1
|
Karl KR, Schall PZ, Clark ZL, Ruebel ML, Cibelli J, Tempelman RJ, Latham KE, Ireland JJ. Ovarian stimulation with excessive FSH doses causes cumulus cell and oocyte dysfunction in small ovarian reserve heifers. Mol Hum Reprod 2023; 29:gaad033. [PMID: 37713463 PMCID: PMC10541857 DOI: 10.1093/molehr/gaad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
Excessive FSH doses during ovarian stimulation in the small ovarian reserve heifer (SORH) cause premature cumulus expansion and follicular hyperstimulation dysgenesis (FHD) in nearly all ovulatory-size follicles with predicted disruptions in cell-signaling pathways in cumulus cells and oocytes (before ovulatory hCG stimulation). These observations support the hypothesis that excessive FSH dysregulates cumulus cell function and oocyte maturation. To test this hypothesis, we determined whether excessive FSH-induced differentially expressed genes (DEGs) in cumulus cells identified in our previously published transcriptome analysis were altered independent of extreme phenotypic differences observed amongst ovulatory-size follicles, and assessed predicted roles of these DEGs in cumulus and oocyte biology. We also determined if excessive FSH alters cumulus cell morphology, and oocyte nuclear maturation before (premature) or after an ovulatory hCG stimulus or during IVM. Excessive FSH doses increased expression of 17 cumulus DEGs with known roles in cumulus cell and oocyte functions (responsiveness to gonadotrophins, survival, expansion, and oocyte maturation). Excessive FSH also induced premature cumulus expansion and oocyte maturation but inhibited cumulus expansion and oocyte maturation post-hCG and diminished the ability of oocytes with prematurely expanded cumulus cells to undergo IVF or nuclear maturation during IVM. Ovarian stimulation with excessive FSH is concluded to disrupt cumulus cell and oocyte functions by inducing premature cumulus expansion and dysregulating oocyte maturation without an ovulatory hCG stimulus yielding poor-quality cumulus-oocyte complexes that may be incorrectly judged morphologically as suitable for IVF during ART.
Collapse
Affiliation(s)
- Kaitlin R Karl
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Peter Z Schall
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Zaramasina L Clark
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Meghan L Ruebel
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Jose Cibelli
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Robert J Tempelman
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Keith E Latham
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
- Department of Obstetrics, Gynecology and Reproductive Science, Michigan State University, East Lansing, MI, USA
| | - James J Ireland
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Li X, Xin N, Guo T, Wu Z, Zheng Y, Lin L, Li Q, Lin F. Follicle-stimulating hormone is negatively associated with nonalcoholic fatty liver disease in a Chinese elderly population: a retrospective observational study. BMC Endocr Disord 2023; 23:165. [PMID: 37550673 PMCID: PMC10405433 DOI: 10.1186/s12902-023-01427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Several studies have explored the connection between follicle-stimulating hormone (FSH) and nonalcoholic fatty liver disease (NAFLD). However, the impact of FSH elevation on NAFLD remains a topic of debate. Hence, this investigation aimed to evaluate the potential correlation between FSH levels and NAFLD in the aging population. METHODS This was a retrospective observational cross-sectional study between July 2017 and August 2018 in our hospital. We used data obtained from 455 patients over 60 years old. Anthropometrics and laboratory tests were performed for each patient. NAFLD was diagnosed by sonographic features and the fatty liver index (LFI). RESULTS Of the 455 patients, 200 (43.96%) had NAFLD on their ultrasound and 169 (37.14%) had NAFLD according to the LFI. An intraclass correlation coefficient of the two methods was 80.4% (P < 0.001). People with NAFLD on their ultrasound showed lower FSH levels (52.68 vs. 61.39 IU/L) and more unfavorable metabolic profiles. FSH was negatively correlated with age, alanine aminotransferase, estradiol, testosterone, systolic blood pressure, waist, body mass index, fasting blood glucose, postload plasma