1
|
Palacios-Ramirez R, Soulié M, Fernandez-Celis A, Nakamura T, Boujardine N, Bonnard B, Bamberg K, Lopez-Andres N, Jaisser F. Mineralocorticoid receptor (MR) antagonist eplerenone and MR modulator balcinrenone prevent renal extracellular matrix remodeling and inflammation via the MR/proteoglycan/TLR4 pathway. Clin Sci (Lond) 2024; 138:1025-1038. [PMID: 39092535 DOI: 10.1042/cs20240302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
Excessive activation of the mineralocorticoid receptor (MR) is implicated in cardiovascular and renal disease. Decreasing MR activation with MR antagonists (MRA) is effective to slow chronic kidney disease (CKD) progression and its cardiovascular comorbidities in animal models and patients. The present study evaluates the effects of the MR modulator balcinrenone and the MRA eplerenone on kidney damage in a metabolic CKD mouse model combining nephron reduction and a 60% high-fat diet. Balcinrenone and eplerenone prevented the progression of renal damages, extracellular matrix remodeling and inflammation to a similar extent. We identified a novel mechanism linking MR activation to the renal proteoglycan deposition and inflammation via the TLR4 pathway activation. Balcinrenone and eplerenone similarly blunted this pathway activation.
Collapse
Affiliation(s)
- Roberto Palacios-Ramirez
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
| | - Matthieu Soulié
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
| | - Amaya Fernandez-Celis
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Toshifumi Nakamura
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
| | - Nabiha Boujardine
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
| | - Benjamin Bonnard
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
| | - Krister Bamberg
- Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Natalia Lopez-Andres
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Frederic Jaisser
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
- Université de Lorraine, INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, Nancy, France
| |
Collapse
|
2
|
Kunnathattil M, Rahul P, Skaria T. Soluble vascular endothelial glycocalyx proteoglycans as potential therapeutic targets in inflammatory diseases. Immunol Cell Biol 2024; 102:97-116. [PMID: 37982607 DOI: 10.1111/imcb.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.
Collapse
Affiliation(s)
- Maneesha Kunnathattil
- Department of Zoology, Government College Madappally, University of Calicut, Calicut, Kerala, India
| | - Pedapudi Rahul
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
3
|
Miguez PA, Bash E, Musskopf ML, Tuin SA, Rivera-Concepcion A, Chapple ILC, Liu J. Control of tissue homeostasis by the extracellular matrix: Synthetic heparan sulfate as a promising therapeutic for periodontal health and bone regeneration. Periodontol 2000 2024; 94:510-531. [PMID: 37614159 PMCID: PMC10891305 DOI: 10.1111/prd.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Proteoglycans are core proteins associated with carbohydrate/sugar moieties that are highly variable in disaccharide composition, which dictates their function. These carbohydrates are named glycosaminoglycans, and they can be attached to proteoglycans or found free in tissues or on cell surfaces. Glycosaminoglycans such as hyaluronan, chondroitin sulfate, dermatan sulfate, keratan sulfate, and heparin/heparan sulfate have multiple functions including involvement in inflammation, immunity and connective tissue structure, and integrity. Heparan sulfate is a highly sulfated polysaccharide that is abundant in the periodontium including alveolar bone. Recent evidence supports the contention that heparan sulfate is an important player in modulating interactions between damage associated molecular patterns and inflammatory receptors expressed by various cell types. The structure of heparan sulfate is reported to dictate its function, thus, the utilization of a homogenous and structurally defined heparan sulfate polysaccharide for modulation of cell function offers therapeutic potential. Recently, a chemoenzymatic approach was developed to allow production of many structurally defined heparan sulfate carbohydrates. These oligosaccharides have been studied in various pathological inflammatory conditions to better understand their function and their potential application in promoting tissue homeostasis. We have observed that specific size and sulfation patterns can modulate inflammation and promote tissue maintenance including an anabolic effect in alveolar bone. Thus, new evidence provides a strong impetus to explore heparan sulfate as a potential novel therapeutic agent to treat periodontitis, support alveolar bone maintenance, and promote bone formation.
Collapse
Affiliation(s)
- PA Miguez
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - E Bash
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ML Musskopf
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - SA Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - A Rivera-Concepcion
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ILC Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham’s NIHR BRC in Inflammation Research, University of Birmingham and Birmingham Community Health Foundation Trust, Birmingham UK Iain Chapple
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Xie C, Schaefer L, Iozzo RV. Global impact of proteoglycan science on human diseases. iScience 2023; 26:108095. [PMID: 37867945 PMCID: PMC10589900 DOI: 10.1016/j.isci.2023.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Maiti G, Ashworth S, Choi T, Chakravarti S. Molecular cues for immune cells from small leucine-rich repeat proteoglycans in their extracellular matrix-associated and free forms. Matrix Biol 2023; 123:48-58. [PMID: 37793508 PMCID: PMC10841460 DOI: 10.1016/j.matbio.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
In this review we highlight emerging immune regulatory functions of lumican, keratocan, fibromodulin, biglycan and decorin, which are members of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). These SLRPs have been studied extensively as collagen-fibril regulatory structural components of the skin, cornea, bone and cartilage in homeostasis. However, SLRPs released from a remodeling ECM, or synthesized by activated fibroblasts and immune cells contribute to an ECM-free pool in tissues and circulation, that may have a significant, but poorly understood foot print in inflammation and disease. Their molecular interactions and the signaling networks they influence also require investigations. Here we present studies on the leucine-rich repeat (LRR) motifs of SLRP core proteins, their evolutionary and functional relationships with other LRR pathogen recognition receptors, such as the toll-like receptors (TLRs) to bring some molecular clarity in the immune regulatory functions of SLRPs. We discuss molecular interactions of fragments and intact SLRPs, and how some of these interactions are likely modulated by glycosaminoglycan side chains. We integrate findings on molecular interactions of these SLRPs together with what is known about their presence in circulation and lymph nodes (LN), which are important sites of immune cell regulation. Recent bulk and single cell RNA sequencing studies have identified subsets of stromal reticular cells that express these SLRPs within LNs. An understanding of the cellular source, molecular interactions and signaling consequences will lead to a fundamental understanding of how SLRPs modulate immune responses, and to therapeutic tools based on these SLRPs in the future.
Collapse
Affiliation(s)
- George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Sean Ashworth
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Tansol Choi
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States; Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States.
| |
Collapse
|
6
|
Li H, Ghorbani S, Ling CC, Yong VW, Xue M. The extracellular matrix as modifier of neuroinflammation and recovery in ischemic stroke and intracerebral hemorrhage. Neurobiol Dis 2023; 186:106282. [PMID: 37683956 DOI: 10.1016/j.nbd.2023.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Stroke is the second leading cause of death worldwide and has two major subtypes: ischemic stroke and hemorrhagic stroke. Neuroinflammation is a pathological hallmark of ischemic stroke and intracerebral hemorrhage (ICH), contributing to the extent of brain injury but also in its repair. Neuroinflammation is intricately linked to the extracellular matrix (ECM), which is profoundly altered after brain injury and in aging. In the early stages after ischemic stroke and ICH, immune cells are involved in the deposition and remodeling of the ECM thereby affecting processes such as blood-brain barrier and cellular integrity. ECM components regulate leukocyte infiltration into the central nervous system, activate a variety of immune cells, and induce the elevation of matrix metalloproteinases (MMPs) after stroke. In turn, excessive MMPs may degrade ECM into components that are pro-inflammatory and injurious. Conversely, in the later stages after stroke, several ECM molecules may contribute to tissue recovery. For example, thrombospondin-1 and biglycan may promote activity of regulatory T cells, inhibit the synthesis of proinflammatory cytokines, and aid regenerative processes. We highlight these roles of the ECM in ischemic stroke and ICH and discuss their potential cellular and molecular mechanisms. Finally, we discuss therapeutics that could be considered to normalize the ECM in stroke. Our goal is to spur research on the ECM in order to improve the prognosis of ischemic stroke and ICH.
Collapse
Affiliation(s)
- Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China; Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
McKiel LA, Ballantyne LL, Negri GL, Woodhouse KA, Fitzpatrick LE. MyD88-dependent Toll-like receptor 2 signaling modulates macrophage activation on lysate-adsorbed Teflon™ AF surfaces in an in vitro biomaterial host response model. Front Immunol 2023; 14:1232586. [PMID: 37691934 PMCID: PMC10491479 DOI: 10.3389/fimmu.2023.1232586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
The adsorbed protein layer on an implanted biomaterial surface is known to mediate downstream cell-material interactions that drive the host response. While the adsorption of plasma-derived proteins has been studied extensively, the adsorption of damage-associated molecular patterns (DAMPs) derived from damaged cells and matrix surrounding the implant remains poorly understood. Previously, our group developed a DAMP-adsorption model in which 3T3 fibroblast lysates were used as a complex source of cell-derived DAMPs and we demonstrated that biomaterials with adsorbed lysate potently activated RAW-Blue macrophages via Toll-like receptor 2 (TLR2). In the present study, we characterized the response of mouse bone marrow derived macrophages (BMDM) from wildtype (WT), TLR2-/- and MyD88-/- mice on Teflon™ AF surfaces pre-adsorbed with 10% plasma or lysate-spiked plasma (10% w/w total protein from 3T3 fibroblast lysate) for 24 hours. WT BMDM cultured on adsorbates derived from 10% lysate in plasma had significantly higher gene and protein expression of IL-1β, IL-6, TNF-α, IL-10, RANTES/CCL5 and CXCL1/KC, compared to 10% plasma-adsorbed surfaces. Furthermore, the upregulation of pro-inflammatory cytokine and chemokine expression in the 10% lysate in plasma condition was attenuated in TLR2-/- and MyD88-/- BMDM. Proteomic analysis of the adsorbed protein layers showed that even this relatively small addition of lysate-derived proteins within plasma (10% w/w) caused a significant change to the adsorbed protein profile. The 10% plasma condition had fibrinogen, albumin, apolipoproteins, complement, and fibronectin among the top 25 most abundant proteins. While proteins layers generated from 10% lysate in plasma retained fibrinogen and fibronectin among the top 25 proteins, there was a disproportionate increase in intracellular proteins, including histones, tubulins, actins, and vimentin. Furthermore, we identified 7 DAMPs or DAMP-related proteins enriched in the 10% plasma condition (fibrinogen, apolipoproteins), compared to 39 DAMPs enriched in the 10% lysate in plasma condition, including high mobility group box 1 and histones. Together, these findings indicate that DAMPs and other intracellular proteins readily adsorb to biomaterial surfaces in competition with plasma proteins, and that adsorbed DAMPs induce an inflammatory response in adherent macrophages that is mediated by the MyD88-dependent TLR2 signaling pathway.
