1
|
Gędaj A, Gregorczyk P, Żukowska D, Chorążewska A, Ciura K, Kalka M, Porębska N, Opaliński Ł. Glycosylation of FGF/FGFR: An underrated sweet code regulating cellular signaling programs. Cytokine Growth Factor Rev 2024; 77:39-55. [PMID: 38719671 DOI: 10.1016/j.cytogfr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/22/2024]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute plasma-membrane localized signaling hubs that transmit signals from the extracellular environment to the cell interior, governing pivotal cellular processes like motility, metabolism, differentiation, division and death. FGF/FGFR signaling is critical for human body development and homeostasis; dysregulation of FGF/FGFR units is observed in numerous developmental diseases and in about 10% of human cancers. Glycosylation is a highly abundant posttranslational modification that is critical for physiological and pathological functions of the cell. Glycosylation is also very common within FGF/FGFR signaling hubs. Vast majority of FGFs (15 out of 22 members) are N-glycosylated and few FGFs are O-glycosylated. Glycosylation is even more abundant within FGFRs; all FGFRs are heavily N-glycosylated in numerous positions within their extracellular domains. A growing number of studies points on the multiple roles of glycosylation in fine-tuning FGF/FGFR signaling. Glycosylation modifies secretion of FGFs, determines their stability and affects interaction with FGFRs and co-receptors. Glycosylation of FGFRs determines their intracellular sorting, constitutes autoinhibitory mechanism within FGFRs and adjusts FGF and co-receptor recognition. Sugar chains attached to FGFs and FGFRs constitute also a form of code that is differentially decrypted by extracellular lectins, galectins, which transform FGF/FGFR signaling at multiple levels. This review focuses on the identified functions of glycosylation within FGFs and FGFRs and discusses their relevance for the cell physiology in health and disease.
Collapse
Affiliation(s)
- Aleksandra Gędaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Paulina Gregorczyk
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Dominika Żukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
2
|
Yuan Q, Shi X, Ma H, Yao Y, Zhang B, Zhao L. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents. Int J Biol Macromol 2024; 262:129969. [PMID: 38325688 DOI: 10.1016/j.ijbiomac.2024.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Xiang Shi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Yue Yao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
3
|
Hogwood J, Gray E, Mulloy B. Heparin, Heparan Sulphate and Sepsis: Potential New Options for Treatment. Pharmaceuticals (Basel) 2023; 16:271. [PMID: 37259415 PMCID: PMC9959362 DOI: 10.3390/ph16020271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/22/2023] [Accepted: 02/07/2023] [Indexed: 08/31/2023] Open
Abstract
Sepsis is a life-threatening hyperreaction to infection in which excessive inflammatory and immune responses cause damage to host tissues and organs. The glycosaminoglycan heparan sulphate (HS) is a major component of the cell surface glycocalyx. Cell surface HS modulates several of the mechanisms involved in sepsis such as pathogen interactions with the host cell and neutrophil recruitment and is a target for the pro-inflammatory enzyme heparanase. Heparin, a close structural relative of HS, is used in medicine as a powerful anticoagulant and antithrombotic. Many studies have shown that heparin can influence the course of sepsis-related processes as a result of its structural similarity to HS, including its strong negative charge. The anticoagulant activity of heparin, however, limits its potential in treatment of inflammatory conditions by introducing the risk of bleeding and other adverse side-effects. As the anticoagulant potency of heparin is largely determined by a single well-defined structural feature, it has been possible to develop heparin derivatives and mimetic compounds with reduced anticoagulant activity. Such heparin mimetics may have potential for use as therapeutic agents in the context of sepsis.
Collapse
Affiliation(s)
- John Hogwood
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms EN6 3QG, UK
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, Stamford St., London SE1 9NH, UK
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, Stamford St., London SE1 9NH, UK
| |
Collapse
|
4
|
Enzymatic Digestion of Cell-surface Heparan Sulfate Alters the Radiation Response in Triple-negative Breast Cancer Cells. Arch Med Res 2022; 53:826-839. [PMID: 36411172 DOI: 10.1016/j.arcmed.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM Radiation resistance represents a major challenge in the treatment of breast cancer. As heparan sulfate (HS) chains are known to contribute to tumorigenesis, we aimed to investigate the interplay between HS degradation and radiation response in triple-negative breast cancer (TNBC) cells. METHODS HS chains were degraded in vitro as TNBC cells MDA-MB-231 and HCC1806 were treated with heparinase I and III. Subsequently, radioresistance was determined via colony formation assay after doses of 2, 4 and 6 Gy. Cell cycle profile, stem cell characteristics, expression of HS, activation of beta integrins, and apoptosis were determined by flow cytometry. Additionally, cell motility was analyzed via wound-healing assays, and expression and activation of FAK, CDK-6, Src, and Erk1/2 were quantified by western blot pre- and post-irradiation. Finally, the expression of cytokines was analyzed using a cytokine array. RESULTS Radiation promoted cell cycle changes, while heparinase treatment induced apoptosis in both cell lines. Colony formation assays showed significantly increased radio-resistance for both cell lines after degradation of HS. Cell migration was similarly upregulated after degradation of HS compared to controls. This effect was even more prominent after irradiation. Interestingly, FAK, a marker of radioresistance, was significantly activated in the heparinase-treated group. Additionally, we found Src to be dysregulated in MDA-MB-231 cells. Finally, we observed differential secretion of GRO, CXCL1, IGFBP1, IL8, Angiogenin, and Osteoprotegerin after HS degradation and radiotherapy. CONCLUSION Our results suggest an influence of HS chains on the development of radioresistance in TNBC.
Collapse
|
5
|
Chen CG, Iozzo RV. Extracellular matrix guidance of autophagy: a mechanism regulating cancer growth. Open Biol 2022; 12:210304. [PMID: 34982945 PMCID: PMC8727153 DOI: 10.1098/rsob.210304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023] Open
Abstract
The extracellular matrix (ECM) exists as a dynamic network of biophysical and biochemical factors that maintain tissue homeostasis. Given its sensitivity to changes in the intra- and extracellular space, the plasticity of the ECM can be pathological in driving disease through aberrant matrix remodelling. In particular, cancer uses the matrix for its proliferation, angiogenesis, cellular reprogramming and metastatic spread. An emerging field of matrix biology focuses on proteoglycans that regulate autophagy, an intracellular process that plays both critical and contextual roles in cancer. Here, we review the most prominent autophagic modulators from the matrix and the current understanding of the cellular pathways and signalling cascades that mechanistically drive their autophagic function. We then critically assess how their autophagic functions influence tumorigenesis, emphasizing the complexities and stage-dependent nature of this relationship in cancer. We highlight novel emerging data on immunoglobulin-containing and proline-rich receptor-1, heparanase and thrombospondin 1 in autophagy and cancer. Finally, we further discuss the pro- and anti-autophagic modulators originating from the ECM, as well as how these proteoglycans and other matrix constituents specifically influence cancer progression.
Collapse
Affiliation(s)
- Carolyn G. Chen
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Yang Y, Huang B, Liu J, Chen M, Kuang L, Xu X, Li J. Heparanase-induced proliferation and inhibition of apoptosis are associated with the phosphatase and tensin homologue deleted on chromosome 10/focal adhesion kinase signaling pathway in multiple myeloma. MATERIALS EXPRESS 2021; 11:634-646. [DOI: 10.1166/mex.2021.1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Heparanase (HPSE) has an important effect on the proliferation, invasion, metastasis, and drug resistance of tumor cells. HPSE can promote proliferation and inhibit apoptosis of various solid tumor cells. Previous studies regarding the function of HPSE in multiple myeloma (MM) have
primarily focused on tumor invasion and metastasis, whereas few studies have examined the proliferation and apoptosis of MM and the mechanisms associated with HPSE. This study recruited patients with MM and isolated MM cells (RPMI8226, LP-1) were isolated to measure the expression levels of
HPSE, phosphatase and tensin homologue deleted on chromosome 10 (PTEN), and focal adhesion kinase (FAK) proteins to elucidate their roles in tumor formation. Compared with non-tumor patients, the mRNA and protein expression levels of HPSE and FAK in MM patients increased, whereas the levels
of PTEN mRNA and protein decreased. Thus, the increase of HPSE coincided with an increase of FAK and a decrease of PTEN. MM cells exhibiting high HPSE expression exhibited increased proliferation and decreased AS2O3-induced apoptosis. These results indicate that changes
in HPSE expression affect the proliferation and apoptosis of MM cells and this mechanism may be associated with the PTEN/FAK signaling pathway. Gene transfection needs proper vector, and proper gene transport system can improve transfection efficiency. In this paper, magnetic nanoparticles
were transfected with overexpressed HPSE, and to detect the transfection efficiency and the proliferation ability of MM cells in the control group. The results showed that the cells transfected with magnetic nanoparticles had higher transfection efficiency and higher gene expression level.
The results of this experiment provide a new way to explore new cancer therapy genes.
Collapse
Affiliation(s)
- Yuxing Yang
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, PR China
| | - Beihui Huang
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, PR China
| | - Junru Liu
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, PR China
| | - Meilan Chen
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, PR China
| | - Lifen Kuang
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, PR China
| | - Xiaoxuan Xu
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, PR China
| | - Juan Li
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, PR China
| |
Collapse
|
7
|
Kayal Y, Singh P, Naroditsky I, Ilan N, Vlodavsky I. Heparanase 2 (Hpa2) attenuates the growth of pancreatic carcinoma. Matrix Biol 2021; 98:21-31. [PMID: 33839221 DOI: 10.1016/j.matbio.2021.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
While the pro-tumorigenic properties of the ECM-degrading heparanase enzyme are well documented, the role of its close homolog, heparanase 2 (Hpa2), in cancer is largely unknown. We examined the role of Hpa2 in pancreatic cancer, a malignancy characterized by a dense fibrotic ECM associated with poor response to treatment and bad prognosis. We show that pancreatic ductal adenocarcinoma (PDAC) patients that exhibit high levels of Hpa2 survive longer than patients with low levels of Hpa2. Strikingly, overexpression of Hpa2 in pancreatic carcinoma cells resulted in a most prominent decrease in the growth of tumors implanted orthotopically and intraperitoneally, whereas Hpa2 silencing resulted in bigger tumors. We further found that Hpa2 enhances endoplasmic reticulum (ER) stress response and renders cells more sensitive to external stress, associating with increased apoptosis. Interestingly, we observed that ER stress induces the expression of Hpa2, thus establishing a feedback loop by which Hpa2 enhances ER stress that, in turn, induces Hpa2 expression. This leads to increased apoptosis and attenuated tumor growth. Altogether, Hpa2 emerges as a powerful tumor suppressor in pancreatic cancer.
