1
|
Milne MH, Helm PA, Munno K, Bhavsar SP, Rochman CM. Microplastics and Anthropogenic Particles in Recreationally Caught Freshwater Fish from an Urbanized Region of the North American Great Lakes. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:77004. [PMID: 39016599 PMCID: PMC11253813 DOI: 10.1289/ehp13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/15/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Microplastics are a pervasive contaminant cycling through food webs-leading to concerns regarding exposure and risk to humans. OBJECTIVES We aimed to quantify and characterize anthropogenic particle contamination (including microplastics) in fish caught for human consumption from the Humber Bay region of Lake Ontario. We related quantities of anthropogenic particles to other factors (e.g., fish size) that may help in understanding accumulation of microplastics in fish. METHODS A total of 45 samples of six fish species collected from Humber Bay in Lake Ontario near Toronto, Ontario, Canada, were examined for anthropogenic particles in their gastrointestinal (GI) tracts and fillets. Using microscopy and spectroscopy, suspected anthropogenic particles were identified and characterized. RESULTS We observed anthropogenic particles in the GI tracts and fillets of all species. Individual fish had a mean ± standard deviation of 138 ± 231 anthropogenic particles, with a single fish containing up to 1,508 particles. GI tracts had 93 ± 226 particles/fish (9.8 ± 32.6 particles/gram), and fillets had 56 ± 61 particles/fish (0.5 ± 0.8 particles/gram). Based on a consumption rate of 2 servings/week, the average yearly human exposure through the consumption of these fish fillets would be 12,800 ± 18,300 particles. DISCUSSION Our findings suggest that consumption of recreationally caught freshwater fish can be a pathway for human exposure to microplastics. The elevated number of particles observed in fish from Humber Bay highlights the need for large-scale geographic monitoring, especially near sources of microplastics. Currently, it is unclear what the effects of ingesting microplastics are for humans, but given that recreationally caught freshwater fish are one pathway for human exposure, these data can be incorporated into future human health risk assessment frameworks for microplastics. https://doi.org/10.1289/EHP13540.
Collapse
Affiliation(s)
- Madeleine H. Milne
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Paul A. Helm
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Keenan Munno
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Satyendra P. Bhavsar
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Chelsea M. Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Jokar Z, Banavi N, Taghizadehfard S, Hassani F, Solimani R, Azarpira N, Dehghani H, Dezhgahi A, Sanati AM, Farjadfard S, Ramavandi B. Marine litter along the shores of the Persian Gulf, Iran. Heliyon 2024; 10:e30853. [PMID: 38765091 PMCID: PMC11101852 DOI: 10.1016/j.heliyon.2024.e30853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
Plastic wastes -including cigarette butts (CBs)- are dangerous for marine ecosystems not only because they contain hazardous chemicals but also because they can finally turn into micro- or even nano-particles that may be ingested by micro- and macro-fauna. Even large pieces of plastics can trap animals. In this research, the pollution status of macroplastics (abundance, size, type, and colour) and cigarette butts (CBs, number/m2) on the northern coasts of the Persian Gulf has been investigated. A total of 19 stations were explored in Bushehr province (Iran), which covers a length equivalent to 160 km of the Persian Gulf coastline. Among the collected plastic waste (2992 items), disposable mugs were the most frequent (18 %). Plastics with sizes 5-15 cm were the most abundant, and the most common type of plastic was PET (P-value <0.05). The origin of most macroplastics was domestic (2269 items). According to the Index of Clean Coasts (ICC), most surveyed beaches were extremely dirty. The average number and density of CBs in this study were 220 and 2.45 items/m2, respectively. Household litter was the most abundant type of waste in the studied beaches, and this problem can be better managed by training and improving the waste disposal culture. In general, it is suggested that an integrated and enhanced management for fishing, sewage and surface water disposal, and sandy recreational beaches be implemented in Bushehr to control plastic waste.
Collapse
Affiliation(s)
- Zahra Jokar
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Nafiseh Banavi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Sara Taghizadehfard
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Fatemeh Hassani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Rezvan Solimani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Nahid Azarpira
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Hanieh Dehghani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Atefeh Dezhgahi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Sima Farjadfard
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| |
Collapse
|
3
|
Köktürk M, Özgeriş FB, Atamanalp M, Uçar A, Özdemir S, Parlak V, Duyar HA, Alak G. Microplastic-induced oxidative stress response in turbot and potential intake by humans. Drug Chem Toxicol 2024; 47:296-305. [PMID: 36656072 DOI: 10.1080/01480545.2023.2168690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 01/20/2023]
Abstract
Microplastic (MP) pollution has become a health concern subject in recent years. Althoughann increasing number of studies about the ingestion of microplastics by fish, research on the oxidative stress response to MPs in natural environments is quite limited. In this study, the identification and characterization of MPs in gill (G), muscle tissues (M), and gastrointestinal tract (GI) of turbot (Scophthalmus maximus) were evaluated. Oxidative damage of MPs on the brain (B), liver (L), gill (G), and muscle (M) tissues as well as their effect on superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), paraoxonase (PON), arylesterase (AR) myeloperoxidase (MPO), and malondialdehyde (MDA) biomarkers were evaluated. The potential transmission of MPs from muscle tissues to humans was examined. Results showed that gills contain the highest amounts of MPs, ethylene propylene is the most dominant polymer type, black and blue are the most common MP color, fiber is the most common shape, and 50-200 µm is the most common MP size. Results showed that MPs cause oxidative stress of tissues with inhibiting effect on enzyme activities and promoting impact on lipid peroxidation. The oxidative damage mostly affected the liver (detoxification organ) followed by gill tissue. The intake of MPS in the European Union was estimated by EFSA as 119 items/year, while in Turkey it is 47.88 items/year. This study shows that more research is needed in terms of ecosystem health and food chain safety. The risk assessment of MPs in living organisms and environmental matrices including food safety and human health should be considered a public health issue.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir University, Igdir, Turkey
| | - Fatma Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Arzu Uçar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Süleyman Özdemir
- Department of Fisheries, Faculty of Fisheries, Sinop University, Sinop, Turkey
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Hünkar Avni Duyar
- Department of Seafood Processing Technology, Faculty of Fisheries, Sinop University, Sinop, Turkey
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| |
Collapse
|
4
|
Badola N, Sobhan F, Chauhan JS. Microplastics in the River Ganga and its fishes: Study of a Himalayan River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165924. [PMID: 37527715 DOI: 10.1016/j.scitotenv.2023.165924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/06/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
The River Ganga has been explored for microplastics (MPs) majorly in the lower or middle course, while the upper course from where the river starts its journey remains untouched. This study investigates the occurrence and distribution of MPs in the river environment (water and sediment) and common fishes inhabiting the upper stretch of River Ganga in the Uttarakhand state of India. A volume-reduce method by using sieve filtration was used to take water and sediment samples from the study area while fish samples were collected using net method. The samples underwent alkali digestion, microscopic examination, and chemical analysis using Fourier Transformed Infrared Spectroscopy (FTIR). An average of 118.5 ± 49.65 particles per 1000 L and 131.5 ± 53.60 particles/kg dry weight were found in water and sediment respectively. While in the fishes, Tor tor, Schizothorax richardsonii, Labeo dero and Gara gotyla gotyla MPs were 53.13 ± 63.77, 36.33 ± 22.34, 15.42 ± 9.33 and 12.63 ± 5.93 particles/individual respectively. A positive correlation was observed between the number of MPs in fish and their body length, weight, and gut weight, while no correlation was found between feeding habit and MP accumulation. The majority of MPs detected were fibers ranging from 100 μm to 1 mm in size. Polymer types varied among water, sediment, and fish samples, with polyethylene (PE) predominant in water, polypropylene (PP) dominant in sediment, and polyethylene terephthalate (PET) and polystyrene (PS) most abundant in fish samples.