Collapse
Affiliation(s)
- Laura A. McKiel
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
| | - Laurel L. Ballantyne
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
- Centre for Health Innovation, Queen’s University and Kingston Health Sciences, Kingston, ON, Canada
| | | | - Kimberly A. Woodhouse
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
| | - Lindsay E. Fitzpatrick
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
- Centre for Health Innovation, Queen’s University and Kingston Health Sciences, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
8
|
Berdiaki A, Giatagana EM, Tzanakakis G, Nikitovic D. The Landscape of Small Leucine-Rich Proteoglycan Impact on Cancer Pathogenesis with a Focus on Biglycan and Lumican. Cancers (Basel) 2023; 15:3549. [PMID: 37509212 PMCID: PMC10377491 DOI: 10.3390/cancers15143549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer development is a multifactorial procedure that involves changes in the cell microenvironment and specific modulations in cell functions. A tumor microenvironment contains tumor cells, non-malignant cells, blood vessels, cells of the immune system, stromal cells, and the extracellular matrix (ECM). The small leucine-rich proteoglycans (SLRPs) are a family of nineteen proteoglycans, which are ubiquitously expressed among mammalian tissues and especially abundant in the ECM. SLRPs are divided into five canonical classes (classes I-III, containing fourteen members) and non-canonical classes (classes IV-V, including five members) based on their amino-acid structural sequence, chromosomal organization, and functional properties. Variations in both the protein core structure and glycosylation status lead to SLRP-specific interactions with cell membrane receptors, cytokines, growth factors, and structural ECM molecules. SLRPs have been implicated in the regulation of cancer growth, motility, and invasion, as well as in cancer-associated inflammation and autophagy, highlighting their crucial role in the processes of carcinogenesis. Except for the class I SLRP decorin, to which an anti-tumorigenic role has been attributed, other SLPRs' roles have not been fully clarified. This review will focus on the functions of the class I and II SLRP members biglycan and lumican, which are correlated to various aspects of cancer development.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - George Tzanakakis
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
9
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|
10
|
Zeng-Brouwers J, Huber LS, Merline R, Trebicka J, Wygrecka M, Schaefer L. Evaluation of the In Vitro and In Vivo Effects of Biglycan in Innate Immunity. Methods Mol Biol 2023; 2619:109-124. [PMID: 36662466 DOI: 10.1007/978-1-0716-2946-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biglycan, a small leucine-rich proteoglycan (SLRP), is a crucial component of the extracellular matrix (ECM) associated with the maintenance of tissue homeostasis. In response to tissue damage, the ECM-derived soluble form of biglycan acts as a danger signal by triggering an inflammatory response via the toll-like receptor (TLR)2/TLR4 in macrophages and dendritic cells. The impact and signaling mechanism of biglycan in innate immunity is better understood with the use of specific and reliable research tools and investigation techniques. Accordingly, our lab has established explicit and detailed experimental protocols to examine the in vitro and in vivo effects of biglycan in cellular immune responses. To evaluate the in vitro effects of biglycan on macrophage activation, a comprehensive protocol that makes use of murine peritoneal macrophages has been described. Further, to study the in vivo effects of biglycan, a method that uses a pLIVE vector to generate transgenic mice transiently overexpressing human biglycan is detailed. A step-by-step protocol for analyzing the effects of soluble biglycan overexpression in transgenic mice is explained under the following sections: (1) construction of pLIVE-hBGN plasmid, (2) intravenous delivery of transgenic vector, (3) identification of hBGN transgene in hepatocytes (4) detection of transgenic biglycan protein in the plasma of transgenic mice, and (5) evaluation of the presence and pro-inflammatory effects of transgenic biglycan in extrahepatic mouse tissues.
Collapse
Affiliation(s)
- Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Lisa Sophie Huber
- Pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Rosetta Merline
- Pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Jonel Trebicka
- Department of Internal Medicine B, University Hospital Muenster (UKM), Muenster, Germany
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany.
| |
Collapse
|
11
|
Kołakowski A, Dziemitko S, Chmielecka A, Żywno H, Bzdęga W, Charytoniuk T, Chabowski A, Konstantynowicz-Nowicka K. Molecular Advances in MAFLD—A Link between Sphingolipids and Extracellular Matrix in Development and Progression to Fibrosis. Int J Mol Sci 2022; 23:ijms231911380. [PMID: 36232681 PMCID: PMC9569877 DOI: 10.3390/ijms231911380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Metabolic-Associated Fatty Liver Disease (MAFLD) is a major cause of liver diseases globally and its prevalence is expected to grow in the coming decades. The main cause of MAFLD development is changed in the composition of the extracellular matrix (ECM). Increased production of matrix molecules and inflammatory processes lead to progressive fibrosis, cirrhosis, and ultimately liver failure. In addition, increased accumulation of sphingolipids accompanied by increased expression of pro-inflammatory cytokines in the ECM is closely related to lipogenesis, MAFLD development, and its progression to fibrosis. In our work, we will summarize all information regarding the role of sphingolipids e.g., ceramide and S1P in MAFLD development. These sphingolipids seem to have the most significant effect on macrophages and, consequently, HSCs which trigger the entire cascade of overproduction matrix molecules, especially type I and III collagen, proteoglycans, elastin, and also tissue inhibitors of metalloproteinases, which as a result cause the development of liver fibrosis.
Collapse
Affiliation(s)
- Adrian Kołakowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Sylwia Dziemitko
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | | - Hubert Żywno
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Wiktor Bzdęga
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Tomasz Charytoniuk
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
- Department of Ophthalmology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | |
Collapse
|
12
|
Deb G, Cicala A, Papadas A, Asimakopoulos F. Matrix proteoglycans in tumor inflammation and immunity. Am J Physiol Cell Physiol 2022; 323:C678-C693. [PMID: 35876288 PMCID: PMC9448345 DOI: 10.1152/ajpcell.00023.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Cancer immunoediting progresses through elimination, equilibrium, and escape. Each of these phases is characterized by breaching, remodeling, and rebuilding tissue planes and structural barriers that engage extracellular matrix (ECM) components, in particular matrix proteoglycans. Some of the signals emanating from matrix proteoglycan remodeling are readily co-opted by the growing tumor to sustain an environment of tumor-promoting and immune-suppressive inflammation. Yet other matrix-derived cues can be viewed as part of a homeostatic response by the host, aiming to eliminate the tumor and restore tissue integrity. These latter signals may be harnessed for therapeutic purposes to tip the polarity of the tumor immune milieu toward anticancer immunity. In this review, we attempt to showcase the importance and complexity of matrix proteoglycan signaling in both cancer-restraining and cancer-promoting inflammation. We propose that the era of matrix diagnostics and therapeutics for cancer is fast approaching the clinic.
