1
|
Singh S, Shukla A, Sharma S. Overview of Natural Supplements for the Management of Diabetes and Obesity. Curr Diabetes Rev 2024; 20:e061123223235. [PMID: 37933216 DOI: 10.2174/0115733998262859231020071715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 11/08/2023]
Abstract
Bioactive compounds found in various natural sources, such as fruits, vegetables, and herbs, have been studied for their potential benefits in managing obesity and diabetes. These compounds include polyphenols, flavonoids, other antioxidants, fiber, and certain fatty acids. Studies have found that these compounds may improve insulin sensitivity, regulate blood sugar levels, and promote weight loss. However, the effects of these compounds can vary depending on the type and amount consumed, as well as individual factors, such as genetics and lifestyle. Nutraceutical substances have multifaceted therapeutic advantages, and they have been reported to have disease-prevention and health-promoting properties. Several clinically used nutraceuticals have been shown to target the pathogenesis of diabetes mellitus, obesity, and metabolic syndrome and their complications and modulate various clinical outcomes favorably. This review aims to highlight and comment on some of the most prominent natural components used as antidiabetics and in managing obesity.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| | - Arpit Shukla
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| | - Shiwangi Sharma
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| |
Collapse
|
2
|
Novoselova EG, Glushkova OV, Khrenov MO, Lunin SM, Novoselova TV, Parfenuyk SB. Role of Innate Immunity and Oxidative Stress in the Development of Type 1 Diabetes Mellitus. Peroxiredoxin 6 as a New Anti-Diabetic Agent. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1579-1589. [PMID: 34937537 DOI: 10.1134/s0006297921120075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review discusses information on the development of type 1 diabetes mellitus (T1D) as a systemic autoimmune and inflammatory disease. Focus of the review is on the role of innate immune system, including activation of some signaling cascades, cytokine response, and activity of the Toll-like receptors in the development of T1D. Dysfunction of innate immunity is the cause of the attack of pancreatic beta cells by the host T-lymphocytes, which leads to the death of pancreatic beta cells that produce insulin. Lack of insulin causes hyperglycemia and the need for lifelong injections of insulin in patients with T1D, which, nevertheless, does not exclude damage to many organs and tissues, given particular vulnerability of the blood vessels under conditions of hyperglycemia. The review discusses the role of oxidative stress as a factor that plays a major role in damage of vascular system and pancreatic tissue during the development of T1D. Considering high sensitivity of pancreatic beta cells to the action of reactive oxygen species (ROS), the possibility of using antioxidants for reducing the level of pathological consequences in the course of T1D development is discussed. New information on anti-diabetic activity of the exogenous antioxidant enzyme peroxiredoxin 6, which is capable of penetrating cells, activating insulin production in beta cells, reducing ROS levels, as well as decreasing activation of some signaling cascades, production of pro-inflammatory cytokines, and expression of Toll-like receptors in beta cells and in immune cells during T1D development is discussed.
Collapse
Affiliation(s)
- Elena G Novoselova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Olga V Glushkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Maxim O Khrenov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Sergey M Lunin
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Tatyana V Novoselova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Svetlana B Parfenuyk
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
3
|
Novoselova EG, Glushkova OV, Lunin SM, Khrenov MO, Parfenyuk SB, Novoselova TV, Sharapov MG, Gordeeva AE, Novoselov VI, Fesenko EE. Thymulin and peroxiredoxin 6 have protective effects against streptozotocin-induced type 1 diabetes in mice. Int J Immunopathol Pharmacol 2021; 35:20587384211005645. [PMID: 33779346 PMCID: PMC8010817 DOI: 10.1177/20587384211005645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Protective effects of peroxiredoxin 6 (PRDX6) in RIN-m5F β-cells and of thymulin in mice with alloxan-induced diabetes were recently reported. The present work was aimed at studying the efficiency of thymulin and PRDX6 in a type 1 diabetes mellitus model induced by streptozotocin in mice. Effects of prolonged treatment with PRDX6 or thymic peptide thymulin on diabetes development were evaluated. We assessed the effects of the drugs on the physiological status of diabetic mice by measuring blood glucose, body weight, and cell counts in several organs, as well as effects of thymulin and PRDX6 on the immune status of diabetic mice measuring concentrations of pro-inflammatory cytokines in blood plasma (TNF-α, interleukin-5 and 17, and interferon-γ), activity of NF-κB and JNK pathways, and Hsp90α expression in immune cells. Both thymulin and PRDX6 reduced the physiological impairments in diabetic mice at various levels. Thymulin and PRDX6 provide beneficial effects in the model of diabetes via very different mechanisms. Taken together, the results of our study indicated that the thymic peptide and the antioxidant enzyme have anti-inflammatory functions. As increasing evidences show diabetes mellitus as a distinct comorbidity leading to acute respiratory distress syndrome and increased mortality in patients with COVID-19 having cytokine storm, thymulin, and PRDX6 might serve as a supporting anti-inflammatory treatment in the therapy of COVID 19 in diabetic patients.