Collapse
Affiliation(s)
- Yasmin Kayal
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Preeti Singh
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Inna Naroditsky
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
8
|
Zhou L, Yin R, Gao N, Sun H, Chen D, Cai Y, Ren L, Yang L, Zuo Z, Zhang H, Zhao J. Oligosaccharides from fucosylated glycosaminoglycan prevent breast cancer metastasis in mice by inhibiting heparanase activity and angiogenesis. Pharmacol Res 2021; 166:105527. [PMID: 33667689 DOI: 10.1016/j.phrs.2021.105527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/10/2021] [Accepted: 02/28/2021] [Indexed: 01/05/2023]
Abstract
The invasion and metastasis of tumor cells are the hallmarks of malignant diseases and the greatest obstacle to overcome. Heparanase-mediated degradation of heparan sulfate (HS) is the critical process for tumor angiogenesis and metastasis, therefore, heparanase become an attractive target for cancer research. Herein, we reported a native fucosylated glycosaminoglycan (nHG) extracted from sea cucumber Holothuria fuscopunctata and a depolymerized nHG (dHG) and its contained oligosaccharides (hs17, hs14, hs11, hs8 and hs5), acting as heparanase inhibitors. nHG and its derivatives have the ability to bind with heparanase directly, leading to significant inhibition of heparanase activity. Moreover, their apparent binding affinity to heparanase was comparable to their inhibitory effect, which was elevated along with the increase of chain length, similar to the effect of heparins. In addition, oligosaccharides inhibited the migration and invasion of 4T1 mammary carcinoma cells and human umbilical vein endothelial cells (HUVECs) and also suppressed tube formation in Matrigel matrix and angiogenesis in the chick chorioallantoic membrane (CAM) assay. In the metastatic mouse model, oligosaccharides exhibited practical antimetastatic effects on 4T1 mammary carcinoma cells. According to the reported anticoagulant activity and the low bleeding tendency of dHG and its oligosaccharides, the use of the oligosaccharides may lead to better effects on tumor patients with thrombosis tendency.
Collapse
Affiliation(s)
- Lutan Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Huifang Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingyuan Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Ren
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
9
|
Rodrigues-Junior DM, Pelarin MFDA, Nader HB, Vettore AL, Pinhal MAS. MicroRNA-1252-5p Associated with Extracellular Vesicles Enhances Bortezomib Sensitivity in Multiple Myeloma Cells by Targeting Heparanase. Onco Targets Ther 2021; 14:455-467. [PMID: 33488100 PMCID: PMC7814994 DOI: 10.2147/ott.s286751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Multiple myeloma (MM) remains an incurable disease, and patient survival requires a better understanding of this malignancy's molecular aspects. Heparanase (HPSE) is highly expressed in aggressive MM cells and related to tumor growth, metastasis, and bortezomib (BTZ) resistance. Thus, targeting HPSE seems to be a promising approach for MM treatment, and because microRNAs (miRNAs) have emerged as potential regulators of HPSE expression, the use of extracellular vesicles (EVs) can allow the efficient delivery of therapeutic miRNAs. METHODS We used prediction algorithms to identify potential miRNAs that regulate negatively HPSE expression. RT-qPCR was performed to assess miRNAs and HPSE expression in MM lines (U266 and RPMI-8226). Synthetic miRNA mimics were electroporated in MM cells to understand the miRNA contribution in HPSE expression, glycosaminoglycans (GAGs) profile, cell proliferation, and cell death induced by BTZ. EVs derived from HEK293T cells were engineered with miRNAs to evaluate their therapeutic potential combined with BTZ. RESULTS It revealed a direct association between BTZ sensitivity, HPSE, and miR-1252-5p expressions. Moreover, overexpression of miR-1252-5p significantly reduced HPSE expression and HPSE enzymatic activity in MM cells. The higher level of miR-1252-5p was correlated with a reduction of cell viability and higher sensitivity to BTZ. Further, EVs carrying miR-1252-5p increased MM cells' sensitivity to BTZ treatment. CONCLUSION These results showed that miR-1252-5p could negatively regulate HPSE in MM, indicating the use of EVs carrying miR-1252-5p as a potential novel BTZ sensitization approach in MM cells.
Collapse
Affiliation(s)
- Dorival Mendes Rodrigues-Junior
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Institute of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Helena Bonciani Nader
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - André Luiz Vettore
- Department of Biological Science, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Maria Aparecida Silva Pinhal
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Biochemistry, Faculdade de Medicina do ABC, Santo André, Brazil
| |
Collapse
|
10
|
Garcia J, McCarthy HS, Kuiper JH, Melrose J, Roberts S. Perlecan in the Natural and Cell Therapy Repair of Human Adult Articular Cartilage: Can Modifications in This Proteoglycan Be a Novel Therapeutic Approach? Biomolecules 2021; 11:biom11010092. [PMID: 33450893 PMCID: PMC7828356 DOI: 10.3390/biom11010092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
Articular cartilage is considered to have limited regenerative capacity, which has led to the search for therapies to limit or halt the progression of its destruction. Perlecan, a multifunctional heparan sulphate (HS) proteoglycan, promotes embryonic cartilage development and stabilises the mature tissue. We investigated the immunolocalisation of perlecan and collagen between donor-matched biopsies of human articular cartilage defects (n = 10 × 2) that were repaired either naturally or using autologous cell therapy, and with age-matched normal cartilage. We explored how the removal of HS from perlecan affects human chondrocytes in vitro. Immunohistochemistry showed both a pericellular and diffuse matrix staining pattern for perlecan in both natural and cell therapy repaired cartilage, which related to whether the morphology of the newly formed tissue was hyaline cartilage or fibrocartilage. Immunostaining for perlecan was significantly greater in both these repair tissues compared to normal age-matched controls. The immunolocalisation of collagens type III and VI was also dependent on tissue morphology. Heparanase treatment of chondrocytes in vitro resulted in significantly increased proliferation, while the expression of key chondrogenic surface and genetic markers was unaffected. Perlecan was more prominent in chondrocyte clusters than in individual cells after heparanase treatment. Heparanase treatment could be a means of increasing chondrocyte responsiveness to cartilage injury and perhaps to improve repair of defects.
Collapse
Affiliation(s)
- John Garcia
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
| | - Helen S. McCarthy
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
| | - Jan Herman Kuiper
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Area Local Health District, St. Leonards, NSW 2065, Australia;
- Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sally Roberts
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
- Correspondence: ; Tel.: +44-1-691-404-664
| |
Collapse
|
11
|
Bandari SK, Tripathi K, Rangarajan S, Sanderson RD. Therapy-induced chemoexosomes: Sinister small extracellular vesicles that support tumor survival and progression. Cancer Lett 2020; 493:113-119. [PMID: 32858103 PMCID: PMC7685072 DOI: 10.1016/j.canlet.2020.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Chemotherapy involves the use of multiple cytotoxic or cytostatic drugs acting by various mechanisms to kill or arrest the growth of cancer cells. Chemotherapy remains the most utilized approach for controlling cancer. Emerging evidence indicates that cancer cells activate various pro-survival mechanisms to cope with chemotherapeutic stress. These mechanisms persist during treatment and often help orchestrate tumor regrowth and patient relapse. Exosomes due to their nature of carrying and transferring multiple biologically active components have emerged as key players in cancer pathogenesis. Recent data demonstrates that chemotherapeutic stress enhances the secretion and alters the cargo carried by exosomes. These altered exosomes, which we refer to as chemoexosomes, are capable of transferring cargo to target tumor cells that can enhance their chemoresistance, increase their metastatic behavior and in certain cases even aid in endowing tumor cells with cancer stem cell-like properties. This mini-review summarizes the recent developments in our understanding of the impact chemoexosomes have on tumor survival and progression.
Collapse
Affiliation(s)
- Shyam K Bandari
- Department of Pathology, O'Neal Comprehensive Cancer Center, 1824 6th Avenue South, Wallace Tumor Institute, Room 603, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Kaushlendra Tripathi
- Department of Pathology, O'Neal Comprehensive Cancer Center, 1824 6th Avenue South, Wallace Tumor Institute, Room 603, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sunil Rangarajan
- Department of Pathology, O'Neal Comprehensive Cancer Center, 1824 6th Avenue South, Wallace Tumor Institute, Room 603, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ralph D Sanderson
- Department of Pathology, O'Neal Comprehensive Cancer Center, 1824 6th Avenue South, Wallace Tumor Institute, Room 603, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
12
|
Timmen M, Hidding H, Götte M, Khassawna TE, Kronenberg D, Stange R. The heparan sulfate proteoglycan Syndecan-1 influences local bone cell communication via the RANKL/OPG axis. Sci Rep 2020; 10:20510. [PMID: 33239699 PMCID: PMC7688641 DOI: 10.1038/s41598-020-77510-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
The heparan sulfate proteoglycan Syndecan-1, a mediator of signals between the extracellular matrix and cells involved is able to interact with OPG, one of the major regulators of osteoclastogenesis. The potential of osteoblasts to induce osteoclastogenesis is characterized by a switch of OPG (low osteoclastogenic potential) towards RANKL production (high osteoclastogenic potential). In the present study, we investigated the influence of endogenous Syndecan-1 on local bone-cell-communication via the RANKL/OPG-axis in murine osteoblasts and osteoclasts in wild type and Syndecan-1 lacking cells. Syndecan-1 expression and secretion was increased in osteoblasts with high osteoclastogenic potential. Syndecan-1 deficiency led to increased OPG release by osteoblasts that decreased the availability of RANKL. In co-cultures of Syndecan-1 deficient osteoblasts with osteoclast these increased OPG in supernatant caused decreased development of osteoclasts. Syndecan-1 and RANKL level were increased in serum of aged WT mice, whereas Syndecan-1 deficient mice showed high serum OPG concentration. However, bone structure of Syndecan-1 deficient mice was not different compared to wild type. In conclusion, Syndecan-1 could be regarded as a new modulator of bone-cell-communication via RANKL/OPG axis. This might be of high impact during bone regeneration or bone diseases like cancer where Syndecan-1 expression is known to be even more prevalent.