Collapse
Affiliation(s)
- Gauri Deb
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| |
Collapse
|
13
|
Mead TJ, Bhutada S, Martin DR, Apte SS. Proteolysis: a key post-translational modification regulating proteoglycans. Am J Physiol Cell Physiol 2022; 323:C651-C665. [PMID: 35785985 PMCID: PMC9448339 DOI: 10.1152/ajpcell.00215.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
Abstract
Proteoglycans are composite molecules comprising a protein backbone, i.e., the core protein, with covalently attached glycosaminoglycan chains of distinct chemical types. Most proteoglycans are secreted or attached to the cell membrane. Their specialized structures, binding properties, and biophysical attributes underlie diverse biological roles, which include modulation of tissue mechanics, cell adhesion, and the sequestration and regulated release of morphogens, growth factors, and cytokines. As an irreversible post-translational modification, proteolysis has a profound impact on proteoglycan function, abundance, and localization. Proteolysis is required for molecular maturation of some proteoglycans, clearance of extracellular matrix proteoglycans during tissue remodeling, generation of bioactive fragments from proteoglycans, and ectodomain shedding of cell-surface proteoglycans. Genetic evidence shows that proteoglycan core protein proteolysis is essential for diverse morphogenetic events during embryonic development. In contrast, dysregulated proteoglycan proteolysis contributes to osteoarthritis, cardiovascular disorders, cancer, and inflammation. Proteolytic fragments of perlecan, versican, aggrecan, brevican, collagen XVIII, and other proteoglycans are associated with independent biological activities as so-called matrikines. Yet, proteoglycan proteolysis has been investigated to only a limited extent to date. Here, we review the actions of proteases on proteoglycans and illustrate their functional impact with several examples. We discuss the applications and limitations of strategies used to define cleavage sites in proteoglycans and explain how proteoglycanome-wide proteolytic mapping, which is desirable to fully understand the impact of proteolysis on proteoglycans, can be facilitated by integrating classical proteoglycan isolation methods with mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| |
Collapse
|
14
|
Garantziotis S, Savani RC. Proteoglycans in Toll-like receptor responses and innate immunity. Am J Physiol Cell Physiol 2022; 323:C202-C214. [PMID: 35675639 DOI: 10.1152/ajpcell.00088.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) is an active and dynamic feature of tissues that not only provides gross structure but also plays key roles in cellular responses. The ever-changing microenvironment responds dynamically to cellular and external signals, and in turn influences cell fate, tissue development, and response to environmental injury or microbial invasion. It is therefore paramount to understand how the ECM components interact with each other, the environment and cells, and how they mediate their effects. Among the ECM components that have recently garnered increased attention, proteoglycans (PGs) deserve special note. Recent evidence strongly suggests that they play a crucial role both in health maintenance and disease development. In particular, proteoglycans dictate whether homeostasis or cell death will result from a given injury, by triggering and modulating activation of the innate immune system, via a conserved array of receptors that recognize exogenous (infectious) or endogenous (tissue damage) molecular patterns. Innate immune activation by proteoglycans has important implications for the understanding of cell-matrix interactions in health and disease. In this review, we will summarize the current state of knowledge of innate immune signaling by proteoglycans, discuss the implications, and explore future directions to define progress in this area of extracellular matrix biology.
Collapse
Affiliation(s)
- Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Rashmin C Savani
- Division of Neonatal-Perinatal Medicine, Center for Pulmonary & Vascular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
15
|
Zhao L, Liang J, Zhong W, Han C, Liu D, Chen X. Expression and prognostic analysis of BGN in head and neck squamous cell carcinoma. Gene 2022; 827:146461. [PMID: 35358652 DOI: 10.1016/j.gene.2022.146461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/06/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE BGN belongs to class of small leucine rich proteoglycans, which is high expression in plenty of human cancers. However, the detailed role of BGN remains unclear in Head and neck squamous cell carcinoma (HNSC). MATERIALS AND METHODS In this study, we assessed the transcriptional expression, protein expression, prognosis, co-expressed genes, functional enrichment, and hub genes in HNSC patients based on the data published in the following databases: ONCOMINE, GEPIA, GEO, LinkedOmics, and HPA databases. Data from the TCGA database was used to analyze the correlations between BGN expression and different clinicopathological features, as well as prognostic analysis. RESULTS We found that the expression of BGN is higher in patients with HNSC than in control tissues. Pathologically, high BGN expression was significantly correlated with T3 and T4 stage. Besides, high expression of BGN is a poor prognostic factor for overall surviva, not disease free survival. The co-expression genes associated with BGN expression exhibited enriched in various function and pathway, such as extracellular matrix, mitochondrion, PI3K-Akt signaling pathway. A total of 10 hub genes were identified from the co-expressed genes, within which five genes, including FSTL1, LAMB1, SDC2, VCAN, and IGFBP7, were significantly increased in patient's with HNSC. BGN exhibited weak correlations with tumor-infiltrating CD4+ T, macrophages cell, and dendritic cells. Futhermore, many markers of infiltrating immune cells, such as Treg, showed different BGN-related immune infiltration patterns. BGN expression showed strong correlations with diverse immune marker sets in COAD and STAD. CONCLUSIONS Our results demonstrated that BGN is high expression in HNSC and is a poor prognostic factor for clinical outcome in patients with HNSC. It could serve as a potential prognostic biomarker for patients survival in HNSC.
Collapse
Affiliation(s)
- Longzhu Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Jiusi Liang
- Department of Otolaryngology-Head and Neck Surgery, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Wen Zhong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Caixia Han
- Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, China
| | - Dongzhe Liu
- Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, China.
| | - Xiuhui Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
16
|
Nakamura T, Bonnard B, Palacios-Ramirez R, Fernández-Celis A, Jaisser F, López-Andrés N. Biglycan Is a Novel Mineralocorticoid Receptor Target Involved in Aldosterone/Salt-Induced Glomerular Injury. Int J Mol Sci 2022; 23:ijms23126680. [PMID: 35743123 PMCID: PMC9224513 DOI: 10.3390/ijms23126680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
The beneficial effects of mineralocorticoid receptor (MR) antagonists (MRAs) for various kidney diseases are established. However, the underlying mechanisms of kidney injury induced by MR activation remain to be elucidated. We recently reported aldosterone-induced enhancement of proteoglycan expression in mitral valve interstitial cells and its association with fibromyxomatous valvular disorder. As the expression of certain proteoglycans is elevated in several kidney diseases, we hypothesized that proteoglycans mediate kidney injury in the context of aldosterone/MR pathway activation. We evaluated the proteoglycan expression and tissue injury in the kidney and isolated glomeruli of uninephrectomy/aldosterone/salt (NAS) mice. The MRA eplerenone was administered to assess the role of the MR pathway. We investigated the direct effects of biglycan, one of the proteoglycans, on macrophages using isolated macrophages. The kidney samples from NAS-treated mice showed enhanced fibrosis and increased expression of biglycan accompanying glomerular macrophage infiltration and enhanced expression of TNF-α, iNOS, Nox2, CCL3 (C-C motif chemokine ligand 3), and phosphorylated NF-κB. Eplerenone blunted these changes. Purified biglycan stimulated macrophages to express TNF-α, iNOS, Nox2, and CCL3. This was prevented by a toll-like receptor 4 (TLR4) or NF-κB inhibitor, indicating that biglycan stimulation is dependent on the TLR4/NF-κB pathway. We identified the proteoglycan biglycan as a novel target of MR involved in MR-induced glomerular injury and macrophage infiltration via a biglycan/TLR4/NF-κB/CCL3 cascade.
Collapse
Affiliation(s)
- Toshifumi Nakamura
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (T.N.); (B.B.); (R.P.-R.)
| | - Benjamin Bonnard
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (T.N.); (B.B.); (R.P.-R.)
| | - Roberto Palacios-Ramirez
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (T.N.); (B.B.); (R.P.-R.)
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (T.N.); (B.B.); (R.P.-R.)
- INSERM, Clinical Investigation Centre 1433, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT (Cardiovascular and Renal Clinical Trialists), 54500 Nancy, France
- Correspondence: (F.J.); (N.L.-A.); Tel.: +33-144276485 (F.J.); +34-848428539 (N.L.-A.)
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Correspondence: (F.J.); (N.L.-A.); Tel.: +33-144276485 (F.J.); +34-848428539 (N.L.-A.)
| |
Collapse
|
17
|
Baranowsky A, Jahn D, Jiang S, Yorgan T, Ludewig P, Appelt J, Albrecht KK, Otto E, Knapstein P, Donat A, Winneberger J, Rosenthal L, Köhli P, Erdmann C, Fuchs M, Frosch KH, Tsitsilonis S, Amling M, Schinke T, Keller J. Procalcitonin is expressed in osteoblasts and limits bone resorption through inhibition of macrophage migration during intermittent PTH treatment. Bone Res 2022; 10:9. [PMID: 35087025 PMCID: PMC8795393 DOI: 10.1038/s41413-021-00172-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Intermittent injections of parathyroid hormone (iPTH) are applied clinically to stimulate bone formation by osteoblasts, although continuous elevation of parathyroid hormone (PTH) primarily results in increased bone resorption. Here, we identified Calca, encoding the sepsis biomarker procalcitonin (ProCT), as a novel target gene of PTH in murine osteoblasts that inhibits osteoclast formation. During iPTH treatment, mice lacking ProCT develop increased bone resorption with excessive osteoclast formation in both the long bones and axial skeleton. Mechanistically, ProCT inhibits the expression of key mediators involved in the recruitment of macrophages, representing osteoclast precursors. Accordingly, ProCT arrests macrophage migration and causes inhibition of early but not late osteoclastogenesis. In conclusion, our results reveal a potential role of osteoblast-derived ProCT in the bone microenvironment that is required to limit bone resorption during iPTH.
Collapse
Affiliation(s)
- Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.,Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Denise Jahn
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Jessika Appelt
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Kai K Albrecht
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Ellen Otto
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Paul Knapstein
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Jack Winneberger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Lana Rosenthal
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Paul Köhli
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Cordula Erdmann
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Melanie Fuchs
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Karl-Heinz Frosch
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany. .,Berlin Institute of Health, Berlin, 10178, Germany.
| |
Collapse
|
18
|
Atli MO, Hitit M, Özbek M, Köse M, Bozkaya F. Cell-Specific Expression Pattern of Toll-Like Receptors and Their Roles in Animal Reproduction. Handb Exp Pharmacol 2022; 276:65-93. [PMID: 35434748 DOI: 10.1007/164_2022_584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Toll-like receptors (TLRs), a part of the innate immune system, have critical roles in protection against infections and involve in basic pathology and physiology. Secreted molecules from the body or pathogens could be a ligand for induction of the TLR system. There are many immune and non-immune types of cells that express at a least single TLR on their surface or cytoplasm. Those cells may be a player in a defense system or in the physiological regulation mechanisms. Reproductive tract and organs contain different types of cells that have essential functions such as hormone production, providing an environment for embryo/fetus, germ cell production, etc. Although lower parts of reproductive organs are in a relationship with outsider contaminants (bacteria, viruses, etc.), upper parts should be sterile to provide a healthy pregnancy and germ cell production. In those areas, TLRs bear controller or regulator roles. In this chapter, we will provide current information about physiological functions of TLR in the cells of the reproductive organs and tract, and especially about their roles in follicle selection, maturation, follicular atresia, ovulation, corpus luteum (CL) formation and regression, establishment and maintenance of pregnancy, sperm production, maturation, capacitation as well as the relationship between TLR polymorphism and reproduction in domestic animals. We will also discuss pathogen-associated molecular patterns (PAMPs)-induced TLRs that involve in reproductive inflammation/pathology.