glucose and positive associated with total cholesterol, high-density lipoprotein-cholesterol and low-density lipoprotein-cholesterol by Spearman correlation analysis (all P < 0.05). By controlling for all confounding factors, the odds ratios (OR) of FSH for NAFLD were determined in elderly individuals, both men and women, aged 60-70 years and over 70 years. These ORs were found to be 0.937, 0.982, 0.983, and 0.973, respectively, with corresponding 95% confidence intervals (CI) of 0.892-0.984 (P = 0.009), 0.971-0.993 (P = 0.002), 0.967-0.999 (P = 0.033), and 0.958-0.989 (P = 0.001). In addition, our findings demonstrated no significant correlation between FSH and advanced fibrosis when adjusting for potential covariates. The OR for advanced fibrosis was 0.979 (95% CI, 0.938-1.022, P = 0.339). Additionally, ROC curve analysis showed an optimal cut-off value of 66.91 for women and 15.25 for men for NAFLD diagnosis. CONCLUSIONS There was an inverse relationship observed between levels of FSH in the blood serum and NAFLD in the elderly population. These findings suggest that reduced FSH levels might serve as a potential risk factor or biomarker for NAFLD in the elderly.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Geriatric Medicine, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, 350001, China
| | - Ning Xin
- Department of Geriatric Medicine, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, 350001, China
| | - Tailin Guo
- Department of Geriatric Medicine, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, 350001, China
| | - Ziyu Wu
- Department of Geriatric Medicine, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, 350001, China
| | - Ying Zheng
- Department of Geriatric Medicine, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, 350001, China
| | - Lan Lin
- Key Laboratory of Medical Big Data Project of Fujian Province, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Qianwen Li
- Key Laboratory of Medical Big Data Project of Fujian Province, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Fan Lin
- Department of Geriatric Medicine, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fuzhou, 350001, China.
| |
Collapse
|
3
|
Ge S, Zheng Y, Du L, Hu X, Zhou J, He Z, Gu X, Huang X, Yang L, Lin X, Gu X. Association between follicle-stimulating hormone and nonalcoholic fatty liver disease in postmenopausal women with type 2 diabetes mellitus. J Diabetes 2023; 15:640-648. [PMID: 37221966 PMCID: PMC10415867 DOI: 10.1111/1753-0407.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/14/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND AND AIM Follicle-stimulating hormone (FSH) was negatively associated with nonalcoholic fatty liver disease (NAFLD) in women older than 55 years old. People with obesity and diabetes had higher prevalence of NAFLD. Thus, we aimed to explore the association between FSH and NAFLD in postmenopausal women with type 2 diabetes mellitus (T2DM). METHODS A total of 583 postmenopausal women with T2DM with an average age of 60.22 ± 6.49 were recruited in this cross-sectional study through January 2017 to May 2021. Anthropological data, biochemical indexes, and abdominal ultrasound results were retrospectively collected. Abdominal ultrasound was used to diagnose NAFLD. FSH was measured by enzymatic immunochemiluminescence and divided into tertiles for further analysis. The logistic regression was used to assess the association of FSH with prevalent NAFLD. Likelihood ratio tests were used to assess the interactions between groups. RESULTS A total of 332 (56.94%) postmenopausal women had NAFLD. Compared with postmenopausal women in the lowest tertile of FSH, postmenopausal women in the highest tertile of FSH had lower prevalence of NAFLD (p < .01). After adjusting for age, diabetes duration, metabolism-related indicators, and other sex-related hormones, FSH was inversely associated with NAFLD (odds ratio: 0.411, 95% confidence intervals: 0.260-0.651, p < .001). In subgroup analysis, there were no significant interactions of FSH with strata of metabolic factors on the association of NAFLD. CONCLUSION FSH was negatively and independently associated with NAFLD in postmenopausal women with type 2 diabetes mellitus. It might be a potential index for screening and identifying individuals with high risk of NAFLD in postmenopausal women.
