1
|
Li S, Xiao X, Chang Y, Xu Z, Zheng X, Zhou H, Ding H, Lu W, Li T, Tao Y. Berberine Inhibits Abdominal Aortic Aneurysm Formation and Vascular Smooth Muscle Cell Phenotypic Switching by Regulating the Nrf2 Pathway. J Cell Mol Med 2025; 29:e70509. [PMID: 40193135 PMCID: PMC11974455 DOI: 10.1111/jcmm.70509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/12/2025] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disease featuring extensive membrane destruction in the vascular wall, which is closely associated with the phenotypic switching of vascular smooth muscle cells (VSMC). A thorough understanding of the changes in regulatory factors during the pathogenesis of VSMC phenotypic switching is essential for medical treatments in AAA. NRF2 was deemed to hold a pivotal position in developing AAA, especially as it can regulate VSMC phenotypic switching. In this study, we found that berberine prevents the formation of AAA by regulating the phenotypic switching of VSMC, which was well validated in both in vitro and in vivo functional experiments. Mechanically, we found that berberine regulates VSMC phenotypic switching by promoting the expression of downstream VSMC contraction genes through the deubiquitination of Keap1, in which the deubiquitinating enzyme USP15 plays an important mediating role in this process.
Collapse
MESH Headings
- Berberine/pharmacology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/prevention & control
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Animals
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Signal Transduction/drug effects
- Phenotype
- Mice
- Humans
- Male
- Kelch-Like ECH-Associated Protein 1/metabolism
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Sanjun Li
- Department of CardiologyJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| | - Xiaoyong Xiao
- Department of Emergency MedicineThe First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's HospitalShenzhenGuangdongChina
| | - Yuechen Chang
- Experimental Center of Medical School of Shihezi UniversityShiheziChina
| | - Ziyao Xu
- Senior Department of General SurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | | | - Haiwen Zhou
- Department of CardiologyJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| | - Haiqiang Ding
- Department of CardiologyJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| | - Weiling Lu
- Department of CardiologyGuangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Prevention and Treatment of Coronary Heart Disease,Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease‐Associated Organ Injury and ITCWM RepairInstitute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical UniversityTianjinChina
| | - Yu Tao
- Department of CardiologyJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| |
Collapse
|
2
|
Attia H, Badr A, Alshehri O, Alsulaiman W, Alshanwani A, Alshehri S, Arafa M, Hasan I, Ali R. The Protective Effects of Vitamin B Complex on Diclofenac Sodium-Induced Nephrotoxicity: The Role of NOX4/RhoA/ROCK. Inflammation 2024; 47:1600-1615. [PMID: 38413451 DOI: 10.1007/s10753-024-01996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Diclofenac sodium (DIC) is a widely used non-steroidal anti-inflammatory drug. Unfortunately, its prolonged use is associated with nephrotoxicity due to oxidative stress, inflammation, and fibrosis. We aimed to investigate the nephroprotective effects of vitamin B complex (B1, B6, B12) against DIC-induced nephrotoxicity and its impact on NOX4/RhoA/ROCK, a pathway that plays a vital role in renal pathophysiology. Thirty-two Wistar rats were divided into four groups: (1) normal control; (2) vitamin B complex (16 mg/kg B1, 16 mg/kg B6, 0.16 mg/kg B12, intraperitoneal); (3) DIC (10 mg/kg, intramuscular); and (4) DIC plus vitamin B complex group. After 14 days, the following were assayed: serum renal biomarkers (creatinine, blood urea nitrogen, kidney injury molecule-1), oxidative stress, inflammatory (tumor necrosis factor-α, interleukin-6), and fibrotic (transforming growth factor-β) markers as well as the protein levels of NOX4, RhoA, and ROCK. Structural changes, inflammatory cell infiltration, and fibrosis were detected using hematoxylin and eosin and Masson trichrome stains. Compared to DIC, vitamin B complex significantly decreased the renal function biomarkers, markers of oxidative stress and inflammation, and fibrotic cytokines. Glomerular and tubular damage, inflammatory infiltration, and excessive collagen accumulation were also reduced. Protein levels of NOX4, RhoA, and ROCK were significantly elevated by DIC, and this elevation was ameliorated by vitamin B complex. In conclusion, vitamin B complex administration could be a renoprotective approach during treatment with DIC via, at least in part, suppressing the NOX4/RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495, Saudi Arabia.
| | - Amira Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495, Saudi Arabia
| | - Orjuwan Alshehri
- College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Waad Alsulaiman
- College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Aliah Alshanwani
- Department of Physiology, College of Medicine, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495, Saudi Arabia
| | - Maha Arafa
- Pathology Department, College of Medicine, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Iman Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495, Saudi Arabia
| | - Rehab Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
3
|
Huang S, Lu H, Chen J, Jiang C, Jiang G, Maduraiveeran G, Pan Y, Liu J, Deng LE. Advances in drug delivery-based therapeutic strategies for renal fibrosis treatment. J Mater Chem B 2024; 12:6532-6549. [PMID: 38913013 DOI: 10.1039/d4tb00737a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Renal fibrosis is the result of all chronic kidney diseases and is becoming a major global health hazard. Currently, traditional treatments for renal fibrosis are difficult to meet clinical needs due to shortcomings such as poor efficacy or highly toxic side effects. Therefore, therapeutic strategies that target the kidneys are needed to overcome these shortcomings. Drug delivery can be attained by improving drug stability and addressing controlled release and targeted delivery of drugs in the delivery category. By combining drug delivery technology with nanosystems, controlled drug release and biodistribution can be achieved, enhancing therapeutic efficacy and reducing toxic cross-wise effects. This review discusses nanomaterial drug delivery strategies reported in recent years. Firstly, the present review describes the mechanisms of renal fibrosis and anti-renal fibrosis drug delivery. Secondly, different nanomaterial drug delivery strategies for the treatment of renal injury and fibrosis are highlighted. Finally, the limitations of these strategies are also discussed. Investigating various anti-renal fibrosis drug delivery strategies reveals the characteristics and therapeutic effects of various novel nanosystem-derived drug delivery approaches. This will serve as a reference for future research on drug delivery strategies for renal fibrosis treatment.
Collapse
Affiliation(s)
- Sida Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Hanqi Lu
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| | - Jin Chen
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| | - Chengyi Jiang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Guanmin Jiang
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan people's hospital), 78 Wandao Road South, Dongguan, 523059 Guangdong, China.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu, Tamil Nadu, India.
| | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Li-Er Deng
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| |
Collapse
|
4
|
Gao R, Lu Y, Zhang W, Zhang Z. The Application of Berberine in Fibrosis and the Related Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:753-773. [PMID: 38716621 DOI: 10.1142/s0192415x24500307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The formation of fibrotic tissue, characterized by the excessive accumulation of extracellular matrix (ECM) components such as collagen and fibronectin, is a normal and crucial stage of tissue repair in all organs. The over-synthesis, deposition, and remodeling of ECM components lead to organ dysfunction, posing a significant medical burden. Berberine, an isoquinoline alkaloid, is commonly used in the treatment of gastrointestinal diseases. With the deepening of scientific research, it has been gradually discovered that berberine also plays an important role in fibrotic diseases. In this review, we systematically introduce the effective role of berberine in fibrosis-related diseases. Specifically, this paper aims to provide a comprehensive review of the therapeutic role of berberine in treating fibrosis in organs such as the heart, liver, lungs, and kidneys. By summarizing its various pathways and mechanisms of action, including the inhibition of the transforming growth factor-[Formula: see text]/Smad signaling pathway, PI3K/Akt signaling pathway, MAPK signaling pathway, RhoA/ROCK signaling, and mTOR/p70S6K signaling pathway, as well as its activation of the Nrf2-ARE signaling pathway, AMPK signaling pathway, phosphorylated Smad 2/3 and Smad 7, and other signaling pathways, this review offers additional evidence to support the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Rongmao Gao
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Yuanyu Lu
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Wei Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610057, P. R. China
| | - Zhao Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| |
Collapse
|
5
|
Shakeri F, Kiani S, Rahimi G, Boskabady MH. Anti-inflammatory, antioxidant, and immunomodulatory effects of Berberis vulgaris and its constituent berberine, experimental and clinical, a review. Phytother Res 2024; 38:1882-1902. [PMID: 38358731 DOI: 10.1002/ptr.8077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 02/16/2024]
Abstract
Berberis vulgaris (B. vulgaris or barberry) is a medicinal plant that has been used for various purposes in traditional medicine. Berberine is one of the main alkaloids isolated from B. vulgaris and other plants. Both B. vulgaris and berberine have shown anti-inflammatory, antioxidant, and immunomodulatory effects in different experimental models and clinical trials. This review aims to summarize the current evidence on the mechanisms and applications of B. vulgaris and berberine in modulating inflammation, oxidative stress, and immune responses. The literature search was performed using PubMed, Scopus, and Google Scholar databases until August 2023. The results indicated that B. vulgaris and berberine could inhibit the production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin 6 (IL-6), and interleukin-17 (IL-17), and enhance the expression of anti-inflammatory cytokines, such as interleukin 10 (IL-10) and transforming growth factor-β (TGF-β), in various cell types and tissues. B. vulgaris and berberine can also scavenge free radicals, increase antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and reduce lipid peroxidation and DNA damage. B. vulgaris and berberine have been reported to exert beneficial effects in several inflammatory, oxidative, and immune-related diseases, such as diabetes, obesity, cardiovascular diseases, neurodegenerative diseases, autoimmune diseases, allergic diseases, and infections. However, more studies are needed to elucidate the optimal doses, safety profiles, and potential interactions of B. vulgaris and berberine with other drugs or natural compounds.
Collapse
Affiliation(s)
- Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Kiani
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Golnoosh Rahimi
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Apte MM, Khattar E, Tupe RS. Mechanistic role of Syzygium cumini (L.) Skeels in glycation induced diabetic nephropathy via RAGE-NF-κB pathway and extracellular proteins modifications: A molecular approach. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117573. [PMID: 38110133 DOI: 10.1016/j.jep.2023.117573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Syzygium cumini (L.) Skeels (SC), an ancient medicinal plant, is used as a complementary and alternative medicine for treating diabetes mellitus and its associated complications, such as diabetic nephropathy (DN). Phytochemicals present in SC homeopathic formulations possess anti-glycemic, anti-glycation, anti-inflammatory, and antioxidant properties. Additionally, the non-enzymatic formation of advanced glycation end products (AGEs) increases during hyperglycemia in diabetes. AGEs interaction with their receptor of AGEs (RAGE) promotes inflammation via Nuclear Factor-κB (NF-κB) and the accumulation of Extracellular Matrix (ECM) proteins, contributing to the renal dysfunction in DN. However, the molecular mechanism through which SC formulations interact with the AGEs-RAGE-NF-κB pathway has not yet been investigated. AIM This study aims to examine the impact of SC formulations on the RAGE-NF-κB pathway and ECM protein modifications in glycation-induced DN using a molecular approach. MATERIALS AND METHODS Human serum albumin (10 mg/ml) was glycated with MGO (55 mM) in the presence of SC formulations - Mother tincture (MT), 30C, 200C for 7 days. Glycated samples were added to renal cells (HEK 293) for 24 h. Subsequently, cellular gene and protein expressions of RAGE, NF-κB, vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), collagen IV (Col IV), and fibronectin were determined using RT-qPCR and Western blot analysis. The immunofluorescence, luciferase assay, and chromatin immunoprecipitation techniques were employed to gain insights into glycation-induced NF-κB nuclear translocation, transcriptional activity, and its effect on RAGE promoter activity in SC-treated cells. RESULTS SC formulations significantly downregulated glycation-induced elevated levels of RAGE and NF-κB. Mechanistically, SC formulations prevented NF-κB nuclear translocation, transcriptional activity, and RAGE promoter activity. Also, SC formulations significantly attenuated glycation-enhanced expressions of inflammatory cytokines (IL-6, TNF-α, and VEGF) and ECM proteins (Col IV and fibronectin). CONCLUSION Our findings enlighten the molecular mechanism of SC in DN by targeting the AGEs-RAGE-NF-κB signaling pathway, inflammatory responses, and ECM accumulation. Hence, the study validates the protective role of SC formulations and signifies its novel potential for treating DN.