Collapse
Affiliation(s)
- Mehmet Osman Atli
- Department of Reproduction, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey.
| | - Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mehmet Köse
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| | - Faruk Bozkaya
- Department of Genetics, Faculty of Veterinary Medicine, Harran University, Sanlıurfa, Turkey
| |
Collapse
|
19
|
Diehl V, Huber LS, Trebicka J, Wygrecka M, Iozzo RV, Schaefer L. The Role of Decorin and Biglycan Signaling in Tumorigenesis. Front Oncol 2021; 11:801801. [PMID: 34917515 PMCID: PMC8668865 DOI: 10.3389/fonc.2021.801801] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
The complex and adaptive nature of malignant neoplasm constitute a major challenge for the development of effective anti-oncogenic therapies. Emerging evidence has uncovered the pivotal functions exerted by the small leucine-rich proteoglycans, decorin and biglycan, in affecting tumor growth and progression. In their soluble forms, decorin and biglycan act as powerful signaling molecules. By receptor-mediated signal transduction, both proteoglycans modulate key processes vital for tumor initiation and progression, such as autophagy, inflammation, cell-cycle, apoptosis, and angiogenesis. Despite of their structural homology, these two proteoglycans interact with distinct cell surface receptors and thus modulate distinct signaling pathways that ultimately affect cancer development. In this review, we summarize growing evidence for the complex roles of decorin and biglycan signaling in tumor biology and address potential novel therapeutic implications.
Collapse
Affiliation(s)
- Valentina Diehl
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Lisa Sophie Huber
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Member of the German Center for Lung Research, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| |
Collapse
|
20
|
He Y, Liu T, Dai S, Xu Z, Wang L, Luo F. Tumor-Associated Extracellular Matrix: How to Be a Potential Aide to Anti-tumor Immunotherapy? Front Cell Dev Biol 2021; 9:739161. [PMID: 34733848 PMCID: PMC8558531 DOI: 10.3389/fcell.2021.739161] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
The development of cancer immunotherapy, particularly immune checkpoint blockade therapy, has made major breakthroughs in the therapy of cancers. However, less than one-third of the cancer patients obtain significant and long-lasting therapeutic effects by cancer immunotherapy. Over the past few decades, cancer-related inflammations have been gradually more familiar to us. It’s known that chronic inflammation in tumor microenvironment (TME) plays a predominant role in tumor immunosuppression. Tumor-associated extracellular matrix (ECM), as a core member of TME, has been a research hotspot recently. A growing number of studies indicate that tumor-associated ECM is one of the major obstacles to realizing more successful cases of cancer immunotherapy. In this review, we discussed the potential application of tumor-associated ECM in the cancer immunity and its aide potentialities to anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Yingying He
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Oncology Department, People's Hospital of Deyang City, Deyang, China
| | - Tao Liu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Shuang Dai
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zihan Xu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wang
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Roles of Two Small Leucine-Rich Proteoglycans Decorin and Biglycan in Pregnancy and Pregnancy-Associated Diseases. Int J Mol Sci 2021; 22:ijms221910584. [PMID: 34638928 PMCID: PMC8509074 DOI: 10.3390/ijms221910584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
Two small leucine-rich proteoglycans (SLRP), decorin and biglycan, play important roles in structural–functional integrity of the placenta and fetal membranes, and their alterations can result in several pregnancy-associated diseases. In this review, we briefly discuss normal placental structure and functions, define and classify SLRPs, and then focus on two SLRPs, decorin (DCN) and biglycan (BGN). We discuss the consequences of deletions/mutations of DCN and BGN. We then summarize DCN and BGN expression in the pregnant uterus, myometrium, decidua, placenta, and fetal membranes. Actions of these SLRPs as ligands are then discussed in the context of multiple binding partners in the extracellular matrix and cell surface (receptors), as well as their alterations in pathological pregnancies, such as preeclampsia, fetal growth restriction, and preterm premature rupture of membranes. Lastly, we raise some unanswered questions as food for thought.
Collapse
|
22
|
Ghorbani S, Yong VW. The extracellular matrix as modifier of neuroinflammation and remyelination in multiple sclerosis. Brain 2021; 144:1958-1973. [PMID: 33889940 PMCID: PMC8370400 DOI: 10.1093/brain/awab059] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Remyelination failure contributes to axonal loss and progression of disability in multiple sclerosis. The failed repair process could be due to ongoing toxic neuroinflammation and to an inhibitory lesion microenvironment that prevents recruitment and/or differentiation of oligodendrocyte progenitor cells into myelin-forming oligodendrocytes. The extracellular matrix molecules deposited into lesions provide both an altered microenvironment that inhibits oligodendrocyte progenitor cells, and a fuel that exacerbates inflammatory responses within lesions. In this review, we discuss the extracellular matrix and where its molecules are normally distributed in an uninjured adult brain, specifically at the basement membranes of cerebral vessels, in perineuronal nets that surround the soma of certain populations of neurons, and in interstitial matrix between neural cells. We then highlight the deposition of different extracellular matrix members in multiple sclerosis lesions, including chondroitin sulphate proteoglycans, collagens, laminins, fibronectin, fibrinogen, thrombospondin and others. We consider reasons behind changes in extracellular matrix components in multiple sclerosis lesions, mainly due to deposition by cells such as reactive astrocytes and microglia/macrophages. We next discuss the consequences of an altered extracellular matrix in multiple sclerosis lesions. Besides impairing oligodendrocyte recruitment, many of the extracellular matrix components elevated in multiple sclerosis lesions are pro-inflammatory and they enhance inflammatory processes through several mechanisms. However, molecules such as thrombospondin-1 may counter inflammatory processes, and laminins appear to favour repair. Overall, we emphasize the crosstalk between the extracellular matrix, immune responses and remyelination in modulating lesions for recovery or worsening. Finally, we review potential therapeutic approaches to target extracellular matrix components to reduce detrimental neuroinflammation and to promote recruitment and maturation of oligodendrocyte lineage cells to enhance remyelination.
Collapse
Affiliation(s)
- Samira Ghorbani
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Kiripolsky J, Kasperek EM, Zhu C, Li QZ, Wang J, Yu G, Kramer JM. Immune-Intrinsic Myd88 Directs the Production of Antibodies With Specificity for Extracellular Matrix Components in Primary Sjögren's Syndrome. Front Immunol 2021; 12:692216. [PMID: 34381449 PMCID: PMC8350326 DOI: 10.3389/fimmu.2021.692216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
Primary Sjögren's syndrome is an autoimmune disease that is predominantly seen in women. The disease is characterized by exocrine gland dysfunction in combination with serious systemic manifestations. At present, the causes of pSS are poorly understood. Pulmonary and renal inflammation are observed in pSS mice, reminiscent of a subset of pSS patients. A growing body of evidence indicates that inflammation mediated by Damage-Associated Molecular Patterns (DAMPs) contributes to autoimmunity, although this is not well-studied in pSS. Degraded extracellular matrix (ECM) constituents can serve as DAMPs by binding pattern-recognition receptors and activating Myd88-dependent signaling cascades, thereby exacerbating and perpetuating inflammatory cascades. The ECM components biglycan (Bgn) and decorin (Dcn) mediate sterile inflammation and both are implicated in autoimmunity. The objective of this study was to determine whether these ECM components and anti-ECM antibodies are altered in a pSS mouse model, and whether this is dependent on Myd88 activation in immune cells. Circulating levels of Bgn and Dcn were similar among pSS mice and controls and tissue expression studies revealed pSS mice had robust expression of both Bgn and Dcn in the salivary tissue, saliva, lung and kidney. Sera from pSS mice displayed increased levels of autoantibodies directed against ECM components when compared to healthy controls. Further studies using sera derived from conditional knockout pSS mice demonstrated that generation of these autoantibodies relies, at least in part, on Myd88 expression in the hematopoietic compartment. Thus, this study demonstrates that ECM degradation may represent a novel source of chronic B cell activation in the context of pSS.