Collapse
Affiliation(s)
- Shengjie Ge
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yinfeng Zheng
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Linjia Du
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiang Hu
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jingzong Zhou
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhiying He
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiao Gu
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaoyan Huang
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Lijuan Yang
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiuli Lin
- Department of Infectious DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xuejiang Gu
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
4
|
Reiter E. [β-arrestins, their mechanisms of action and multiple roles in the biology of G protein-coupled receptors]. Biol Aujourdhui 2022; 215:107-118. [PMID: 35275055 DOI: 10.1051/jbio/2021010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 06/14/2023]
Abstract
The stimulation of G protein-coupled receptors (GPCRs) induces biological responses to a wide range of extracellular cues. The heterotrimeric G proteins, which are recruited to the active conformation of GPCRs, lead to the generation of various diffusible second messengers. Only two other families of proteins exhibit the remarkable characteristic of recognizing and binding to the active conformation of most GPCRs: GPCR kinases (GRKs) and β-arrestins. These two families of proteins were initially identified as key players in the desensitization of G protein activation by GPCRs. Over the years, β-arrestins have been implicated in an increasing number of interactions with non-receptor proteins, expanding the range of cellular functions in which they are involved. It is now well established that β-arrestins, by scaffolding and recruiting protein complexes in an agonist-dependent manner, directly regulate the trafficking and signaling of GPCRs. Remarkable advances have been made in recent years which have made it possible i) to identify biased ligands capable, by stabilizing particular conformations of a growing number of GPCRs, of activating or blocking the action of β-arrestins independently of that of G proteins, some of these ligands holding great therapeutic interest; ii) to demonstrate β-arrestins' role in the compartmentalization of GPCR signaling within the cell, and iii) to understand the molecular details of their interaction with GPCRs and of their activation through structural and biophysical approaches.
Collapse
Affiliation(s)
- Eric Reiter
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France - Inria, Centre de recherche Inria Saclay-Île-de-France, 91120 Palaiseau, France
| |
Collapse
|
5
|
Johnson GP, Jonas KC. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling†. Biol Reprod 2021; 102:773-783. [PMID: 31882999 DOI: 10.1093/biolre/ioz228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
Gonadotropin hormones and their receptors play a central role in the control of male and female reproduction. In recent years, there has been growing evidence surrounding the complexity of gonadotropin hormone/receptor signaling, with it increasingly apparent that the Gαs/cAMP/PKA pathway is not the sole signaling pathway that confers their biological actions. Here we review recent literature on the different receptor-receptor, receptor-scaffold, and receptor-signaling molecule complexes formed and how these modulate and direct gonadotropin hormone-dependent intracellular signal activation. We will touch upon the more controversial issue of extragonadal expression of FSHR and the differential signal pathways activated in these tissues, and lastly, highlight the open questions surrounding the role these gonadotropin hormone receptor complexes and how this will shape future research directions.