Collapse
Affiliation(s)
- Neha Badola
- Aquatic Ecology Lab, Department of Himalayan Aquatic Biodiversity, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar-Garhwal, Uttarakhand 246174, India
| | - Faisal Sobhan
- Department of Oceanography, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Jaspal Singh Chauhan
- Aquatic Ecology Lab, Department of Himalayan Aquatic Biodiversity, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar-Garhwal, Uttarakhand 246174, India.
| |
Collapse
|
5
|
Wang C, Sun D, Junaid M, Xie S, Xu G, Li X, Tang H, Zou J, Zhou A. Effects of tidal action on the stability of microbiota, antibiotic resistance genes, and microplastics in the Pearl River Estuary, Guangzhou, China. CHEMOSPHERE 2023; 327:138485. [PMID: 36966930 DOI: 10.1016/j.chemosphere.2023.138485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, the 16S rRNA gene amplicon sequencing technique was used to explore the microbial diversity and differences in the water environment of the Pearl River Estuary in Nansha District with various land use types such as the aquaculture area, industrial area, tourist area, agricultural plantation, and residential area. At the same time, the quantity, type, abundance, and distribution of two types of emerging environmental pollutants, antibiotic resistance genes (ARGs) and microplastics (MPs), are explored in the water samples from different functional areas. The results show that the dominant phyla in the five functional regions are Proteobacteria, Actinobacteria and Bacteroidetes, and the dominant genera are Hydrogenophaga, Synechococcus, Limnohabitans and Polynucleobacter. A total of 248 ARG subtypes were detected in the five regions, belonging to nine classes of ARGs (Aminoglycoside, Beta_Lactamase, Chlor, MGEs, MLSB, Multidrug, Sul, Tet, Van). Blue and white were the dominant MP colors in the five regions; 0.5-2 mm was the dominant MP size, and cellulose, rayon, and polyester comprised the highest proportion of the plastic polymers. This study provides the basis for understanding the environmental microbial distribution in estuaries and the prevention of environmental health risks from ARGs and microplastics.
Collapse
Affiliation(s)
- Chong Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Di Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 16 510070, China.
| | - Xiang Li
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI C1A5T1, Canada.
| | - Huijuan Tang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Aiguo Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China; Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI C1A5T1, Canada.
| |
Collapse
|
6
|
Malli A, Shehayeb A, Yehya A. Occurrence and risks of microplastics in the ecosystems of the Middle East and North Africa (MENA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64800-64826. [PMID: 37086319 PMCID: PMC10122206 DOI: 10.1007/s11356-023-27029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The ubiquitous nature of microplastics (MPs) in nature and the risks they pose on the environment and human health have led to an increased research interest in the topic. Despite being an area of high plastic production and consumption, studies on MPs in the Middle East and North Africa (MENA) region have been limited. However, the region witnessed a research surge in 2021 attributed to the COVID-19 pandemic. In this review, a total of 97 studies were analyzed based on their environmental compartments (marine, freshwater, air, and terrestrial) and matrices (sediments, water columns, biota, soil, etc.). Then, the MP concentrations and polymer types were utilized to conduct a risk assessment to provide a critical analysis of the data. The highest MP concentrations recorded in the marine water column and sediments were in the Mediterranean Sea in Tunisia with 400 items/m3 and 7960 items/kg of sediments, respectively. The number of MPs in biota ranged between 0 and 7525 per individual across all the aquatic compartments. For the air compartment, a school classroom had 56,000 items/g of dust in Iran due to the confined space. Very high risks in the sediment samples (Eri > 1500) were recorded in the Caspian Sea and Arab/Persian Gulf due to their closed or semi-closed nature that promotes sedimentation. The risk factors obtained are sensitive to the reference concentration which calls for the development of more reliable risk assessment approaches. Finally, more studies are needed in understudied MENA environmental compartments such as groundwater, deserts, and estuaries.
Collapse
Affiliation(s)
- Ali Malli
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Ameed Shehayeb
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
- CIRAIG, Department of Chemical Engineering, Polytechnique Montréal, Montréal, Canada
| | - Alissar Yehya
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA, Cambridge, USA
| |
Collapse
|
7
|
Yootoum A, Jantanasakulwong K, Rachtanapun P, Moukamnerd C, Chaiyaso T, Pumas C, Tanadchangsaeng N, Watanabe M, Fukui T, Insomphun C. Characterization of newly isolated thermotolerant bacterium Cupriavidus sp. CB15 from composting and its ability to produce polyhydroxyalkanoate from glycerol. Microb Cell Fact 2023; 22:68. [PMID: 37046250 PMCID: PMC10091600 DOI: 10.1186/s12934-023-02059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/09/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND This study aimed to isolate a novel thermotolerant bacterium that is capable of synthesizing polyhydroxyalkanoate from glycerol under high temperature conditions. RESULTS A newly thermotolerant polyhydroxyalkanoate (PHA) producing bacterium, Cupriavidus sp. strain CB15, was isolated from corncob compost. The potential ability to synthesize PHA was confirmed by detection of PHA synthase (phaC) gene in the genome. This strain could produce poly(3-hydroxybutyrate) [P(3HB)] with 0.95 g/L (PHA content 75.3 wt% of dry cell weight 1.24 g/L) using glycerol as a carbon source. The concentration of PHA was enhanced and optimized based on one-factor-at-a-time (OFAT) experiments and response surface methodology (RSM). The optimum conditions for growth and PHA biosynthesis were 10 g/L glycerol, 0.78 g/L NH4Cl, shaking speed at 175 rpm, temperature at 45 °C, and cultivation time at 72 h. Under the optimized conditions, PHA production was enhanced to 2.09 g/L (PHA content of 74.4 wt% and dry cell weight of 2.81 g/L), which is 2.12-fold compared with non-optimized conditions. Nuclear magnetic resonance (NMR) analysis confirmed that the extracted PHA was a homopolyester of 3-hydyoxybutyrate. CONCLUSION Cupriavidus sp. strain CB15 exhibited potential for cost-effective production of PHA from glycerol.
Collapse
Affiliation(s)
- Anuyut Yootoum
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, 155 Mae Hia, Mueang, Chiang Mai, 50100, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, 155 Mae Hia, Mueang, Chiang Mai, 50100, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Churairat Moukamnerd
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, 155 Mae Hia, Mueang, Chiang Mai, 50100, Thailand
| | - Thanongsak Chaiyaso
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, 155 Mae Hia, Mueang, Chiang Mai, 50100, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huaykaew Road, Suthep, Mueang, Chiang Mai, 50200, Thailand
| | - Nuttapol Tanadchangsaeng
- College of Biomedical Engineering, Rangsit University, 52/347 Lak-Hok, Pathumthani, 12000, Thailand
| | - Masanori Watanabe
- Graduate School of Agriculture, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-Ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Chayatip Insomphun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, 155 Mae Hia, Mueang, Chiang Mai, 50100, Thailand.
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
8
|
Kor K, Jannat B, Ershadifar H, Ghazilou A. Microplastic occurrence in finfish and shellfish from the mangroves of the northern Gulf of Oman. MARINE POLLUTION BULLETIN 2023; 189:114788. [PMID: 36871342 DOI: 10.1016/j.marpolbul.2023.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
This study was conducted to assess microplastic (MP) pollution in some aquatic animals inhabiting planted and natural mangrove swamps in the northern Gulf of Oman. The KOH-NaI solution was used to retrieve MPs from the gastrointestinal tracts of animals. The highest MP prevalence was recorded in crabs (41.65 %) followed by fish (33.89 %) and oysters (20.8 %). The abundance of MPs in examined animals varied from zero in Sphyraena putnamae to 11 particles in a Rhinoptera javanica specimen. When polluted-only animals were considered, the mean abundance of MPs significantly varied among species and between locations. The mean density of ingested MPs was higher in the planted mangrove animals (1.79 ± 2.89 vs. 1.21 ± 2.25 n/individual; mean ± SD). Among the examined fish species, R. javanica ingested the highest number of MPs (3.83 ± 3.93 n/individual; mean ± SD). The polyethylene/ polypropylene fragments or fibers of average 1900 μm size were recorded as predominant (>50 % occurrence) MP particles.