Collapse
Affiliation(s)
- Mayura M Apte
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| | - Ekta Khattar
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India.
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
7
|
Wang H, Chen S, Tang Y, Nie K, Gao Y, Wang Z, Su H, Wu F, Gong J, Fang K, Dong H, Hu M. Berberine promotes lacteal junction zippering and ameliorates diet-induced obesity through the RhoA/ROCK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155268. [PMID: 38176265 DOI: 10.1016/j.phymed.2023.155268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Obesity has emerged as a global epidemic. Recent research has indicated that diet-induced obesity can be prevented by promoting lacteal junction zippering. Berberine, which is derived from natural plants, is found to be promising in weight reduction, but the underlying mechanism remains unspecified. PURPOSE To determine whether berberine protects against obesity by regulating the lacteal junction and to explore potential molecular mechanisms. METHODS Following the induction of the diet-induced obese (DIO) model, mice were administered low and high doses of berberine for 4 weeks. Indicators associated with insulin resistance and lipid metabolism were examined. Various methods, such as Oil Red O staining, transmission electron microscopy imaging, confocal imaging and others were used to observe the effects of berberine on lipid absorption and the lacteal junction. In vitro, human dermal lymphatic endothelial cells (HDLECs) were used to investigate the effect of berberine on LEC junctions. Western Blot and immunostaining were applied to determine the expression levels of relevant molecules. RESULTS Both low and high doses of berberine reduced body weight in DIO mice without appetite suppression and ameliorated glucolipid metabolism disorders. We also found that the weight loss effect of berberine might contribute to the inhibition of small intestinal lipid absorption. The possible mechanism was related to the promotion of lacteal junction zippering via suppressing the ras homolog gene family member A (RhoA)/Rho-associated kinase (ROCK) signaling pathway. In vitro, berberine also promoted the formation of stable mature junctions in HDLECs, involving the same signaling pathway. CONCLUSION Berberine could promote lacteal junction zippering and ameliorate diet-induced obesity through the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueheng Tang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Baralić K, Živanović J, Marić Đ, Bozic D, Grahovac L, Antonijević Miljaković E, Ćurčić M, Buha Djordjevic A, Bulat Z, Antonijević B, Đukić-Ćosić D. Sulforaphane-A Compound with Potential Health Benefits for Disease Prevention and Treatment: Insights from Pharmacological and Toxicological Experimental Studies. Antioxidants (Basel) 2024; 13:147. [PMID: 38397745 PMCID: PMC10886109 DOI: 10.3390/antiox13020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Sulforaphane (SFN), which is a hydrolysis product from glucoraphanin, a compound found in cruciferous vegetables, has been studied for its potential health benefits, particularly in disease prevention and treatment. SFN has proven to be effective in combating different types of cancer by inhibiting the proliferation of tumors and triggering apoptosis. This dual action has been demonstrated to result in a reduction in tumor size and an enhancement of survival rates in animal models. SFN has also shown antidiabetic and anti-obesity effects, improving glucose tolerance and reducing fat accumulation. SFN's ability to activate Nrf2, a transcription factor regulating oxidative stress and inflammation in cells, is a primary mechanism behind its anticancerogenic and antidiabetic effects. Its antioxidant, anti-inflammatory, and anti-apoptotic properties are also suggested to provide beneficial effects against neurodegenerative diseases. The potential health benefits of SFN have led to increased interest in its use as a dietary supplement or adjunct to chemotherapy, but there are insufficient data on its efficacy and optimal doses, as well as its safety. This review aims to present and discuss SFN's potential in treating various diseases, such as cancer, diabetes, cardiovascular diseases, obesity, and neurodegenerative diseases, focusing on its mechanisms of action. It also summarizes studies on the pharmacological and toxicological potential of SFN in in vitro and animal models and explores its protective role against toxic compounds through in vitro and animal studies.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (Đ.M.); (D.B.); (L.G.); (E.A.M.); (M.Ć.); (A.B.D.); (Z.B.); (B.A.); (D.Đ.-Ć.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yang L, Yuan S, Wang R, Guo X, Xie Y, Wei W, Tang L. Exploring the molecular mechanism of berberine for treating diabetic nephropathy based on network pharmacology. Int Immunopharmacol 2024; 126:111237. [PMID: 37977063 DOI: 10.1016/j.intimp.2023.111237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND PURPOSE Diabetic nephropathy (DN) is a prevalent complication of diabetes mellitus characterized by hyperglycemia, hyperlipidemia, albuminuria and edema. Increasing evidence indicated that berberine (BBR) could alleviate the occurrence and development of DN. However, the molecular mechanism underlying the beneficial effects of BBR in the treatment of DN remains unclear. METHODS The online public databases were chosen to screen the relevant targets of BBR and DN and the screened overlapped targets were analyzed by GO enrichment analysis, KEGG enrichment analysis and protein-protein interaction network analysis. The interaction between BBR and the key proteinwas verified by molecular docking and cellularthermalshiftassay. Additionally, the expression of key proteins and related indicators of DN were verified by immunofluorescence and western blot in vitro and in vivo. RESULTS We successfully identified 92 overlapped targets of BBR and DN based on network pharmacology. Notably, VEGFR2 was identified to be the main target of BBR. Meanwhile, we found that BBR exhibited a high binding affinity to VEGFR2 protein, as confirmed by molecular docking and CETSA. This binding led to interfering with the PI3K/AKT/mTOR signaling pathway. In addition, we found that BBR could inhibit the abnormal proliferation of mesangial cells and reduce the expression of downstream pathway protein in vitro and in vivo. Finally, BBR was found to effectively lower the level of blood glucose and improve kidney function in mice, highlighting its potential as a therapeutic agent for the treatment of DN. CONCLUSION Berberine interfered the PI3K/AKT/mTOR signaling pathway via targeting VEGFR2 protein, further led to the inhibition of abnormal proliferation of mesangial cells and ultimately resulted in improved renal function.
Collapse
Affiliation(s)
- Lin Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Infammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Infammatory and Immune Medicine, Shushan District, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Siming Yuan
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Rongrong Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Infammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Infammatory and Immune Medicine, Shushan District, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaoyu Guo
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Infammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Infammatory and Immune Medicine, Shushan District, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yongsheng Xie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Infammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Infammatory and Immune Medicine, Shushan District, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Liqin Tang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
10
|
Song L, Zhang W, Tang SY, Luo SM, Xiong PY, Liu JY, Hu HC, Chen YQ, Jia B, Yan QH, Tang SQ, Huang W. Natural products in traditional Chinese medicine: molecular mechanisms and therapeutic targets of renal fibrosis and state-of-the-art drug delivery systems. Biomed Pharmacother 2024; 170:116039. [PMID: 38157643 DOI: 10.1016/j.biopha.2023.116039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Renal fibrosis (RF) is the end stage of several chronic kidney diseases. Its series of changes include excessive accumulation of extracellular matrix, epithelial-mesenchymal transition (EMT) of renal tubular cells, fibroblast activation, immune cell infiltration, and renal cell apoptosis. RF can eventually lead to renal dysfunction or even renal failure. A large body of evidence suggests that natural products in traditional Chinese medicine (TCM) have great potential for treating RF. In this article, we first describe the recent advances in RF treatment by several natural products and clarify their mechanisms of action. They can ameliorate the RF disease phenotype, which includes apoptosis, endoplasmic reticulum stress, and EMT, by affecting relevant signaling pathways and molecular targets, thereby delaying or reversing fibrosis. We also present the roles of nanodrug delivery systems, which have been explored to address the drawback of low oral bioavailability of natural products. This may provide new ideas for using natural products for RF treatment. Finally, we provide new insights into the clinical prospects of herbal natural products.
Collapse
Affiliation(s)
- Li Song
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shi-Yun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Si-Min Luo
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Pei-Yu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Yu Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Heng-Chang Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying-Qi Chen
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian-Hua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China.
| | - Song-Qi Tang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Wei Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Askari VR, Khosravi K, Baradaran Rahimi V, Garzoli S. A Mechanistic Review on How Berberine Use Combats Diabetes and Related Complications: Molecular, Cellular, and Metabolic Effects. Pharmaceuticals (Basel) 2023; 17:7. [PMID: 38275993 PMCID: PMC10819502 DOI: 10.3390/ph17010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid that can be extracted from herbs such as Coptis, Phellodendron, and Berberis. BBR has been widely used as a folk medicine to treat various disorders. It is a multi-target drug with multiple mechanisms. Studies have shown that it has antioxidant and anti-inflammatory properties and can also adjust intestinal microbial flora. This review focused on the promising antidiabetic effects of BBR in several cellular, animal, and clinical studies. Based on previous research, BBR significantly reduced levels of fasting blood glucose, hemoglobin A1C, inflammatory cytokines, and oxidative stress markers. Furthermore, BBR stimulated insulin secretion and improved insulin resistance through different pathways, including up-regulation of protein expression of proliferator-activated receptor (PPAR)-γ, glucose transporter (GLUT) 4, PI3K/AKT, and AMP-activated protein kinase (AMPK) activation. Interestingly, it was demonstrated that BBR has protective effects against diabetes complications, such as diabetic-induced hepatic damage, cardiovascular disorders, nephropathy, and neuropathy. Furthermore, multiple clinical trial studies have emphasized the ameliorative effects of BBR in type 2 diabetic patients.
Collapse
Affiliation(s)
- Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Kimia Khosravi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Tan E, Gao Z, Wang Q, Han B, Shi H, Wang L, Zhu G, Hou Y. Berberine ameliorates renal interstitial inflammation and fibrosis in mice with unilateral ureteral obstruction. Basic Clin Pharmacol Toxicol 2023; 133:757-769. [PMID: 37811696 DOI: 10.1111/bcpt.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 10/10/2023]
Abstract
Berberine acts via multiple pathways to alleviate fibrosis in various tissues and shows renoprotective effects. However, its role and underlying mechanisms in renal fibrosis remain unclear. Herein, we aimed to investigate the protective effects and molecular mechanisms of berberine against unilateral ureteric obstruction-induced renal fibrosis. The results indicated that berberine treatment (50 mg/kg/day) markedly alleviated histopathological alterations, collagen deposition and inflammatory cell infiltration in kidney tissue and restored mouse renal function. Mechanistically, berberine intervention inhibited NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation and the levels of the inflammatory cytokine IL-1β in the kidneys of unilateral ureteric obstruction mice. In addition, berberine relieved unilateral ureteric obstruction-induced renal injury by activating adenosine monophosphate-activated protein kinase (AMPK) signalling and promoting fatty acid β-oxidation. In vitro models showed that berberine treatment prevented the TGF-β1-induced profibrotic phenotype of hexokinase 2 (HK-2) cells, characterized by loss of an epithelial phenotype (alpha smooth muscle actin [α-SMA]) and acquisition of mesenchymal marker expression (E-cadherin), by restoring abnormal fatty acid β-oxidation and upregulating the expression of the fatty acid β-oxidation related-key enzymes or regulators (phosphorylated-AMPK, peroxisome proliferator activated receptor alpha [PPARα] and carnitine palmitoyltransferase 1A [CPT1A]). Collectively, berberine alleviated renal fibrosis by inhibiting NLRP3 inflammasome activation and protected tubular epithelial cells by reversing defective fatty acid β-oxidation. Our findings might be exploited clinically to provide a potential novel therapeutic strategy for renal fibrosis.