Collapse
Affiliation(s)
- Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Muenster, Muenster, Germany.
| | - Heriburg Hidding
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Muenster, Muenster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Muenster, Muenster, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Justus-Liebig University Giessen, Giessen, Germany
| | - Daniel Kronenberg
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Muenster, Muenster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Muenster, Muenster, Germany
| |
Collapse
|
13
|
Cao H, Yang S, Yu X, Xi M. Correlation between heparanase gene polymorphism and susceptibility to endometrial cancer. Mol Genet Genomic Med 2020; 8:e1257. [PMID: 32869952 PMCID: PMC7549562 DOI: 10.1002/mgg3.1257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 10/30/2019] [Accepted: 03/01/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Endometrial cancer is one of the three most common malignancies in the female genital tract. Previous studies have demonstrated the association between heparanase (HPSE, OMIM 604,724) single-nucleotide polymorphism (SNP) and cancer risk in several cancers. However, its role in endometrial cancer remains unclear. The present study investigated the effects of HPSE SNPs on the susceptibility and clinicopathological parameters in patients with endometrial cancer. METHODS HPSE SNPs of rs4693608 (G > A) and rs4364254 (C > T) were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay in 270 endometrial cancer patients and 320 healthy controls. RESULTS The investigation indicated that the HPSE SNP rs4693608 with GG showed a protective effect from EC in both codominant (adjusted OR = 0.41, 95%CI = 0.21-0.81, p = .026) and recessive models (adjusted OR = 0.43, 95%CI = 0.22-0.82, p = .0076). No significant differences were found in the incidences of EC patients with the rs4364254 polymorphisms compared to controls. Moreover, a significantly increased distribution of A/A (rs4693608) was observed in patients with grade ≥ 2 (p = .03) and in patients with positive cervical invasion (p = .042) while patients with T/C (rs4364254) had lower tumor grade. CONCLUSION Our study suggested that HPSE SNP of rs4693608 correlated strongly with susceptibility to EC, and HPSE SNPs might be a potential biomarker for prognosis of endometrial cancer.
Collapse
Affiliation(s)
- Hanyu Cao
- Department of Gynecology and ObstetricsWest China Second University HospitalSichuan UniversityChengduChina
| | - Shuo Yang
- Key Laboratory of Obstetrics, Gynecology, Pediatric Disease, and Birth DefectsMinistry of EducationWest China Second University HospitalChengduChina
| | - Xiuzhang Yu
- Department of Gynecology and ObstetricsWest China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationChengduChina
| | - Mingrong Xi
- Department of Gynecology and ObstetricsWest China Second University HospitalSichuan UniversityChengduChina
| |
Collapse
|
14
|
Yang WJ, Zhang GL, Cao KX, Liu XN, Wang XM, Yu MW, Li JP, Yang GW. Heparanase from triple‑negative breast cancer and platelets acts as an enhancer of metastasis. Int J Oncol 2020; 57:890-904. [PMID: 32945393 PMCID: PMC7473754 DOI: 10.3892/ijo.2020.5115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC), which is characterized by inherently aggressive behavior and lack of recognized molecular targets for therapy, poses a serious threat to women's health worldwide. However, targeted treatments have yet to be made available. A crosstalk between tumor cells and platelets (PLT) contributing to growth, angiogenesis and metastasis has been reported in numerous cancers. Heparanase (Hpa), the only mammalian endoglycosidase that cleaves heparan sulfate, has been demonstrated to contribute to the growth, angiogenesis and metastasis of numerous cancers. Hypoxia affects the growth, angiogenesis and metastasis of nearly all solid tumors, and the ability of Hpa to promote invasion is enhanced in hypoxia. However, whether Hpa can strengthen the crosstalk between tumor cells and PLT, and whether enhancing the biological function of Hpa in TNBC promotes malignant progression, have yet to be fully elucidated. The present study, based on bioinformatics analysis and experimental studies in vivo and in vitro, demonstrated that Hpa enhanced the crosstalk between TNBC cells and PLT to increase the supply of oxygen and nutrients, while also conferring tolerance of TNBC cells to oxygen and nutrient shortage, both of which are important for overcoming the stress of hypoxia and nutritional deprivation in the tumor microenvironment, thereby promoting malignant progression, including growth, angiogenesis and metastasis in TNBC. In addition, the hypoxia-inducible factor-1a (HIF-1a)/vascular endothelial growth factor-a (VEGF- a)/phosphorylated protein kinase B (p-)Akt axis may be the key pathway involved in the effects of Hpa on the biological processes mentioned above. Therefore, improving local hypoxia, anti-Hpa treatment and inhibiting PLT activation may improve the prognosis of TNBC.
Collapse
Affiliation(s)
- Wen-Jing Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Gan-Lin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Ke-Xin Cao
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Xiao-Ni Liu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Xiao-Min Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Ming-Wei Yu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Jin-Ping Li
- Biomedical Center, Uppsala University, Uppsala 75123, Sweden
| | - Guo-Wang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| |
Collapse
|
15
|
Cleavage of proteoglycans, plasma proteins and the platelet-derived growth factor receptor in the hemorrhagic process induced by snake venom metalloproteinases. Sci Rep 2020; 10:12912. [PMID: 32737331 PMCID: PMC7395112 DOI: 10.1038/s41598-020-69396-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Envenoming by viperid snakes results in a complex pattern of tissue damage, including hemorrhage, which in severe cases may lead to permanent sequelae. Snake venom metalloproteinases (SVMPs) are main players in this pathogenesis, acting synergistically upon different mammalian proteomes. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, induces severe local hemorrhage at pmol doses in a murine model. Our hypothesis is that in a complex scenario of tissue damage, HF3 triggers proteolytic cascades by acting on a partially known substrate repertoire. Here, we focused on the hypothesis that different proteoglycans, plasma proteins, and the platelet derived growth factor receptor (PDGFR) could be involved in the HF3-induced hemorrhagic process. In surface plasmon resonance assays, various proteoglycans were demonstrated to interact with HF3, and their incubation with HF3 showed degradation or limited proteolysis. Likewise, Western blot analysis showed in vivo degradation of biglycan, decorin, glypican, lumican and syndecan in the HF3-induced hemorrhagic process. Moreover, antithrombin III, complement components C3 and C4, factor II and plasminogen were cleaved in vitro by HF3. Notably, HF3 cleaved PDGFR (alpha and beta) and PDGF in vitro, while both receptor forms were detected as cleaved in vivo in the hemorrhagic process induced by HF3. These findings outline the multifactorial character of SVMP-induced tissue damage, including the transient activation of tissue proteinases, and underscore for the first time that endothelial glycocalyx proteoglycans and PDGFR are targets of SVMPs in the disruption of microvasculature integrity and generation of hemorrhage.
Collapse
|
16
|
Abbaszadegan MR, Mojarrad M, Moghbeli M. Role of extra cellular proteins in gastric cancer progression and metastasis: an update. Genes Environ 2020; 42:18. [PMID: 32467737 PMCID: PMC7227337 DOI: 10.1186/s41021-020-00157-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers in the world with a high ratio of mortality. Regarding the late diagnosis, there is a high ratio of distant metastasis among GC cases. Despite the recent progresses in therapeutic modalities, there is not still an efficient therapeutic method to increase survival rate of metastatic GC cases. Main body Apart from the various intracellular signaling pathways which are involved in tumor cell migration and metastasis, the local microenvironment is also a critical regulator of tumor cell migration. Indeed, the intracellular signaling pathways also exert their final metastatic roles through regulation of extra cellular matrix (ECM). Therefore, it is required to assess the role of extra cellular components in biology of GC. Conclusion In the present review, we summarize 48 of the significant ECM components including 17 ECM modifying enzymes, seven extracellular angiogenic factors, 13 cell adhesion and cytoskeletal organizers, seven matricellular proteins and growth factors, and four proteoglycans and extra cellular glycoproteins. This review paves the way of determination of a specific extra cellular diagnostic and prognostic panel marker for the GC patients.
Collapse
Affiliation(s)
| | - Majid Mojarrad
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Opposing Effects of Heparanase and Heparanase-2 in Head & Neck Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:847-856. [PMID: 32274741 DOI: 10.1007/978-3-030-34521-1_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Squamous cell carcinoma of head and neck (SCCHN) is the most common cancer in the head and neck and is the sixth most common neoplasm worldwide. SCCHN has a high propensity to lymph node metastases, especially cancer of the pharynx. Prognosis of patients with SCCHN is severely influenced by the status of metastatic cervical lymph nodes and survival rates drop down to half when patients are presented with a metastatic node. The clinical relevance of heparanase as a prognostic marker in SCCHN was reported in several publications. Low levels of heparanase in SCCHN tumor cells was correlated with prolonged disease-free and overall survival. Furthermore, nuclear localization of heparanase predicts a favorable outcome compared to cytoplasmic localization. Heparanase staining was positively correlated with lymphatic vessel density and lymph node metastasis associated with the elevation of vascular endothelial growth factor C (VEGF-C). Heparanase ability to enhance phosphorylation of epidermal growth factor receptor (EGFR), and signal transducer and activator of transcription 3 (STAT3) were postulated to serve as critical molecular mechanisms by which heparanase facilitates tumor growth.Heparanase-2 (HPA2) is a close homolog of heparanase that lacks intrinsic HS-degrading activity but retains the capacity to bind HS with high affinity. HPA2 expression was markedly elevated in SCCHN patients, correlating with prolonged follow-up time to recurrence and inversely correlating with patients' N-stage. HPA2 appears to inhibit tumor dissemination, suggesting that HPA2 functions as a tumor suppressor. Thus, Heparanase and Heparanase-2 seem to exert opposing effects on SCCHN.