Collapse
Affiliation(s)
- Kamalodin Kor
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran
| | - Behrooz Jannat
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Hamid Ershadifar
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran
| | - Amir Ghazilou
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran.
| |
Collapse
|
9
|
Keerthika K, Padmavathy P, Rani V, Jeyashakila R, Aanand S, Kutty R, Tamilselvan R, Subash P. Microplastics accumulation in pelagic and benthic species along the Thoothukudi coast, South Tamil Nadu, India. MARINE POLLUTION BULLETIN 2023; 189:114735. [PMID: 36842282 DOI: 10.1016/j.marpolbul.2023.114735] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/04/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Microplastics contamination poses a serious threat to marine biota, so the current study was carried out to assess the incidence of microplastics in the gastrointestinal tracts of pelagic and benthic species collected from the six sampling sites along Thoothukudi region from January 2021 to December 2021. In the present study, benthic species (0.67 ± 0.14 MPs/indiv) showed a higher abundance of microplastics than pelagic species (0.53 ± 0.11 MPs/indiv). The dominance of microplastic shapes, sizes, colours and polymers found were comparable among both pelagic and benthic species, this being fibre (27.56% and 48.33%), 0.5-1mm (39.78% and 42.94%), blue (50% and 40.85%), and PE (46.24% and 48.18%), respectively. The present study showed that microplastics are ubiquitous in both habitats, which raises serious concerns for public health. Hence, measures focusing on reducing local emissions and plastic waste disposal should be implemented to control microplastic pollution in the marine environment.
Collapse
Affiliation(s)
- Kalaiselvan Keerthika
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India.
| | - Pandurengan Padmavathy
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Velu Rani
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | | | - Samraj Aanand
- Erode Bhavanisagar Centre for Sustainable Aquaculture, Erode, Tamil Nadu, India
| | - Ranjeet Kutty
- Department of Aquatic Environment Management, College of Fisheries, Kerala University of Fisheries and Ocean studies, Kochi, Kerala, India
| | - Rajarajan Tamilselvan
- Department of Fisheries Biology and Resource Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Palaniappan Subash
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| |
Collapse
|
10
|
Microplastics (MPs) in marine food chains: Is it a food safety issue? ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:101-140. [PMID: 36863833 DOI: 10.1016/bs.afnr.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enormous usage of plastic over the last seven decades has resulted in a massive quantity of plastic waste, much of it eventually breaking down into microplastic (MP) and nano plastic (NP). The MPs and NPs are regarded as emerging pollutants of serious concern. Both MPs and NPs can have a primary or secondary origin. Their ubiquitous presence and ability to sorb, desorb, and leach chemicals have raised concern over their presence in the aquatic environment and, particularly, the marine food chain. MPs and NPs are also considered vectors for pollutant transfer along with the marine food chain, and people who consume seafood have began significant concerns about the toxicity of seafood. The exact consequences and risk of MP exposure to marine foods are largely unknown and should be a priority research area. Although several studies have documented an effective clearance mechanism by defecation, significant aspect has been less emphasized for MPs and NPs and their capability to translocate in organs and clearance is not well established. The technological limitations to study these ultra-fine MPs are another challenge to be addressed. Therefore, this chapter discusses the recent findings of MPs in different marine food chains, their translocation and accumulations potential, MPs as a critical vector for pollutant transfer, toxicology impact, cycling in the marine environment and seafood safety. Besides, the concerns and challenges that are overshadowed by findings for the significance of MPs were covered.
Collapse
|
11
|
Chiba R, Fujinuma R, Yoshitomi T, Shimizu Y, Kobayashi M. Ingestion of rubber tips of artificial turf fields by goldfish. Sci Rep 2023; 13:1344. [PMID: 36693897 PMCID: PMC9873930 DOI: 10.1038/s41598-023-28672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Marine microplastics are one of the global environmental issues. The present study examined whether rubber tips of artificial sports fields could be marine microplastics. We observed the migration of rubber tips from the artificial turf field to the surrounding ditch connected to sewer pipes and then examined the ingestion of rubber tips using the goldfish Carassius auratus. The rubber tips found in sediments in the ditch suggest that the rubber tips could be sent to the river and released into the ocean. The goldfish ingested rubber tips with or without fish feed, and rubber tips were found in the intestine. However, the fish discharged the rubber tips within 48 h after ingestion. These results indicate that ingestion of the rubber tips was not accidental but an active behavior. Therefore, artificial turf sports fields could be a source of marine microplastics and may cause hazardous effects on wild fishes through ingestion.
Collapse
Affiliation(s)
- Rihito Chiba
- Department of Natural Sciences, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo, 181-8585, Japan
| | - Ryosuke Fujinuma
- Department of Natural Sciences, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo, 181-8585, Japan
| | - Tomoyasu Yoshitomi
- Field Studies Institute for Environmental Education, Tokyo Gakugei University, 4-1-1 Nukuikita-Machi, Koganei, Tokyo, 184-8501, Japan
| | - Yasuo Shimizu
- Department of Physical Education, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo, 181-8585, Japan
| | - Makito Kobayashi
- Department of Natural Sciences, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo, 181-8585, Japan.
| |
Collapse
|
12
|
Xiao X, Liu X, Mei T, Xu M, Lu Z, Dai H, Pi F, Wang J. Estimation of contamination level in microplastic-exposed crayfish by laser confocal micro-Raman imaging. Food Chem 2022; 397:133844. [PMID: 35932688 DOI: 10.1016/j.foodchem.2022.133844] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Abstract
Crayfish is one of the most important freshwater aquaculture species in China. The potential risks of crayfish consumption caused by environmental microplastic pollution have attracted much attention. In this study, a total of 72 crayfish samples were exposed to the microplastic concentrations of 1 mg/L, 3 mg/L, and 9 mg/L for 7, 14, and 28 days, and microplastic contamination levels in crayfish were then explored by laser confocal micro-Raman (LCM-Raman) imaging and scanning electron microscope (SEM). LCM-Raman imaging showed better performance in microplastics identification. Besides, the average percentage of the contaminated area in visualized LCM-Raman images was used to quantitatively assess contamination levels. Following 28 days of exposure to 9 mg/L microplastics, microplastic accumulation reached about 13,000 particles per crayfish. The results confirmed that LCM-Raman imaging combined with image processing technology could be used to construct a high-performance analytical strategy for the assessment of microplastic contamination in crayfish.
Collapse
Affiliation(s)
- Xiaofeng Xiao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Xiaodan Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, People's Republic of China
| | - Tingna Mei
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Mengting Xu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Zelin Lu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Huang Dai
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, People's Republic of China
| | - Fuwei Pi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Jiahua Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, People's Republic of China.
| |
Collapse
|
13
|
Song K, Du W, Ma X, Chen Y, Sun Y, Zhang T, Huang W, Feng Z. Accumulation of microplastics in fugu (Takifugu bimaculatus): A comparative study between fishing grounds and aquafarms. MARINE POLLUTION BULLETIN 2022; 185:114200. [PMID: 36272317 DOI: 10.1016/j.marpolbul.2022.114200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) in fish have attracted attention recently, for their ecological and food safety risks. However, knowledge gaps still exist regarding MPs in fugu, a special poisonous but precious seafood, especially that accumulated in its tissues. Accordingly, this study investigated the characteristics of MPs in cultured Takifugu bimaculatus which raised on three aquafarms and in wild individuals from three fishing grounds. More than 98.85 % of T. bimaculatus were contaminated by MPs and the average MPs abundance in wild fugu (4.25 ± 2.63 items/individual) was lower than that of cultured fugu (7.91 ± 2.16 items/individual). The abundance of MPs in fugu's tissues under different life patterns shows significant differences. There were marked differences in size of MPs presented in various tissues. This study adds to the knowledge on MPs accumulation in the tissues of wild and cultured fugu, providing warnings about its transmission and ecological risks in the food chain.