Collapse
Affiliation(s)
- Enxue Tan
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Zhihong Gao
- Department of Nephrology, Shanxi Bethune Hospital, Taiyuan, China
| | - Qian Wang
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Baosheng Han
- Department of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Honghong Shi
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Lihua Wang
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Guozhen Zhu
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yanjuan Hou
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Li X, Jafari SM, Zhou F, Hong H, Jia X, Mei X, Hou G, Yuan Y, Liu B, Chen S, Gong Y, Yan H, Chang R, Zhang J, Ren F, Li Y. The intracellular fate and transport mechanism of shape, size and rigidity varied nanocarriers for understanding their oral delivery efficiency. Biomaterials 2023; 294:121995. [PMID: 36641813 DOI: 10.1016/j.biomaterials.2023.121995] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/08/2023]
Abstract
Nanocarriers have become an effective strategy to overcome epithelial absorption barriers. During the absorption process, the endocytosis mechanisms, cell internalization pathways, and transport efficiency of nanocarriers are greatly impacted by their physical properties. To understand the relationship between physical properties of nanocarriers and their abilities overcoming multiple absorption barriers, nanocarriers with variable physical properties were prepared via self-assembly of hydrolyzed α-lactalbumin peptide fragments. The impacts of size, shape, and rigidity of nanocarriers on epithelial cells endocytosis mechanisms, internalization pathways, transport efficiency, and bioavailability were studied systematically. The results showed that nanospheres were mainly internalized via clathrin-mediated endocytosis, which was then locked in lysosomes and degraded enzymatically in cytoplasm. While macropinocytosis was the primary pathway of nanotubes and transported to the endoplasmic reticulum and Golgi apparatus, resulting in a high drug concentration and sustained release in cytoplasm. Besides, nanotubes can overcome the multi-drug resistance by inhibiting the P-glycoprotein efflux. Furthermore, nanotubes can open intercellular tight-junctions instantaneously and reversibly, which promotes transport into blood circulation. The aqueous solubility of hydrophobic bioactive mangiferin (Mgf) was improved by nanocarriers. Most importantly, the bioavailability of Mgf was the highest for cross-linked short nanotube (CSNT) which outperformed free Mgf and other formulations by in vivo pharmacokinetic studies. Finally, Mgf-loaded CSNT showed an excellent therapeutic efficiency in vivo for the intervention of streptozotocin-induced diabetes. These results indicate that cross-linked α-lactalbumin nanotubes could be an effective nanocarrier delivery system for improving the epithelium cellular absorption and bioavailability of hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Xin Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Feibai Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hui Hong
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xin Jia
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaohong Mei
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guohua Hou
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yu Yuan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bin Liu
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shanan Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yifu Gong
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Huiling Yan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ruxin Chang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiayin Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Fazheng Ren
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
14
|
Purwaningsih I, Maksum IP, Sumiarsa D, Sriwidodo S. A Review of Fibraurea tinctoria and Its Component, Berberine, as an Antidiabetic and Antioxidant. Molecules 2023; 28:1294. [PMID: 36770960 PMCID: PMC9919506 DOI: 10.3390/molecules28031294] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia caused by resistance to insulin action, inadequate insulin secretion, or excessive glucagon production. Numerous studies have linked diabetes mellitus and oxidative stress. People with diabetes usually exhibit high oxidative stress due to persistent and chronic hyperglycemia, which impairs the activity of the antioxidant defense system and promotes the formation of free radicals. Recently, several studies have focused on exploring natural antioxidants to improve diabetes mellitus. Fibraurea tinctoria has long been known as the native Borneo used in traditional medicine to treat diabetes. Taxonomically, this plant is part of the Menispermaceae family, widely known for producing various alkaloids. Among them are protoberberine alkaloids such as berberine. Berberine is an isoquinoline alkaloid with many pharmacological activities. Berberine is receiving considerable interest because of its antidiabetic and antioxidant activities, which are based on many biochemical pathways. Therefore, this review explores the pharmacological effects of Fibraurea tinctoria and its active constituent, berberine, against oxidative stress and diabetes, emphasizing its mechanistic aspects. This review also summarizes the pharmacokinetics and toxicity of berberine and in silico studies of berberine in several diseases and its protein targets.
Collapse
Affiliation(s)
- Indah Purwaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
15
|
Sajadimajd S, Deravi N, Forouhar K, Rahimi R, Kheirandish A, Bahramsoltani R. Endoplasmic reticulum as a therapeutic target in type 2 diabetes: Role of phytochemicals. Int Immunopharmacol 2023; 114:109508. [PMID: 36495694 DOI: 10.1016/j.intimp.2022.109508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorders characterized by insulin resistance and β-cell dysfunction with an increasing worldwide incidence. Several studies have revealed that long-term glucotoxicity results in β-cell failure and death through induction of endoplasmic reticulum (ER) stress. Owing to the chronic progression of T2DM and the low effectiveness of antidiabetic drugs in long-term use, medicinal plants and their secondary metabolites seem to be the promising alternatives. Here we have provided a comprehensive review regarding the role of phytochemicals to alleviate ER stress in T2DM. Ginsenoside compound K, baicalein, quercetin, isopulegol, kaempferol, liquiritigenin, aspalathin, and tyrosol have demonstrated remarkable improvement of T2DM via modulation of ER stress. Arctigenin and total glycosides of peony have been shown to be effective in the treatment of diabetic retinopathy through modulation of ER stress. The effectiveness of grape seed proanthocyanidins and wolfberry is also shown in the relief of diabetic neuropathy and retinopathy. Resveratrol is involved in the prevention of atherosclerosis via ER stress modulation. Taken together, the data described herein revealed the capability of herbal constituents to prevent different complications of T2DM via a decrease in ER stress which open new doors to the treatment of diabetes.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Forouhar
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roja Rahimi
- Derpartment of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ali Kheirandish
- Department of Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roodabeh Bahramsoltani
- Derpartment of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
16
|
Protective effect of berberine in diabetic nephropathy: A systematic review and meta-analysis revealing the mechanism of action. Pharmacol Res 2022; 185:106481. [DOI: 10.1016/j.phrs.2022.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022]
|
17
|
Wang H, Zhang R, Wu X, Chen Y, Ji W, Wang J, Zhang Y, Xia Y, Tang Y, Yuan J. The Wnt Signaling Pathway in Diabetic Nephropathy. Front Cell Dev Biol 2022; 9:701547. [PMID: 35059392 PMCID: PMC8763969 DOI: 10.3389/fcell.2021.701547] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney-related complication of both type 1 and type 2 diabetes mellitus (T1DM, T2DM) and the second major cause of end-stage kidney disease. DN can lead to hypertension, edema, and proteinuria. In some cases, DN can even progress to kidney failure, a life-threatening condition. The precise etiology and pathogenesis of DN remain unknown, although multiple factors are believed to be involved. The main pathological manifestations of DN include mesangial expansion, thickening of the glomerular basement membrane, and podocyte injury. Eventually, these pathological manifestations will lead to glomerulosclerosis, thus affecting renal function. There is an urgent need to develop new strategies for the prevention and treatment of DN. Existing evidence shows that the Wnt signaling cascade plays a key role in regulating the development of DN. Previous studies focused on the role of the Wnt canonical signaling pathway in DN. Subsequently, accumulated evidence on the mechanism of the Wnt non-canonical signaling indicated that Wnt/Ca2+ and Wnt/PCP also have essential roles in the progression of DN. In this review, we summarize the specific mechanisms of Wnt signaling in the occurrence and development of DN in podocyte injury, mesangial cell injury, and renal fibrosis. Also, to elucidate the significance of the Wnt canonical pathway in the process of DN, we uncovered evidence supporting that both Wnt/PCP and Wnt/Ca2+ signaling are critical for DN development.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Jining Medical University, Jining, China
| | - Ran Zhang
- Basic Medical School, Jining Medical University, Jining, China
| | - Xinjie Wu
- Basic Medical School, Jining Medical University, Jining, China
| | - Yafen Chen
- Basic Medical School, Jining Medical University, Jining, China
| | - Wei Ji
- Basic Medical School, Jining Medical University, Jining, China
| | - Jingsuo Wang
- Basic Medical School, Jining Medical University, Jining, China
| | - Yawen Zhang
- Basic Medical School, Jining Medical University, Jining, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yiqun Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinxiang Yuan
- Collaborative Innovation Center, Jining Medical University, Jining, China
| |
Collapse
|
18
|
Zou B, Cao C, Fu Y, Pan D, Wang W, Kong L. Berberine Alleviates Gastroesophageal Reflux-Induced Airway Hyperresponsiveness in a Transient Receptor Potential A1-Dependent Manner. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7464147. [PMID: 35586690 PMCID: PMC9110152 DOI: 10.1155/2022/7464147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND To investigate the beneficial effect of berberine on gastroesophageal reflux-induced airway hyperresponsiveness (GERAHR) and explore the underlying mechanism. METHODS Coword cluster analysis and strategic coordinates were used to identify hotspots for GERAHR research, and an online tool (STRING, https://string-db.org/) was used to predict the potential relationships between proteins. Guinea pigs with chemically induced GERAHR received PBS or different berberine-based treatments to evaluate the therapeutic effect of berberine and characterize the underlying mechanism. Airway responsiveness was assessed using a plethysmography system, and protein expression was evaluated by western blotting, immunohistochemical staining, and quantitative PCR analysis. RESULTS Bioinformatics analyses revealed that TRP channels are hotspots of GERAHR research, and TRPA1 is related to the proinflammatory neuropeptide substance P (SP). Berberine, especially at the middle dose tested (MB, 150 mg/kg), significantly improved lung function, suppressed inflammatory cell infiltration, and protected inflammation-driven tissue damage in the lung, trachea, esophagus, and nerve tissues in GERAHR guinea pigs. MB reduced the expression of TRPA1, SP, and tumor necrosis factor-alpha (TNF-α) in evaluated organs and tissues. Meanwhile, the MB-mediated protective effects were attenuated by simultaneous TRPA1 activation. CONCLUSIONS Mechanistically, berberine was found to suppress GERAHR-induced upregulation of TRPA1, SP, and TNF-α in many tissues. Our study has highlighted the potential therapeutic value of berberine for the treatment of GERAHR.