Collapse
|
18
|
Purushothaman A, Sanderson RD. Heparanase: A Dynamic Promoter of Myeloma Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:331-349. [PMID: 32274716 DOI: 10.1007/978-3-030-34521-1_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been speculated for many years that heparanase plays an important role in the progression of cancer due largely to the finding that its expression is weak or absent in normal tissues but generally as tumors become more aggressive heparanase expression increases. However, it is only in the last decade or so that we have begun to understand the molecular mechanism behind the sinister role that heparanase plays in cancer. In this review, we describe the many functions of heparanase in promoting the growth, angiogenesis and metastasis of multiple myeloma, a devastating cancer that localizes predominantly within the bone marrow and spreads throughout the skeletal system devouring bone and ultimately leading to death of almost all patients diagnosed with this disease. We also explore recent discoveries related to how heparanase primes exosome biogenesis and how heparanase enhances myeloma tumor chemoresistance. Discovery of these multiple tumor-promoting pathways that are driven by heparanase identified the enzyme as an ideal target for therapy, an approach recently tested in a Phase I trial in myeloma patients.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
19
|
Gubbiotti MA, Buraschi S, Kapoor A, Iozzo RV. Proteoglycan signaling in tumor angiogenesis and endothelial cell autophagy. Semin Cancer Biol 2019; 62:1-8. [PMID: 31078640 PMCID: PMC7864242 DOI: 10.1016/j.semcancer.2019.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022]
Abstract
The need for more effective cancer therapies is omnipresent as the ever-complex, and highly adaptive, mechanisms of tumor biology allow this disease to elude even the most stringent treatment options. The expanding field of proteoglycan signaling is enticing as a reservoir of potential drug targets and prospects for novel therapeutic strategies. The newest trend in proteoglycan biology is the interplay between extracellular signaling and autophagy fueled by the close link between autophagy and angiogenesis. Here we summarize the most current evidence surrounding proteoglycan signaling in both of these biological processes featuring the well-known suspects, decorin and perlecan, as well as other up-and-coming neophytes in this evolving signaling web.
Collapse
Affiliation(s)
- Maria A Gubbiotti
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College and Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College and Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Aastha Kapoor
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College and Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College and Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
20
|
Mohan CD, Hari S, Preetham HD, Rangappa S, Barash U, Ilan N, Nayak SC, Gupta VK, Basappa, Vlodavsky I, Rangappa KS. Targeting Heparanase in Cancer: Inhibition by Synthetic, Chemically Modified, and Natural Compounds. iScience 2019; 15:360-390. [PMID: 31103854 PMCID: PMC6548846 DOI: 10.1016/j.isci.2019.04.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 01/23/2023] Open
Abstract
Heparanase is an endoglycosidase involved in remodeling the extracellular matrix and thereby in regulating multiple cellular processes and biological activities. It cleaves heparan sulfate (HS) side chains of HS proteoglycans into smaller fragments and hence regulates tissue morphogenesis, differentiation, and homeostasis. Heparanase is overexpressed in various carcinomas, sarcomas, and hematological malignancies, and its upregulation correlates with increased tumor size, tumor angiogenesis, enhanced metastasis, and poor prognosis. In contrast, knockdown or inhibition of heparanase markedly attenuates tumor progression, further underscoring the potential of anti-heparanase therapy. Heparanase inhibitors were employed to interfere with tumor progression in preclinical studies, and selected heparin mimetics are being examined in clinical trials. However, despite tremendous efforts, the discovery of heparanase inhibitors with high clinical benefit and minimal adverse effects remains a therapeutic challenge. This review discusses the key roles of heparanase in cancer progression focusing on the status of natural, chemically modified, and synthetic heparanase inhibitors in various types of malignancies.
Collapse
Affiliation(s)
| | - Swetha Hari
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, AIMS Campus, B. G. Nagar, Nagamangala Taluk, Mandya District 571448, India
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - S Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Basappa
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel.
| | | |
Collapse
|
21
|
Abstract
Toll-like receptors (TLRs) are a type of pattern-recognition receptor (PRR) that are part of the innate immune system known to recognize pathogen-associated molecular patterns and thereby play a crucial role in host immune response. Among the various known TLRs, TLR4 is one of the most extensively studied PRRs expressed by immune, certain nonimmune, and tumor cells. When TLR4 binds with the bacterial lipopolysaccharide, it induces production of proinflammatory cytokines, chemokines, and effector molecules as part of the immune response. Continuous exposure to pathogens and TLR4 signaling results in chronic inflammation that may further lead to malignant transformation. TLR4 is a highly polymorphic gene, and genetic variations are known to influence host immune response, leading to dysregulation of signaling pathway, which may affect an individual's susceptibility to various diseases, including cancer. Furthermore, TLR4 expression in different tumor types may also serve as a marker for tumor proliferation, differentiation, metastasis, prognosis, and patient survival. This review aims to summarize various reports related to TLR4 polymorphisms and expression patterns and their influences on different cancer types with a special focus on solid tumors.
Collapse
Affiliation(s)
- Nilesh Pandey
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand, 388421, India
| | - Alex Chauhan
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand, 388421, India
| | - Neeraj Jain
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand, 388421, India.
| |
Collapse
|
22
|
Noriega-Guerra H, Freitas VM. Extracellular Matrix Influencing HGF/c-MET Signaling Pathway: Impact on Cancer Progression. Int J Mol Sci 2018; 19:ijms19113300. [PMID: 30352967 PMCID: PMC6274944 DOI: 10.3390/ijms19113300] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022] Open
Abstract
The extracellular matrix (ECM) is a crucial component of the tumor microenvironment involved in numerous cellular processes that contribute to cancer progression. It is acknowledged that tumor–stromal cell communication is driven by a complex and dynamic network of cytokines, growth factors and proteases. Thus, the ECM works as a reservoir for bioactive molecules that modulate tumor cell behavior. The hepatocyte growth factor (HGF) produced by tumor and stromal cells acts as a multifunctional cytokine and activates the c-MET receptor, which is expressed in different tumor cell types. The HGF/c-MET signaling pathway is associated with several cellular processes, such as proliferation, survival, motility, angiogenesis, invasion and metastasis. Moreover, c-MET activation can be promoted by several ECM components, including proteoglycans and glycoproteins that act as bridging molecules and/or signal co-receptors. In contrast, c-MET activation can be inhibited by proteoglycans, matricellular proteins and/or proteases that bind and sequester HGF away from the cell surface. Therefore, understanding the effects of ECM components on HGF and c-MET may provide opportunities for novel therapeutic strategies. Here, we give a short overview of how certain ECM components regulate the distribution and activation of HGF and c-MET.
Collapse
Affiliation(s)
- Heydi Noriega-Guerra
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Prédio I, sala 428, 05508-000, São Paulo, SP, Brazil.
| | - Vanessa Morais Freitas
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Prédio I, sala 428, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
23
|
Kang H, Wu Q, Sun A, Liu X, Fan Y, Deng X. Cancer Cell Glycocalyx and Its Significance in Cancer Progression. Int J Mol Sci 2018; 19:ijms19092484. [PMID: 30135409 PMCID: PMC6163906 DOI: 10.3390/ijms19092484] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer is a malignant tumor that threatens the health of human beings, and has become the leading cause of death in urban and rural residents in China. The glycocalyx is a layer of multifunctional glycans that covers the surfaces of a variety of cells, including vascular endothelial cells, smooth muscle cells, stem cells, epithelial, osteocytes, as well as cancer cells. The glycosylation and syndecan of cancer cell glycocalyx are unique. However, heparan sulfate (HS), hyaluronic acid (HA), and syndecan are all closely associated with the processes of cancer progression, including cell migration and metastasis, tumor cell adhesion, tumorigenesis, and tumor growth. The possible underlying mechanisms may be the interruption of its barrier function, its radical role in growth factor storage, signaling, and mechanotransduction. In the later sections, we discuss glycocalyx targeting therapeutic approaches reported in animal and clinical experiments. The study concludes that cancer cells’ glycocalyx and its role in cancer progression are beginning to be known by more groups, and future studies should pay more attention to its mechanotransduction of interstitial flow-induced shear stress, seeking promising therapeutic targets with less toxicity but more specificity.
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Qiuhong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Anqiang Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Xiao Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
- National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| |
Collapse
|
24
|
Ostrovsky O, Grushchenko-Polaq AH, Beider K, Mayorov M, Canaani J, Shimoni A, Vlodavsky I, Nagler A. Identification of strong intron enhancer in the heparanase gene: effect of functional rs4693608 variant on HPSE enhancer activity in hematological and solid malignancies. Oncogenesis 2018; 7:51. [PMID: 29955035 PMCID: PMC6023935 DOI: 10.1038/s41389-018-0060-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 05/03/2018] [Accepted: 05/20/2018] [Indexed: 01/10/2023] Open
Abstract
Heparanase is an endo-β-glucuronidase that specifically cleaves the saccharide chains of heparan sulfate (HS) proteoglycans and releases HS-bound cytokines, chemokines, and bioactive growth-promoting factors. Heparanase plays an important role in the nucleus as part of an active chromatin complex. Our previous studies revealed that rs4693608 correlates with heparanase levels and increased risk of acute and extensive chronic graft vs. host disease (GVHD). Discrepancy between recipient and donor in this SNP significantly affected the risk of acute GVHD. In the present study, we analyzed the HPSE gene region, including rs4693608, and demonstrated that this region exhibits SNPs-dependent enhancer activity. Analysis of nuclear proteins from normal leukocytes revealed their binding to DNA probe of both alleles with higher affinity to allele G. All malignant cell lines and leukemia samples disclosed a shift of the main bands in comparison to normal leukocytes. At least five additional shifted bands were bound to allele A while allele G probe was bound to only one main DNA/protein complex. Additional SNPs rs4693083, rs4693084, and rs4693609 were found in strong linkage disequilibrium (LD) with rs11099592 (exon 7). Only rs4693084 affected protein binding to DNA in cell lines and leukemia samples. As a result of the short distance between rs4693608 and rs4693084, both SNPs may be included in a common DNA/protein complex. DNA pull-down assay revealed that heparanase is involved in self-regulation by negative feedback in rs4693608-dependent manner. During carcinogenesis, heparanase self-regulation is discontinued and the helicase-like transcription factor begins to regulate this enhancer region. Altogether, our study elucidates conceivable mechanism(s) by which rs4693608 SNP regulates HPSE gene expression and the associated disease outcome.