Collapse
Affiliation(s)
| | - Kim Carol Jonas
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
6
|
Wang W, Tian Y, Shi X, Ma Q, Xu Y, Yang G, Yi W, Shi Y, Zhou N. N-glycosylation of the human neuropeptide QRFP receptor (QRFPR) is essential for ligand binding and receptor activation. J Neurochem 2021; 158:138-152. [PMID: 33655503 DOI: 10.1111/jnc.15337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
The newly identified pyroglutamylated RFamide peptide (QRFP) signaling system has been shown to be implicated in regulating a variety of physiological processes. G-protein-coupled receptors (GPCRs) are preferentially N-glycosylated on extracellular domains. The human QRFP receptor QRFPR (GPR103) possesses three N-glycosylation consensus sites, two located on the N-terminal domain (N5 and N19) and one on the first extracellular loop (ECL1) (N106); however, to date, their role in QRFPR expression and signaling has not been established. Here, we combined mutants with glutamine substitution of the critical asparagines of the consensus sites with glycosidase PNGase F and N-glycosylation inhibitor tunicamycin to study the effect of N-glycosylation in the regulation of QRFPR cell surface expression and signaling. Western blot analysis performed with site-directed mutagenesis revealed that two asparagines at N19 in the N-terminus and N106 in ECL1, but not N5 in the N-terminus, served as sites for N-glycosylation. Treatment with PNGase F and tunicamycin resulted in a reduction in both two-protein species, ~43 kDa and ~85 kDa in size, by 2-4 kDa. Analysis with confocal microscopy and quantitative ELISA showed that N-glycosylation of QRFPR is not essentially required for targeting the cell membrane. However, further binding assay and functional assays demonstrated that removal of N-glycosylation sequons or treatment with tunicamycin led to significant impairments in the interaction of receptor with QRFP26 and downstream signaling. Thus, our findings suggest that for the human QRFP receptor (QRFPR), N-glycosylation is not important for cell surface expression but is a pre-requisite for ligand binding and receptor activation.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanan Tian
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoliu Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiang Ma
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yue Xu
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gangjie Yang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen Yi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Pharmacogenomic Biomarkers of Follicle-Stimulating Hormone Receptor Malfunction in Females with Impaired Ovarian Response-A Genetic Survey. J Clin Med 2021; 10:jcm10020170. [PMID: 33561079 PMCID: PMC7825139 DOI: 10.3390/jcm10020170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 02/07/2023] Open
Abstract
Follicle-stimulating hormone receptor (FSHR) plays an essential role as one of the most important molecules in response to some of infertility related medications. Impaired ovarian reserve and poor response to such treatments are partially dependent on the FSHR molecule itself. However, the function and drug sensitivity for this receptor may change due to various allele and polymorphisms in the FSHR gene. Studies indicated some of the FSHR-mediated treatments utilized in clinical centers display different outcomes in specific populations, which may arise from FSHR altered genotypes in certain patients. To support the increased demands for reaching the personalized drug and hormone therapy in clinics, focusing on actionable variants through Pharmacogenomic analysis of this receptor may be necessary. The current study tries to display a perspective view on genetic assessments for Pharmacogenomic profiling of the FSHR gene via providing a systematic and critical overview on the genetics of FSHR and its diverse responses to ligands for infertility treatment in females with impaired ovarian responses and show the potential effects of the patient genetic make-up on related binding substances efficacy. All identified functional drug-related alleles were selected through a comprehensive literature search and analyzed. Advanced technologies for the genetic evaluation of them are also discussed properly.
Collapse
|
8
|
Alfaidy N, Baron C, Antoine Y, Reynaud D, Traboulsi W, Gueniffey A, Lamotte A, Melloul E, Dunand C, Villaret L, Bessonnat J, Mauroy C, Boueihl T, Coutton C, Martinez G, Hamamah S, Hoffmann P, Hennebicq S, Brouillet S. Prokineticin 1 is a new biomarker of human oocyte competence: expression and hormonal regulation throughout late folliculogenesis. Biol Reprod 2020; 101:832-841. [PMID: 31276578 DOI: 10.1093/biolre/ioz114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/08/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022] Open