Collapse
Affiliation(s)
- Bo Zou
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Chaofan Cao
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shenyang Medical College, Shenyang City, Liaoning Province, China
| | - Yue Fu
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Dianzhu Pan
- Department of Respiratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Wei Wang
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Lingfei Kong
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| |
Collapse
|
19
|
Bhasin J, Thakur B, Kumar S, Chopra V. Tree Turmeric: A Super Food and Contemporary Nutraceutical of 21st Century - A Laconic Review. J Am Coll Nutr 2021; 41:728-746. [PMID: 34757887 DOI: 10.1080/07315724.2021.1958104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Since ancient times the medicinal plants have been under use as food and potential therapeutic agent for the management of overall health and the use of all plant parts including fruits, seeds, is well reported in the literature. One such plant is Berberis aristata which is rich in vitamins, minerals, and various phytochemicals amongst which Berberine is the principal bioactive compound with a range of reported health benefits, and some of the commercial formulations like Rasaut, Darvyadi Leha are being used for the treatments of jaundice, malaria, typhoid fever, inflammation, eye infection, diarrhea, wound healing, etc. The hepatoprotective, antidiabetic, antitumor, anti-cancerous, properties are the recent additions to its functional importance. Berberine has significant bioactivities in the treatments of different diseases. Besides its remarkable applications, the berberine has low efficacy due to its low solubility in water, poor absorption, and low bioavailability. This problem can be solved by using some techniques like Nanotechnology which has been found to increase its solubility in water, bioavailability, and absorption and hence provide a better delivery system of berberine. This review illuminates the therapeutic applications of the plant Berberis aristata, scientific validation to its traditional uses, role of berberine in the treatment of various diseases through its different bioactivities, major flaws in berberine treatment, and the role of nanotechnology in minimizing those flaws and increasing its overall efficacy. Key teaching pointsPlant Berberis aristata has been used since ancient times for the treatment of various ailments like jaundice, hepatitis, fever, bleeding, inflammation, diarrhea, malaria, skin and eye infections, chronic rheumatism, and urinary disorders.Berberine is the major and most significant phytochemical among numerous phytochemicals present in plant Berberis aristata.Berberine has significantly shown many potent effect against emerging diseases like cancer and diabetes. Besides that, it has also shown antioxidant, anti-inflamation, antimicrobial, hepatoprotective, and anti-gastrointestinal disorder properties.Berberine can be very effective in overcoming the demerits of berberine treatment like poor aqueous solubility, low bioavailability, and poor absorption in the human body in the treatment of various diseases.
Collapse
Affiliation(s)
- Jasleen Bhasin
- Faculty of Technology and Sciences, Lovely Professional University, Phagwara, India
| | - Baneet Thakur
- Department of Food Technology and Nutrition, Lovely Professional University Faculty of Technology and Sciences, Phagwara, India
| | - Satish Kumar
- Food Technology and Nutrition, Dr. YS Parmar University of Horticulture and Forestry, Solan, India
| | - Vikas Chopra
- Department of Food Science and Technology, PAU, Ludhiana, Ludhiana, India
| |
Collapse
|
20
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
21
|
Xiong W, Xiong SH, Chen QL, Linghu KG, Zhao GD, Chu JMT, Wong GTC, Li J, Hu YJ, Wang YT, Yu H. Brij-functionalized chitosan nanocarrier system enhances the intestinal permeability of P-glycoprotein substrate-like drugs. Carbohydr Polym 2021; 266:118112. [PMID: 34044929 DOI: 10.1016/j.carbpol.2021.118112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 11/23/2022]
Abstract
The highly expressed P-glycoprotein (Pgp) in the intestine plays a key role in preventing drugs across the intestinal epithelium, which linked by tight junctions (TJs). Thus increasing the oral bioavailability of Pgp substrate-like drugs (PSLDs) remains a great challenge. Herein, we construct a nanocarrier system derived from Brij-grafted-chitosan (BC) to enhance the oral bioavailability and therapeutic effect of berberine (BBR, a typical PLSD) against diabetic kidney disease. The developed BC nanoparticles (BC-NPs) are demonstrated to improve the intestinal permeability of BBR via transiently and reversibly modulating the intercellular TJs (paracellular pathway) and Pgp-mediated drug efflux (transcellular pathway). As compared to free BBR and chitosan nanoparticles, the BC-NPs enhanced the relative oral bioavailability of BBR in rats (4.4- and 2.7-fold, respectively), and the therapeutic potency of BBR in renal function and histopathology. In summary, such strategy may provide an effective nanocarrier system for oral delivery of BBR and PSLDs.
Collapse
Affiliation(s)
- Wei Xiong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Shi Hang Xiong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Qi Ling Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Ke Gang Linghu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Guan Ding Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - John M T Chu
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Gordon T C Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Juan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuan Jia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Yi Tao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao; HKBU Shenzhen Research Center, Shenzhen, Guangdong, China.
| |
Collapse
|
22
|
Lin HL, Lin MY, Tsai CH, Wang YH, Chen CJ, Hwang SJ, Yen MH, Chiu YW. Harmonizing Formula Prescription Patterns in Patients With Chronic Kidney Disease: A Population-Based Cross-Sectional Study. Front Pharmacol 2021; 12:573145. [PMID: 33995002 PMCID: PMC8117089 DOI: 10.3389/fphar.2021.573145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Harmonizing formulas are associated with beneficial renal outcomes in chronic kidney disease (CKD), but the therapeutic mechanisms are unclear. The study aims to explore the associations of intentions and independent factors with harmonizing formulas prescriptions for patients with CKD. Methods: We conducted a population-based cross-sectional study to explore factors associated with harmonizing formulas prescription. Patients who had been prescribed harmonizing formulas after CKD diagnosis was defined as the using harmonizing formulas group. Disease diagnoses when having harmonizing formula prescriptions and patient characteristics related to these prescriptions were collected. Results: In total, 24,971 patients were enrolled in this analysis, and 5,237 (21%) patients were prescribed harmonizing formulas after CKD diagnosis. The three most frequent systematic diseases and related health problems for which harmonizing formula prescriptions were issued in CKD were symptoms, signs, and ill-defined conditions (24.5%), diseases of the digestive system (20.67%), and diseases of the musculoskeletal system (12.9%). Higher likelihoods of harmonizing formula prescriptions were associated with young age (adjusted odds ratio: 0.98, 95% confidence interval: 0.97-0.98), female sex (1.79, 1.68-1.91), no diabetes (1.20, 1.06-1.36), no hypertension (1.38, 1.27-1.50), no cerebrovascular disease (1.34, 1.14-1.56), less disease severity (0.85, 0.83-0.88), using nonsteroidal anti-inflammatory drugs (NSAIDs) (1.65, 1.54-1.78), and using analgesic drugs other than NSAIDs (1.47, 1.35-1.59). Conclusion: Harmonizing formulas are commonly used for treating symptoms of the digestive and musculoskeletal systems in CKD cases. Further research on harmonizing formula effectiveness with regard to particular characteristics of CKD patients is warranted.
Collapse
Affiliation(s)
- Hung-Lung Lin
- Department of Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yen Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Master of Public Health Degree Program, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Hsun Tsai
- Department of Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsiu Wang
- Department of Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Jen Chen
- Department of Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-Jyh Hwang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Hong Yen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Huang C, Zhou Y, Huang H, Zheng Y, Kong L, Zhang H, Zhang Y, Wang H, Yang M, Xu X, Chen B. Islet Transplantation Reverses Podocyte Injury in Diabetic Nephropathy or Induced by High Glucose via Inhibiting RhoA/ROCK/NF- κB Signaling Pathway. J Diabetes Res 2021; 2021:9570405. [PMID: 33778085 PMCID: PMC7969114 DOI: 10.1155/2021/9570405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Abnormal signaling pathways play a crucial role in the mechanisms of podocyte injury in diabetic nephropathy. They also affect the recovery of podocytes after islet transplantation (IT). However, the specific signaling abnormalities that affect the therapeutic effect of IT on podocytes remains unclear. The purpose of this study was to assess whether the RhoA/ROCK/NF-κB signaling pathway is related to podocyte restoration after IT. METHODS A mouse model of diabetic nephropathy was established in vivo using streptozotocin. The mice were then subsequently reared for 4 weeks after islet transplantation to determine the effect of IT. Islet cells, CCG-1423 (RhoA Inhibitor), and fasudil (ROCK inhibitor) were then cocultured with podocytes in vitro to assess their protective effects on podocyte injury induced by high glucose (HG). Protein expression levels of RhoA, ROCK1, synaptopodin, IL-6, and MCP-1 in kidney tissues were then measured using immunohistochemistry and Western blotting techniques. RESULTS Islet transplantation reduced the expression levels of RhoA/ROCK1 and that of related inflammatory factors such as IL-6 and MCP-1 in the kidney podocytes of diabetic nephropathy. In the same line, islet cells reduced the expression of RhoA, ROCK1, and pp65 in immortalized podocytes under high glucose (35.0 mmol/L glucose) conditions. CONCLUSIONS Islet transplantation can reverse podocyte injury in diabetes nephropathy by inhibiting the RhoA/ROCK1 signaling pathway. Islet cells have a strong protective effect on podocytes treated with high glucose (35.0 mmol/L glucose). Discovery of signaling pathways affecting podocyte recovery is helpful for individualized efficacy evaluation and targeted therapy of islet transplantation patients.
Collapse
Affiliation(s)
- Chongchu Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yi Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Hongjian Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yushu Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Lijun Kong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Hewei Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yan Zhang
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical University, 325015 Wenzhou, Zhejiang Province, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Mei Yang
- Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, 325015 Wenzhou, Zhejiang Province, China
| | - Xiaona Xu
- Operating Room, The First Affiliated Hospital of Wenzhou Medical University, 325015 Wenzhou, Zhejiang Province, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| |
Collapse
|
24
|
Integrating metabolomics and network pharmacology to explore Rhizoma Coptidis extracts against sepsis-associated acute kidney injury. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1164:122525. [PMID: 33454441 DOI: 10.1016/j.jchromb.2021.122525] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/01/2020] [Accepted: 01/01/2021] [Indexed: 11/20/2022]
Abstract
Sepsis remains the most common cause of acute kidney injury (AKI) in critically ill patients, increasing the risk of in-hospital and long-term death. Rhizoma Coptidis (RC), a classical traditional Chinese herb, exhibits anti-inflammatory and antioxidant properties in various diseases including sepsis. This study aimed to investigate the protective effects of RC extracts (RCE) against sepsis-associated acute kidney injury (SA-AKI) and explore the underlying mechanisms with metabolomics-based network pharmacology. The results showed that RCE improved renal function and histological injury and decreased reactive oxygen species (ROS) production in SA-AKI. Using ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS), 25 differential metabolites were identified that had a close connection with the pathological processes of SA-AKI and the effects of RCE. Afterward, a compound-metabolite-target-disease network was constructed and 17 overlapping target proteins of the components of RCE, the differential metabolites, and the disease-related genes were discovered. Among these overlapping target proteins, RCE increased the nuclear translocation of nuclear factor-erythroid 2-related factor-2 (Nrf2), the protein expression of heme oxygenase-1 (HO-1), the mRNA expression of peroxisome proliferator activated receptor α (PPARα) and reduced nitric oxide synthase 2 (NOS2) activity. In addition, molecular docking revealed that both berberine and quercetin could bond with NOS2 and PPARα, respectively. Therefore, RCE demonstrated protective effects for SA-AKI through the regulation of metabolism and different signaling pathways.