Collapse
Affiliation(s)
- Jeremy Kiripolsky
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Eileen M. Kasperek
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Chengsong Zhu
- Department of Immunology, Microarray & Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Quan-Zhen Li
- Department of Immunology, Microarray & Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jia Wang
- Department of Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Guan Yu
- Department of Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jill M. Kramer
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
- Department of Oral Diagnostics Sciences, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
24
|
Biglycan: A regulator of hepatorenal inflammation and autophagy. Matrix Biol 2021; 100-101:150-161. [DOI: 10.1016/j.matbio.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
|
25
|
Abstract
Preterm birth is a leading cause of neonatal mortality in the US and globally, with preterm premature rupture of fetal membranes (PPROM) accounting for one third of preterm births. Currently no predictive diagnostics are available to precisely assess risk and potentially reduce the incidence of PPROM. Bigycan and decorin, the main proteoglycans present in human fetal membranes, are involved in the physiological maturation of fetal membranes as well as in the pathophysiology of preterm birth. The serum protein sex hormone-binding globulin (SHBG) has recently been identified as a predictor of spontaneous preterm birth. We hypothesize that the balance between serum decorin and biglycan on one hand and SHBG on the other hand may provide insight into the status of the fetal membranes in early pregnancy, thereby predicting PPROM prior to symptoms. Using chart review, 18 patients with confirmed cases of PPROM were identified from 2013-2016. Second trimester residual serum was retreived from freezer storage for these cases along with 5 matched controls for each case. The biomarkers biglycan, decorin and SHBG were analyzed first separately, then in combination to determine their ability to predict PPROM. The predictive score for the combined model displays an AUC = 0.774. The ROC curve of the predicted score has an optimal threshold of 0.238 and a sensitivity and specificity of 0.72 and 0.84 respectively. This prenatal serum panel is a promising serum screening-based biochemical model to predict PPROM in asymptomatic women.
Collapse
|
26
|
Zeng-Brouwers J, Pandey S, Trebicka J, Wygrecka M, Schaefer L. Communications via the Small Leucine-rich Proteoglycans: Molecular Specificity in Inflammation and Autoimmune Diseases. J Histochem Cytochem 2020; 68:887-906. [PMID: 32623933 PMCID: PMC7708667 DOI: 10.1369/0022155420930303] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a highly regulated biological response of the immune system that is triggered by assaulting pathogens or endogenous alarmins. It is now well established that some soluble extracellular matrix constituents, such as small leucine-rich proteoglycans (SLRPs), can act as danger signals and trigger aseptic inflammation by interacting with innate immune receptors. SLRP inflammatory signaling cascade goes far beyond its canonical function. By choosing specific innate immune receptors, coreceptors, and adaptor molecules, SLRPs promote a switch between pro- and anti-inflammatory signaling, thereby determining disease resolution or chronification. Moreover, by orchestrating signaling through various receptors, SLRPs fine-tune inflammation and, despite their structural homology, regulate inflammatory processes in a molecule-specific manner. Hence, the overarching theme of this review is to highlight the molecular and functional specificity of biglycan-, decorin-, lumican-, and fibromodulin-mediated signaling in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Sony Pandey
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Baghy K, Reszegi A, Tátrai P, Kovalszky I. Decorin in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:17-38. [PMID: 32845500 DOI: 10.1007/978-3-030-48457-6_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tumor microenvironment plays a determining role in cancer development through a plethora of interactions between the extracellular matrix and tumor cells. Decorin is a prototype member of the SLRP family found in a variety of tissues and is expressed in the stroma of various forms of cancer. Decorin has gained recognition for its essential roles in inflammation, fibrotic disorders, and cancer, and due to its antitumor properties, it has been proposed to act as a "guardian from the matrix." Initially identified as a natural inhibitor of transforming growth factor-β, soluble decorin is emerging as a pan-RTK inhibitor targeting a multitude of RTKs, including EGFR, Met, IGF-IR, VEGFR2, and PDGFR. Besides initiating signaling, decorin/RTK interaction can induce caveosomal internalization and receptor degradation. Decorin also triggers cell cycle arrest and apoptosis and evokes antimetastatic and antiangiogenic processes. In addition, as a novel regulatory mechanism, decorin was shown to induce conserved catabolic processes, such as endothelial cell autophagy and tumor cell mitophagy. Therefore, decorin is a promising candidate for combatting cancer, especially the cancer types heavily dependent on RTK signaling.
Collapse
Affiliation(s)
- Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Cleavage of proteoglycans, plasma proteins and the platelet-derived growth factor receptor in the hemorrhagic process induced by snake venom metalloproteinases. Sci Rep 2020; 10:12912. [PMID: 32737331 PMCID: PMC7395112 DOI: 10.1038/s41598-020-69396-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Envenoming by viperid snakes results in a complex pattern of tissue damage, including hemorrhage, which in severe cases may lead to permanent sequelae. Snake venom metalloproteinases (SVMPs) are main players in this pathogenesis, acting synergistically upon different mammalian proteomes. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, induces severe local hemorrhage at pmol doses in a murine model. Our hypothesis is that in a complex scenario of tissue damage, HF3 triggers proteolytic cascades by acting on a partially known substrate repertoire. Here, we focused on the hypothesis that different proteoglycans, plasma proteins, and the platelet derived growth factor receptor (PDGFR) could be involved in the HF3-induced hemorrhagic process. In surface plasmon resonance assays, various proteoglycans were demonstrated to interact with HF3, and their incubation with HF3 showed degradation or limited proteolysis. Likewise, Western blot analysis showed in vivo degradation of biglycan, decorin, glypican, lumican and syndecan in the HF3-induced hemorrhagic process. Moreover, antithrombin III, complement components C3 and C4, factor II and plasminogen were cleaved in vitro by HF3. Notably, HF3 cleaved PDGFR (alpha and beta) and PDGF in vitro, while both receptor forms were detected as cleaved in vivo in the hemorrhagic process induced by HF3. These findings outline the multifactorial character of SVMP-induced tissue damage, including the transient activation of tissue proteinases, and underscore for the first time that endothelial glycocalyx proteoglycans and PDGFR are targets of SVMPs in the disruption of microvasculature integrity and generation of hemorrhage.
Collapse
|
29
|
Roedig H, Damiescu R, Zeng-Brouwers J, Kutija I, Trebicka J, Wygrecka M, Schaefer L. Danger matrix molecules orchestrate CD14/CD44 signaling in cancer development. Semin Cancer Biol 2020; 62:31-47. [PMID: 31412297 DOI: 10.1016/j.semcancer.2019.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
The tumor matrix together with inflammation and autophagy are crucial regulators of cancer development. Embedded in the tumor stroma are numerous proteoglycans which, in their soluble form, act as danger-associated molecular patterns (DAMPs). By interacting with innate immune receptors, the Toll-like receptors (TLRs), DAMPs autonomously trigger aseptic inflammation and can regulate autophagy. Biglycan, a known danger proteoglycan, can regulate the cross-talk between inflammation and autophagy by evoking a switch between pro-inflammatory CD14 and pro-autophagic CD44 co-receptors for TLRs. Thus, these novel mechanistic insights provide some explanation for the plethora of reports indicating that the same matrix-derived DAMP acts either as a promoter or suppressor of tumor growth. In this review we will summarize and critically discuss the role of the matrix-derived DAMPs biglycan, hyaluronan, and versican in regulating the TLR-, CD14- and CD44-signaling dialogue between inflammation and autophagy with particular emphasis on cancer development.
Collapse
Affiliation(s)
- Heiko Roedig
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Roxana Damiescu
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Iva Kutija
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
30
|
Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OMT, Allen CE, Frevert CW. Versican-A Critical Extracellular Matrix Regulator of Immunity and Inflammation. Front Immunol 2020; 11:512. [PMID: 32265939 PMCID: PMC7105702 DOI: 10.3389/fimmu.2020.00512] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) proteoglycan, versican increases along with other ECM versican binding molecules such as hyaluronan, tumor necrosis factor stimulated gene-6 (TSG-6), and inter alpha trypsin inhibitor (IαI) during inflammation in a number of different diseases such as cardiovascular and lung disease, autoimmune diseases, and several different cancers. These interactions form stable scaffolds which can act as "landing strips" for inflammatory cells as they invade tissue from the circulation. The increase in versican is often coincident with the invasion of leukocytes early in the inflammatory process. Versican interacts with inflammatory cells either indirectly via hyaluronan or directly via receptors such as CD44, P-selectin glycoprotein ligand-1 (PSGL-1), and toll-like receptors (TLRs) present on the surface of immune and non-immune cells. These interactions activate signaling pathways that promote the synthesis and secretion of inflammatory cytokines such as TNFα, IL-6, and NFκB. Versican also influences inflammation by interacting with a variety of growth factors and cytokines involved in regulating inflammation thereby influencing their bioavailability and bioactivity. Versican is produced by multiple cell types involved in the inflammatory process. Conditional total knockout of versican in a mouse model of lung inflammation demonstrated significant reduction in leukocyte invasion into the lung and reduced inflammatory cytokine expression. While versican produced by stromal cells tends to be pro-inflammatory, versican expressed by myeloid cells can create anti-inflammatory and immunosuppressive microenvironments. Inflammation in the tumor microenvironment often contains elevated levels of versican. Perturbing the accumulation of versican in tumors can inhibit inflammation and tumor progression in some cancers. Thus versican, as a component of the ECM impacts immunity and inflammation through regulating immune cell trafficking and activation. Versican is emerging as a potential target in the control of inflammation in a number of different diseases.