Collapse
Affiliation(s)
- Elena G Novoselova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Olga V Glushkova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Sergey M Lunin
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Maxim O Khrenov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Svetlana B Parfenyuk
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Tatyana V Novoselova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Alina E Gordeeva
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Vladimir I Novoselov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Evgeny E Fesenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| |
Collapse
|
4
|
Mazzoli A, Sardi C, Breasson L, Theilig F, Becattini B, Solinas G. JNK1 ablation improves pancreatic β-cell mass and function in db/db diabetic mice without affecting insulin sensitivity and adipose tissue inflammation. FASEB Bioadv 2021; 3:94-107. [PMID: 33615154 PMCID: PMC7876705 DOI: 10.1096/fba.2020-00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
The cJun N‐terminal Kinases (JNK) emerged as a major link between obesity and insulin resistance, but their role in the loss of pancreatic β‐cell mass and function driving the progression from insulin resistance to type‐2 diabetes and in the complications of diabetes was not investigated to the same extent. Furthermore, it was shown that pan‐JNK inhibition exacerbates kidney damage in the db/db model of obesity‐driven diabetes. Here we investigate the role of JNK1 in the db/db model of obesity‐driven type‐2 diabetes. Mice with systemic ablation of JNK1 (JNK1−/−) were backcrossed for more than 10 generations in db/+ C57BL/KS mice to generate db/db‐JNK1−/− mice and db/db control mice. To define the role of JNK1 in the loss of β‐cell mass and function occurring during obesity‐driven diabetes we performed comprehensive metabolic phenotyping, evaluated steatosis and metabolic inflammation, performed morphometric and cellular composition analysis of pancreatic islets, and evaluated kidney function in db/db‐JNK1−/− mice and db/db controls. db/db‐JNK1−/− mice and db/db control mice developed insulin resistance, fatty liver, and metabolic inflammation to a similar extent. However, db/db‐JNK1−/− mice displayed better glucose tolerance and improved insulin levels during glucose tolerance test, higher pancreatic insulin content, and larger pancreatic islets with more β‐cells than db/db mice. Finally, albuminuria, kidney histopathology, kidney inflammation and oxidative stress in db/db‐JNK1−/− mice and in db/db mice were similar. Our data indicate that selective JNK1 ablation improves glucose tolerance in db/db mice by reducing the loss of functional β‐cells occurring in the db/db mouse model of obesity‐driven diabetes, without significantly affecting metabolic inflammation, steatosis, and insulin sensitivity. Furthermore, we have found that, differently from what previously reported for pan‐JNK inhibitors, selective JNK1 ablation does not exacerbate kidney dysfunction in db/db mice. We conclude that selective JNK1 inactivation may have a superior therapeutic index than pan‐JNK inhibition in obesity‐driven diabetes.