Collapse
Affiliation(s)
- Kexin Song
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Wengang Du
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Xiaona Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Yangjun Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Yixin Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Tao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China.
| |
Collapse
|
14
|
Alak G, Köktürk M, Ucar A, Parlak V, Kocaman EM, Atamanalp M. Thermal processing implications on microplastics in rainbow trout fillet. J Food Sci 2022; 87:5455-5466. [DOI: 10.1111/1750-3841.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Gonca Alak
- Department of Seafood Technology Faculty of Fisheries Ataturk University Erzurum Turkey
| | - Mine Köktürk
- Department of Organic Farming School of Applied Science Iğdır University ğdır Turkey
| | - Arzu Ucar
- Department of Aquaculture Faculty of Fisheries Ataturk University Erzurum Turkey
| | - Veysel Parlak
- Department of Aquaculture Faculty of Fisheries Ataturk University Erzurum Turkey
| | - Esat Mahmut Kocaman
- Department of Aquaculture Faculty of Fisheries Ataturk University Erzurum Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture Faculty of Fisheries Ataturk University Erzurum Turkey
| |
Collapse
|
15
|
Al-Yaqout A, Nithyanandan M, Al-Yamani F, Al-Kandari M, Al-Roumi M, Al-Baz A. WITHDRAWN: Sea cucumbers of the Arabian Peninsula and Iran - A review of historical and current research trends. Saudi J Biol Sci 2022; 29:102450. [PMID: 37065713 PMCID: PMC10091390 DOI: 10.1016/j.sjbs.2021.04.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022] Open
Abstract
Sea cucumbers are benthic marine invertebrates with immense ecological and commercial value. Processed sea cucumbers known as "Beche-de-mer" are a delicacy in southeast Asian countries with an ever-increasing demand depleting wild stocks on a global scale. Aquaculture techniques are well developed for commercially important species (eg. Holothuria scabra) to aid in conservation and trade. In the Arabian Peninsula and Iran, where the major land mass is surrounded by marginal seas (Arabian/Persian Gulf, Gulf of Oman, Arabian Sea, Gulf of Aden, and Red Sea), studies on sea cucumbers are rather limited and its economic value is underestimated. Historical and current research trends indicate impoverished diversity (82 species) due to environmental extremes. Artisanal fisheries exist for the sea cucumbers of Iran, Oman, and Saudi Arabia, with Yemen and United Arab Emirates (UAE) playing a key role in collection and export to Asian countries. Stock assessment and data on export indicates depletion of natural stocks in Saudi Arabia and Oman. Aquaculture trials of high value species (H. scabra) were successful in Saudi Arabia, Oman and Iran with prospects for further expansion. Research on ecotoxicological properties and bioactive substances conducted in Iran demonstrates an immense research potential. Molecular phylogeny, biology, use in bioremediation, and characterisation of bioactive compounds were identified as potential gaps in research. Expanding aquaculture operations could revive exports and recuperate damaged stocks through sea ranching. Furthermore, regional cooperation, networking, training, and capacity building could help fill the gaps in sea cucumber research, which will aid in its effective conservation and management.
Collapse
Affiliation(s)
- Amani Al-Yaqout
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 1638, Salmiya 22017, Kuwait
| | - Manickam Nithyanandan
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 1638, Salmiya 22017, Kuwait
| | - Faiza Al-Yamani
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 1638, Salmiya 22017, Kuwait
| | - Mohammad Al-Kandari
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 1638, Salmiya 22017, Kuwait
| | - Musaad Al-Roumi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 1638, Salmiya 22017, Kuwait
| | - Ali Al-Baz
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 1638, Salmiya 22017, Kuwait
| |
Collapse
|
16
|
Pappoe C, Palm LMND, Denutsui D, Boateng CM, Danso-Abbeam H, Serfor-Armah Y. Occurrence of microplastics in gastrointestinal tract of fish from the Gulf of Guinea, Ghana. MARINE POLLUTION BULLETIN 2022; 182:113955. [PMID: 35878475 DOI: 10.1016/j.marpolbul.2022.113955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Over the past decades, there has been a growing concern about microplastics pollution in global aquatic habitats and its potential impact on human health. This study was carried out to determine the presence of microplastics in fish of economic importance in Ghana. Microplastics were found to be abundant in all investigated samples, with 68 % of the fishes contaminated with microplastics and a total of 133 plastic items identified in the fish. The presence of fibers, black coloured particles, and microplastics in the size range of 0.5-1.0 mm was the most abundant in the samples examined. Three polymers specifically, polyethylene, polyvinyl acetate, and polyamide were identified in the study. The presence of microplastics in the fishes investigated may pose severe ecological and health concerns, and hence comprehensive policies targeted at preventing plastic pollution of Ghana's maritime environment is warranted.
Collapse
Affiliation(s)
| | - Linda Maud N-D Palm
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana; Environmental Resources Research Centre, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Ghana
| | - Dzifa Denutsui
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana; Environmental Resources Research Centre, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Ghana
| | - Charles Mario Boateng
- Department of Marine and Fisheries Sciences, University of Ghana, P. O. Box LG 99, Accra, Ghana
| | - Harriet Danso-Abbeam
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana; Environmental Resources Research Centre, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Ghana.
| | - Yaw Serfor-Armah
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana
| |
Collapse
|
17
|
Al-Thani NA, Al-Ansari T, Haouari M. Integrated TOPSIS-COV approach for selecting a sustainable PET waste management technology: A case study in Qatar. Heliyon 2022; 8:e10274. [PMID: 36061036 PMCID: PMC9434055 DOI: 10.1016/j.heliyon.2022.e10274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/02/2022] [Accepted: 08/09/2022] [Indexed: 10/28/2022] Open
|
18
|
Park TJ, Kim MK, Lee SH, Lee YS, Kim MJ, Song HY, Park JH, Zoh KD. Occurrence and characteristics of microplastics in fish of the Han River, South Korea: Factors affecting microplastic abundance in fish. ENVIRONMENTAL RESEARCH 2022; 206:112647. [PMID: 34979120 DOI: 10.1016/j.envres.2021.112647] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
This study examined the abundance of microplastics (MPs) in 106 fish from 22 species inhabiting three sites of the Han River, South Korea. In total, 1753 MPs from 106 fish samples were identified with an average abundance of 15.60 ± 13.45 MPs per individual fish (MPs indiv-1) in the North Han River, 16.35 ± 12.32 MPs indiv-1 in the South Han River, and 20.14 ± 10.01 MPs indiv-1 in downstream of the Han River, indicating that the fish in the downstream of the Han River was the most contaminated by MPs. The dominant size of MPs detected in fish ranged between 0.1 and 0.2 mm, and the most common polymer types found in fish were polypropylene (PP) (≥40%) and polyethylene (PE) (≥23%), followed by polytetrafluoroethylene (PTFE) (≥16%) at all sampling locations. A significant correlation was observed between the log-transformed number of MPs with log-transformed fish length (p < 0.01) and with log-transformed fish weight (p < 0.01). The Kruskal-Wallis test disclosed a significant difference in the number of MPs among the feeding habits (p < 0.01), indicating that omnivorous and insectivorous fish contained more MPs than carnivorous and herbivorous fish. In addition, fish habitat result showed that pelagic fish contained a higher level of MPs than demersal fish, but no significant differences in the number of MPs among fish habitats were observed (p > 0.05).