Collapse
Affiliation(s)
- Olga Ostrovsky
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | - Katia Beider
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Margarita Mayorov
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Jonathan Canaani
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Avichai Shimoni
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Arnon Nagler
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
25
|
Mei Y, Yang JP, Lang YH, Peng LX, Yang MM, Liu Q, Meng DF, Zheng LS, Qiang YY, Xu L, Li CZ, Wei WW, Niu T, Peng XS, Yang Q, Lin F, Hu H, Xu HF, Huang BJ, Wang LJ, Qian CN. Global expression profiling and pathway analysis of mouse mammary tumor reveals strain and stage specific dysregulated pathways in breast cancer progression. Cell Cycle 2018; 17:963-973. [PMID: 29712537 DOI: 10.1080/15384101.2018.1442629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is believed that the alteration of tissue microenvironment would affect cancer initiation and progression. However, little is known in terms of the underlying molecular mechanisms that would affect the initiation and progression of breast cancer. In the present study, we use two murine mammary tumor models with different speeds of tumor initiation and progression for whole genome expression profiling to reveal the involved genes and signaling pathways. The pathways regulating PI3K-Akt signaling and Ras signaling were activated in Fvb mice and promoted tumor progression. Contrastingly, the pathways regulating apoptosis and cellular senescence were activated in Fvb.B6 mice and suppressed tumor progression. We identified distinct patterns of oncogenic pathways activation at different stages of breast cancer, and uncovered five oncogenic pathways that were activated in both human and mouse breast cancers. The genes and pathways discovered in our study would be useful information for other researchers and drug development.
Collapse
Affiliation(s)
- Yan Mei
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Jun-Ping Yang
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Yan-Hong Lang
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Li-Xia Peng
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Ming-Ming Yang
- b Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Qing Liu
- b Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Dong-Fang Meng
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Li-Sheng Zheng
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Yuan-Yuan Qiang
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Liang Xu
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Chang-Zhi Li
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Wen-Wen Wei
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Ting Niu
- b Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Xing-Si Peng
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Qin Yang
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Fen Lin
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Hao Hu
- d Department of Traditional Chinese Medicine , First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| | - Hong-Fa Xu
- e Department of Hematology , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou 510230 , China
| | - Bi-Jun Huang
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Li-Jing Wang
- b Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Chao-Nan Qian
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China.,c Department of Nasopharyngeal Carcinoma , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| |
Collapse
|
26
|
Leung AWY, Backstrom I, Bally MB. Sulfonation, an underexploited area: from skeletal development to infectious diseases and cancer. Oncotarget 2018; 7:55811-55827. [PMID: 27322429 PMCID: PMC5342455 DOI: 10.18632/oncotarget.10046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022] Open
Abstract
Sulfonation is one of the most abundant cellular reactions modifying a wide range of xenobiotics as well as endogenous molecules which regulate important biological processes including blood clotting, formation of connective tissues, and functionality of secreted proteins, hormones, and signaling molecules. Sulfonation is ubiquitous in all tissues and widespread in nature (plants, animals, and microorganisms). Although sulfoconjugates were discovered over a century ago when, in 1875, Baumann isolated phenyl sulfate in the urine of a patient given phenol as an antiseptic, the significance of sulfonation and its roles in human diseases have been underappreciated until recent years. Here, we provide a current overview of the significance of sulfonation reactions in a variety of biological functions and medical conditions (with emphasis on cancer). We also discuss research areas that warrant further attention if we are to fully understand how deficiencies in sulfonation could impact human health which, in turn, could help define treatments to effect improvements in health.
Collapse
Affiliation(s)
- Ada W. Y. Leung
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ian Backstrom
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Marcel B Bally
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.,Centre for Drug Research and Development, Vancouver, BC, Canada
| |
Collapse
|
27
|
Li J, Pan Q, Rowan PD, Trotter TN, Peker D, Regal KM, Javed A, Suva LJ, Yang Y. Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells. Oncotarget 2017; 7:11299-309. [PMID: 26849235 PMCID: PMC4905474 DOI: 10.18632/oncotarget.7170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/21/2016] [Indexed: 11/25/2022] Open
Abstract
Bone dissemination and bone disease occur in approximately 80% of patients with multiple myeloma (MM) and are a major cause of patient mortality. We previously demonstrated that MM cell-derived heparanase (HPSE) is a major driver of MM dissemination to and progression in new bone sites. However the mechanism(s) by which HPSE promotes MM progression remains unclear. In the present study, we investigated the involvement of mesenchymal features in HPSE-promoted MM progression in bone. Using a combination of molecular, biochemical, cellular, and in vivo approaches, we demonstrated that (1) HPSE enhanced the expression of mesenchymal markers in both MM and vascular endothelial cells; (2) HPSE expression in patient myeloma cells positively correlated with the expression of the mesenchymal markers vimentin and fibronectin. Additional mechanistic studies revealed that the enhanced mesenchymal-like phenotype induced by HPSE in MM cells is due, at least in part, to the stimulation of the ERK signaling pathway. Finally, knockdown of vimentin in HPSE expressing MM cells resulted in significantly attenuated MM cell dissemination and tumor growth in vivo. Collectively, these data demonstrate that the mesenchymal features induced by HPSE in MM cells contribute to enhanced tumor cell motility and bone-dissemination.
Collapse
Affiliation(s)
- Juan Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Hematology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, China
| | - Qianying Pan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Hematology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, China
| | - Patrick D Rowan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy N Trotter
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Deniz Peker
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kellie M Regal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amjad Javed
- Comprehensive Cancer Center and The Center for Metabolic Bone Disease, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX, USA
| | - Yang Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center and The Center for Metabolic Bone Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
28
|
Abstract
Heparanase is an endo-β-D-glucuronidase that is capable of cleaving heparan sulfate side chains of heparan sulfate proteoglycans on cell surfaces and the extracellular matrix. This activity is strongly implicated in tumor metastasis and angiogenesis. We have earlier demonstrated that apart of its well characterized enzymatic activity, heparanase may also affect the hemostatic system in a non-enzymatic manner. We showed that heparanase up-regulated the expression of the blood coagulation initiator-tissue factor (TF) and interacted with the tissue factor pathway inhibitor (TFPI) on the cell surface membrane of endothelial and tumor cells, leading to dissociation of TFPI and resulting in increased cell surface coagulation activity. Moreover, we demonstrated that heparanase directly enhanced TF activity, which led to increased factor Xa production and subsequent activation of the coagulation system. In patients with cancer, increased heparanase procoagulant activity appeared to be a potential predictor of survival. We have also shown that JAK-2 is involved in heparanase up-regulation via the erythropoietin receptor, a finding that may point to a new mechanism of thrombosis in JAK-2 positive patents with essential thrombocytosis. Recently, we found that the solvent accessible surface of TFPI-2 first Kunitz domain had a role in TF/heparanase complex inhibition. Peptides derived from TFPI-2 inhibitory site were shown to reduce coagulation activation induced by heparanase and to attenuate sepsis severity and tumor growth in a mouse model, without predisposing to significant bleeding tendency. These data imply that inhibition of heparanase procoagulant domain is potentially a good target for sepsis and cancer therapy.
Collapse
Affiliation(s)
- Yona Nadir
- Thrombosis and Hemostasis Unit, Department of Hematology, Rambam Health Care Campus, Haifa, Israel.
| | - Benjamin Brenner
- Thrombosis and Hemostasis Unit, Department of Hematology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
29
|
Oleanolic acid-loaded PLGA-TPGS nanoparticles combined with heparin sodium-loaded PLGA-TPGS nanoparticles for enhancing chemotherapy to liver cancer. Life Sci 2016; 165:63-74. [DOI: 10.1016/j.lfs.2016.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/07/2016] [Accepted: 09/14/2016] [Indexed: 01/26/2023]
|
30
|
Extracellular Matrix, a Hard Player in Angiogenesis. Int J Mol Sci 2016; 17:ijms17111822. [PMID: 27809279 PMCID: PMC5133823 DOI: 10.3390/ijms17111822] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins, glycoproteins, proteoglycans, and polysaccharides. Through multiple interactions with each other and the cell surface receptors, not only the ECM determines the physical and mechanical properties of the tissues, but also profoundly influences cell behavior and many physiological and pathological processes. One of the functions that have been extensively explored is its impingement on angiogenesis. The strong impact of the ECM in this context is both direct and indirect by virtue of its ability to interact and/or store several growth factors and cytokines. The aim of this review is to provide some examples of the complex molecular mechanisms that are elicited by these molecules in promoting or weakening the angiogenic processes. The scenario is intricate, since matrix remodeling often generates fragments displaying opposite effects compared to those exerted by the whole molecules. Thus, the balance will tilt towards angiogenesis or angiostasis depending on the relative expression of pro- or anti-angiogenetic molecules/fragments composing the matrix of a given tissue. One of the vital aspects of this field of research is that, for its endogenous nature, the ECM can be viewed as a reservoir to draw from for the development of new more efficacious therapies to treat angiogenesis-dependent pathologies.
Collapse
|
31
|
Heyman B, Yang Y. Mechanisms of heparanase inhibitors in cancer therapy. Exp Hematol 2016; 44:1002-1012. [PMID: 27576132 DOI: 10.1016/j.exphem.2016.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/09/2016] [Accepted: 08/19/2016] [Indexed: 12/26/2022]
Abstract
Heparanase is an endo-β-D-glucuronidase capable of cleaving heparan sulfate side chains contributing to breakdown of the extracellular matrix. Increased expression of heparanase has been observed in numerous malignancies and is associated with a poor prognosis. It has generated significant interest as a potential antineoplastic target because of the multiple roles it plays in tumor growth and metastasis. The protumorigenic effects of heparanase are enhanced by the release of heparan sulfate side chains, with subsequent increase in bioactive fragments and cytokine levels that promote tumor invasion, angiogenesis, and metastasis. Preclinical experiments have found heparanase inhibitors to substantially reduce tumor growth and metastasis, leading to clinical trials with heparan sulfate mimetics. In this review, we examine the role of heparanase in tumor biology and its interaction with heparan surface proteoglycans, specifically syndecan-1, as well as the mechanism of action for heparanase inhibitors developed as antineoplastic therapeutics.