Collapse
Affiliation(s)
- Arianna Mazzoli
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Claudia Sardi
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Ludovic Breasson
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Franziska Theilig
- Institute of Anatomy Christian Albrechts-University Kiel Kiel Germany
| | - Barbara Becattini
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Giovanni Solinas
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| |
Collapse
|
5
|
Liu C, Zhang W, Peradze N, Lang L, Straetener J, Feilen PJ, Alt M, Jäger C, Laubner K, Perakakis N, Seufert J, Päth G. Mesenchymal stem cell (MSC)-mediated survival of insulin producing pancreatic β-cells during cellular stress involves signalling via Akt and ERK1/2. Mol Cell Endocrinol 2018; 473:235-244. [PMID: 29421520 DOI: 10.1016/j.mce.2018.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/24/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSC) are of interest for cell therapy since their secreted factors mediate immunomodulation and support tissue regeneration. This study investigated the direct humoral interactions between MSC and pancreatic β-cells using human telomerase-immortalized MSC (hMSC-TERT) and rat insulinoma-derived INS-1E β-cells. hMSC-TERT supported survival of cocultured INS-1E β-cells during cellular stress by alloxan (ALX) and streptozotocin (STZ), but not in response to IL-1β. Accordingly, hMSC-TERT had no effect on inflammatory cytokine-related signalling via NF-kB and p-JNK but maintained p-Akt and upregulated p-ERK1/2. Inhibition of either p-Akt or p-ERK1/2 did not abolish protection by hMSC-TERT but activated the respective non-inhibited pathway. This suggests that one pathway compensates for the other. Main results were confirmed in mouse islets except hMSC-TERT-mediated upregulation of p-ERK1/2. Therefore, MSC promote β-cell survival by preservation of p-Akt signalling and further involve p-ERK1/2 activation in certain conditions such as loss of p-Akt or insulinoma background.
Collapse
Affiliation(s)
- Chune Liu
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Divisions of Endocrinology and Metabolism, Pediatrics, Johns Hopkins University, Baltimore, USA
| | - Weiwei Zhang
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Natia Peradze
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Leonie Lang
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jan Straetener
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Peter J Feilen
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Marcus Alt
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Christina Jäger
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Katharina Laubner
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nikolaos Perakakis
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jochen Seufert
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Günter Päth
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
6
|
Elshazly SM, Abd El Motteleb DM, Ibrahim IAH. Hesperidin protects against stress induced gastric ulcer through regulation of peroxisome proliferator activator receptor gamma in diabetic rats. Chem Biol Interact 2018; 291:153-161. [DOI: 10.1016/j.cbi.2018.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
|
7
|
González-Mariscal I, Montoro RA, Doyle ME, Liu QR, Rouse M, O'Connell JF, Santa-Cruz Calvo S, Krzysik-Walker SM, Ghosh S, Carlson OD, Lehrmann E, Zhang Y, Becker KG, Chia CW, Ghosh P, Egan JM. Absence of cannabinoid 1 receptor in beta cells protects against high-fat/high-sugar diet-induced beta cell dysfunction and inflammation in murine islets. Diabetologia 2018; 61:1470-1483. [PMID: 29497784 PMCID: PMC6201315 DOI: 10.1007/s00125-018-4576-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/25/2018] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS The cannabinoid 1 receptor (CB1R) regulates insulin sensitivity and glucose metabolism in peripheral tissues. CB1R is expressed on pancreatic beta cells and is coupled to the G protein Gαi, suggesting a negative regulation of endogenous signalling in the beta cell. Deciphering the exact function of CB1R in beta cells has been confounded by the expression of this receptor on multiple tissues involved in regulating metabolism. Thus, in models of global genetic or pharmacological CB1R blockade, it is difficult to distinguish the indirect effects of improved insulin sensitivity in peripheral tissues from the direct effects of inhibiting CB1R in beta cells per se. To assess the direct contribution of beta cell CB1R to metabolism, we designed a mouse model that allows us to determine the role of CB1R specifically in beta cells in the context of whole-body metabolism. METHODS We generated a beta cell specific Cnr1 (CB1R) knockout mouse (β-CB1R-/-) to study the long-term consequences of CB1R ablation on beta cell function in adult mice. We measured beta cell function, proliferation and viability in these mice in response to a high-fat/high-sugar diet and induction of acute insulin resistance with the insulin receptor antagonist S961. RESULTS β-CB1R-/- mice had increased fasting (153 ± 23% increase at 10 weeks of age) and stimulated insulin secretion and increased intra-islet cAMP levels (217 ± 33% increase at 10 weeks of age), resulting in primary hyperinsulinaemia, as well as increased beta cell viability, proliferation and islet area (1.9-fold increase at 10 weeks of age). Hyperinsulinaemia led to insulin resistance, which was aggravated by a high-fat/high-sugar diet and weight gain, although beta cells maintained their insulin secretory capacity in response to glucose. Strikingly, islets from β-CB1R-/- mice were protected from diet-induced inflammation. Mechanistically, we show that this is a consequence of curtailment of oxidative stress and reduced activation of the NLRP3 inflammasome in beta cells. CONCLUSIONS/INTERPRETATION Our data demonstrate CB1R to be a negative regulator of beta cell function and a mediator of islet inflammation under conditions of metabolic stress. Our findings point to beta cell CB1R as a therapeutic target, and broaden its potential to include anti-inflammatory effects in both major forms of diabetes. DATA AVAILABILITY Microarray data have been deposited at GEO (GSE102027).