Abstract
CONTEXT Prokineticin 1 (PROK1) quantification in global follicular fluid (FF) has been recently reported as a predictive biomarker of in vitro fertilization (IVF) outcome. It is now necessary to evaluate its clinical usefulness in individual follicles. OBJECTIVES To evaluate the clinical value of PROK1 secretion in individual FF to predict oocyte competence. To determine the impact of follicular size, oocyte maturity, and gonadotropin treatments on PROK1 secretion. DESIGN AND SETTING Prospective cohort study from May 2015 to May 2017 at the University Hospital of Grenoble. PATIENTS A total of 69 infertile couples underwent IVF. INTERVENTION(S) Collection of 298 individual FF from 44 women undergoing IVF; 52 individual cumulus cell (CC) samples and 15 CC primary cultures from 25 women undergoing IVF-intracytoplasmic sperm injection (ICSI). MAIN OUTCOME MEASURE(S) Oocyte competence was defined as the ability to sustain embryo development to the blastocyst stage. Follicular size was measured by 2D-sonography. PROK1 concentration was quantified by ELISA assay. RESULTS PROK1 concentration was correlated to follicular size (r = 0.85, P = 2.2 × 10-16). Normalized PROK1 concentration in FF was predictive of subsequent oocyte competence (AUROC curve = 0.76 [95% CI, 0.69-0.83]; P = 1.7 × 10-9), irrespectively of day-2 embryo morphokinetic parameters. The expression and secretion of PROK1 were increased in FF and CC of mature oocytes (P < 0.01). Follicle Stimulating Hormone and hCG up-regulated PROK1 secretion in CC primary cultures (P < 0.01; P < 0.05), probably through the cAMP pathway (P < 0.01). CONCLUSIONS PROK1 quantification in individual FF could constitute a new predictive biomarker of oocyte competence in addition with embryo morphokinetic parameters. TRIAL REGISTRATION NUMBER none.
Collapse
Affiliation(s)
- Nadia Alfaidy
- Université Grenoble-Alpes, Inserm, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Biosciences et Biotechnologies de Grenoble (BIG), Laboratoire Biologie du Cancer et de l'Infection (BCI), 38000, Grenoble, France
| | - Chloé Baron
- Université Grenoble-Alpes, Inserm, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Biosciences et Biotechnologies de Grenoble (BIG), Laboratoire Biologie du Cancer et de l'Infection (BCI), 38000, Grenoble, France
- Centre Hospitalier Universitaire de Grenoble, Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation- Centre d'étude et de conservation des œufs et du sperme humains (CECOS), 38700, La Tronche, France
- INSERM U1203, Equipe "Développement Embryonnaire Précoce Humain et Pluripotence", Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi, Montpellier 34295, France
| | - Yannick Antoine
- INSERM U1203, Equipe "Développement Embryonnaire Précoce Humain et Pluripotence", Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi, Montpellier 34295, France
| | - Déborah Reynaud
- Université Grenoble-Alpes, Inserm, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Biosciences et Biotechnologies de Grenoble (BIG), Laboratoire Biologie du Cancer et de l'Infection (BCI), 38000, Grenoble, France
| | - Wael Traboulsi
- Université Grenoble-Alpes, Inserm, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Biosciences et Biotechnologies de Grenoble (BIG), Laboratoire Biologie du Cancer et de l'Infection (BCI), 38000, Grenoble, France
| | - Aurore Gueniffey
- Centre Hospitalier Universitaire de Grenoble, Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation- Centre d'étude et de conservation des œufs et du sperme humains (CECOS), 38700, La Tronche, France
| | - Anna Lamotte
- Centre Hospitalier Universitaire de Grenoble, Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation- Centre d'étude et de conservation des œufs et du sperme humains (CECOS), 38700, La Tronche, France
| | - Eve Melloul
- Centre Hospitalier Universitaire de Grenoble, Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation- Centre d'étude et de conservation des œufs et du sperme humains (CECOS), 38700, La Tronche, France
| | - Camille Dunand
- Centre Hospitalier Universitaire de Grenoble, Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation- Centre d'étude et de conservation des œufs et du sperme humains (CECOS), 38700, La Tronche, France
| | - Laure Villaret
- Centre Hospitalier Universitaire de Grenoble, Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation- Centre d'étude et de conservation des œufs et du sperme humains (CECOS), 38700, La Tronche, France
| | - Julien Bessonnat
- Centre Hospitalier Universitaire de Grenoble, Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation- Centre d'étude et de conservation des œufs et du sperme humains (CECOS), 38700, La Tronche, France