Collapse
|
25
|
Tian L, Ri H, Qi J, Fu P. Berberine elevates mitochondrial membrane potential and decreases reactive oxygen species by inhibiting the Rho/ROCK pathway in rats with diabetic encephalopathy. Mol Pain 2021; 17:1744806921996101. [PMID: 33632015 PMCID: PMC7934021 DOI: 10.1177/1744806921996101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Diabetic encephalopathy (DE) is a serious complication of diabetes mainly occurring in the elderly patients. Berberine (BBR) is an isoquinoline alkaloids extracted from Coptis chinensis that is applied in the treatment of diabetes clinically. This study explored the possible mechanism of BBR in relieving DE. METHODS Wistar rats were injected with streptozotocin and fed a high fat diet to establish the model of DE. The model rats were treated with BBR. The body weight, blood glucose and insulin of rats were measured, and Morris water maze test was conducted to evaluate the learning and memory abilities. The pathological conditions of cortical tissues were detected. The cortical mitochondria membrane potential (MMP) and reactive oxygen species (ROS) were monitored. The expressions of Rho/ROCK pathway-related genes of rat cortex were detected. The changes of MMP and ROS were detected after the treatment of Rho/ROCK pathway activator. RESULTS The body weight of model rats changed little, and levels of blood glucose and insulin were increased. The spatial learning and memory abilities were impaired, with disordered cortical neurons, and obvious neurons apoptosis and glia proliferation. BBR alleviated cognitive dysfunction and pathological damage in rats with DE. BBR enhanced cortical MMP and suppressed ROS. BBR treatment inhibited the Rho/ROCK pathway. Activation of the Rho/ROCK pathway reversed the effects of BBR on MMP and ROS. CONCLUSION BBR elevated MMP and reduced ROS in rats with DE by inhibiting the Rho/ROCK pathway. This study may offer novel insights for the management of DE.
Collapse
Affiliation(s)
- Lin Tian
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Hong Ri
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Peng Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
26
|
Kong M, Xie K, Lv M, Li J, Yao J, Yan K, Wu X, Xu Y, Ye D. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomed Pharmacother 2021; 133:110975. [PMID: 33212375 DOI: 10.1016/j.biopha.2020.110975] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (type 1 and type 2) and its various complications continue to place a huge burden on global medical resources, despite the availability of numerous drugs that successfully lower blood glucose levels. The major challenging issue in diabetes management is the prevention of various complications that remain the leading cause of diabetes-related mortality. Moreover, the limited long-term durability of monotherapy and undesirable side effects of currently used anti-diabetic drugs underlie the urgent need for novel therapeutic approaches. Phytochemicals represent a rich source of plant-derived molecules that are of pivotal importance to the identification of compounds with therapeutic potential. In this review, we aim to discuss recent advances in the identification of a large array of phytochemicals with immense potential in the management of diabetes and its complications. Given that metabolic inflammation has been established as a key pathophysiological event that drives the progression of diabetes, we focus on the protective effects of representative phytochemicals in metabolic inflammation. This paper also discusses the potential of phytochemicals in the development of new drugs that target the inflammation in the management of diabetes and its complications.
Collapse
Affiliation(s)
- Mengjie Kong
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kang Xie
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minghui Lv
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jufei Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianyu Yao
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kaixuan Yan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoqin Wu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
27
|
Shang XF, Yang CJ, Morris-Natschke SL, Li JC, Yin XD, Liu YQ, Guo X, Peng JW, Goto M, Zhang JY, Lee KH. Biologically active isoquinoline alkaloids covering 2014-2018. Med Res Rev 2020; 40:2212-2289. [PMID: 32729169 PMCID: PMC7554109 DOI: 10.1002/med.21703] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Isoquinoline alkaloids, an important class of N-based heterocyclic compounds, have attracted considerable attention from researchers worldwide since the early 19th century. Over the past 200 years, many compounds from this class were isolated, and most of them and their analogs possess various bioactivities. In this review, we survey the updated literature on bioactive alkaloids and highlight research achievements of this alkaloid class during the period of 2014-2018. We reviewed over 400 molecules with a broad range of bioactivities, including antitumor, antidiabetic and its complications, antibacterial, antifungal, antiviral, antiparasitic, insecticidal, anti-inflammatory, antioxidant, neuroprotective, and other activities. This review should provide new indications or directions for the discovery of new and better drugs from the original naturally occurring isoquinoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, 251 Ningda Road, Xining 810016, P.R. China
| | - Jing-Wen Peng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ji-Yu Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| |
Collapse
|
28
|
Dehdashtian E, Pourhanifeh MH, Hemati K, Mehrzadi S, Hosseinzadeh A. Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications. Diabetes Metab Res Rev 2020; 36:e3336. [PMID: 32415805 DOI: 10.1002/dmrr.3336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disease which may cause several complications, such as diabetic nephropathy (DN). The routine medical treatments used for DM are not effective enough and have many undesirable side effects. Moreover, the global increased prevalence of DM makes researchers try to explore potential complementary or alternative treatments. Nutraceuticals, as natural products with pharmaceutical agents, have a wide range of therapeutic properties in various pathologic conditions such as DN. However, the exact underlying mechanisms have not been fully understood. The purpose of this review is to summarize recent findings on the effect of nutraceuticals on DN.
Collapse
Affiliation(s)
- Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Calvani M, Subbiani A, Bruno G, Favre C. Beta-Blockers and Berberine: A Possible Dual Approach to Contrast Neuroblastoma Growth and Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7534693. [PMID: 32855766 PMCID: PMC7443044 DOI: 10.1155/2020/7534693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
The use of nutraceuticals during cancer treatment is a long-lasting debate. Berberine (BBR) is an isoquinoline quaternary alkaloid extracted from a variety of medicinal plants. BBR has been shown to have therapeutic effects in different pathologies, particularly in cancer, where it affects pathways involved in tumor progression. In neuroblastoma, the most common extracranial childhood solid tumor, BBR, reduces tumor growth by regulating both stemness and differentiation features and by inducing apoptosis. At the same time, the inhibition of β-adrenergic signaling leads to a reduction in growth and increase of differentiation of neuroblastoma. In this review, we summarize the possible beneficial effects of BBR in counteracting tumor growth and progression in various types of cancer and, in particular, in neuroblastoma. However, BBR administration, besides its numerous beneficial effects, presents a few side effects due to inhibition of MAO A enzyme in neuroblastoma cells. Therefore, herein, we proposed a novel therapeutic strategy to overcome side effects of BBR administration consisting of concomitant administration of BBR together with β-blockers in neuroblastoma.
Collapse
Affiliation(s)
- Maura Calvani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
| | - Angela Subbiani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Gennaro Bruno
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Claudio Favre
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
| |
Collapse
|
30
|
Singh AK, Singh SK, Nandi MK, Mishra G, Maurya A, Rai A, Rai GK, Awasthi R, Sharma B, Kulkarni GT. Berberine: A Plant-derived Alkaloid with Therapeutic Potential to Combat Alzheimer's disease. Cent Nerv Syst Agents Med Chem 2020; 19:154-170. [PMID: 31429696 DOI: 10.2174/1871524919666190820160053] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Berberine (a protoberberine isoquinoline alkaloid) has shown promising pharmacological activities, including analgesic, anti-inflammatory, anticancer, antidiabetic, anti-hyperlipidemic, cardioprotective, memory enhancement, antidepressant, antioxidant, anti-nociceptive, antimicrobial, anti- HIV and cholesterol-lowering effects. It is used in the treatment of the neurodegenerative disorder. It has strong evidence to serve as a potent phytoconstituent in the treatment of various neurodegenerative disorders such as AD. It limits the extracellular amyloid plaques and intracellular neurofibrillary tangles. It has also lipid-glucose lowering ability, hence can be used as a protective agent in atherosclerosis and AD. However, more detailed investigations along with safety assessment of berberine are warranted to clarify its role in limiting various risk factors and AD-related pathologies. This review highlights the pharmacological basis to control oxidative stress, neuroinflammation and protective effect of berberine in AD, which will benefit to the biological scientists in understanding and exploring the new vistas of berberine in combating Alzheimer's disease.
Collapse
Affiliation(s)
- Anurag K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Santosh K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Manmath K Nandi
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gaurav Mishra
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Anand Maurya
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arati Rai
- Hygia Institute of Pharmaceutical Education & Research, Lucknow-226020, Uttar Pradesh, India
| | - Gopal K Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| | - Giriraj T Kulkarni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| |
Collapse
|
31
|
Song J, Gao X, Tang Z, Li H, Ruan Y, Liu Z, Wang T, Wang S, Liu J, Jiang H. Protective effect of Berberine on reproductive function and spermatogenesis in diabetic rats via inhibition of ROS/JAK2/NFκB pathway. Andrology 2020; 8:793-806. [PMID: 32012485 DOI: 10.1111/andr.12764] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/12/2020] [Accepted: 01/22/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) induces impairment of male reproductive system and is considered as a key factor that could partially provide an explanation for male infertility. Thus, understanding the mechanism underlying DM-induced infertility will aid in the identification of novel therapeutic stratagems. OBJECTIVES To delineate the role of ROS/JAK2/NFκB pathway in DM-induced low reproductive function and impaired spermatogenesis. Additionally, to investigate the protective effect of monomeric Berberine (BB) that inhibits ROS/JAK2/NFκB pathway, in the pathogenesis of DM-induced infertility. METHODS 12-week-old male Sprague-Dawley rats were divided into four groups: control group, DM group, control plus BB group, and DM plus BB group. Streptozotocin was used to induce DM. After treating the rats with BB for 4 weeks, fertility tests were conducted to investigate the reproductive function, and testis weight along with sperm motility was assessed through microscope. Oxidative stress was evaluated by DHE staining. TUNEL staining was utilized to detect the state of apoptosis. Cell experiments were carried out to define the role of BB in vitro. Immunohistochemistry, immunofluorescence, and Western blotting were employed to measure the protein expression. RESULTS Our results indicate that the reproductive function of DM rats was low, accompanied by decreased testis weight and sperm motility in addition to the impairment of the seminiferous tubules. However, there was a significant improvement in the reproductive function parameters in the BB-treated DM rats. Subsequently, our data revealed that DM rats produce an increased level of ROS in the testis, which activates JAK2 further activating the NFκB pathway, leading to increased apoptosis and impaired cells in the testicles. However, BB could attenuate the ROS production and abrogate activation of JAK2/NFκB pathway, thus inhibiting the apoptosis in the testicular cells of DM rats. CONCLUSION ROS/JAK2/NFκB pathway is involved in the DM-induced low reproductive function and impaired spermatogenesis. BB can play a protective role in preserving the reproductive function and spermatogenesis in DM by inhibiting ROS/JAK2/NFκB pathway.