Collapse
Affiliation(s)
- Isabel González-Mariscal
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Rodrigo A Montoro
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Máire E Doyle
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Michael Rouse
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Jennifer F O'Connell
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Sara Santa-Cruz Calvo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Susan M Krzysik-Walker
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Soumita Ghosh
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Olga D Carlson
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Elin Lehrmann
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yongqing Zhang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kevin G Becker
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Chee W Chia
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Paritosh Ghosh
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
8
|
Yoo YM, Park YC. Streptozotocin-Induced Autophagy Reduces Intracellular Insulin in Insulinoma INS-1E Cells. DNA Cell Biol 2018; 37:160-167. [PMID: 29485914 DOI: 10.1089/dna.2017.3874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Streptozotocin (STZ), a glucose analog, induces diabetes in experimental animals by inducing preferential cytotoxicity in pancreatic beta cells. We investigated whether STZ reduced the production of intracellular insulin through autophagy in insulinoma INS-1E cells. Typically, 2 mM STZ treatment for 24 h significantly decreased cell survival. STZ treatment led to significant decrease in phospho-AMP-activated protein kinase (p-AMPK) level; reduction in levels of phospho-protein kinase R-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme 1α (IRE1α); significant reduction in levels of p85α, p110, phospho-serine and threonine kinase/protein kinase B (p-Akt/PKB) (Ser473), phospho-extracellular-regulated kinase (p-ERK), and phospho-mammalian target of rapamycin (p-mTOR); increase in levels of Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and catalase; decrease in B-cell lymphoma 2 (Bcl-2) expression; increase in Bcl-2-associated X protein (Bax) expression; increase in levels of microtubule-associated protein 1 light chain 3 (LC3) and Beclin 1; and reduction in production of intracellular insulin. These results suggest that insulin synthesis during STZ treatment involves autophagy in INS-1E cells and, subsequently, results in a decrease in intracellular production of insulin.
Collapse
Affiliation(s)
- Yeong-Min Yoo
- 1 Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine , Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yung Chul Park
- 2 Division of Forest Science, Institute of Forest Science, College of Forest and Environmental Sciences , Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
9
|
Chen C, Wu S, Lin X, Wu D, Fischbach S, Xiao X. ERK5 plays an essential role in gestational beta-cell proliferation. Cell Prolif 2017; 51:e12410. [PMID: 29159830 DOI: 10.1111/cpr.12410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Restoring a functional beta-cell mass is a fundamental goal in treating diabetes. A complex signalling pathway network coordinates the regulation of beta-cell proliferation, although a role for ERK5 in this network has not been reported. This question was addressed in this study. MATERIALS AND METHODS We studied the activation of extracellular-signal-regulated kinase 5 (ERK5) in pregnant mice, a well-known mouse model of increased beta-cell proliferation. A specific inhibitor of ERK5 activation, BIX02189, was intraperitoneally injected into the pregnant mice to suppress ERK5 signalling. Beta-cell proliferation was determined by quantification of Ki-67+ beta cells. Beta-cell apoptosis was determined by TUNEL assay. The extent of beta-cell proliferation was determined by beta-cell mass. The alteration of ERK5 activation and CyclinD1 levels in purified mouse islets was examined by Western blotting. RESULTS Extracellular-signal-regulated kinase 5 phosphorylation, which represents ERK5 activation, was significantly upregulated in islets from pregnant mice. Suppression of ERK5 activation by BIX02189 in pregnant mice significantly reduced beta-cell proliferation, without affecting beta-cell apoptosis, resulting in increases in random blood glucose levels and impairment of glucose response of the mice. ERK5 seemed to activate CyclinD1 to promote gestational beta-cell proliferation. CONCLUSIONS Extracellular-signal-regulated kinase 5 plays an essential role in the gestational augmentation of beta-cell proliferation. ERK5 may be a promising target for increasing beta-cell mass in diabetes patients.
