradiol on greenhouse gas emissions (CO2 , CH4 , and N2 O) in simulated systems to explore the relationship between environmental estrogen-pollution and greenhouse gas emissions in natural water bodies. The present study finds that 17β-estradiol pollution in simulated systems has significant promoting effects on the emissions of CH4 and CO2 , although no significant effects on N2 O emissions. The present study indicates that 17β-estradiol has different effects on the different elements cycles; the mechanism of microbial ecology is under review.
Collapse
Affiliation(s)
- Aidong Ruan
- State Key Laboratory of Hydrology-Water Resources and hydraulic Engineering, Hohai University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
Wang Y, Wang Q, Hu L, Lu G, Li Y. Occurrence of estrogens in water, sediment and biota and their ecological risk in Northern Taihu Lake in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2015; 37:147-156. [PMID: 25117485 DOI: 10.1007/s10653-014-9637-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/17/2014] [Indexed: 06/03/2023]
Abstract
Occurrence of five estrogens, including estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol (EE2) and bisphenol A (BPA) in water, sediment and biota in Northern Taihu Lake, were investigated and their ecological risk was evaluated. Most of the target estrogens were widely distributed in the eight studied sampling sites, and their levels showed a regional trend of Gong Bay > Meiliang Bay > Zhushan Bay. The average concentrations of E1, E2, E3, EE2 and BPA ranged from 3.86 to 64.4 ng l(-1), 44.3 to 64.1 μg kg(-1) dry weight and 58.6 to 115 μg kg(-1) dry weight in water, sediments and biota, respectively. In most cases, the average concentrations of BPA and E2 were higher than those of other estrogens. E1, E3 and EE2 were found to be accumulated in river snails with bioaccumulation factor values as high as 14,204, 35,327 and 20,127 l kg(-1), respectively. E3 was also considered to be accumulated in clams. The evaluation of environmental risk showed that the occurrence of E2 and EE2 in lakes might pose a high risk to aquatic organisms. These findings provide important information for estrogen control and management in the studied area.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Xu W, Yan W, Huang W, Miao L, Zhong L. Endocrine-disrupting chemicals in the Pearl River Delta and coastal environment: sources, transfer, and implications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2014; 36:1095-1104. [PMID: 24817613 DOI: 10.1007/s10653-014-9618-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 04/25/2014] [Indexed: 06/03/2023]
Abstract
A study was conducted to investigate the occurrence and behavior of six endocrine-disrupting chemicals (EDCs) in sewage, river water, and seawater from the Pearl River Delta (PRD). The six EDCs under study were 4-nonylphenol (NP), bisphenol A (BPA), 17α-ethynylestradiol (EE2), estrone (E2), 17β-estradiol (E2), and estriol (E3). These EDCs, predominated by BPA, were found in high levels in the influents and the effluents of sewage treatment plants in the area. The relatively high concentrations (0.23-625 ng/L) of the EDCs detected in the receiving river water suggested that the untreated sewage discharge was a major contributor. The EDCs detected in eight outlets of the Pear River and the Pear River Estuary were in the ranges of 1.2-234 and 0.2-178 ng/L, respectively. The estrogen equivalents in the aquatic environments under study ranged from 0.08 to 4.5 ng/L, with E1 and EE2 being the two predominant contributors. As the fluxes of the EDCs from the PRD region to the nearby ocean are over 500 tons each year, the results of this study point to the potential that Pearl River is a significant source of the EDCs to the local environment there.
Collapse
Affiliation(s)
- Weihai Xu
- CAS Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China,
| | | | | | | | | |
Collapse
|
34
|
Aris AZ, Shamsuddin AS, Praveena SM. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. ENVIRONMENT INTERNATIONAL 2014; 69:104-19. [PMID: 24825791 DOI: 10.1016/j.envint.2014.04.011] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/06/2014] [Accepted: 04/13/2014] [Indexed: 05/17/2023]
Abstract
17α-ethynylestradiol (EE2) is a synthetic hormone, which is a derivative of the natural hormone, estradiol (E2). EE2 is an orally bio-active estrogen, and is one of the most commonly used medications for humans as well as livestock and aquaculture activity. EE2 has become a widespread problem in the environment due to its high resistance to the process of degradation and its tendency to (i) absorb organic matter, (ii) accumulate in sediment and (iii) concentrate in biota. Numerous studies have reported the ability of EE2 to alter sex determination, delay sexual maturity, and decrease the secondary sexual characteristics of exposed organisms even at a low concentration (ng/L) by mimicking its natural analogue, 17β-estradiol (E2). Thus, the aim of this review is to provide an overview of the science regarding EE2, the concentration levels in the environment (water, sediment and biota) and summarize the effects of this compound on exposed biota at various concentrations, stage life, sex, and species. The challenges in respect of EE2 include the extension of the limited database on the EE2 pollution profile in the environment, its fate and transport mechanism, as well as the exposure level of EE2 for better prediction and definition revision of EE2 toxicity end points, notably for the purpose of environmental risk assessment.
Collapse
Affiliation(s)
- Ahmad Zaharin Aris
- Environmental Forensics Research Centre, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Aida Soraya Shamsuddin
- Environmental Forensics Research Centre, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
35
|
López-Jiménez F, Rosales-Marcano M, Rubio S. Restricted access property supramolecular solvents for combined microextraction of endocrine disruptors in sediment and sample cleanup prior to their quantification by liquid chromatography–tandem mass spectrometry. J Chromatogr A 2013; 1303:1-8. [DOI: 10.1016/j.chroma.2013.06.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 11/28/2022]
|
36
|
Combi T, Taniguchi S, Figueira RCL, Mahiques MMD, Martins CC. Spatial distribution and historical input of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in sediments from a subtropical estuary (Guaratuba Bay, SW Atlantic). MARINE POLLUTION BULLETIN 2013; 70:247-252. [PMID: 23499537 DOI: 10.1016/j.marpolbul.2013.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 06/01/2023]
Abstract
This study evaluated the occurrence and distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in 22 surface sediment samples and one core collected in Guaratuba Bay, a large and well-preserved estuary in Southern Atlantic, Brazil. The concentration of PCBs in the superficial sediment samples ranged from <LQ (below the limit of quantification) to 5.62 ng g⁻¹, while the concentration of OCPs ranged from <LQ to 0.74 ng g⁻¹. The spatial distribution of the organochlorine compounds (OCs) suggested that the sources of these contaminants are located outside the bay and are related to human activities on the margins of the two main rivers that discharge in the region. The OCs in the sediment core ranged from <LQ to 0.52 ng g⁻¹ and from <LQ to 1.52 ng g⁻¹ for PCBs and OCPs, respectively. Despite their usage worldwide, the low concentrations of OCs in Guaratuba Bay suggest low input levels, which may represent the background levels for this region.
Collapse
Affiliation(s)
- Tatiane Combi
- Centro de Estudos do Mar da Universidade Federal do Paraná, Caixa Postal 61, 83255-976 Pontal do Paraná, PR, Brazil.
| | | | | | | | | |
Collapse
|