| | - Charlotte Mauroy
- Centre Hospitalier Universitaire de Grenoble, Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation- Centre d'étude et de conservation des œufs et du sperme humains (CECOS), 38700, La Tronche, France
| | - Thomas Boueihl
- Centre Hospitalier Universitaire de Grenoble, Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation- Centre d'étude et de conservation des œufs et du sperme humains (CECOS), 38700, La Tronche, France
| | - Charles Coutton
- Université Grenoble-Alpes, Inserm, Institute for Advanced Biosciences (IAB), équipe Génétique Epigénétique et Thérapie de l'Infertilité (GETI), 38000, Grenoble, France
- Centre Hospitalier Universitaire de Grenoble, Hôpital Couple Enfant, Département de Génétique et Procréation, Laboratoire de Génétique Chromosomique, 38700, La Tronche, France
| | - Guillaume Martinez
- Centre Hospitalier Universitaire de Grenoble, Hôpital Couple Enfant, Département de Génétique et Procréation, Laboratoire de Génétique Chromosomique, 38700, La Tronche, France
| | - Samir Hamamah
- INSERM U1203, Equipe "Développement Embryonnaire Précoce Humain et Pluripotence", Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi, Montpellier 34295, France
- CHU Montpellier, ART/PGD Division, Hôpital Arnaud de Villeneuve, Montpellier 34295, France
| | - Pascale Hoffmann
- Université Grenoble-Alpes, Inserm, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Biosciences et Biotechnologies de Grenoble (BIG), Laboratoire Biologie du Cancer et de l'Infection (BCI), 38000, Grenoble, France
- Centre Hospitalier Universitaire de Grenoble, Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation- Centre d'étude et de conservation des œufs et du sperme humains (CECOS), 38700, La Tronche, France
| | - Sylviane Hennebicq
- Centre Hospitalier Universitaire de Grenoble, Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation- Centre d'étude et de conservation des œufs et du sperme humains (CECOS), 38700, La Tronche, France
- Université Grenoble-Alpes, Inserm, Institute for Advanced Biosciences (IAB), équipe Génétique Epigénétique et Thérapie de l'Infertilité (GETI), 38000, Grenoble, France
| | - Sophie Brouillet
- Université Grenoble-Alpes, Inserm, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Biosciences et Biotechnologies de Grenoble (BIG), Laboratoire Biologie du Cancer et de l'Infection (BCI), 38000, Grenoble, France
- Centre Hospitalier Universitaire de Grenoble, Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation- Centre d'étude et de conservation des œufs et du sperme humains (CECOS), 38700, La Tronche, France
- INSERM U1203, Equipe "Développement Embryonnaire Précoce Humain et Pluripotence", Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi, Montpellier 34295, France
| |
Collapse
|
9
|
Armouti M, Winston N, Hatano O, Hobeika E, Hirshfeld-Cytron J, Liebermann J, Takemori H, Stocco C. Salt-inducible Kinases Are Critical Determinants of Female Fertility. Endocrinology 2020; 161:5826400. [PMID: 32343771 PMCID: PMC7286620 DOI: 10.1210/endocr/bqaa069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
Follicle development is the most crucial step toward female fertility and is controlled mainly by follicle-stimulating hormone (FSH). In ovarian granulosa cells (GCs), FSH activates protein kinase A by increasing 3',5'-cyclic adenosine 5'-monophosphate (cAMP). Since cAMP signaling is impinged in part by salt-inducible kinases (SIKs), we examined the role of SIKs on the regulation of FSH actions. Here, we report that SIKs are essential for normal ovarian function and female fertility. All SIK isoforms are expressed in human and rodent GCs at different levels (SIK3>SIK2>SIK1). Pharmacological inhibition of SIK activity potentiated the stimulatory effect of FSH on markers of GC differentiation in mouse, rat, and human GCs and estradiol production in rat GCs. In humans, SIK inhibition strongly enhanced FSH actions in GCs of patients with normal or abnormal ovarian function. The knockdown of SIK2, but not SIK1 or SIK3, synergized with FSH on the induction of markers of GC differentiation. SIK inhibition boosted gonadotropin-induced GC differentiation in vivo, while the genomic knockout of SIK2 led to a significant increase in the number of ovulated oocytes. Conversely, SIK3 knockout females were infertile, FSH insensitive, and had abnormal folliculogenesis. These findings reveal novel roles for SIKs in the regulation of GC differentiation and female fertility, and contribute to our understanding of the mechanisms regulated by FSH. Furthermore, these data suggest that specific pharmacological modulation of SIK2 activity could be of benefit to treat ovulatory defects in humans and to increase the propagation of endangered species and farm mammals.