Collapse
Affiliation(s)
- Congde Chen
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Suichun Wu
- Reproductive Medicine Centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Lin
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dazhou Wu
- Department of Pediatric Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shane Fischbach
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
10
|
Lee D, Kim KH, Lee J, Hwang GS, Lee HL, Hahm DH, Huh CK, Lee SC, Lee S, Kang KS. Protective effect of cirsimaritin against streptozotocin-induced apoptosis in pancreatic beta cells. J Pharm Pharmacol 2017; 69:875-883. [DOI: 10.1111/jphp.12719] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/04/2017] [Indexed: 12/24/2022]
Abstract
Abstract
Objectives
Maintaining glucose homoeostasis is essential for the survival of cells. Despite the various health benefits of Korean thistle (Cirsium japonicum var. maackii), their effects on pancreatic β-cell apoptosis in type 1 diabetes mellitus and the underlying mechanisms remain unclear, and experimentally investigated in this study.
Methods
The effects of C. japonicum var. maackii and its active component cirsimaritin against streptozotocin (STZ)-induced cytotoxicity were assessed in INS-1 cells. By Western blotting analysis, protein expressions related to apoptosis were evaluated. The involvement of apoptosis was also confirmed with image-based cytometric assay and caspase activity tests.
Key findings
Cirsium japonicum var. maackii extract and cirsimaritin in non-toxic concentrations improved cell viability to near normal levels and protected INS-1 cells against STZ-induced damage. In addition, cirsimaritin reduced the intracellular oxidative stress induced by STZ. Cirsimaritin effectively suppressed apoptosis in pancreatic β cells by decreasing the activation of caspase-8 and caspase-3, BID and the DNA repair protein poly (ADP-ribose) polymerase (PARP) and increasing anti-apoptotic BCL-2 protein expression.
Conclusions
This study demonstrates the therapeutic potential and action mechanism of cirsimaritin for the prevention and treatment of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Jaemin Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Korea
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam, Korea
| | - Hye Lim Lee
- College of Korean Medicine, Gachon University, Seongnam, Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Korea
| | - Chang Ki Huh
- Imsil Research Institute of Cheese Science, Imsil, Korea
| | - Sang Cheon Lee
- Imsil Research Institute of Cheese Science, Imsil, Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, Korea
| |
Collapse
|
11
|
Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab 2016; 6:174-184. [PMID: 28180059 PMCID: PMC5279903 DOI: 10.1016/j.molmet.2016.12.001] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The cJun-N-terminal-kinase (JNK) plays a central role in the cell stress response, with outcomes ranging from cell death to cell proliferation and survival, depending on the specific context. JNK is also one of the most investigated signal transducers in obesity and insulin resistance, and studies have identified new molecular mechanisms linking obesity and insulin resistance. Emerging evidence indicates that whereas JNK1 and JNK2 isoforms promote the development of obesity and insulin resistance, JNK3 activity protects from excessive adiposity. Furthermore, current evidence indicates that JNK activity within specific cell types may, in specific stages of disease progression, promote cell tolerance to the stress associated with obesity and type-2 diabetes. SCOPE OF REVIEW This review provides an overview of the current literature on the role of JNK in the progression from obesity to insulin resistance, NAFLD, type-2 diabetes, and diabetes complications. MAJOR CONCLUSION Whereas current evidence indicates that JNK1/2 inhibition may improve insulin sensitivity in obesity, the role of JNK in the progression from insulin resistance to diabetes, and its complications is largely unresolved. A better understanding of the role of JNK in the stress response to obesity and type-2 diabetes, and the development of isoform-specific inhibitors with specific tissue distribution will be necessary to exploit JNK as possible drug target for the treatment of type-2 diabetes.
Collapse
Affiliation(s)
- Giovanni Solinas
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden.
| | - Barbara Becattini
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
12
|
Luo C, Yu LT, Yang MQ, Li X, Zhang ZY, Alfred MO, Liu JL, Wang M. Recombinant Reg3β protein protects against streptozotocin-induced β-cell damage and diabetes. Sci Rep 2016; 6:35640. [PMID: 27767186 PMCID: PMC5073304 DOI: 10.1038/srep35640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022] Open
Abstract
Regenerating genes (Reg) have been found during the search for factors involved in pancreatic islet regeneration. Our recent study discovered that pancreatic β-cell-specific overexpression of Reg3β protects against streptozotocin (Stz) -induced diabetes in mice. To investigate its potential roles in the treatment of diabetes, we produced a recombinant Reg3β protein and provided evidence that it is active in promoting islet β-cell survival against Stz- triggered cell death. Though ineffective in alleviating preexisting diabetes, pretreatment of recombinant Reg3β was capable of minimizing the Stz-induced hyperglycemia and weight loss, by preserving serum and pancreatic insulin levels, and islet β-cell mass. No obvious changes were observed in the rate of cell proliferation and hypertrophy in α- or acinar-cells after treatment with recombinant Reg3β. The underlying mechanism of Reg3β-mediated protection seems to involve Akt activation which upregulates Bcl-2 and Bcl-xL levels and consequently promotes cell survival.