Collapse
Affiliation(s)
- Tae-Jin Park
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, Republic of Korea; Department of Environmental Health Science, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Moon-Kyung Kim
- Institute of Health & Environment, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hyun Lee
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, Republic of Korea
| | - Young-Sun Lee
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, Republic of Korea
| | - Mun-Ju Kim
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, Republic of Korea
| | - Ha-Yoon Song
- Inland Fisheries Research Institute, National Institute of Fisheries Science, Gapyeong-gun, Gyeonggi-do, Republic of Korea
| | - Ji-Hyoung Park
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Incheon, Republic of Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Science, School of Public Health, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Nakano R, Gürses RK, Tanaka Y, Ishida Y, Kimoto T, Kitagawa S, Iiguni Y, Ohtani H. Pyrolysis-GC-MS analysis of ingested polystyrene microsphere content in individual Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152981. [PMID: 35026267 DOI: 10.1016/j.scitotenv.2022.152981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) pollution in the aquatic environment is a cause for increasing concern. However, analyzing MPs ingested by small organisms, such as zooplankton, is difficult because of the low content and small size of the ingested MPs. We attempted to determine the content of ingested MPs in individual zooplankton using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). To establish zooplankton model of MP ingestion, individual Daphnia magna were cultivated separately in microplate cells with polystyrene (PS) microspheres (10 μm in diameter, 245,000 particles, 135 μg) under different conditions. To prepare calibration curves for determining ingested PS content, approximately 100-150 μg of commercially available Daphnia-based powdered fish food, roughly corresponding to the weight of a single D. magna organism, was mixed with PS microspheres (0.005-26 μg) and analyzed using Py-GC-MS at 600 °C. In the resulting pyrograms, peaks of the styrene monomer and trimer from PS were detected, and linear relationships were obtained between the relative peak area and the amount of added PS. Finally, the cultivated zooplankton were individually subjected to Py-GC-MS analysis, and the ingested PS content in each zooplankton was successfully determined. Individual zooplankton cultured with PS in the absence of food ingested 2.3-7.9 μg of PS particles, whereas that in the presence of food (Chlorella vulgaris) ingested only 0.1-0.2 μg of PS particles. This result suggests that zooplankton might preferentially ingest ordinary food when both food and MPs are present, although further systematic studies are necessary to validate this observation.
Collapse
Affiliation(s)
- Risa Nakano
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Rıdvan Kaan Gürses
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Yuji Tanaka
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Yasuyuki Ishida
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | | | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Yoshinori Iiguni
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Hajime Ohtani
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan.
| |
Collapse
|
20
|
Ferrante M, Pietro Z, Allegui C, Maria F, Antonio C, Pulvirenti E, Favara C, Chiara C, Grasso A, Omayma M, Gea OC, Banni M. Microplastics in fillets of Mediterranean seafood. A risk assessment study. ENVIRONMENTAL RESEARCH 2022; 204:112247. [PMID: 34678256 DOI: 10.1016/j.envres.2021.112247] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are considered as emergent threat to human health. No complete data still exists on MPs presence in fish tissue and their transmission to humans. The present study aims to detect and quantify the presence of MPs (<3 μm) in several edible seafood (Sardina pilchardus, wild and farmed Sparus aurata, Mullus surmuletus, Solea solea and musselMytilus galloprovincialis) from the south coast of Mediterranean Sea. MPs were detected through an innovative extraction method coupled to the SEM-EDX technology. The Estimated Daily Intakes (EDIs) for adults and children for each species were calculated. The higher median level (IQR) of MPs (9.09E+04) was found inM. surmuletus. Conversely, the lower median (IQR) level was observed in S. pilchardus (7.04E+04). The smallest and biggest median (IQR)diameter of MPs (1.8 and 2.5 μm) were identified in M. galloprovincialisand S. solea, respectively. The highest EDIs (25.50E+03; 48.09E+03) arefor ingestion of farmedS. auratarespectively for adults and children. Instead, the lowest EDIs (2.37E+02; 4.48E+02) are due to M. galloprovincialisingestion for adults and children, respectively. Our data should be carefully considered in view of the direct exposure of humans to plastic particles under 3 μm through seafood consumption to better manage the related risks.
Collapse
Affiliation(s)
- Margherita Ferrante
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies G. F. Ingrassia, Catania University, Via Santa Sofia 87, 95123, Catania, Italy
| | - Zuccarello Pietro
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies G. F. Ingrassia, Catania University, Via Santa Sofia 87, 95123, Catania, Italy
| | - Chaima Allegui
- Laboratory of Biochemistry and Environmental Toxicology, Sousse University, Chott-Mariem, 4042, Sousse, Tunisia, Higher Institute of Biotechnology, Monastir University, Tunisia
| | - Fiore Maria
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies G. F. Ingrassia, Catania University, Via Santa Sofia 87, 95123, Catania, Italy
| | - Cristaldi Antonio
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies G. F. Ingrassia, Catania University, Via Santa Sofia 87, 95123, Catania, Italy
| | - Eloise Pulvirenti
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies G. F. Ingrassia, Catania University, Via Santa Sofia 87, 95123, Catania, Italy
| | - Claudia Favara
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies G. F. Ingrassia, Catania University, Via Santa Sofia 87, 95123, Catania, Italy
| | - Copat Chiara
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies G. F. Ingrassia, Catania University, Via Santa Sofia 87, 95123, Catania, Italy
| | - Alfina Grasso
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies G. F. Ingrassia, Catania University, Via Santa Sofia 87, 95123, Catania, Italy
| | - Missawi Omayma
- Laboratory of Biochemistry and Environmental Toxicology, Sousse University, Chott-Mariem, 4042, Sousse, Tunisia, Higher Institute of Biotechnology, Monastir University, Tunisia
| | - Oliveri Conti Gea
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies G. F. Ingrassia, Catania University, Via Santa Sofia 87, 95123, Catania, Italy.
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Sousse University, Chott-Mariem, 4042, Sousse, Tunisia, Higher Institute of Biotechnology, Monastir University, Tunisia.
| |
Collapse
|
21
|
Uddin S, Fowler SW, Habibi N, Behbehani M. Micro-Nano Plastic in the Aquatic Environment: Methodological Problems and Challenges. Animals (Basel) 2022; 12:ani12030297. [PMID: 35158621 PMCID: PMC8833669 DOI: 10.3390/ani12030297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Microplastic research has become a buzz word. It is seen as one of the most pressing issues of Anthropocene contamination. There is certainly no doubt about the ubiquitous presence of microplastic (MP) in almost all environmental matrices. However, the validity of considering them as a vector for contaminants needs some reconsideration, there are other more potent pathways. Their effect on marine biota also calls for some realistic experiments with environmental concentrations of MP and nanoplastic (NP). It has been observed that in most published literature, polymer characterization is performed. Is it necessary to do, or will merely finding and confirming the particle as plastic suffice for environmental research? Harmonization of protocols is necessary, and there is likely a need for some inter-laboratory comparison exercises in order to produce comparable data and reliable assessments across regions. Samples collected from the same area using different techniques show an order of magnitude difference in MP concentration. The issue of nanoplastic is more contentious; are we technologically ready to identify NP in environmental samples?
Collapse
Affiliation(s)
- Saif Uddin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (N.H.); (M.B.)
- Correspondence: ; Tel.: +965-24989224
| | - Scott W. Fowler
- School of Maine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA;
- Institute Bobby, 8 Allée des Orangers, 06320 Cap d’Ail, France
| | - Nazima Habibi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (N.H.); (M.B.)
| | - Montaha Behbehani
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (N.H.); (M.B.)
| |
Collapse
|
22
|
Atamanalp M, Köktürk M, Parlak V, Ucar A, Arslan G, Alak G. A new record for the presence of microplastics in dominant fish species of the Karasu River Erzurum, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7866-7876. [PMID: 34480701 DOI: 10.1007/s11356-021-16243-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
It is known that microplastics (MPs) are increasingly detected in aquatic environments (sea and fresh water), and the presence of these pollutants have worrying potential effects on the biota. This study is the first research to measure and characterize MPs in freshwater ecosystems (inland waters) in Turkey. Accordingly, the identification and characterization of MPs in the gastrointestinal systems of fish by making samples of three species [chub (Squalius cephalus), common carp (Cyprinus carpio), and mossul bleak (Alburnus mossulensis)] of the carp family living in Karasu River in Erzurum. Hydrogen peroxide application and Fourier transform infrared-attenuated total reflectance (ATR-FTIR) analyses were done for this purpose. In the obtained results, 232 microplastics were found in all three fish gastrointestinal systems. While the highest determined color was black (39-58%), the most common shape was fiber (88%), fragment (6%, and pellet (6%); MPs in the range of maximum 1001-2000 mm were detected in size. Plastics are defined as polyethylene, polyester, poly (vinyl stearate), polyethylene terephthalate, polypropylene, and cellulose. Among the studied species, the most common type of plastic pollutants was found in S. cephalus. The findings indicated the presence of microplastics in dominant species. However, these findings will be basic information for future studies on living things and microplastics in inland waters.