Collapse
Affiliation(s)
- Marah Armouti
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Nicola Winston
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine. Chicago, Illinois
| | - Osamu Hatano
- Department of Basic Medicine, Nara Medical University, Nara, Japan
| | - Elie Hobeika
- Fertility Centers of Illinois, Chicago, Illinois
| | | | | | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Carlos Stocco
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine. Chicago, Illinois
- Correspondence: Carlos Stocco, Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612. E-mail:
| |
Collapse
|
10
|
Ye L, Cao Z, Wang W, Zhou N. New Insights in Cannabinoid Receptor Structure and Signaling. Curr Mol Pharmacol 2020; 12:239-248. [PMID: 30767756 DOI: 10.2174/1874467212666190215112036] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cannabinoid has long been used for medicinal purposes. Cannabinoid signaling has been considered the therapeutic target for treating pain, addiction, obesity, inflammation, and other diseases. Recent studies have suggested that in addition to CB1 and CB2, there are non-CB1 and non-CB2 cannabinoid-related orphan GPCRs including GPR18, GPR55, and GPR119. In addition, CB1 and CB2 display allosteric binding and biased signaling, revealing correlations between biased signaling and functional outcomes. Interestingly, new investigations have indicated that CB1 is functionally present within the mitochondria of striated and heart muscles directly regulating intramitochondrial signaling and respiration. CONCLUSION In this review, we summarize the recent progress in cannabinoid-related orphan GPCRs, CB1/CB2 structure, Gi/Gs coupling, allosteric ligands and biased signaling, and mitochondria-localized CB1, and discuss the future promise of this research.
Collapse
Affiliation(s)
- Lingyan Ye
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| | - Zheng Cao
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| | - Weiwei Wang
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| | - Naiming Zhou
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Davies TF, Latif R. Editorial: TSH Receptor and Autoimmunity. Front Endocrinol (Lausanne) 2019; 10:19. [PMID: 30761086 PMCID: PMC6364331 DOI: 10.3389/fendo.2019.00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
|
12
|
Anderson RC, Newton CL, Anderson RA, Millar RP. Gonadotropins and Their Analogs: Current and Potential Clinical Applications. Endocr Rev 2018; 39:911-937. [PMID: 29982442 DOI: 10.1210/er.2018-00052] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Abstract
The gonadotropin receptors LH receptor and FSH receptor play a central role in governing reproductive competency/fertility. Gonadotropin hormone analogs have been used clinically for decades in assisted reproductive therapies and in the treatment of various infertility disorders. Though these treatments are effective, the clinical protocols demand multiple injections, and the hormone preparations can lack uniformity and stability. The past two decades have seen a drive to develop chimeric and modified peptide analogs with more desirable pharmacokinetic profiles, with some displaying clinical efficacy, such as corifollitropin alfa, which is now in clinical use. More recently, low-molecular-weight, orally active molecules with activity at gonadotropin receptors have been developed. Some have excellent characteristics in animals and in human studies but have not reached the market-largely as a result of acquisitions by large pharma. Nonetheless, such molecules have the potential to mitigate risks currently associated with gonadotropin-based fertility treatments, such as ovarian hyperstimulation syndrome and the demands of injection-based therapies. There is also scope for novel use beyond the current remit of gonadotropin analogs in fertility treatments, including application as novel contraceptives; in the treatment of polycystic ovary syndrome; in the restoration of function to inactivating mutations of gonadotropin receptors; in the treatment of ovarian and prostate cancers; and in the prevention of bone loss and weight gain in postmenopausal women. Here we review the properties and clinical application of current gonadotropin preparations and their analogs, as well as the development of novel orally active, small-molecule nonpeptide analogs.