Collapse
Affiliation(s)
- Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Stephen P. Evanko
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Ingrid A. Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Mary Y. Chang
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| | - Oliver M. T. Pearce
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Carys E. Allen
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Charles W. Frevert
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
31
|
Hatano S, Watanabe H. Regulation of Macrophage and Dendritic Cell Function by Chondroitin Sulfate in Innate to Antigen-Specific Adaptive Immunity. Front Immunol 2020; 11:232. [PMID: 32194548 PMCID: PMC7063991 DOI: 10.3389/fimmu.2020.00232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a linear acidic polysaccharide comprised of repeating disaccharides, modified with sulfate groups at various positions. Except for hyaluronan (HA), GAGs are covalently bound to core proteins, forming proteoglycans (PGs). With highly negative charges, GAGs interact with a variety of physiologically active molecules, including cytokines, chemokines, and growth factors, and control cell behavior during development and in the progression of diseases, including cancer, infections, and inflammation. Heparan sulfate (HS), another type of GAG, and HA are well reported as regulators for leukocyte migration at sites of inflammation. There have been many reports on the regulation of immune cell function by HS and HA; however, regulation of immune cells by CS has not yet been fully understood. This article focuses on the regulatory function of CS in antigen-presenting cells, including macrophages and dendritic cells, and refers to CSPGs, such as versican and biglycan, and the cell surface proteoglycan, syndecan.
Collapse
Affiliation(s)
- Sonoko Hatano
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
32
|
Scuruchi M, Potì F, Rodríguez-Carrio J, Campo GM, Mandraffino G. Biglycan and atherosclerosis: Lessons from high cardiovascular risk conditions. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158545. [PMID: 31672572 DOI: 10.1016/j.bbalip.2019.158545] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/26/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis (ATH) is a chronic, dynamic, evolutive process involving morphological and structural subversion of artery walls, leading to the formation of atherosclerotic plaques. ATH generally initiates during the childhood, occurring as a result of a number of changes in the intima tunica and in the media of arteries. A key event occurring during the pathobiology of ATH is the accumulation of lipoproteins in the sub-intimal spaces mediated by extracellular matrix (ECM) molecules, especially by the chondroitin sulfate/dermatan sulfate (CS/DS) -containing proteoglycans (CS/DSPGs). Among them, the proteoglycan biglycan (BGN) is critically involved in the onset and progression of ATH and evidences show that BGN represents the missing link between the pro-atherogenic status induced by both traditional and non-traditional cardiovascular risk factors and the development and progression of vascular damage. In the light of these findings, the role of BGN in dyslipidemia, hypertension, cigarette smoking, diabetes, chronic kidney disease and inflammatory status is briefly analyzed and discussed in order to shed new light on the underlying mechanisms governing the association between BGN and ATH.
Collapse
Affiliation(s)
- Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Potì
- Department of Medicine and Surgery-Unit of Neurosciences, University of Parma, Parma, Italy
| | - Javier Rodríguez-Carrio
- Area of Immunology, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain; Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación Nefrológica, REDinREN Del ISCIII, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
33
|
Colineau L, Laabei M, Liu G, Ermert D, Lambris JD, Riesbeck K, Blom AM. Interaction of Streptococcus pyogenes with extracellular matrix components resulting in immunomodulation and bacterial eradication. Matrix Biol Plus 2020; 6-7:100020. [PMID: 33543018 PMCID: PMC7852299 DOI: 10.1016/j.mbplus.2020.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pyogenes is a major human pathogen that causes a variety of diseases ranging from mild skin and throat infections to fatal septicemia. In severe invasive infections, S. pyogenes encounters and interacts with components of the extracellular matrix (ECM), including small leucine rich-proteoglycans (SLRPs). In this study, we report a novel antimicrobial role played by SLRPs biglycan, decorin, fibromodulin and osteoadherin, specifically in promoting the eradication of S. pyogenes in a human sepsis model of infection. SLRPs can be released from the ECM and de novo synthesized by a number of cell types. We reveal that infection of human monocytes by S. pyogenes induces the expression of decorin. Furthermore, we show that the majority of genetically distinct and clinically relevant S. pyogenes isolates interact with SLRPs resulting in decreased survival in blood killing assays. Biglycan and decorin induce TLR2 and TLR4 signaling cascades resulting in secretion of proinflammatory and chemotactic molecules and recruitment of professional phagocytes. Surprisingly, SLRP-mediated elimination of S. pyogenes occurs independently of TLR activation. Our results indicate that SLRPs act in concert with human serum, enhancing deposition of complement activation fragments and the classical activator C1q on the bacterial surface, facilitating efficient microbial eradication. Addition of the complement C3 inhibitor compstatin significantly reverses SLRP-induced blood killing, confirming active complement as a key mediator in SLRP-mediated bacterial destruction. Taken together our results add to the functional repertoire of SLRPs, expanding to encompass their role in controlling bacterial infection. Streptococcus pyogenes bind short leucine rich-proteoglycans (SLRPs) These SLRPs are biglycan, decorin, fibromodulin, osteoadherin Decorin expression is increased in S. pyogenes-infected human monocytes SLRPs decrease the survival of S. pyogenes in a whole blood model SLRP-mediated bacteria elimination is mediated by complement
Collapse
Key Words
- AF647, Alexa Fluor 647
- BSA, bovine serum albumin
- Bacteria
- C4BP, C4b-binding protein
- CFSE, Carboxyfluorescein succinimidyl ester
- Complement
- Cp40, compstatin
- ECM, extracellular matrix
- GAG, glycosaminoglycan
- HI, heat-inactivated
- MAC, membrane attack complex
- NHS, normal human serum
- PMB, polymyxin B
- Pathogenesis
- SLRP, small leucine-rich proteoglycan
- Small leucine-rich proteoglycans
- Streptococcus pyogenes
- TLR, toll-like receptors
Collapse
Affiliation(s)
- Lucie Colineau
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Maisem Laabei
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden.,Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Guanghui Liu
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - David Ermert
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
34
|
Kiripolsky J, Romano RA, Kasperek EM, Yu G, Kramer JM. Activation of Myd88-Dependent TLRs Mediates Local and Systemic Inflammation in a Mouse Model of Primary Sjögren's Syndrome. Front Immunol 2020; 10:2963. [PMID: 31993047 PMCID: PMC6964703 DOI: 10.3389/fimmu.2019.02963] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are important mediators of chronic inflammation in numerous autoimmune diseases, although the role of these receptors in primary Sjögren's syndrome (pSS) remains incompletely understood. Previous studies in our laboratory established Myd88 as a crucial mediator of pSS, although the disease-relevant ligands and the upstream signaling events that culminate in Myd88 activation have yet to be established. The objective of this study was to identify specific Myd88-dependent TLR-related pathways that are dysregulated both locally and systemically in a mouse model of pSS [NOD.B10Sn-H2b/J (NOD.B10)]. We performed RNA-sequencing on spleens derived from NOD.B10 mice. We then harvested salivary tissue and spleens from Myd88-sufficient and deficient C57BL/10 (BL/10) and NOD.B10 mice and performed flow cytometry to determine expression of Myd88-dependent TLRs. We cultured splenocytes with TLR2 and TLR4 agonists and measured production of inflammatory mediators by ELISA. Next, we evaluated spontaneous and TLR4-mediated inflammatory cytokine secretion in NOD.B10 salivary tissue. Finally, we assessed spontaneous Myd88-dependent cytokine secretion by NOD.B10 salivary cells. We identified dysregulation of numerous TLR-related networks in pSS splenocytes, particularly those employed by TLR2 and TLR4. We found upregulation of TLRs in both the splenic and salivary tissue from pSS mice. In NOD.B10 splenic tissue, robust expression of B cell TLR1 and TLR2 required Myd88. Splenocytes from NOD.B10 mice were hyper-responsive to TLR2 ligation and the endogenous molecule decorin modulated inflammation via TLR4. Finally, we observed spontaneous secretion of numerous inflammatory cytokines and this was enhanced following TLR4 ligation in female NOD.B10 salivary tissue as compared to males. The spontaneous production of salivary IL-6, MCP-1 and TNFα required Myd88 in pSS salivary tissue. Thus, our data demonstrate that Myd88-dependent TLR pathways contribute to the inflammatory landscape in pSS, and inhibition of such will likely have therapeutic utility.
Collapse
Affiliation(s)
- Jeremy Kiripolsky
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| | - Eileen M Kasperek
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| | - Guan Yu
- Department of Biostatistics, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jill M Kramer
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Oral Diagnostic Sciences, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
35
|
Xie Y, Peng J, Pang J, Guo K, Zhang L, Yin S, Zhou J, Gu L, Tu T, Mu Q, Liao Y, Zhang X, Chen L, Jiang Y. Biglycan regulates neuroinflammation by promoting M1 microglial activation in early brain injury after experimental subarachnoid hemorrhage. J Neurochem 2019; 152:368-380. [PMID: 31778579 DOI: 10.1111/jnc.14926] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/11/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yuke Xie
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Jianhua Peng
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Jinwei Pang
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Kecheng Guo
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Lifang Zhang
- Neurosurgery Clinical Medical Research Center of Sichuan Province Luzhou China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Functions Clinical Medical Research Center of Southwest Medical University Luzhou China
| | - Jian Zhou
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Long Gu
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Tianqi Tu
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Qiancheng Mu
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Yuyan Liao
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Xianhui Zhang
- Neurosurgery Clinical Medical Research Center of Sichuan Province Luzhou China
| | - Ligang Chen
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Yong Jiang
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
- Neurosurgery Clinical Medical Research Center of Sichuan Province Luzhou China
- Laboratory of Neurological Diseases and Brain Functions Clinical Medical Research Center of Southwest Medical University Luzhou China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province Luzhou China
| |
Collapse
|
36
|
Miller RE, Scanzello CR, Malfait AM. An emerging role for Toll-like receptors at the neuroimmune interface in osteoarthritis. Semin Immunopathol 2019; 41:583-594. [PMID: 31612243 DOI: 10.1007/s00281-019-00762-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is a chronic progressive, painful disease of synovial joints, characterized by cartilage degradation, subchondral bone remodeling, osteophyte formation, and synovitis. It is now widely appreciated that the innate immune system, and in particular Toll-like receptors (TLRs), contributes to pathological changes in OA joint tissues. Furthermore, it is now also increasingly recognized that TLR signaling plays a key role in initiating and maintaining pain. Here, we reviewed the literature of the past 5 years with a focus on how TLRs may contribute to joint damage and pain in OA. We discuss biological effects of specific damage-associated molecular patterns (DAMPs) which act as TLR ligands in vitro, including direct effects on pain-sensing neurons. We then discuss the phenotype of transgenic mice that target TLR pathways, and provide evidence for a complex balance between pro- and anti-inflammatory signaling pathways activated by OA DAMPs. Finally, we summarize clinical evidence implicating TLRs in OA pathogenesis, including polymorphisms and surrogate markers of disease activity. Our review of the literature led us to propose a model where multi-directional crosstalk between connective tissue cells (chondrocytes, fibroblasts), innate immune cells, and sensory neurons in the affected joint may promote OA pathology and pain.