Collapse
Affiliation(s)
- Jingyu Song
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Xintao Gao
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Zhe Tang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Hao Li
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yajun Ruan
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Zhuo Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Tao Wang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Shaogang Wang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Jihong Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Hongyang Jiang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
32
|
Li C, Guan XM, Wang RY, Xie YS, Zhou H, Ni WJ, Tang LQ. Berberine mitigates high glucose-induced podocyte apoptosis by modulating autophagy via the mTOR/P70S6K/4EBP1 pathway. Life Sci 2020; 243:117277. [DOI: 10.1016/j.lfs.2020.117277] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
|
33
|
13-Methylberberine improves endothelial dysfunction by inhibiting NLRP3 inflammasome activation via autophagy induction in human umbilical vein endothelial cells. Chin Med 2020; 15:8. [PMID: 31993073 PMCID: PMC6977264 DOI: 10.1186/s13020-020-0286-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background Atherosclerosis, the underlying cause of the majority of cardiovascular diseases, is a lipid-driven, inflammatory disease of the large arteries. Atherosclerotic cardiovascular disease (ASCVD) threatens human lives due to high morbidity and mortality. Many studies have demonstrated that atherosclerosis is accelerated via activation of the NLRP3 inflammasome. The NLRP3 inflammasome plays a critical role in the development of vascular inflammation and atherosclerosis. In atherosclerotic plaques, excessive generation of reactive oxygen species (ROS) activates the NLRP3 inflammasome. 13-Methylberberine (13-MB) is a newly synthesized compound used in traditional Chinese medicine that has outstanding antibacterial, antitumor, and antiobesity activities, especially anti-inflammatory activity. However, the role of 13-MB in atherosclerosis needs to be explored. Methods CCK-8 assays and flow cytometry were conducted to determine the cell viability and apoptotic profiles of human umbilical vein endothelial cells (HUVECs) treated with 13-MB. Carboxy-DCFH-DA and JC-10 assays were used to measure ROS and determine mitochondrial membrane potential. Western blot analysis was performed to investigate proteins that are associated with the NLRP3 inflammasome and autophagy. ELISA was used to detect and quantify inflammatory cytokines related to the NLRP3 inflammasome. Transfection and confocal microscopy were conducted to observe autophagy. Results Pretreatment with 13-MB markedly reduced cytotoxicity and apoptosis, as well as intracellular ROS production, in H2O2-induced HUVECs. Moreover, 13-MB showed a protective effect in maintaining mitochondrial membrane potential. 13-MB also suppressed NLRP3 inflammasome activation and promoted autophagy induction in HUVECs. Conclusion 13-MB exerts cytoprotective effects in an H2O2-induced cell injury model by inhibiting NLRP3 inflammasome activation via autophagy induction in HUVECs. These anti-inflammatory and autophagy induction activities may provide valuable evidence for further investigating the potential role of 13-MB in atherosclerosis.
Collapse
|
34
|
Shinjyo N, Parkinson J, Bell J, Katsuno T, Bligh A. Berberine for prevention of dementia associated with diabetes and its comorbidities: A systematic review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:125-151. [PMID: 32005442 DOI: 10.1016/j.joim.2020.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A growing number of epidemiological studies indicate that metabolic syndrome (MetS) and its associated features play a key role in the development of certain degenerative brain disorders, including Alzheimer's disease and vascular dementia. Produced by several different medicinal plants, berberine is a bioactive alkaloid with a wide range of pharmacological effects, including antidiabetic effects. However, it is not clear whether berberine could prevent the development of dementia in association with diabetes. OBJECTIVE To give an overview of the therapeutic potential of berberine as a treatment for dementia associated with diabetes. SEARCH STRATEGY Database searches A and B were conducted using PubMed and ScienceDirect. In search A, studies on berberine's antidementia activities were identified using "berberine" and "dementia" as search terms. In search B, recent studies on berberine's effects on diabetes were surveyed using "berberine" and "diabetes" as search terms. INCLUSION CRITERIA Clinical and preclinical studies that investigated berberine's effects associated with MetS and cognitive dysfunction were included. DATA EXTRACTION AND ANALYSIS Data from studies were extracted by one author, and checked by a second; quality assessments were performed independently by two authors. RESULTS In search A, 61 articles were identified, and 22 original research articles were selected. In search B, 458 articles were identified, of which 101 were deemed relevant and selected. Three duplicates were removed, and a total of 120 articles were reviewed for this study. The results demonstrate that berberine exerts beneficial effects directly in the brain: enhancing cholinergic neurotransmission, improving cerebral blood flow, protecting neurons from inflammation, limiting hyperphosphorylation of tau and facilitating β-amyloid peptide clearance. In addition, evidence is growing that berberine is effective against diabetes and associated disorders, such as atherosclerosis, cardiomyopathy, hypertension, hepatic steatosis, diabetic nephropathy, gut dysbiosis, retinopathy and neuropathy, suggesting indirect benefits for the prevention of dementia. CONCLUSION Berberine could impede the development of dementia via multiple mechanisms: preventing brain damages and enhancing cognition directly in the brain, and indirectly through alleviating risk factors such as metabolic dysfunction, and cardiovascular, kidney and liver diseases. This study provided evidence to support the value of berberine in the prevention of dementia associated with MetS.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - James Parkinson
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom
| | - Jimmy Bell
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom.
| | - Tatsuro Katsuno
- Kashiwanoha Clinic of East Asian Medicine, Chiba University Hospital, Kashiwa, Chiba 277-0882, Japan
| | - Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, NT 999077, Hong Kong, China.
| |
Collapse
|
35
|
Mao ZJ, Lin M, Zhang X, Qin LP. Combined Use of Astragalus Polysaccharide and Berberine Attenuates Insulin Resistance in IR-HepG2 Cells via Regulation of the Gluconeogenesis Signaling Pathway. Front Pharmacol 2019; 10:1508. [PMID: 31920677 PMCID: PMC6936338 DOI: 10.3389/fphar.2019.01508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
Insulin resistance (IR) is likely to induce metabolic syndrome and type 2 diabetes mellitus (T2DM). Gluconeogenesis (GNG) is a complex metabolic process that may result in glucose generation from certain non-carbohydrate substrates. Chinese herbal medicine astragalus polysaccharides and berberine have been documented to ameliorate IR, and combined use of astragalus polysaccharide (AP) and berberine (BBR) are reported to synergistically produce an even better effect. However, what change may occur in the GNG signaling pathway of IR-HepG2 cells in this synergistic effect and whether AP-BBR attenuates IR by regulating the GNG signaling pathway remain unclear. For the first time, we discovered in this study that the optimal time of IR-HepG2 cell model formation was 48 h after insulin intervention. AP-BBR attenuated IR in HepG2 cells and the optimal concentration was 10 mg. AP-BBR reduced the intracellular H2O2 content with no significant effect on apoptosis of IR-HepG2 cells. In addition, a rapid change was observed in intracellular calcium current of the IR-HepG2 cell model, and AP-BBR intervention attenuated this change markedly. The gene sequencing results showed that the GNG signaling pathway was one of the signaling pathways of AP-BBR to attenuate IR in IR-Hepg2 cells. The expression of p-FoxO1Ser256 and PEPCK protein was increased, and the expression of GLUT2 protein was decreased significantly in the IR-HepG2 cell model, and both of these effects could be reversed by AP-BBR intervention. AP-BBR attenuated IR in IR-HepG2 cells, probably by regulating the GNG signaling Pathway.
Collapse
Affiliation(s)
- Zhu-Jun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Lin
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu-Ping Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
36
|
Wang J, Wang L, Lou GH, Zeng HR, Hu J, Huang QW, Peng W, Yang XB. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. PHARMACEUTICAL BIOLOGY 2019; 57:193-225. [PMID: 30963783 PMCID: PMC6461078 DOI: 10.1080/13880209.2019.1577466] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 05/09/2023]
Abstract
CONTEXT Coptidis rhizome (CR), also known as Huanglian in Chinese, is the rhizome of Coptis chinensis Franch., C. deltoidea C.Y. Cheng et Hsiao, or C. teeta Wall (Ranunculaceae). It has been widely used to treat bacillary dysentery, diabetes, pertussis, sore throat, aphtha, and eczema in China. OBJECTIVES The present paper reviews the latest advances of CR, focusing on the botany, phytochemistry, traditional usages, pharmacokinetics, pharmacology and toxicology of CR and its future perspectives. METHODS Studies from 1985 to 2018 were reviewed from books; PhD. and MSc. dissertations; the state and local drug standards; PubMed; CNKI; Scopus; the Web of Science; and Google Scholar using the keywords Coptis, Coptidis Rhizoma, Huanglian, and goldthread. RESULTS Currently, 128 chemical constituents have been isolated and identified from CR. Alkaloids are the characteristic components, together with organic acids, coumarins, phenylpropanoids and quinones. The extracts/compounds isolated from CR cover a wide pharmacological spectrum, including antibacterial, antivirus, antifungal, antidiabetic, anticancer and cardioprotective effects. Berberine is the most important active constituent and the primary toxic component of CR. CONCLUSIONS As an important herbal medicine in Chinese medicine, CR has the potential to treat various diseases. However, further research should be undertaken to investigate the clinical effects, toxic constituents, target organs and pharmacokinetics, and to establish criteria for quality control, for CR and its related medications. In addition, the active constituents, other than alkaloids, in both raw and processed products of CR should be investigated.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-Bo Yang
- Ya'an Xun Kang Pharmaceutical Co., Ltd, Ya'an, China
| |
Collapse
|
37
|
Ran Q, Wang J, Wang L, Zeng HR, Yang XB, Huang QW. Rhizoma coptidis as a Potential Treatment Agent for Type 2 Diabetes Mellitus and the Underlying Mechanisms: A Review. Front Pharmacol 2019; 10:805. [PMID: 31396083 PMCID: PMC6661542 DOI: 10.3389/fphar.2019.00805] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, especially type 2 diabetes mellitus (T2DM), has become a significant public health burden. Rhizoma coptidis (RC), known as Huang Lian, is widely used for treating diabetes in China. The bioactive compounds of RC, especially alkaloids, have the potential to suppress T2DM-induced lesions, including diabetic vascular dysfunction, diabetic heart disease, diabetic hyperlipidemia, diabetic nephropathy, diabetic encephalopathy, diabetic osteopathy, diabetic enteropathy, and diabetic retinopathy. This review summarizes the effects of RC and its bioactive compounds on T2DM and T2DM complications. Less research has been conducted on non-alkaloid fractions of RC, which may exert synergistic action with alkaloids. Moreover, we summarized the pharmacokinetic properties and structure-activity relationships of RC on T2DM with reference to extant literature and showed clearly that RC has potential therapeutic effect on T2DM.
Collapse
Affiliation(s)
- Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-bo Yang
- Ya’an Xun Kang Pharmaceutical Co., Ltd, Ya’an, China
| | - Qin-wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
38
|
Ma H, He K, Zhu J, Li X, Ye X. The anti-hyperglycemia effects of Rhizoma Coptidis alkaloids: A systematic review of modern pharmacological studies of the traditional herbal medicine. Fitoterapia 2019; 134:210-220. [PMID: 30836124 DOI: 10.1016/j.fitote.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023]
Abstract
Hyperglycemia is a common endocrine system disease, which seriously affects people's health with a increasing morbidity in recent years. Rhizoma Coptidis (RC), one of the most commonly used traditional Chinese medicines, has been applied to treat diabetes in clinic for thousands of years. Since scientists demonstrated that alkaloids from RC owned the amazing anti-hyperglycemia activities 30 years ago, these compounds have been widely used for the treatment of diabetes and hyperglycemia with unconspicuous toxicities and side effects. With the help of molecular biology, immunology and other techniques, the mechanisms about anti-hyperglycemia effect of RC alkaloids have been extensively discussed. Numerous studies showed that RC alkaloids balanced the glucose homeostasis not only by widely recognizing insulin resistance pathways, but also by promoting insulin secretion, regulating intestinal hormones, ameliorating gut microbiota structures and many other ways. In this review, we combine the latest advances and systematically summarize the mechanisms of RC alkaloids in treating hyperglycemia and diabetic nephropathy to provide a deeper understanding of these natural alkaloids. In addition, the important role of gut microbiota associated with the glucose metabolism is also reviewed.