Collapse
Affiliation(s)
- Chen Luo
- School of Life Science &Technology, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Lu-Ting Yu
- School of Life Science &Technology, China Pharmaceutical University, Nanjing, China
| | - Meng-Qi Yang
- School of Life Science &Technology, China Pharmaceutical University, Nanjing, China
| | - Xiang Li
- School of Life Science &Technology, China Pharmaceutical University, Nanjing, China
| | - Zhi-Yuan Zhang
- School of Life Science &Technology, China Pharmaceutical University, Nanjing, China
| | - Martin O Alfred
- School of Life Science &Technology, China Pharmaceutical University, Nanjing, China
| | - Jun-Li Liu
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Min Wang
- School of Life Science &Technology, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang GM, Choi HY, Cho SG. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids. Int J Mol Sci 2016; 17:569. [PMID: 27092490 PMCID: PMC4849025 DOI: 10.3390/ijms17040569] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022] Open
Abstract
Obesity and diabetes are the most prevailing health concerns worldwide and their incidence is increasing at a high rate, resulting in enormous social costs. Obesity is a complex disease commonly accompanied by insulin resistance and increases in oxidative stress and inflammatory marker expression, leading to augmented fat mass in the body. Diabetes mellitus (DM) is a metabolic disorder characterized by the destruction of pancreatic β cells or diminished insulin secretion and action insulin. Obesity causes the development of metabolic disorders such as DM, hypertension, cardiovascular diseases, and inflammation-based pathologies. Flavonoids are the secondary metabolites of plants and have 15-carbon skeleton structures containing two phenyl rings and a heterocyclic ring. More than 5000 naturally occurring flavonoids have been reported from various plants and have been found to possess many beneficial effects with advantages over chemical treatments. A number of studies have demonstrated the potential health benefits of natural flavonoids in treating obesity and DM, and show increased bioavailability and action on multiple molecular targets. This review summarizes the current progress in our understanding of the anti-obesity and anti-diabetic potential of natural flavonoids and their molecular mechanisms for preventing and/or treating obesity and diabetes.
Collapse
Affiliation(s)
- Mohammed Kawser Hossain
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Jihae Han
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Yingfu Yin
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Kyeongseok Kim
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Subbroto Kumar Saha
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
14
|
Radenković M, Stojanović M, Prostran M. Experimental diabetes induced by alloxan and streptozotocin: The current state of the art. J Pharmacol Toxicol Methods 2015; 78:13-31. [PMID: 26596652 DOI: 10.1016/j.vascn.2015.11.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a chronic metabolic disorder with a high prevalence worldwide. Animal models of diabetes represent an important tool in diabetes investigation that helps us to avoid unnecessary and ethically challenging studies in human subjects, as well as to obtain a comprehensive scientific viewpoint of this disease. Although there are several methods through which diabetes can be induced, chemical methods of alloxan- and streptozotocin-induced diabetes represent the most important and highly preferable experimental models for this pathological condition. Therefore, the aim of this article was to review the current knowledge related to quoted models of diabetes, including to this point available information about mechanism of action, particular time- and dose-dependent protocols, frequent problems, as well as major limitations linked to laboratory application of alloxan and sterptozotocin in inducing diabetes. Given that diabetes is known to be closely associated with serious health consequences it is of fundamental importance that current animal models for induction of diabetes should be continuously upgraded in order to improve overall prevention, diagnosis and treatment of this pathological condition.
Collapse
Affiliation(s)
- Miroslav Radenković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, PO Box 38, 11129 Belgrade, Serbia.
| | - Marko Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, PO Box 38, 11129 Belgrade, Serbia.