Collapse
Affiliation(s)
- Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030, Erzurum, Turkey
| | - Mine Köktürk
- Department of Organic Agriculture Management, College of Applied Sciences, Iğdır University, TR-76000, Iğdır, Turkey
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030, Erzurum, Turkey
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030, Erzurum, Turkey
| | - Gokhan Arslan
- Department of Fish Capture and Seafood Technology, Faculty of Fisheries, Ataturk University, TR-25030, Erzurum, Turkey
| | - Gonca Alak
- Department of Fish Capture and Seafood Technology, Faculty of Fisheries, Ataturk University, TR-25030, Erzurum, Turkey.
| |
Collapse
|
23
|
Al-Yaqout A, Nithyanandan M, Al-Yamani F, Al-Kandari M, Al-Roumi M, Al-Baz A. Sea cucumbers of the Arabian Peninsula and Iran - A review of historical and current research trends. Saudi J Biol Sci 2021; 28:6116-6126. [PMID: 34764744 PMCID: PMC8568818 DOI: 10.1016/j.sjbs.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022] Open
Abstract
Sea cucumbers are benthic marine invertebrates with immense ecological and commercial value. Processed sea cucumbers known as “Beche-de-mer” are a delicacy in southeast Asian countries with an ever-increasing demand depleting wild stocks on a global scale. Aquaculture techniques are well developed for commercially important species (e.g. Holothuria scabra) to aid in conservation and trade. In the Arabian Peninsula and Iran, where the major land mass is surrounded by marginal seas (Arabian Gulf, Gulf of Oman, Arabian Sea, Gulf of Aden, and Red Sea), studies on sea cucumbers are rather limited and its economic value is underestimated. Historical and current research trends indicate impoverished diversity (82 species) due to environmental extremes. Artisanal fisheries exist for the sea cucumbers of Iran, Oman, and Saudi Arabia, with Yemen and United Arab Emirates (UAE) playing a key role in collection and export to Asian countries. Stock assessment and data on export indicates depletion of natural stocks in Saudi Arabia and Oman. Aquaculture trials of high value species (H. scabra) were successful in Saudi Arabia, Oman and Iran with prospects for further expansion. Research on ecotoxicological properties and bioactive substances conducted in Iran demonstrates an immense research potential. Molecular phylogeny, biology, use in bioremediation, and characterisation of bioactive compounds were identified as potential gaps in research. Expanding aquaculture operations could revive exports and recuperate damaged stocks through sea ranching. Furthermore, regional cooperation, networking, training, and capacity building could help fill the gaps in sea cucumber research, which will aid in its effective conservation and management.
Collapse
|
24
|
Alak G, Köktürk M, Atamanalp M. Evaluation of different packaging methods and storage temperature on MPs abundance and fillet quality of rainbow trout. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126573. [PMID: 34265653 DOI: 10.1016/j.jhazmat.2021.126573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
There are many studies on microplastics (MPs) about the aquatic ecosystems and its components. However, there is limited study on the MPs abundance, identification and sources in processed seafood products which are manufactured for direct human consumption. In this study, rainbow trout (Oncorhynchus mykiss) fillets were packed with different packaging techniques and stored at two different temperatures (+4 and -20°C) for 21 days. The presence, shape, size and polymer type of MPs were determined by ATR-FTIR on certain days (7, 14 and 21 days) in fillets during storage. The chemical quality changes in fillets [with pH, thiobarbituric acid reactive substrate (TBARS), and total volatile basic nitrogen (TVB-N) data] were monitored and the effect of MPs presence was evaluated. At the last step, the estimated MPs intake level in humans was determined with considering the presence of MPs (determined in fillets). The presence of MPs was determined the most in the Polystyrene plate + wrapped film (S) group and the least in the Chitosan film + Polystyrene plate + wrapped film (C) group. When evaluated in terms of chemical parameters, although good results were obtained in all samples stored at - 20°C, the presence of MPs was determined at a high level in fillets which stored at this temperature. As a result of the study, it was determined that the packaging type and storage temperature have significant effects on the presence of MPs and fillet quality.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey.
| | - Mine Köktürk
- Department of Organic Farming, School of Applied Science, Iğdır University, TR-76000 Iğdır, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| |
Collapse
|
25
|
Hosseinpour A, Chamani A, Mirzaei R, Mohebbi-Nozar SL. Occurrence, abundance and characteristics of microplastics in some commercial fish of northern coasts of the Persian Gulf. MARINE POLLUTION BULLETIN 2021; 171:112693. [PMID: 34242956 DOI: 10.1016/j.marpolbul.2021.112693] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
This study assessed the abundance of microplastics (MPs) in muscle, liver, gill, and gastrointestinal tissues of 14 fish species from the Persian Gulf. The quality control showed no significant difference in MPs abundance between blank samples and muscle and liver tissues. The mean abundance of MPs accumulated in gill and gut was 2.85 ± 1.57 and 2.46 ± 1.46 pa/individual, respectively. The maximum mean abundance of MPs was observed in the gill (5.71 pa/ind) of the fish Thunnus tonggol and gut tissue (5.67 pa/ind) of the fish Sphyraena putnamiae. Fiber, black color and size of 23-75 μm were the predominant form of MPs. There was a significant positive correlation between the total fish length and the abundance of MPs. MPs were more abundant in pelagic fish (5.79 ± 5.98) than demersal fish species (3.89 ± 3.53). The level of fish contamination with MPs was low to moderate in comparison to the ranges reported in the literature.
Collapse
Affiliation(s)
- Ali Hosseinpour
- Environmental Science Department, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Islamic Republic of Iran
| | - Atefeh Chamani
- Environmental Science Department, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Islamic Republic of Iran
| | - Rouhollah Mirzaei
- Department of Environment, Faculty of Natural Sciences and Earth Sciences, University of Kashan, Kashan, Islamic Republic of Iran.
| | - Seyedeh Laili Mohebbi-Nozar
- Persian Gulf and Oman Sea Ecological Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Islamic Republic of Iran
| |
Collapse
|
26
|
Pironti C, Ricciardi M, Motta O, Miele Y, Proto A, Montano L. Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects. TOXICS 2021; 9:224. [PMID: 34564375 PMCID: PMC8473407 DOI: 10.3390/toxics9090224] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022]
Abstract
Recently, studies on microplastics (MPs) have increased rapidly due to the growing awareness of the potential health risks related to their occurrence. The first part of this review is devoted to MP occurrence, distribution, and quantification. MPs can be transferred from the environment to humans mainly through inhalation, secondly from ingestion, and, to a lesser extent, through dermal contact. As regards food web contamination, we discuss the microplastic presence not only in the most investigated sources, such as seafood, drinking water, and salts, but also in other foods such as honey, sugar, milk, fruit, and meat (chickens, cows, and pigs). All literature data suggest not-negligible human exposure to MPs through the above-mentioned routes. Consequently, several research efforts have been devoted to assessing potential human health risks. Initially, toxicological studies were conducted with aquatic organisms and then with experimental mammal animal models and human cell cultures. In the latter case, toxicological effects were observed at high concentrations of MPs (polystyrene is the most common MP benchmark) for a short time. Further studies must be performed to assess the real consequences of MP contamination at low concentrations and prolonged exposure.
Collapse
Affiliation(s)
- Concetta Pironti
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Maria Ricciardi
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Ylenia Miele
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (Y.M.); (A.P.)
| | - Antonio Proto
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (Y.M.); (A.P.)
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “S. Francesco di Assisi Hospital”, 84020 Oliveto Citra, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
27
|
Picó Y, Soursou V, Alfarhan AH, El-Sheikh MA, Barceló D. First evidence of microplastics occurrence in mixed surface and treated wastewater from two major Saudi Arabian cities and assessment of their ecological risk. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125747. [PMID: 33819645 DOI: 10.1016/j.jhazmat.2021.125747] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
In this study, water of the channels and ponds that conduct residual water in two most important cities of Saudi Arabia were assessed to ascertain the influence of the population on the occurrence and pollution characteristics of microplastics (MPs) (> 20 µm in size). Riyadh has 7.6 million inhabitants and is an urban city even though also have industry while Al-Jubail has only 0.78 and is the biggest industrial city. MPs showed an average of 3.2 items/L in Riyadh and 0.2 items/L in Al-Jubail showing a statistically significant difference between both cities. Sampling with a Turton Tow Net of 20 µm mesh, fibers were dominant in all sites (60%). MPs size was mainly distributed between 80 and 250 µm (60%), and their major colors were white (40%), red (25%) and blue (20%). Infrared spectral analysis revealed that most of the selected particles were identified as MPs of polypropylene and polyethylene (48.3%). The risk assessment was carried out using both the hazard index (HI) and the pollution load index (PLI). The results showed that, in this case, the decisive index is the PLI since the main difference in the MPs characteristics between the two cities is their concentration.