Collapse
Affiliation(s)
- Hang Ma
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; Engineering Research Center of Cell and Therapeutic Antibody Medicine, Ministry of Education, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Kai He
- Department of Clinical Laboratory, Hunan University of Medicine, Hunan 418000, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody Medicine, Ministry of Education, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Xuegang Li
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
39
|
Abstract
The main cellular constituents in glomerular mesangium are mesangial cells, which account for approximately 30-40% of the total cells in the glomerulus. Together with the mesangial matrix, mesangial cells form the glomerular basement membrane (GBM) in the glomerulus, whose main function is to perform the filtration. Under the pathologic conditions, mesangial cells are activated, leading to hyperproliferation and excess extracellular matrix (ECM). Moreover, mesangial cells also secrete several kinds of inflammatory cytokines, adhesion molecules, chemokines, and enzymes, all of which participate in the process of renal glomerular fibrosis. During the past years, researchers have revealed the roles of mesangial cells and the associated signal pathways involved in renal fibrosis. In this section, we will discuss how mesangial cells are activated and its contributions to renal fibrosis, as well as the molecular mechanisms and novel anti-fibrotic agents. Full understanding of the contributions of mesangial cells to renal fibrosis will benefit the clinical drug developing.
Collapse
Affiliation(s)
- Jing-Hong Zhao
- Department of Nephrology, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
40
|
Singh J, Saha L, Singh N, Kumari P, Bhatia A, Chakrabarti A. Study of nuclear factor-2 erythroid related factor-2 activator, berberine, in paclitaxel induced peripheral neuropathy pain model in rats. ACTA ACUST UNITED AC 2018; 71:797-805. [PMID: 30536411 DOI: 10.1111/jphp.13047] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/10/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The role of nuclear factor-2 erythroid related factor-2 (Nrf2) activator, berberine (BBR), has been established in rat model of streptozotocin induced diabetic neuropathy. Around 30-40% of cancer patients, on paclitaxel (PTX) chemotherapy develop peripheral neuropathy. The present study was contemplated with the aim of establishing the neuropathy preventive role of BBR, in paclitaxel induced peripheral neuropathy model in rats. METHODS A total of 30 Wistar rats were divided into five groups as follows: Group I: dimethyl sulfoxide; Group II: PTX+ 0.9% NaCl; Group III: Amitriptyline (ATL) + PTX; Group IV: BBR (10 mg/kg) + PTX and Group V: BBR (20 mg/kg) + PTX. Animals were assessed for tail flick latency, tail cold allodynia latency, histopathological scores, oxidative stress parameters, and mRNA expression of the Nrf2 gene in the sciatic nerve. KEY FINDINGS Berberine significantly increased the tail flick and tail cold allodynia latencies and significantly decreased the histopathological score. BBR reduced oxidative stress by significantly decreasing the lipid peroxidation, increasing the superoxide dismutase and reduced glutathione levels in the sciatic nerve. BBR also increased the mRNA expression of Nrf2 gene in rat sciatic nerve. CONCLUSIONS All of these results showed the neuropathy preventing role of BBR in PTX induced neuropathy pain model in rats.
Collapse
Affiliation(s)
- Jagjit Singh
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Neha Singh
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Puja Kumari
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Amitava Chakrabarti
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| |
Collapse
|
41
|
Xiao X, Yuan Q, Chen Y, Huang Z, Fang X, Zhang H, Peng L, Xiao P. LncRNA ENST00000453774.1 contributes to oxidative stress defense dependent on autophagy mediation to reduce extracellular matrix and alleviate renal fibrosis. J Cell Physiol 2018; 234:9130-9143. [PMID: 30317629 DOI: 10.1002/jcp.27590] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Xiangcheng Xiao
- Department of Nephrology Xiangya Hospital, Central South University Changsha China
| | - Qiongjing Yuan
- Department of Nephrology Xiangya Hospital, Central South University Changsha China
| | - Yusa Chen
- Department of Nephrology Xiangya Hospital, Central South University Changsha China
| | - Zhihua Huang
- Department of Nephrology Xiangya Hospital, Central South University Changsha China
| | - Xi Fang
- Department of Nephrology Xiangya Hospital, Central South University Changsha China
| | - Haixia Zhang
- Department of Nephrology Xiangya Hospital, Central South University Changsha China
| | - Ling Peng
- The Nephrotic Laboratory, Xiangya Hospital, Central South University Changsha China
| | - Ping Xiao
- Department of Nephrology Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
42
|
Ma X, Chen Z, Wang L, Wang G, Wang Z, Dong X, Wen B, Zhang Z. The Pathogenesis of Diabetes Mellitus by Oxidative Stress and Inflammation: Its Inhibition by Berberine. Front Pharmacol 2018; 9:782. [PMID: 30100874 PMCID: PMC6072898 DOI: 10.3389/fphar.2018.00782] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022] Open
Abstract
A substantial knowledge on the pathogenesis of diabetes mellitus (DM) by oxidative stress and inflammation is available. Berberine is a biologically active botanical that can combat oxidative stress and inflammation and thus ameliorate DM, especially type 2 DM. This article describes the potential of berberine against oxidative stress and inflammation with special emphasis on its mechanistic aspects. In diabetic animal studies, the modified levels of proinflammatory cytokines and oxidative stress markers were observed after administering berberine. In renal, fat, hepatic, pancreatic and several others tissues, berberine-mediated suppression of oxidative stress and inflammation was noted. Berberine acted against oxidative stress and inflammation through a very complex mechanism consisting of several kinases and signaling pathways involving various factors, including NF-κB (nuclear factor-κB) and AMPK (AMP-activated protein kinases). Moreover, MAPKs (mitogen-activated protein kinases) and Nrf2 (nuclear factor erythroid-2 related factor 2) also have mechanistic involvement in oxidative stress and inflammation. In spite of above advancements, the mechanistic aspects of the inhibitory role of berberine against oxidative stress and inflammation in diabetes mellitus still necessitate additional molecular studies. These studies will be useful to examine the new prospects of natural moieties against DM.
Collapse
Affiliation(s)
- Xueling Ma
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhongjun Chen
- Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Le Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Gesheng Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zihui Wang
- Chaoyang Hospital, Capital Medical University, Beijing, China
| | - XiaoBo Dong
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Binyu Wen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhichen Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
43
|
Astaxanthin Promotes Nrf2/ARE Signaling to Inhibit HG-Induced Renal Fibrosis in GMCs. Mar Drugs 2018; 16:md16040117. [PMID: 29621130 PMCID: PMC5923404 DOI: 10.3390/md16040117] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 01/15/2023] Open
Abstract
Oxidative stress is the main cause of diabetic nephropathy (DN) progression. Nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling is a crucial cellular defense system to cope with oxidative stress. Astaxanthin (AST) is a fat-soluble xanthophyll carotenoid with remarkable antioxidative capacity. AST exerted renal protective in diabetic rats. This study aimed to determine whether AST could alleviate the pathological progress of DN by activating Nrf2/ARE signaling and diminishing the excessive oxidative stress and fibronectin (FN) accumulation in glomerular mesangial cells (GMCs) challenged with high glucose (HG). In the current study, we found that AST treatment alleviated the metabolic parameters, renal morphology and extracellular matrix (ECM) accumulation in streptozotocin-induced diabetic rats. Additionally, HG induced the adaptively activated Nrf2/ARE signaling and increased the expression of FN, intercellular adhesion molecule-1 (ICAM-1) and transforming growth factor-β1 (TGF-β1), as well as the intracellular reactive oxygen species (ROS) generation in GMCs. However, AST treatment strongly promoted the nuclear translocation and transcriptional activity of Nrf2 as well as upregulated the expression of superoxide dismutase (SOD1), NAD(P)H: quinone oxidoreductase (NQO1) and heme oxygenase-1 (HO-1), ultimately quenching the higher level of ROS and inhibiting the FN, ICAM-1 and TGF-β1 expression induced by HG. Collectively, our data suggest that the renoprotective effect of AST on DN depends on Nrf2/ARE signaling activation, which could be a potentially therapeutic strategy in the treatment of DN.
Collapse
|
44
|
Zhu L, Han J, Yuan R, Xue L, Pang W. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biol Res 2018; 51:9. [PMID: 29604956 PMCID: PMC5878418 DOI: 10.1186/s40659-018-0157-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/27/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal failure, contributing to severe morbidity and mortality in diabetic patients. Berberine (BBR) has been well characterized to exert renoprotective effects in DN progression. However, the action mechanism of BBR in DN remains to be fully understood. METHODS The DN rat model was generated by intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) while 30 mM high glucose (HG)-treated podocytes were used as an in vitro DN model. The fasting blood glucose level and ratio of kidney weight to body weight were measured after BBR treatment (50, 100, or 200 mg/kg) in STZ-induced DN rats. The renal injury parameters including 24-h urinary protein, blood urea nitrogen and serum creatinine were assessed. qRT-PCR was performed to detect the transcript amounts of inflammatory factors. The concentrations of inflammatory factors were evaluated by ELISA kits. Western blot analysis was conducted to measure the amounts of TLR4/NF-κB-related proteins. The apoptotic rate of podocytes was analyzed by flow cytometry using Annexin V/propidium iodide. RESULTS Berberine reduced renal injury in STZ-induced DN rat model, as evidenced by the decrease in fasting blood glucose, ratio of kidney weight to body weight, 24-h urinary protein, serum creatinine, and blood urine nitrogen. BBR attenuated the systemic and renal cortex inflammatory response and inhibited TLR4/NF-κB pathway in STZ-induced DN rats and HG-induced podocytes. Also, HG-induced apoptosis of podocytes was lowered by BBR administration. Furthermore, blockade of TLR4/NF-κB pathway by resatorvid (TAK-242) or pyrrolidine dithiocarbamate aggravated the inhibitory effect of BBR on HG-induced inflammatory response and apoptosis in podocytes. CONCLUSIONS Berberine ameliorated DN through relieving STZ-induced renal injury, inflammatory response, and podocyte HG-induced apoptosis via inactivating TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Endocrinology, Huaihe Hospital of Henan University, No.115 Ximen Street, Gulou District, Kaifeng, 475000, China
| | - Jiakai Han
- Department of Endocrinology, Huaihe Hospital of Henan University, No.115 Ximen Street, Gulou District, Kaifeng, 475000, China
| | - Rongrong Yuan
- Department of Endocrinology, Huaihe Hospital of Henan University, No.115 Ximen Street, Gulou District, Kaifeng, 475000, China
| | - Lei Xue
- Department of Endocrinology, Huaihe Hospital of Henan University, No.115 Ximen Street, Gulou District, Kaifeng, 475000, China
| | - Wuyan Pang
- Department of Endocrinology, Huaihe Hospital of Henan University, No.115 Ximen Street, Gulou District, Kaifeng, 475000, China.
| |
Collapse
|
45
|
Lv W, Booz GW, Fan F, Wang Y, Roman RJ. Oxidative Stress and Renal Fibrosis: Recent Insights for the Development of Novel Therapeutic Strategies. Front Physiol 2018; 9:105. [PMID: 29503620 PMCID: PMC5820314 DOI: 10.3389/fphys.2018.00105] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a significant worldwide healthcare problem. Regardless of the initial injury, renal fibrosis is the common final pathway leading to end stage renal disease. Although the underlying mechanisms are not fully defined, evidence indicates that besides inflammation, oxidative stress plays a crucial role in the etiology of renal fibrosis. Oxidative stress results from an imbalance between the production of free radicals that are often increased by inflammation and mitochondrial dysfunction, and reduced anti-oxidant defenses. Several studies have demonstrated that oxidative stress may occur secondary to activation of transforming growth factor β1 (TGF-β1) activity, consistent with its role to increase nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) activity. A number of other oxidative stress-related signal pathways have also been identified, such as nuclear factor erythroid-2 related factor 2 (Nrf2), the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-cGMP-dependent protein kinase 1-phosphodiesterase (cGMP-cGK1-PDE) signaling pathway, and the peroxisome proliferator-activated receptor gamma (PPARγ) pathway. Several antioxidant and renoprotective agents, including cysteamine bitartrate, epoxyeicosatrienoic acids (EETs), and cytoglobin (Cygb) have demonstrated ameliorative effects on renal fibrosis in preclinical or clinical studies. The mechanism of action of many traditional Chinese medicines used to treat renal disorders is based on their antioxidant properties, which could form the basis for new therapeutic approaches. This review focuses on the signaling pathways triggered by oxidative stress that lead to renal fibrosis and provides an update on the development of novel anti-oxidant therapies for CKD.