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, PO Box 38, 11129 Belgrade, Serbia.
| |
Collapse
|
15
|
Kim E, Kim YS, Kim KM, Jung S, Yoo SH, Kim Y. D-Xylose as a sugar complement regulates blood glucose levels by suppressing phosphoenolpyruvate carboxylase (PEPCK) in streptozotocin-nicotinamide-induced diabetic rats and by enhancing glucose uptake in vitro. Nutr Res Pract 2015; 10:11-8. [PMID: 26865911 PMCID: PMC4742304 DOI: 10.4162/nrp.2016.10.1.11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/22/2015] [Accepted: 05/07/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND/OBJECTIVES Type 2 diabetes (T2D) is more frequently diagnosed and is characterized by hyperglycemia and insulin resistance. D-Xylose, a sucrase inhibitor, may be useful as a functional sugar complement to inhibit increases in blood glucose levels. The objective of this study was to investigate the anti-diabetic effects of D-xylose both in vitro and stretpozotocin (STZ)-nicotinamide (NA)-induced models in vivo. MATERIALS/METHODS Wistar rats were divided into the following groups: (i) normal control; (ii) diabetic control; (iii) diabetic rats supplemented with a diet where 5% of the total sucrose content in the diet was replaced with D-xylose; and (iv) diabetic rats supplemented with a diet where 10% of the total sucrose content in the diet was replaced with D-xylose. These groups were maintained for two weeks. The effects of D-xylose on blood glucose levels were examined using oral glucose tolerance test, insulin secretion assays, histology of liver and pancreas tissues, and analysis of phosphoenolpyruvate carboxylase (PEPCK) expression in liver tissues of a STZ-NA-induced experimental rat model. Levels of glucose uptake and insulin secretion by differentiated C2C12 muscle cells and INS-1 pancreatic β-cells were analyzed. RESULTS In vivo, D-xylose supplementation significantly reduced fasting serum glucose levels (P < 0.05), it slightly reduced the area under the glucose curve, and increased insulin levels compared to the diabetic controls. D-Xylose supplementation enhanced the regeneration of pancreas tissue and improved the arrangement of hepatocytes compared to the diabetic controls. Lower levels of PEPCK were detected in the liver tissues of D-xylose-supplemented rats (P < 0.05). In vitro, both 2-NBDG uptake by C2C12 cells and insulin secretion by INS-1 cells were increased with D-xylose supplementation in a dose-dependent manner compared to treatment with glucose alone. CONCLUSIONS In this study, D-xylose exerted anti-diabetic effects in vivo by regulating blood glucose levels via regeneration of damaged pancreas and liver tissues and regulation of PEPCK, a key rate-limiting enzyme in the process of gluconeogenesis. In vitro, D-xylose induced the uptake of glucose by muscle cells and the secretion of insulin cells by β-cells. These mechanistic insights will facilitate the development of highly effective strategy for T2D.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Yoo-Sun Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Kyung-Mi Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Sangwon Jung
- R&D center, TS Corporation, Incheon 400-201, Korea
| | - Sang-Ho Yoo
- Department of Food Science & Technology, BK21 Plus Team, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
16
|
ZHU HY, CHEN GT, MENG GL, XU JL. Characterization of pumpkin polysaccharides and protective effects on streptozotocin-damaged islet cells. Chin J Nat Med 2015; 13:199-207. [DOI: 10.1016/s1875-5364(15)30005-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 01/09/2023]
|
17
|
Protective effect of nicotinamide on high glucose/palmitate-induced glucolipotoxicity to INS-1 beta cells is attributed to its inhibitory activity to sirtuins. Arch Biochem Biophys 2013; 535:187-96. [PMID: 23562377 DOI: 10.1016/j.abb.2013.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/14/2013] [Accepted: 03/17/2013] [Indexed: 11/20/2022]
Abstract
This study was initiated to determine whether the protective effect of nicotinamide (NAM) on high glucose/palmitate (HG/PA)-induced INS-1 beta cell death was due to its role as an anti-oxidant, nicotinamide dinucleotide (NAD+) precursor, or inhibitor of NAD+-consuming enzymes such as poly (ADP-ribose) polymerase (PARP) or sirtuins. All anti-oxidants tested were not protective against HG/PA-induced INS-1 cell death. Direct supplementation of NAD+ or indirect supplementation through NAD+ salvage or de novo pathway did not protect the death. Knockdown of the NAD+ salvage pathway enzymes such as nicotinamide phosphoribosyl transferase (NAMPT) or nicotinamide mononucleotide adenyltransferase (NMNAT) did not augment death. On the other hand, pharmacological inhibition or knockdown of PARP did not affect death. However, sirtinol as an inhibitor of NAD-dependant deacetylase or knockdown of SIRT3 or SIRT4 significantly reduced the HG/PA-induced death. These data suggest that protective effect of NAM on beta cell glucolipotoxicity is attributed to its inhibitory activity on sirtuins.