Collapse
Affiliation(s)
- Benjamin Heyman
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina, USA; Department of Immunology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
32
|
Nikitovic D, Kavasi RM, Berdiaki A, Papachristou DJ, Tsiaoussis J, Spandidos DA, Tsatsakis AM, Tzanakakis GN. Parathyroid hormone/parathyroid hormone-related peptide regulate osteosarcoma cell functions: Focus on the extracellular matrix (Review). Oncol Rep 2016; 36:1787-92. [PMID: 27499459 PMCID: PMC5022866 DOI: 10.3892/or.2016.4986] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022] Open
Abstract
Osteosarcoma (OS) is a primary bone tumor of mesenchymal origin mostly affecting children and adolescents. The OS extracellular matrix (ECM) is extensively altered as compared to physiological bone tissue. Indeed, the main characteristic of the most common osteoblastic subtype of OS is non-mineralized osteoid production. Parathyroid hormone (PTH) is a polypeptide hormone secreted by the chief cells of the parathyroid glands. The PTH-related peptide (PTHrP) may be comprised of 139, 141 or 173 amino acids and exhibits considerate N-terminal amino acid sequence homology with PTH. The function of PTH/PTHrP is executed through the activation of the PTH receptor 1 (PTHR1) and respective downstream intracellular pathways which regulate skeletal development, bone turnover and mineral ion homeostasis. Both PTHR1 and its PTH/PTHrP ligands have been shown to be expressed in OS and to affect the functions of these tumor cells. This review aims to highlight the less well known aspects of PTH/PTHrP functions in the progression of OS by focusing on ECM-dependent signaling.
Collapse
Affiliation(s)
- Dragana Nikitovic
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Rafaela-Maria Kavasi
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Aikaterini Berdiaki
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Dionysios J Papachristou
- Department of Anatomy‑Histology‑Embryology, Unit of Bone and Soft Tissue Studies, School of Medicine, University of Patras, Patras 26504, Greece
| | - John Tsiaoussis
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - George N Tzanakakis
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
33
|
Resolution of Elevated Urine Glycosaminoglycans and Clinical Features of Mucopolysaccharidosis After Successful Treatment of Neuroblastoma. J Pediatr Hematol Oncol 2016; 38:e196-8. [PMID: 27203570 DOI: 10.1097/mph.0000000000000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We report a patient with stage 3 ganglioneuroblastoma who initially presented with clinical and laboratory features consistent with mucopolysaccharidosis including coarse facial features, developmental delay, and an elevated quantitative urine glycosaminoglycan (GAG) level. All mucopolysaccharidosis features resolved following successful treatment of neuroblastoma. High GAG levels have been documented in the pediatric oncology literature, yet not as a potential marker of malignancy or other target for clinical utility. This patient prompts further investigation into the relationship between neuroblastoma and elevated GAG levels.
Collapse
|
34
|
Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U, Bräse S. Chemical Synthesis of Glycosaminoglycans. Chem Rev 2016; 116:8193-255. [DOI: 10.1021/acs.chemrev.6b00010] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marco Mende
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Christin Bednarek
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Mirella Wawryszyn
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Paul Sauter
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Moritz B. Biskup
- Division
2—Informatics, Economics and Society, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
35
|
Chang Y, Niu W, Lian PL, Wang XQ, Meng ZX, Liu Y, Zhao R. Endocan-expressing microvessel density as a prognostic factor for survival in human gastric cancer. World J Gastroenterol 2016; 22:5422-5429. [PMID: 27340359 PMCID: PMC4910663 DOI: 10.3748/wjg.v22.i23.5422] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/12/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of endocan in tumour vessels and the relationships between endocan and the expression of vascular endothelial growth factor (VEGF) and prognosis in gastric cancer.
METHODS: This study included 142 patients with confirmed gastric cancer in a single cancer centre between 2008 and 2009. Clinicopathologic features were determined, and an immunohistochemical analysis of endocan-expressing microvessel density (MVD) (endocan-MVD), VEGF and vascular endothelial growth factor receptor 2 (VEGFR2) was performed. Potential relationships between endocan-MVD and clinicopathological variables were assessed using a Student’s t-test or an analysis of variance test. Spearman’s rank correlation was applied to evaluate the relationship between endocan-MVD and the expression of VEGF/VEGFR2. Long-term survival of these patients was analysed using univariate and multivariate analyses.
RESULTS: Positive staining of endocan was observed in most of the gastric cancer tissues (108/142) and in fewer of the normal gastric tissues. Endocan-MVD was not associated with gender or histological type (P > 0.05), while endocan-MVD was associated with tumour size, Borrmann type, tumour differentiation, tumour invasion, lymph node metastasis and TNM stage (P < 0.05). According to the Spearman’s rank correlation analysis, endocan-MVD had a positive correlation with VEGF (r = 0.167, P = 0.047) and VEGFR2 (r = 0.410, P = 0.000). The univariate analysis with a log-rank test indicated that the patients with a high level of endocan-MVD had a significantly poorer overall survival rate than those with a low level of endocan-MVD (17.9% vs 64.0%, P = 0.000). The multivariate analysis showed that a high level of endocan-MVD was a valuable prognostic factor.
CONCLUSION: Endocan-MVD significantly correlates with the expression of VEGF and VEGFR2 and is a valuable prognostic factor for survival in human gastric cancer.
Collapse
|
36
|
Suvannasankha A, Tompkins DR, Edwards DF, Petyaykina KV, Crean CD, Fournier PG, Parker JM, Sandusky GE, Ichikawa S, Imel EA, Chirgwin JM. FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells. Oncotarget 2016; 6:19647-60. [PMID: 25944690 PMCID: PMC4637311 DOI: 10.18632/oncotarget.3794] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/10/2015] [Indexed: 01/09/2023] Open
Abstract
Multiply myeloma (MM) grows in and destroys bone, where osteocytes secrete FGF23, a hormone which affects phosphate homeostasis and aging. We report that multiple myeloma (MM) cells express receptors for and respond to FGF23. FGF23 increased mRNA for EGR1 and its target heparanase, a pro-osteolytic factor in MM. FGF23 signals through a complex of klotho and a classical FGF receptor (FGFR); both were expressed by MM cell lines and patient samples. Bone marrow plasma cells from 42 MM patients stained positively for klotho, while plasma cells from 8 patients with monoclonal gammopathy of undetermined significance (MGUS) and 6 controls were negative. Intact, active FGF23 was increased 2.9X in sera of MM patients compared to controls. FGF23 was not expressed by human MM cells, but co-culture with mouse bone increased its mRNA. The FGFR inhibitor NVP-BGJ398 blocked the heparanase response to FGF23. NVP-BGJ398 did not inhibit 8226 growth in vitro but significantly suppressed growth in bone and induction of the osteoclast regulator RANK ligand, while decreasing heparanase mRNA. The bone microenvironment provides resistance to some anti-tumor drugs but increased the activity of NVP-BGJ398 against 8226 cells. The FGF23/klotho/heparanase signaling axis may offer targets for treatment of MM in bone.
Collapse
Affiliation(s)
- Attaya Suvannasankha
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Douglas R Tompkins
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel F Edwards
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Katarina V Petyaykina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Colin D Crean
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pierrick G Fournier
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jamie M Parker
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George E Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shoji Ichikawa
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erik A Imel
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John M Chirgwin
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
37
|
Anticoagulant properties and cytotoxic effect against HCT116 human colon cell line of sulfated glycosaminoglycans isolated from the Norway lobster ( Nephrops norvegicus ) shell. Biomed Pharmacother 2016; 80:322-330. [DOI: 10.1016/j.biopha.2016.03.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 12/11/2022] Open
|
38
|
Waisberg J, Theodoro TR, Matos LL, Orlandi FB, Serrano RL, Saba GT, Pinhal MAS. Immunohistochemical expression of heparanase isoforms and syndecan-1 proteins in colorectal adenomas. Eur J Histochem 2016; 60:2590. [PMID: 26972718 PMCID: PMC4800254 DOI: 10.4081/ejh.2016.2590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 12/21/2022] Open
Abstract
The proteoglycan syndecan-1 and the endoglucuronidases heparanase-1 and heparanase-2 are involved in molecular pathways that deregulate cell adhesion during carcinogenesis. Few studies have examined the expression of syndecan-1, heparanase-1 and mainly heparanase-2 proteins in non-neoplastic and neoplastic human colorectal adenoma tissues. The aim of this study was to analyze the correlation among the heparanase isoforms and the syndecan-1 proteins through immunohistochemical expression in the tissue of colorectal adenomas. Primary anti-human polyclonal anti-HPSE and anti-HPSE2 antibodies and primary anti-human monoclonal anti-SDC1 antibody were used in the immunohistochemical study. The expressions of heparanase-1 and heparanase-2 proteins were determined in tissue samples from 65 colorectal adenomas; the expression of syndecan-1 protein was obtained from 39 (60%) patients. The histological type of adenoma was tubular in 44 (67.7%) patients and tubular-villous in 21 (32.3%); there were no villous adenomas. The polyps were <1.0 cm in size in 54 (83.1%) patients and ≥1.0 cm in 11 (16.9%). The images were quantified by digital counter with a computer program for this purpose. The expression index represented the relationship between the intensity expression and the percentage of positively stained cells. The results showed that the average of heparanase-1, heparanase-2 and syndecan-1 expression index was 73.29 o.u./µm², 93.34 o.u./µm², and 55.29 o.u./µm², respectively. The correlation between the heparanase-1 and syndecan-1 expression index was positive (R=0.034) and significant (P=0.035). There was a negative (R= -0.384) and significant (P=0.016) correlation between the expression index of heparanase-1 and heparanase-2. A negative (R= -0.421) and significant (P=0.008) correlation between the expression index of heparanase-2 and syndecan-1 was found. We concluded that in colorectal adenomas, the heparanase-1 does not participate in syndecan-1 degradation; the heparanase-2 does not stimulate syndecan-1 degradation by the action of heparanase-1, and the heparanase-2 may be involved in the modulation of the heparanase-1 activity.