Collapse
Affiliation(s)
- Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
46
|
Halicka HD, Garcia J, Li J, Zhao H, Darzynkiewicz Z. Synergy of 2-deoxy-D-glucose combined with berberine in inducing the lysosome/autophagy and transglutaminase activation-facilitated apoptosis. Apoptosis 2018; 22:229-238. [PMID: 27796611 DOI: 10.1007/s10495-016-1315-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Utilizing a variety of flow cytometric methods evidence was obtained indicating that a combination of the glucose analog 2-deoxy-D-glucose (2-dG) and the plant alkaloid berberine (BRB) produces synergistic effect in the induction of apoptosis in human lymphoblastoid TK6 cells. The synergistic effect is seen at concentrations of the drugs at which each of them alone shows no cytotoxicity at all. The data suggest that the combination of these drugs, which are known in terms of their overall toxicity, side effects and pharmacokinetics may be considered for further studies as chemopreventive and cancer treatment modalities. Of interest are results indicating that rapamycin, which similarly to BRB, suppresses mTOR signaling, when combined with 2-dG shows no synergistic properties. Metformin, on other hand, requires much higher concentration to show the synergy with 2-dG. Also of interest are the findings pertaining to the methodology of the present study. Specifically, dynamic assessment of cellular viability was performed by using the DRAQ7 cell exclusion fluorochrome present in cultures from 0 to 72 h. Concurrent measurement of lysosomal proton pump using acridine orange as the probe shows activation of lysosomes in the cells treated with 2-dG or BRB alone as well as with the drugs combined. Apoptosis was assessed by measuring DNA fragmentation, cell cycle, activation of caspase-3 and tissue transglutaminase (Tgase). A novel cytometric method was developed based on analysis of lysosomal (acidic vesicles) proton pump in live cells followed by cell lysis with detergent and fluorochrome labeling of proteins and DNA to analyze Tgase activation concurrently with cell cycle, in same population of cells. The data show that the cell subpopulation undergoing apoptosis has increased side (right-angle) light scatter likely due to the presence of the crosslinked (solid state) proteins, the consequence Tgase activation.
Collapse
Affiliation(s)
- H Dorota Halicka
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY, 10595, USA
| | - Jorge Garcia
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY, 10595, USA
| | - Jiangwei Li
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY, 10595, USA
| | - Hong Zhao
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY, 10595, USA
| | - Zbigniew Darzynkiewicz
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY, 10595, USA.
| |
Collapse
|
47
|
Wang Y, Zhou L, Li Y, Guo L, Zhou Z, Xie H, Hou Y, Wang B. The Effects of Berberine on Concanavalin A-Induced Autoimmune Hepatitis (AIH) in Mice and the Adenosine 5'-Monophosphate (AMP)-Activated Protein Kinase (AMPK) Pathway. Med Sci Monit 2017; 23:6150-6161. [PMID: 29283990 PMCID: PMC5753750 DOI: 10.12659/msm.907377] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Berberine, a herbal extract, has been reported to protect against inflammatory disorders. The adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway can be activated by berberine and inhibited by the synthetic, reversible AMP-competitive inhibitor, Compound C. The aim of this study was to investigate the effects of berberine on concanavalin A (Con A)-induced autoimmune hepatitis (AIH) in mice via the AMPK pathway. Material/Methods BALB/c mice were treated with berberine, with or without Compound C, followed by treatment with Con A. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured. Liver tissue histology was performed to evaluate hepatic injury and AIH. Cytokine levels in serum and hepatic tissue were measured by enzyme-linked immunoassay (ELISA) and used quantitative polymerase chain reaction (qPCR). Levels of phosphorylated acetyl coenzyme-A carboxylase (ACC), representing AMPK activation, were detected by Western blotting. Results Serum ALT and AST levels were significantly reduced by berberine (100 and 200 mg/kg/day) in mice with Con A-induced hepatitis. Berberine also reduced Con A-induced hepatocyte swelling, cell death, and infiltration of leukocytes. Serum levels of tumor necrosis factor (TNF)-alpha, interferon (IF)-gamma, interleukin (IL)-2, and IL-1beta were reduced by berberine pre-treatment; levels of serum IL-10, an anti-inflammatory cytokine, was elevated. These protective effects of berberine on Con-A-induced AIH were reversed by treatment with Compound C. Conclusions In a murine model of Con A-induced AIH, berberine treatment reduced hepatic injury via activation of the AMPK pathway. Further studies are recommended to determine the potential therapeutic role for berberine in AIH.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Gastroenterology, Affiliated Hospital of Hebei University, Baoding, Hebei, China (mainland)
| | - Lu Zhou
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Yanni Li
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Liping Guo
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Zhe Zhou
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Haoran Xie
- College of Medicine, Hebei University, Baoding, Hebei, China (mainland)
| | - Yingjian Hou
- College of Medicine, Hebei University, Baoding, Hebei, China (mainland)
| | - Bangmao Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| |
Collapse
|
48
|
Wang X, Li D, Fan L, Xiao Q, Zuo H, Li Z. CAPE- pNO 2 ameliorated diabetic nephropathy through regulating the Akt/NF-κB/ iNOS pathway in STZ-induced diabetic mice. Oncotarget 2017; 8:114506-114525. [PMID: 29383098 PMCID: PMC5777710 DOI: 10.18632/oncotarget.23016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most severe complications of diabetes mellitus. This study aimed to determine the effects and potential mechanism of caffeic acid para-nitro phenethyl ester (CAPE-pNO2), a derivative of caffeic acid phenethyl ester (CAPE), on DN; In vivo, intraperitoneal injections of streptozotocin (STZ) were used to induce diabetes in mice; then, the mice were intraperitoneally injected daily with CAPE or CAPE-pNO2 for 8 weeks. The mice were sacrificed, and blood samples and kidney tissues were collected to measure biological indexes. The results showed that CAPE and CAPE-pNO2 could lower serum creatinine, blood urea nitrogen, 24-h albumin excretion, malondialdehyde and myeloperoxidase levels and increase superoxide dismutase activity in diabetic mice. According to HE, PAS and Masson staining, these two compounds ameliorated structural changes and fibrosis in the kidneys. In addition, the immunohistochemical and western blot results showed that CAPE and CAPE-pNO2 inhibited inflammation through the Akt/NF-κB pathway and prevented renal fibrosis through the TGF-β/Smad pathway. In vitro, CAPE and CAPE-pNO2 inhibited glomerular mesangial cell (GMC) proliferation, arrested cell cycle progression and suppressed ROS generation. These compounds also inhibited ECM accumulation via regulating the TGF-β1, which was a similar effect to that of the NF-κB inhibitor PDTC. More importantly, CAPE and CAPE-pNO2 could up-regulate nitric oxide synthase expression in STZ-induced diabetic mice and HG-induced GMCs. CAPE-pNO2 had stronger effects than CAPE both in vivo and in vitro. These data suggest that CAPE-pNO2 ameliorated DN by suppressing oxidative stress, inflammation, and fibrosis via the Akt/NF-κB/ iNOS pathway.
Collapse
Affiliation(s)
- Xiaoling Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Dejuan Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Lu Fan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Qianhan Xiao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
49
|
Wen Y, Yan M, Zhang B, Li P. Chinese medicine for diabetic kidney disease in China. Nephrology (Carlton) 2017; 22 Suppl 4:50-55. [PMID: 29155500 DOI: 10.1111/nep.13149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Yumin Wen
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science; China-Japan Friendship Hospital; Beijing China
| | - Meihua Yan
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science; China-Japan Friendship Hospital; Beijing China
| | - Bingxuan Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science; China-Japan Friendship Hospital; Beijing China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science; China-Japan Friendship Hospital; Beijing China
| |
Collapse
|
50
|
Lin YJ, Zhen YZ, Wei JB, Wei J, Dai J, Gao JL, Li KJ, Hu G. Rhein lysinate protects renal function in diabetic nephropathy of KK/HlJ mice. Exp Ther Med 2017; 14:5801-5808. [PMID: 29285124 PMCID: PMC5740561 DOI: 10.3892/etm.2017.5283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/14/2017] [Indexed: 12/17/2022] Open
Abstract
The purpose of the present study was to assess the protective effects of rhein lysinate (RHL) in a KK/HlJ mouse model of diabetic nephropathy (DN) and to explore its mechanism of action. A total of 4 groups were established: C57BL/J control, the KK/HlJ model and 25 and 50 mg/kg/day RHL-treated KK/HlJ groups. The KK/HlJ mouse model of DN was established by streptozotocin injection, followed by maintenance on a specific diet. The albumin-to-creatinine ratio (ACR) was determined at 5 weeks and at 16 weeks, the kidneys were harvested, and morphological examination and immunohistochemical analysis were performed. The levels of malondialdehyde (MDA), as well as superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) activities in the kidneys were measured using appropriate assay kits. The expression of inflammatory factors and associated proteins was analyzed using western blot analysis. At 5 weeks, the levels of ACR in KK/HlJ mice were increased, which was inhibited by treatment with RHL. Treatment with RHL (50 mg/kg/day) decreased the body weight of KK/HlJ mice. Compared with the C57BL/J control, the KK/HlJ model mice had a significantly lower activity of SOD and GSH-px in the kidneys, but had significantly higher levels of MDA. Treatment of KK/HlJ mice with RHL significantly increased the activities SOD and GSH-px, and reduced the MAD level in the kidneys. Renal tubular epithelial cell edema was observed in KK/HlJ mice but not in C57BL/J mice. RHL decreased the incidence of renal tubular epithelial cell edema and significantly decreased the expression of TNF-α and IL-6 as well as the expression and phosphorylation of NF-κB in the kidneys. Therefore, DN is associated with the expression of inflammatory factors, renal tubular epithelial cell edema and renal dysfunction in KK/HlJ mice. RHL improves renal function by decreasing kidney inflammation.
Collapse
Affiliation(s)
- Ya-Jun Lin
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Yong-Zhan Zhen
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Jing-Bo Wei
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Jie Wei
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Jing Dai
- Department of Endocrinology, Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing 100730, P.R. China
| | - Jun-Ling Gao
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Kai-Ji Li
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Gang Hu
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| |
Collapse
|