Collapse
Affiliation(s)
- Yolanda Picó
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV), Moncada-Naquera Road Km 4.5, 46113 Moncada, Spain.
| | - Vasiliki Soursou
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV), Moncada-Naquera Road Km 4.5, 46113 Moncada, Spain
| | - Ahmed H Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed A El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Damià Barceló
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain; Catalan Institute for Water Research, ICRA- CERCA, Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain
| |
Collapse
|
28
|
Nematollahi MJ, Keshavarzi B, Moore F, Esmaeili HR, Nasrollahzadeh Saravi H, Sorooshian A. Microplastic fibers in the gut of highly consumed fish species from the southern Caspian Sea. MARINE POLLUTION BULLETIN 2021; 168:112461. [PMID: 33991984 DOI: 10.1016/j.marpolbul.2021.112461] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
This study assesses the frequency, distribution, characteristics, and chemical composition of microplastics (MPs) in the gut of highly consumed fish species, namely leaping mullet (Chelon saliens), common carp (Cyprinus carpioi), and Caspian kutum (Rutilus caspicus), in the southern Caspian Sea biome. Fibers are found to be the only shape of MPs. Black MPs and polystyrene, polypropylene, and polyethylene terephthalate polymers are dominant. MP frequency is highest in leaping mullet's gut, while kutum specimens exhibited the lowest MP frequency, reflecting that leaping mullet is a neritic species and thus highly exposed to MP influx in shallow coastal water, while the other species are benthopelagic. The estimated condition index reflected a significant difference between the species, implying that MPs may pose adverse health impacts on leaping mullet and common carp, with no undesirable effect on Caspian kutum. No significant relationship exists between biological parameters and the MP frequency in the fish gut.
Collapse
Affiliation(s)
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Sciences, Shiraz University, 71454 Shiraz, Iran.
| | - Farid Moore
- Department of Earth Sciences, College of Sciences, Shiraz University, 71454 Shiraz, Iran.
| | - Hamid Reza Esmaeili
- Ichthyology and Molecular Systematics Research Lab, Zoology Section, Department of Biology, College of Sciences, Shiraz University, 71454 Shiraz, Iran.
| | - Hassan Nasrollahzadeh Saravi
- Caspian Sea Ecology Research Center (CSERC), Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran.
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA; Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
29
|
Microplastics in the Aquatic Environment: Occurrence, Persistence, Analysis, and Human Exposure. WATER 2021. [DOI: 10.3390/w13070973] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microplastics (MP) have recently been considered as emerging contaminants in the water environment. In the last number of years, the number of studies on MP has grown quickly due to the increasing consciousness of the potential risks for human health related to MP exposure. The present review article discusses scientific literature regarding MP occurrence and accumulation on the aquatic compartment (river, lake, wastewater, seafood), the analytical methods used to assess their concentration, their fate and transport to humans, and delineates the urgent areas for future research. To better analogize literature data regarding MP occurrence in the aquatic compartment we subdivided papers based on sampling, analytical methods, and concentration units with the aim to help the reader identify the similarities and differences of the considered research papers, thus making the comparison of literature data easier and the individuation of the most relevant articles for the reader’s interests faster. Furthermore, we argued about several ways for MP transport to humans, highlighting some gaps in analytical methods based on the reviewed publications. We suggest improving studies on developing standardized protocols to collect, process, and analyze samples.
Collapse
|
30
|
Inducing polymer waste biodegradation using oxo-prodegradant and thermoplastic starch based additives. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02457-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Sun D, Wang J, Xie S, Tang H, Zhang C, Xu G, Zou J, Zhou A. Characterization and spatial distribution of microplastics in two wild captured economic freshwater fish from north and west rivers of Guangdong province. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111555. [PMID: 33254412 DOI: 10.1016/j.ecoenv.2020.111555] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
As a new type of pollutant, microplastics are of emerging widespread concern, while amount of research done in freshwater environments and organisms is litter compared to that in marine. Following this reality, the categories of MPs in two economic freshwater fish at 25 sites from 11 cities in the north and west rivers of Guangdong province were documented. Here, 76 individuals belong Oreochromis niloticus and Cirrhinus molitorella were investigated and microplastics were found in the GITs of 43.4% and gills of 25%. The average abundances of microplastics have significant difference between Oreochromis niloticus (0.015 items/ g) and Cirrhinus molitorella (0.031 items/g), while no difference by individual (~1.9 items). The plastics were dominated by white in color (61%), fragment in shape (67%), and lass than 1 mm in size (74%). The spatial distribution of microplastics revealed that there are significant differences between different cities in average abundances, and the highest average abundances of MPs were found in Zhanjiang city (4.25 items/individual) and Guangzhou city (0.044 items/g), respectively. Our results fully proved that the microplastics was widely ingested by wild fish species and suggested that the abundance and distribution of microplastics are positively related with the development of economy, tourism, industry, agriculture, and fishery.
Collapse
Affiliation(s)
- Di Sun
- Joint Laboratory of Guangdong province and Hong Kong region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong province and Hong Kong region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Shaolin Xie
- Joint Laboratory of Guangdong province and Hong Kong region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Huijuan Tang
- Joint Laboratory of Guangdong province and Hong Kong region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chaonan Zhang
- Joint Laboratory of Guangdong province and Hong Kong region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jixing Zou
- Joint Laboratory of Guangdong province and Hong Kong region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Aiguo Zhou
- Joint Laboratory of Guangdong province and Hong Kong region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
32
|
Faruk Çullu A, Sönmez VZ, Sivri N. Microplastic contamination in surface waters of the Küçükçekmece Lagoon, Marmara Sea (Turkey): Sources and areal distribution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115801. [PMID: 33069934 DOI: 10.1016/j.envpol.2020.115801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
The distribution of freshwater and marine microplastics (MPs) varies due to the difference in fresh and seawater densities and MP sources. This study aims to investigate the abundance of MPs and their possible sources in surface waters of different ecosystems, such as sea, lagoon, and lake. We classified MPs in terms of their color and type and established the relationship between the MPs in surface waters with different characteristics. The mean MP abundance (33 particles L-1) detected herein was higher than that in the previously conducted studies. Fragment particles (37.95%) were determined to be the dominant MP type, and the predominant MP color was blue (75.28%). As for the seasonal MP distribution, its highest content (48.03 particles L-1) was observed in autumn, unlike that reported by other studies. The findings of this study reveal the effects of wastewater treatment plant (WWTP) discharge and current flow on the MP distribution in the study area. This study aims to provide representative data on the MP abundance and distribution, as well as MP-affecting parameters for similar aquatic areas in other parts of the world.
Collapse
Affiliation(s)
- Ahmet Faruk Çullu
- Istanbul University-Cerrahpasa, Department of Environmental Engineering, Istanbul, Turkey.
| | - Vildan Zülal Sönmez
- Istanbul University-Cerrahpasa, Department of Environmental Engineering, Istanbul, Turkey; Duzce University, Department of Environmental Engineering, Duzce, Turkey.
| | - Nüket Sivri
- Istanbul University-Cerrahpasa, Department of Environmental Engineering, Istanbul, Turkey.
| |
Collapse
|
33
|
Alosairi Y, Al-Salem SM, Al Ragum A. Three-dimensional numerical modelling of transport, fate and distribution of microplastics in the northwestern Arabian/Persian Gulf. MARINE POLLUTION BULLETIN 2020; 161:111723. [PMID: 33038712 DOI: 10.1016/j.marpolbul.2020.111723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Marine plastic litter has been a major concern over the past decade particularly in semi-enclosed seas such as the Arabian/Persian Gulf, which are likely to impose a relatively higher threat to ecosystem and human health. In this work, we have focused our efforts on the transport features of marine surface microplastics (MPs) in the Gulf. The assessment utilizes a 3D hydrodynamic model of the northern Gulf which was coupled with a particle tracking model. We have considered five release locations and investigated two dominant wind conditions by applying different numerical scenarios. The results revealed that the northerly winds result in high dispersion and seaward transport of MPs in the open coastal zones, while in semi-enclosed regions they result in high trapping and beaching verified by visual investigation. The study shows that further detailed field investigations are warranted to enable the models to better parameterize the fate and distributions of MPs.