Collapse
|
39
|
Ucakturk E, Akman O, Sun X, Baydar DE, Dolgun A, Zhang F, Linhardt RJ. Changes in composition and sulfation patterns of glycoaminoglycans in renal cell carcinoma. Glycoconj J 2015; 33:103-12. [PMID: 26662466 DOI: 10.1007/s10719-015-9643-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 01/08/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous, linear, highly charged, anionic polysaccharides consisting of repeating disaccharides units. GAGs have some biological significance in cancer progression (invasion and metastasis) and cell signaling. In different cancer types, GAGs undergo specific structural changes. In the present study, in depth investigation of changes in sulfation pattern and composition of GAGs, heparan sulfate (HS)/heparin (HP), chondroitin sulfate (CS)/dermatan sulfate and hyaluronan (HA) in normal renal tissue (NRT) and renal cell carcinoma tissue (RCCT) were evaluated. The statistical evaluation showed that alteration of the HS (HSNRT = 415.1 ± 115.3; HSRCCT = 277.5 ± 134.3), and CS (CSNRT = 35.3 ± 12.3; CSRCCT = 166.7 ± 108.8) amounts (in ng/mg dry tissue) were statistically significant (p < 0.05). Sulfation pattern in NRT and RCCT was evaluated to reveal disaccharide profiles. Statistical analyses showed that RCCT samples contain significantly increased amounts (in units of ng/mg dry tissue) of 4SCS (NRT = 25.7 ± 9.4; RCCT = 117.1 ± 73.9), SECS (NRT = 0.7 ± 0.3; RCCT = 4.7 ± 4.5), 6SCS (NRT = 6.1 ± 2.7; RCCT = 39.4 ± 34.7) and significantly decreased amounts (in units of ng/mg dry tissue) of NS6SHS (RCCT = 28.6 ± 6.5, RCCT = 10.2 ± 8.0), NS2SHS (RCCT = 44.2 ± 13.8; RCCT = 27.2 ± 15.0), NSHS (NRT = 68.4 ± 15.8; RCCT = 50.4 ± 21.2), 2S6SHS (NRT = 1.0 ± 0.4; RCCT = 0.4 ± 0.3), and 6SHS (NRT = 60.6 ± 17.5; RCCT = 24.9 ± 12.3). If these changes in GAGs are proven to be specific and sensitive, they may serve as potential biomarkers in RCC. Our findings are likely to help us to show the direction for further investigations to be able to bring different diagnostic and prognostic approaches in renal tumors.
Collapse
Affiliation(s)
- Ebru Ucakturk
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhıye, Ankara, Turkey.
| | - Orkun Akman
- Department of Pathology, Hacettepe University School of Medicine, 06100, Sıhhıye, Ankara, Turkey
| | - Xiaojun Sun
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
| | - Dilek Ertoy Baydar
- Department of Pathology, Hacettepe University School of Medicine, 06100, Sıhhıye, Ankara, Turkey
| | - Anil Dolgun
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, 06100, Sıhhıye, Ankara, Turkey
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA.
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA.
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA.
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA.
| |
Collapse
|
40
|
|
41
|
The phospholipid code: a key component of dying cell recognition, tumor progression and host-microbe interactions. Cell Death Differ 2015; 22:1893-905. [PMID: 26450453 DOI: 10.1038/cdd.2015.122] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 02/06/2023] Open
Abstract
A significant effort is made by the cell to maintain certain phospholipids at specific sites. It is well described that proteins involved in intracellular signaling can be targeted to the plasma membrane and organelles through phospholipid-binding domains. Thus, the accumulation of a specific combination of phospholipids, denoted here as the 'phospholipid code', is key in initiating cellular processes. Interestingly, a variety of extracellular proteins and pathogen-derived proteins can also recognize or modify phospholipids to facilitate the recognition of dying cells, tumorigenesis and host-microbe interactions. In this article, we discuss the importance of the phospholipid code in a range of physiological and pathological processes.
Collapse
|
42
|
A suggested guiding panel of seromarkers for efficient discrimination between primary and secondary human hepatocarcinoma. Tumour Biol 2015; 37:2539-46. [DOI: 10.1007/s13277-015-4025-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/31/2015] [Indexed: 12/25/2022] Open
|
43
|
Kouvidi K, Nikitovic D, Berdiaki A, Tzanakakis GN. Hyaluronan/RHAMM interactions in mesenchymal tumor pathogenesis: role of growth factors. Adv Cancer Res 2015; 123:319-49. [PMID: 25081535 DOI: 10.1016/b978-0-12-800092-2.00012-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibrosarcoma belongs to the sarcoma cancer group, which are spindle cell malignancies of mesenchymal origin, and owe their name to the predominant cell line that is present within the tumor. The extracellular matrix (ECM) is a complicated structure that surrounds and supports cells within tissues. Its main components are proteoglycans, collagens, glycoproteins, hyaluronan (HA), and several matrix-degrading enzymes. During cancer progression, significant changes can be observed in the structural and mechanical properties of ECM components. The ECM provides a physical scaffold to which tumor cells attach and migrate. Thus, it is required for key cellular events such as cell motility, adhesion, proliferation, invasion, and metastasis. Importantly, fibrosarcomas were shown to have a high content and turnover of ECM components including HA, proteoglycans, collagens, fibronectin, and laminin. In this review, we will focus on the HA component of fibrosarcoma ECM and critically discuss its role and involved mechanisms during fibrosarcoma pathogenesis.
Collapse
Affiliation(s)
- Katerina Kouvidi
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - George N Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece.
| |
Collapse
|
44
|
Winterhoff B, Freyer L, Hammond E, Giri S, Mondal S, Roy D, Teoman A, Mullany SA, Hoffmann R, von Bismarck A, Chien J, Block MS, Millward M, Bampton D, Dredge K, Shridhar V. PG545 enhances anti-cancer activity of chemotherapy in ovarian models and increases surrogate biomarkers such as VEGF in preclinical and clinical plasma samples. Eur J Cancer 2015; 51:879-892. [PMID: 25754234 DOI: 10.1016/j.ejca.2015.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/02/2015] [Accepted: 02/11/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Despite the utility of antiangiogenic drugs in ovarian cancer, efficacy remains limited due to resistance linked to alternate angiogenic pathways and metastasis. Therefore, we investigated PG545, an anti-angiogenic and anti-metastatic agent which is currently in Phase I clinical trials, using preclinical models of ovarian cancer. METHODS PG545's anti-cancer activity was investigated in vitro and in vivo as a single agent, and in combination with paclitaxel, cisplatin or carboplatin using various ovarian cancer cell lines and tumour models. RESULTS PG545, alone, or in combination with chemotherapeutics, inhibited proliferation of ovarian cancer cells, demonstrating synergy with paclitaxel in A2780 cells. PG545 inhibited growth factor-mediated cell migration and reduced HB-EGF-induced phosphorylation of ERK, AKT and EGFR in vitro and significantly reduced tumour burden which was enhanced when combined with paclitaxel in an A2780 model or carboplatin in a SKOV-3 model. Moreover, in the immunocompetent ID8 model, PG545 also significantly reduced ascites in vivo. In the A2780 maintenance model, PG545 initiated with, and following paclitaxel and cisplatin treatment, significantly improved overall survival. PG545 increased plasma VEGF levels (and other targets) in preclinical models and in a small cohort of advanced cancer patients which might represent a potential biomarker of response. CONCLUSION Our results support clinical testing of PG545, particularly in combination with paclitaxel, as a novel therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Boris Winterhoff
- Mayo Clinic, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Minnesota, USA
| | - Luisa Freyer
- Mayo Clinic College of Medicine, Department of Experimental Pathology, Minnesota, USA
| | - Edward Hammond
- Progen Pharmaceuticals Ltd, Brisbane, Queensland, Australia
| | - Shailendra Giri
- Henry Ford Health System, Neurology Research, Detroit, MI, USA
| | - Susmita Mondal
- Mayo Clinic College of Medicine, Department of Experimental Pathology, Minnesota, USA
| | - Debarshi Roy
- Mayo Clinic College of Medicine, Department of Experimental Pathology, Minnesota, USA
| | - Attila Teoman
- Mayo Clinic, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Minnesota, USA
| | - Sally A Mullany
- University of Minnesota, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Minnesota, USA
| | - Robert Hoffmann
- Mayo Clinic College of Medicine, Department of Experimental Pathology, Minnesota, USA
| | - Antonia von Bismarck
- Mayo Clinic College of Medicine, Department of Experimental Pathology, Minnesota, USA
| | - Jeremy Chien
- Department of Cancer Biology, University of Kansas Cancer Center, Kansas City, Kansas, USA
| | - Matthew S Block
- Mayo Clinic College of Medicine, Department of Medical Oncology, Minnesota, USA
| | - Michael Millward
- Department of Medical Oncology, Sir Charles Gairdner Hospital & University of Western Australia
| | - Darryn Bampton
- Progen Pharmaceuticals Ltd, Brisbane, Queensland, Australia
| | - Keith Dredge
- Progen Pharmaceuticals Ltd, Brisbane, Queensland, Australia
| | - Viji Shridhar
- Mayo Clinic College of Medicine, Department of Experimental Pathology, Minnesota, USA
| |
Collapse
|
45
|
Abstract
Heparanase is an endo-β-D-glucuronidase that is capable of cleaving heparan sulfate side chains of heparan sulfate proteoglycans on cell surfaces and the extracellular matrix, activity that is strongly implicated in tumor metastasis and angiogenesis. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Among these are the up-regulation of vascular endothelial growth factor (VEGF)-A, VEGF-C and activation of intra-cellular signaling involved in cell survival and proliferation. We had earlier demonstrated that heparanase may also affect the hemostatic system in a non-enzymatic manner. We had shown that heparanase up-regulated the expression of the blood coagulation initiator- tissue factor (TF) and interacted with the tissue factor pathway inhibitor (TFPI) on the cell surface membrane of endothelial and tumor cells, leading to dissociation of TFPI and resulting in increased cell surface coagulation activity. Moreover, we have demonstrated that heparanase directly enhanced TF activity which led to increased factor Xa production and subsequent activation of the coagulation system. Taking into account the prometastatic, pro-angiogenic and pro-coagulant functions of heparanase, over-expression in human malignancies and abundance in platelets, implies that heparanase is potentially a good target for cancer therapy.