Collapse
|
18
|
Antidiabetic activities of oligosaccharides of Ophiopogonis japonicus in experimental type 2 diabetic rats. Int J Biol Macromol 2012; 51:749-55. [DOI: 10.1016/j.ijbiomac.2012.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/07/2012] [Accepted: 07/08/2012] [Indexed: 11/20/2022]
|
19
|
Szkudelski T. Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med (Maywood) 2012; 237:481-90. [PMID: 22619373 DOI: 10.1258/ebm.2012.011372] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Administration of both streptozotocin (STZ) and nicotinamide (NA) has been proposed to induce experimental diabetes in the rat. STZ is well known to cause pancreatic B-cell damage, whereas NA is administered to rats to partially protect insulin-secreting cells against STZ. STZ is transported into B-cells via the glucose transporter GLUT2 and causes DNA damage leading to increased activity of poly(ADP-ribose) polymerase (PARP-1) to repair DNA. However, exaggerated activity of this enzyme results in depletion of intracellular NAD(+) and ATP, and the insulin-secreting cells undergo necrosis. The protective action of NA is due to the inhibition of PARP-1 activity. NA inhibits this enzyme, preventing depletion of NAD(+) and ATP in cells exposed to STZ. Moreover, NA serves as a precursor of NAD(+) and thereby additionally increases intracellular NAD(+) levels. The severity of diabetes in experimental rats strongly depends on the doses of STZ and NA given to these animals. Therefore, in diabetic rats, blood glucose may be changed in a broad range--from slight hyperglycemia to substantial hyperglycemia compared with control animals. Similarly, blood insulin may be only slightly decreased or substantial hypoinsulinemia may be induced. In vitro studies demonstrated that the insulin-secretory response to glucose is attenuated in STZ-NA-induced diabetic rats compared with control animals. This is due to reduced B-cell mass as well as metabolic defects in the insulin-secreting cells. Results of numerous experiments have demonstrated that this model of diabetes is useful in studies of different aspects of diabetes.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| |
Collapse
|
20
|
Wu HC, Yang CY, Hung DZ, Su CC, Chen KL, Yen CC, Ho TJ, Su YC, Huang CF, Chen CH, Tsai LM, Chen YW. Nickel(II) induced JNK activation-regulated mitochondria-dependent apoptotic pathway leading to cultured rat pancreatic β-cell death. Toxicology 2011; 289:103-11. [DOI: 10.1016/j.tox.2011.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
|
21
|
Chueh WH, Lin JY. Berberine, an isoquinoline alkaloid, inhibits streptozotocin-induced apoptosis in mouse pancreatic islets through down-regulating Bax/Bcl-2 gene expression ratio. Food Chem 2011; 132:252-60. [PMID: 26434288 DOI: 10.1016/j.foodchem.2011.10.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/10/2011] [Accepted: 10/20/2011] [Indexed: 02/06/2023]
Abstract
Diabetes may cause apoptosis in pancreatic islets. Berberine is an isoquinoline alkaloid used for its pharmacological functions including anti-inflammation. However, the berberine effect on pancreatic islets is still not clear. This study is aimed at clarifying the protective mechanism in berberine against islet cell apoptosis. This study established in vitro experimental models using streptozotocin (STZ)-treated primary pancreatic islet cells from ICR mice to unravel the protective mechanism of berberine on islets. The Bax/Bcl-2 (pro-/anti-apoptotic) genes expression in the islets was determined using real-time quantitative polymerase chain reaction assay. The results showed that berberine administration at one time or before STZ-stimulation significantly (P<0.05) down-regulated the Bax/Bcl-2 genes expression ratio, compared to those in STZ-treatment alone group. Our results suggest that berberine's anti-apoptotic effect on pancreatic primary islets is through down-regulating the Bax/Bcl-2 genes expression ratio in both concurrent and preventive manners.
Collapse
Affiliation(s)
- Wei-Han Chueh
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan, ROC
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan, ROC.
| |
Collapse
|