Collapse
Affiliation(s)
- Y Alosairi
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat 13109, Kuwait
| | - S M Al-Salem
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat 13109, Kuwait.
| | - A Al Ragum
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat 13109, Kuwait
| |
Collapse
|
34
|
Zakeri M, Naji A, Akbarzadeh A, Uddin S. Microplastic ingestion in important commercial fish in the southern Caspian Sea. MARINE POLLUTION BULLETIN 2020; 160:111598. [PMID: 32871433 DOI: 10.1016/j.marpolbul.2020.111598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The ubiquitous distribution of microplastics (MPs) across marine habitats has led to an increased investigation of their potential impacts on the marine food chain and consequent human exposure. The two fish species Chelon aurata and Rutilus kutum that account for over 50% of the total catch in the Caspian Sea were assessed relative to the presence of MPs in their digestive system. Samples were collected from 6 stations in the southern Caspian Sea from February to March 2017. MPs were reported to be present in 67.56% of the 111 individuals analyzed, with an average concentration of 2.29 MP/Fish; the majority were fibers (≈50%) and fragments (≈30%). The baseline data have become more relevant since the population in the region has consumed the whole fish. The presence and prevalence of MP in the two commercially important fish in the Caspian Sea warranted a comprehensive assessment in the water column, marine sediments, and fish from the different trophic levels as over 130 rivers drain into the water body.
Collapse
Affiliation(s)
- Mohammad Zakeri
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Abolfazl Naji
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Arash Akbarzadeh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Saif Uddin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| |
Collapse
|
35
|
Uddin S, Fowler SW, Saeed T, Naji A, Al-Jandal N. Standardized protocols for microplastics determinations in environmental samples from the Gulf and marginal seas. MARINE POLLUTION BULLETIN 2020; 158:111374. [PMID: 32568081 DOI: 10.1016/j.marpolbul.2020.111374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Microplastics are a group of ubiquitous persistent pollutants that have rapidly attracted much attention from the scientific community as well as the general public due to the growing awareness of the environmental risks they pose. However, due to limitations and variations in sampling, analytical measurement methods, and the different units used for reporting data, reliable comparisons between studies in the Gulf region and internationally are not straightforward. This study proposes standardized protocols for marine sediment, seawater, marine biota and aerosol (1) sampling, (2) sample processing, (3) sample identification and (4) reporting units to be used. An attempt has been made to highlight the limitations of the widely employed strategies for sampling microplastics in seawater, where a large portion of the microplastics is not sampled due to the mesh sizes used. The issues with the processing of biota samples and aerosols are likewise addressed, and recommendations are also made for standardization of units for reporting microplastic quantification. Protocols for collection of bottom sediments and aerosols are also proposed. These are the environmental matrixes for which there are no harmonized protocols in the Gulf region; hence if a standardized approach is adopted, it will enable and improve comparisons between the studies within this region and can be useful for similar studies in other marine areas as well.
Collapse
Affiliation(s)
- Saif Uddin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box. 24885, Safat 13109, Kuwait.
| | - Scott W Fowler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA; Institute Bobby, 8 Allée des Orangers, Cap d'Ail 06320, France
| | - Talat Saeed
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box. 24885, Safat 13109, Kuwait
| | - Abolfazl Naji
- Department of Fisheries, Faculty of Marine Science & Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Noura Al-Jandal
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box. 24885, Safat 13109, Kuwait
| |
Collapse
|
36
|
Al-Salem SM, Uddin S, Al-Yamani F. An assessment of microplastics threat to the marine environment: A short review in context of the Arabian/Persian Gulf. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104961. [PMID: 32250880 DOI: 10.1016/j.marenvres.2020.104961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Microplastics are recognised as a (persistent) pollutant and are believed to be ubiquitous in the marine environment. The importance of this issue is evident from the large number of technical publications and research efforts within the past decade. However, the Arabian (Persian) Gulf region has few reported datasets in spite of being an area with excessive plastic use and a hefty generation rate of plastic solid waste. This communication aims at stimulating a discussion on this topic focusing on the available regional and international datasets, along with the environmental conditions that are likely to contribute to the disintegration and transport of the plastic debris rendering it as microplastic. This work also highlights some of the constraints in sampling techniques, identification methods, and the reported units of microplastics. Most studies employ neuston nets of variable dimensions that samples different thicknesses of surface water, which also posses a major constraint in standardising field sample collection. Extrapolation of a trawl to units such as particles.km-2 without considering the fact that neuston nets collect three-dimensional samples, is also another aspect discussed in this communication. This study also intends to initiate a discussion on standardising the practices across the region to enable an intercomparison of the reported data. In addition, it calls for a comprehensive assessment using the standardized methodology for putting a mitigation plan for microplastics as a potential threat detected in environmental sinks.
Collapse
Affiliation(s)
- S M Al-Salem
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat, 13109, Kuwait.
| | - Saif Uddin
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat, 13109, Kuwait
| | - F Al-Yamani
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat, 13109, Kuwait
| |
Collapse
|
37
|
Uddin S, Fowler SW, Saeed T. Microplastic particles in the Persian/Arabian Gulf - A review on sampling and identification. MARINE POLLUTION BULLETIN 2020; 154:111100. [PMID: 32319924 DOI: 10.1016/j.marpolbul.2020.111100] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Microplastics are ubiquitous, persistent pollutants that are reported in abundance within the marine environment. Their presence in seawater and marine sediments poses a legitimate environmental and ecological concern for toxicity and food chain transfer via marine organisms. Their capability for sorption of other hydrophobic contaminants and the inability of the wastewater treatment plants to completely remove them pose additional risks. This review highlights the methodologies for sampling, sample preparation, and identification used in the Persian/Arabian Gulf region, which is possibly one of the least studied marginal seas with only sixteen papers published on microplastics. The review highlights the several orders of magnitude variations in microplastic concentrations among different studies; e.g. in seawater, only 12 microplastic particles were reported from 40 transects of one km length in Kuwait to 0.71 microplastics m-3 in Qatar. Concentrations in beach sediments also show the significant difference between the northern and southern Gulf coasts, with 13 particles in 24 samples reported in Qatar, and 15 particles within 44 samples across Kuwait, to 3252 ± 2766 particles m-2 from Bandar Abbas, Iran. The biota samples also show similar variances, with only three particles identified from 87 gut samples in Kuwait to 828 particles in 58 samples that include 46 fish and 12 shrimps from Iran. Some extremely high concentrations in biota are also reported from Iran, with concentrations as high as 0.251 particles g-1 of muscle and 0.931 particles g-1 in gills. It is evident that there is no consensus in the Gulf region on the sampling techniques (mesh size of plankton nets and sieves), use of fluidization solutions and very different units used in data reporting such as particles m-3 and particles m-2 in water samples. In sediments units like particles g-1 and particles m-2 have been used, and for biota it is the number of particles present in the sample, while others have quantified data as particles g-1 of tissue. Considering the higher densities of PET, PVC, nylon and polyester than seawater, they are likely to migrate downwards into marine sediments, a transfer process that has not been studied in detail. Thus the review underscores the need to adopt harmonized protocols for microplastic studies in the region, and identifies certain aspects of microplastics that require further study.
Collapse
Affiliation(s)
- Saif Uddin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.
| | - Scott W Fowler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | - Talat Saeed
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| |
Collapse
|