Collapse
Affiliation(s)
- Yona Nadir
- Thrombosis and Hemostasis Unit, Department of Hematology, Rambam Health Care Campus, Haifa, Israel.
| | - Benjamin Brenner
- Thrombosis and Hemostasis Unit, Department of Hematology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
46
|
Hu QY, Fink E, Grant CK, Elder JH. Selective interaction of heparin with the variable region 3 within surface glycoprotein of laboratory-adapted feline immunodeficiency virus. PLoS One 2014; 9:e115252. [PMID: 25521480 PMCID: PMC4270745 DOI: 10.1371/journal.pone.0115252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/20/2014] [Indexed: 12/22/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPG) can act as binding receptors for certain laboratory-adapted (TCA) strains of feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV). Heparin, a soluble heparin sulfate (HS), can inhibit TCA HIV and FIV entry mediated by HSPG interaction in vitro. In the present study, we further determined the selective interaction of heparin with the V3 loop of TCA of FIV. Our current results indicate that heparin selectively inhibits infection by TCA strains, but not for field isolates (FS). Heparin also specifically interferes with TCA surface glycoprotein (SU) binding to CXCR4, by interactions with HSPG binding sites on the V3 loop of the FIV envelope protein. Peptides representing either the N- or C-terminal side of the V3 loop and containing HSPG binding sites were able to compete away the heparin block of TCA SU binding to CXCR4. Heparin does not interfere with the interaction of SU with anti-V3 antibodies that target the CXCR4 binding region or with the interaction between FS FIV and anti-V3 antibodies since FS SU has no HSPG binding sites within the HSPG binding region. Our data show that heparin blocks TCA FIV infection or entry not only through its competition of HSPG on the cell surface interaction with SU, but also by its interference with CXCR4 binding to SU. These studies aid in the design and development of heparin derivatives or analogues that can inhibit steps in virus infection and are informative regarding the HSPG/SU interaction.
Collapse
Affiliation(s)
- Qiong-Ying Hu
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States
| | - Elizabeth Fink
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States
| | - Chris K. Grant
- Custom Monoclonals International, Inc., W. Sacramento, California, United States
| | - John H. Elder
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States
- * E-mail:
| |
Collapse
|
47
|
Di Noto G, Chiarini M, Paolini L, Mazzoldi EL, Giustini V, Radeghieri A, Caimi L, Ricotta D. Immunoglobulin Free Light Chains and GAGs Mediate Multiple Myeloma Extracellular Vesicles Uptake and Secondary NfκB Nuclear Translocation. Front Immunol 2014; 5:517. [PMID: 25386176 PMCID: PMC4209816 DOI: 10.3389/fimmu.2014.00517] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/04/2014] [Indexed: 01/08/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy caused by a microenviromentally aided persistence of plasma cells in the bone marrow. Monoclonal plasma cells often secrete high amounts of immunoglobulin free light chains (FLCs) that could induce tissue damage. Recently, we showed that FLCs are internalized in endothelial and myocardial cell lines and secreted in extracellular vesicles (EVs). MM serum derived EVs presented phenotypic differences if compared with monoclonal gammopathy of undetermined significance (MGUS) serum derived EVs suggesting their involvement in MM pathogenesis or progression. To investigate the effect of circulating EVs on endothelial and myocardial cells, we purified MM and MGUS serum derived EVs with differential ultracentrifugation protocols and tested their biological activity. We found that MM and MGUS EVs induced different proliferation and internalization rates in endothelial and myocardial cells, thus we tried to find specific targets in MM EVs docking and processing. Pre-treatment of EVs with anti-FLCs antibodies or heparin blocked the MM EVs uptake, highlighting that FLCs and glycosaminoglycans are involved. Indeed, only MM EVs exposure induced a strong nuclear factor kappa B nuclear translocation that was completely abolished after anti-FLCs antibodies and heparin pre-treatment. The protein tyrosine kinase c-src is present on MM circulating EVs and redistributes to the cell plasma membrane after MM EVs exposure. The anti-FLCs antibodies and heparin pre-treatments were able to block the intracellular re-distribution of the c-src kinase and the subsequent c-src kinase containing EVs production. Our results open new insights in EVs cellular biology and in MM therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Giuseppe Di Noto
- Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia , Brescia , Italy
| | - Marco Chiarini
- CREA, Diagnostic Department, Azienda Ospedaliera Spedali Civili di Brescia , Brescia , Italy
| | - Lucia Paolini
- Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia , Brescia , Italy
| | - Elena Laura Mazzoldi
- Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia , Brescia , Italy
| | - Viviana Giustini
- CREA, Diagnostic Department, Azienda Ospedaliera Spedali Civili di Brescia , Brescia , Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia , Brescia , Italy
| | - Luigi Caimi
- Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia , Brescia , Italy
| | - Doris Ricotta
- Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia , Brescia , Italy
| |
Collapse
|
48
|
Sadaie MR. Can heparins stimulate bone cancer stem cells and interfere with tumorigenesis? Ther Adv Drug Saf 2014; 2:271-82. [PMID: 25083219 DOI: 10.1177/2042098611419312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Heparin and heparan sulfate, a variety of negatively charged highly sulfated polysaccharides, can influence the biological functions of human bone morphogenetic proteins (BMPs). Notably, BMPs control numerous essential biological activities and processes, such as bone formation, bone turnover, brain development, tumor initiation, and progression. BMPs also enhance the repair of bone tissue injuries and are used in bone remodeling alongside implantable prosthetic devices. BMPs either potentiate or inhibit the growth of cancer stem cells (CSCs). This dual biological effect appears to depend upon the cell type, underlying cytogenetic and biochemical aberrations in various distinct malignancies. Similarly, heparins may modulate CSCs positively or negatively through BMPs. The primary aims of this review are to investigate whether heparin prophylaxis would likely stimulate the propagation of a chemotherapy-resistant subpopulation of CSCs and aggravate tumor response to treatment, and result in tumor expansion, tumor recurrence and metastasis. The secondary aim is to document whether such detrimental effects surpass their beneficial effects as anticoagulants in primary bone cancers such as osteosarcoma. The current state of scientific knowledge based on key published articles from the standpoint of rigidity of data and identification of data gaps is discussed.
Collapse
Affiliation(s)
- M Reza Sadaie
- NovoMed Consulting, 12214 Plum Orchard Drive, Silver Spring, MD 20904, USA
| |
Collapse
|
49
|
Poluzzi C, Casulli J, Goyal A, Mercer TJ, Neill T, Iozzo RV. Endorepellin evokes autophagy in endothelial cells. J Biol Chem 2014; 289:16114-28. [PMID: 24737315 DOI: 10.1074/jbc.m114.556530] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Endorepellin, the C-terminal fragment of the heparan sulfate proteoglycan perlecan, possesses angiostatic activity via dual receptor antagonism, through concurrent binding to the α2β1 integrin and vascular endothelial growth factor receptor 2 (VEGFR2). Here, we discovered that soluble endorepellin induced autophagy in endothelial cells by modulating the expression of Beclin 1, LC3, and p62, three established autophagic markers. Moreover, endorepellin evoked expression of the imprinted tumor suppressor gene Peg3 and its co-localization with Beclin 1 and LC3 in autophagosomes, suggesting a major role for this gene in endothelial cell autophagy. Mechanistically, endorepellin induced autophagy by down-regulating VEGFR2 via the two LG1/2 domains, whereas the C-terminal LG3 domain, the portion responsible for binding the α2β1 integrin, was ineffective. Endorepellin also induced transcriptional activity of the BECN1 promoter in endothelial cells, and the VEGFR2-specific tyrosine kinase inhibitor, SU5416, blocked this effect. Finally, we found a correlation between endorepellin-evoked inhibition of capillary morphogenesis and enhanced autophagy. Thus, we have identified a new role for this endogenous angiostatic fragment in inducing autophagy through a VEGFR2-dependent but α2β1 integrin-independent pathway. This novel mechanism specifically targets endothelial cells and could represent a promising new strategy to potentiate the angiostatic effect of endorepellin and perhaps other angiostatic matrix proteins.
Collapse
Affiliation(s)
- Chiara Poluzzi
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Joshua Casulli
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Atul Goyal
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Thomas J Mercer
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Thomas Neill
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Renato V Iozzo
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
50
|
Barbouri D, Afratis N, Gialeli C, Vynios DH, Theocharis AD, Karamanos NK. Syndecans as modulators and potential pharmacological targets in cancer progression. Front Oncol 2014; 4:4. [PMID: 24551591 PMCID: PMC3910246 DOI: 10.3389/fonc.2014.00004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/09/2014] [Indexed: 12/17/2022] Open
Abstract
Extracellular matrix (ECM) components form a dynamic network of key importance for cell function and properties. Key macromolecules in this interplay are syndecans (SDCs), a family of transmembrane heparan sulfate proteoglycans (HSPGs). Specifically, heparan sulfate (HS) chains with their different sulfation pattern have the ability to interact with growth factors and their receptors in tumor microenvironment, promoting the activation of different signaling cascades that regulate tumor cell behavior. The affinity of HS chains with ligands is altered during malignant conditions because of the modification of chain sequence/sulfation pattern. Furthermore, matrix degradation enzymes derived from the tumor itself or the tumor microenvironment, like heparanase and matrix metalloproteinases, ADAM as well as ADAMTS are involved in the cleavage of SDCs ectodomain at the HS and protein core level, respectively. Such released soluble SDCs "shed SDCs" in the ECM interact in an autocrine or paracrine manner with the tumor or/and stromal cells. Shed SDCs, upon binding to several matrix effectors, such as growth factors, chemokines, and cytokines, have the ability to act as competitive inhibitors for membrane proteoglycans, and modulate the inflammatory microenvironment of cancer cells. It is notable that SDCs and their soluble counterparts may affect either the behavior of cancer cells and/or their microenvironment during cancer progression. The importance of these molecules has been highlighted since HSPGs have been proposed as prognostic markers of solid tumors and hematopoietic malignancies. Going a step further down the line, the multi-actions of SDCs in many levels make them appealing as potential pharmacological targets, either by targeting directly the tumor or indirectly the adjacent stroma.
Collapse
Affiliation(s)
- Despoina Barbouri
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Nikolaos Afratis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Chrisostomi Gialeli
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| |
Collapse
|