Collapse
Affiliation(s)
- Rachel E Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, 1611 W Harrison Street, Chicago, IL, 60612, USA
| | - Carla R Scanzello
- Section of Rheumatology and Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center & Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, 1611 W Harrison Street, Chicago, IL, 60612, USA.
| |
Collapse
|
37
|
Wang G, Zhao H, Zheng B, Li D, Yuan Y, Han Q, Tian Z, Zhang J. TLR2 Promotes Monocyte/Macrophage Recruitment Into the Liver and Microabscess Formation to Limit the Spread of Listeria Monocytogenes. Front Immunol 2019; 10:1388. [PMID: 31297109 PMCID: PMC6607897 DOI: 10.3389/fimmu.2019.01388] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022] Open
Abstract
TLR2 signaling plays a critical protective role against acute Listeria monocytogenes (Lm) infection by up-regulating inflammatory cytokines and promoting macrophage antimicrobial capabilities. However, the underlying mechanism by which TLR2 regulates hepatic macrophage-mediated anti-Lm immune responses remains poorly understood. In this study, we found that both the absolute number and proportion of monocyte/macrophage (Mo/MΦ) in the liver and spleen of Tlr2 -/- mice were significantly lower compared to wild type mice. Changes in TLR2 signaling in both hepatocytes and Mo/MΦs were associated with the infiltration of Mo/MΦs in response to Lm-infection. Analyses by proteome profiler array and ELISA revealed that hepatocytes recruited Mo/MΦs via TLR2-dependent secretion of CCL2 and CXCL1, which was confirmed by receptor blocking and exogenous chemokine administration. Importantly, we found that TLR2 contributed to macrophage mobility in the liver through a TLR2/NO/F-actin pathway, facilitating the formation of macrophage-associated hepatic microabscesses. Moreover, TLR2 activation induced the expression of several PRRs on hepatic macrophages associated with the recognition of Lm and augmented macrophage bacterial clearance activity. Our findings provide insight into the intrinsic mechanisms of TLR2-induced Mo/MΦ migration and mobility, as well as the interaction between macrophages and hepatocytes in resistance to Lm infection.
Collapse
Affiliation(s)
- Guan Wang
- School of Pharmaceutical Sciences, Institute of Immunopharmaceutical Sciences, Shandong University, Jinan, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Institute of Immunopharmaceutical Sciences, Shandong University, Jinan, China
| | - Bingqing Zheng
- School of Pharmaceutical Sciences, Institute of Immunopharmaceutical Sciences, Shandong University, Jinan, China
| | - Dongxuan Li
- School of Pharmaceutical Sciences, Institute of Immunopharmaceutical Sciences, Shandong University, Jinan, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Institute of Immunopharmaceutical Sciences, Shandong University, Jinan, China
| | - Qiuju Han
- School of Pharmaceutical Sciences, Institute of Immunopharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhigang Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Institute of Immunopharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
38
|
Tzanakakis G, Neagu M, Tsatsakis A, Nikitovic D. Proteoglycans and Immunobiology of Cancer-Therapeutic Implications. Front Immunol 2019; 10:875. [PMID: 31068944 PMCID: PMC6491844 DOI: 10.3389/fimmu.2019.00875] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Disparity during the resolution of inflammation is closely related with the initiation and progression of the tumorigenesis. The transformed cells, through continuously evolving interactions, participate in various exchanges with the surrounding microenvironment consisting of extracellular matrix (ECM) components, cytokines embedded in the ECM, as well as the stromal cells. Proteoglycans (PGs), complex molecules consisting of a protein core into which one or more glycosaminoglycan (GAG) chains are covalently tethered, are important regulators of the cell/matrix interface and, consecutively, biological functions. The discrete expression of PGs and their interacting partners has been distinguished as specific for disease development in diverse cancer types. In this mini-review, we will critically discuss the roles of PGs in the complex processes of cancer-associated modulation of the immune response and analyze their mechanisms of action. A deeper understanding of mechanisms which are capable of regulating the immune response could be harnessed to treat malignant disease.
Collapse
Affiliation(s)
- George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
| | | | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
39
|
Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J 2019; 286:2830-2869. [PMID: 30908868 DOI: 10.1111/febs.14818] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Extracellular matrices (ECMs) are highly specialized and dynamic three-dimensional (3D) scaffolds into which cells reside in tissues. ECM is composed of a variety of fibrillar components, such as collagens, fibronectin, and elastin, and non-fibrillar molecules as proteoglycans, hyaluronan, and glycoproteins including matricellular proteins. These macromolecular components are interconnected forming complex networks that actively communicate with cells through binding to cell surface receptors and/or matrix effectors. ECMs exert diverse roles, either providing tissues with structural integrity and mechanical properties essential for tissue functions or regulating cell phenotype and functions to maintain tissue homeostasis. ECM molecular composition and structure vary among tissues, and is markedly modified during normal tissue repair as well as during the progression of various diseases. Actually, abnormal ECM remodeling occurring in pathologic circumstances drives disease progression by regulating cell-matrix interactions. The importance of matrix molecules to normal tissue functions is also highlighted by mutations in matrix genes that give rise to genetic disorders with diverse clinical phenotypes. In this review, we present critical and emerging issues related to matrix assembly in tissues and the multitasking roles for ECM in diseases such as osteoarthritis, fibrosis, cancer, and genetic diseases. The mechanisms underlying the various matrix-based diseases are also discussed. Research focused on the highly dynamic 3D ECM networks will help to discover matrix-related causative abnormalities of diseases as well as novel diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
40
|
Biglycan is a new high-affinity ligand for CD14 in macrophages. Matrix Biol 2019; 77:4-22. [DOI: 10.1016/j.matbio.2018.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
|
41
|
Underhill LA, Avalos N, Tucker R, Zhang Z, Messerlian G, Lechner B. Serum Decorin and Biglycan as Potential Biomarkers to Predict PPROM in Early Gestation. Reprod Sci 2019:1933719119831790. [PMID: 30895897 DOI: 10.1177/1933719119831790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Preterm birth is a leading cause of neonatal mortality in the US and globally, with preterm premature rupture of fetal membranes (PPROM) accounting for one third of preterm births. Currently no predictive diagnostics are available to precisely assess risk and potentially reduce the incidence of PPROM. Bigycan and decorin, the main proteoglycans present in human fetal membranes, are involved in the physiological maturation of fetal membranes as well as in the pathophysiology of preterm birth. The serum protein sex hormone-binding globulin (SHBG) has recently been identified as a predictor of spontaneous preterm birth. We hypothesize that the balance between serum decorin and biglycan on one hand and SHBG on the other hand may provide insight into the status of the fetal membranes in early pregnancy, thereby predicting PPROM prior to symptoms. Using chart review, 18 patients with confirmed cases of PPROM were identified from 2013-2016. Second trimester residual serum was retreived from freezer storage for these cases along with 5 matched controls for each case. The biomarkers biglycan, decorin and SHBG were analyzed first separately, then in combination to determine their ability to predict PPROM. The predictive score for the combined model displays an AUC = 0.774. The ROC curve of the predicted score has an optimal threshold of 0.238 and a sensitivity and specificity of 0.72 and 0.84 respectively. This prenatal serum panel is a promising serum screening-based biochemical model to predict PPROM in asymptomatic women.
Collapse
Affiliation(s)
- Lori A Underhill
- 1 Warren Alpert Medical School at Brown University, Providence, RI ,USA
- 2 Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| | - Nora Avalos
- 2 Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| | - Richard Tucker
- 2 Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| | - Zheng Zhang
- 3 School of Public Health, Brown University, Providence, RI, USA
| | - Geralyn Messerlian
- 2 Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| | - Beatrice Lechner
- 1 Warren Alpert Medical School at Brown University, Providence, RI ,USA
- 2 Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| |
Collapse
|
42
|
Roedig H, Nastase MV, Wygrecka M, Schaefer L. Breaking down chronic inflammatory diseases: the role of biglycan in promoting a switch between inflammation and autophagy. FEBS J 2019; 286:2965-2979. [DOI: 10.1111/febs.14791] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/31/2019] [Accepted: 02/15/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Heiko Roedig
- Pharmazentrum Frankfurt/ZAFES Institut für Allgemeine Pharmakologie und Toxikologie Klinikum der Goethe‐Universität Frankfurt am Main Germany
| | - Madalina Viviana Nastase
- Pharmazentrum Frankfurt/ZAFES Institut für Allgemeine Pharmakologie und Toxikologie Klinikum der Goethe‐Universität Frankfurt am Main Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry Faculty of Medicine Universities of Giessen and Marburg Lung Center Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES Institut für Allgemeine Pharmakologie und Toxikologie Klinikum der Goethe‐Universität Frankfurt am Main Germany
| |
Collapse
|
43
|
Biglycan evokes autophagy in macrophages via a novel CD44/Toll-like receptor 4 signaling axis in ischemia/reperfusion injury. Kidney Int 2019; 95:540-562. [PMID: 30712922 DOI: 10.1016/j.kint.2018.10.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 01/14/2023]
Abstract
Biglycan, a small leucine-rich proteoglycan, acts as a danger signal and is classically thought to promote macrophage recruitment via Toll-like receptors (TLR) 2 and 4. We have recently shown that biglycan signaling through TLR 2/4 and the CD14 co-receptor regulates inflammation, suggesting that TLR co-receptors may determine whether biglycan-TLR signaling is pro- or anti-inflammatory. Here, we sought to identify other co-receptors and characterize their impact on biglycan-TLR signaling. We found a marked increase in the number of autophagic macrophages in mice stably overexpressing soluble biglycan. In vitro, stimulation of murine macrophages with biglycan triggered autophagosome formation and enhanced the flux of autophagy markers. Soluble biglycan also promoted autophagy in human peripheral blood macrophages. Using macrophages from mice lacking TLR2 and/or TLR4, CD14, or CD44, we demonstrated that the pro-autophagy signal required TLR4 interaction with CD44, a receptor involved in adhesion, migration, lymphocyte activation, and angiogenesis. In vivo, transient overexpression of circulating biglycan at the onset of renal ischemia/reperfusion injury (IRI) enhanced M1 macrophage recruitment into the kidneys of Cd44+/+ and Cd44-/- mice but not Cd14-/- mice. The biglycan-CD44 interaction increased M1 autophagy and the number of renal M2 macrophages and reduced tubular damage following IRI. Thus, CD44 is a novel signaling co-receptor for biglycan, an interaction that is required for TLR4-CD44-dependent pro-autophagic activity in macrophages. Interfering with the interaction between biglycan and specific TLR co-receptors could represent a promising therapeutic intervention to curtail kidney inflammation and damage.
Collapse
|
44
|
Cuellar J, Pietikäinen A, Glader O, Liljenbäck H, Söderström M, Hurme S, Salo J, Hytönen J. Borrelia burgdorferi Infection in Biglycan Knockout Mice. J Infect Dis 2019; 220:116-126. [DOI: 10.1093/infdis/jiz050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/28/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Julia Cuellar
- Institute of Biomedicine, University of Turku
- Turku Doctoral Programme of Molecular Medicine, Faculty of Medicine, University of Turku
| | - Annukka Pietikäinen
- Institute of Biomedicine, University of Turku
- Turku Doctoral Programme of Molecular Medicine, Faculty of Medicine, University of Turku
| | - Otto Glader
- Institute of Biomedicine, University of Turku
| | - Heidi Liljenbäck
- Turku Center for Disease Modeling, University of Turku
- Turku PET Centre, University of Turku
| | - Mirva Söderström
- Department of Pathology and Forensic Medicine, University of Turku and Turku University Hospital
| | - Saija Hurme
- Department of Biostatistics, University of Turku
| | | | - Jukka Hytönen
- Institute of Biomedicine, University of Turku
- Laboratory Division, Unit of Clinical Microbiology, Turku University Hospital, Turku, Finland
| |
Collapse
|
45
|
Small leucine-rich proteoglycans and matrix metalloproteinase-14: Key partners? Matrix Biol 2019; 75-76:271-285. [DOI: 10.1016/j.matbio.2017.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 11/19/2022]
|
46
|
Zou W, Wan J, Li M, Xing J, Chen Q, Zhang Z, Gong Y. Small leucine rich proteoglycans in host immunity and renal diseases. J Cell Commun Signal 2018; 13:463-471. [PMID: 30357553 DOI: 10.1007/s12079-018-0489-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023] Open
Abstract
The small leucine rich proteoglycans (SLRPs), structurally consisting of protein cores and various glycosaminoglycan side chains, are grouped into five classes based on common structural and functional properties. Besides being an important structural component of extracellular matrix (ECM), SLRPs have been implicated in the complex network of signal transduction and host immune responses. The focus of this review is on SLRPs in host immunity. Because host immunity plays an important part in the pathogenesis of renal diseases, the role of SLRPs in this set of diseases will also be discussed.
Collapse
Affiliation(s)
- Wei Zou
- Department of Infectious Diseases, The 1st Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Junhui Wan
- Department of Gynecology and Obstetrics, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Li
- Department of Gynecology and Obstetrics, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Juanjuan Xing
- Department of Burn, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Chen
- Department of Gynecology and Obstetrics, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi Zhang
- Department of Gynecology and Obstetrics, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Gong
- Department of Gynecology and Obstetrics, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
47
|
Tomlin H, Piccinini AM. A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens. Immunology 2018; 155:186-201. [PMID: 29908065 PMCID: PMC6142291 DOI: 10.1111/imm.12972] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/26/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
The role of the host extracellular matrix (ECM) in infection tends to be neglected. However, the complex interactions between invading pathogens, host tissues and immune cells occur in the context of the ECM. On the pathogen side, a variety of surface and secreted molecules, including microbial surface components recognizing adhesive matrix molecules and tissue-degrading enzymes, are employed that interact with different ECM proteins to effectively establish an infection at specific sites. Microbial pathogens can also hijack or misuse host proteolytic systems to modify the ECM, evade immune responses or process biologically active molecules such as cell surface receptors and cytokines that direct cell behaviour and immune defence. On the host side, the ECM composition and three-dimensional ultrastructure undergo significant modifications, which have a profound impact on the specific signals that the ECM conveys to immune cells at the forefront of infection. Unexpectedly, activated immune cells participate in the remodelling of the local ECM by synthesizing ECM glycoproteins, proteoglycans and collagen molecules. The close interplay between the ECM and the innate immune response to microbial pathogens ultimately affects the outcome of infection. This review explores and discusses recent data that implicate an active role for the ECM in the immune response to infection, encompassing antimicrobial activities, microbial recognition, macrophage activation, phagocytosis, leucocyte population balance, and transcriptional and post-transcriptional regulation of inflammatory networks, and may foster novel antimicrobial approaches.
Collapse
Affiliation(s)
- Hannah Tomlin
- School of PharmacyUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
48
|
Nastase MV, Zeng-Brouwers J, Beckmann J, Tredup C, Christen U, Radeke HH, Wygrecka M, Schaefer L. Biglycan, a novel trigger of Th1 and Th17 cell recruitment into the kidney. Matrix Biol 2018; 68-69:293-317. [DOI: 10.1016/j.matbio.2017.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
|
49
|
Nastase MV, Zeng-Brouwers J, Wygrecka M, Schaefer L. Targeting renal fibrosis: Mechanisms and drug delivery systems. Adv Drug Deliv Rev 2018; 129:295-307. [PMID: 29288033 DOI: 10.1016/j.addr.2017.12.019] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/10/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
Renal fibrosis is the common outcome of many chronic kidney diseases (CKD) independent of the underlying etiology. Despite a host of promising experimental data, currently available strategies only ameliorate or delay the progression of CKD but do not reverse fibrosis. One of the major impediments of translating novel antifibrotic strategies from bench to bedside is due to the intricacies of the drug delivery process. In this review, we briefly describe mechanisms of renal fibrosis and methods of drug transfer into the kidney. Various tools used in gene therapy to administer nucleic acids in vivo are discussed. Furthermore, we review the modes of action of protein- or peptide-based drugs with target-specific antibodies and cytokines incorporated in hydrogels. Additionally, we assess an intriguing new method to deliver drugs specifically to tubular epithelial cells via conjugation with ligands binding to the megalin receptor. Finally, plant-derived compounds with antifibrotic properties are also summarized.
Collapse
Affiliation(s)
- Madalina V Nastase
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; National Institute for Chemical-Pharmaceutical Research and Development, 112 Vitan Avenue, 031299 Bucharest, Romania
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
50
|
ATP-mediated Events in Peritubular Cells Contribute to Sterile Testicular Inflammation. Sci Rep 2018; 8:1431. [PMID: 29362497 PMCID: PMC5780482 DOI: 10.1038/s41598-018-19624-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022] Open
Abstract
Peritubular myoid cells, which form the walls of seminiferous tubules in the testis, are functionally unexplored. While they transport sperm and contribute to the spermatogonial stem cell niche, specifically their emerging role in the immune surveillance of the testis and in male infertility remains to be studied. Recently, cytokine production and activation of Toll-like receptors (TLRs) were uncovered in cultured peritubular cells. We now show that human peritubular cells express purinergic receptors P2RX4 and P2RX7, which are functionally linked to TLRs, with P2RX4 being the prevalent ATP-gated ion channel. Subsequent ATP treatment of cultured peritubular cells resulted in up-regulated (pro-)inflammatory cytokine expression and secretion, while characteristic peritubular proteins, that is smooth muscle cell markers and extracellular matrix molecules, decreased. These findings indicate that extracellular ATP may act as danger molecule on peritubular cells, able to promote inflammatory responses in the testicular environment.
Collapse
|