Collapse
Affiliation(s)
- Ross C Anderson
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa.,Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Claire L Newton
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa.,Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P Millar
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa.,Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Marelli BE, Leiva CJM, Flores Brun RB, Ramírez CS, Failla JI, Matiller V, Amweg AN, Rey F, Ortega HH. Production and validation of a polyclonal serum against bovine FSH receptor. Reprod Biol 2018; 18:432-439. [PMID: 30220548 DOI: 10.1016/j.repbio.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/18/2018] [Accepted: 09/05/2018] [Indexed: 11/25/2022]
Abstract
In ovarian granulosa cells, follicle-stimulating hormone (FSH) regulates the proliferation and differentiation events required for follicular growth and oocyte maturation. FSH actions are mediated exclusively through the FSH receptor (FSHR). In cattle, the FSHR gene expression pattern during folliculogenesis and the implications of this receptor in reproductive disorders have been extensively studied. However, the limited availability of specific antibodies against bovine FSHR has restricted FSHR protein analysis. In the present study, we developed an anti-FSHR polyclonal serum by using a 14-kDa peptide conjugated to maltose binding protein. The antiserum obtained was characterized by western blot of protein extracts from bovine follicles, BGC-1 cells and primary cultures of granulosa cells stimulated with testosterone. Also, the blocking effect of serum on estradiol secretion and cell viability after gonadotropin stimulus was characterized in a functional in vitro assay. A 76-kDa protein, consistent with the predicted molecular size of full-length FSHR, was detected in ovarian tissue. Besides, two immunoreactive bands of 60-kDa and 30-kDa (only in cultured cells) were detected. These bands would be related to some of the isoforms of the receptor. Therefore, immunohistochemical assays allowed detecting FSHR in the cytoplasm of granulosa cells and an increase in its expression as follicles progressed from primordial to large preantral follicles. These results suggest that the anti-FSHR serum here developed has good reactivity and specificity against the native FSHR. Therefore, this antiserum may serve as a valuable tool for future studies of the biological function of FSHR in physiological conditions as well as of the molecular mechanism and functional involvement of FSHR in reproductive disorders.
Collapse
Affiliation(s)
- Belkis E Marelli
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral, Argentina (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Veterinarias, UNL, Argentina
| | - Cristian J M Leiva
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral, Argentina (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Veterinarias, UNL, Argentina
| | - Rocío B Flores Brun
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Cintia S Ramírez
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Juan I Failla
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral, Argentina (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Veterinarias, UNL, Argentina
| | - Valentina Matiller
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral, Argentina (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Veterinarias, UNL, Argentina
| | - Ayelén N Amweg
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral, Argentina (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Veterinarias, UNL, Argentina
| | - Florencia Rey
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral, Argentina (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Veterinarias, UNL, Argentina
| | - Hugo H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET Litoral), Universidad Nacional del Litoral, Argentina (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Veterinarias, UNL, Argentina.
| |
Collapse
|
14
|
Yvinec R, Crépieux P, Reiter E, Poupon A, Clément F. Advances in computational modeling approaches of pituitary gonadotropin signaling. Expert Opin Drug Discov 2018; 13:799-813. [DOI: 10.1080/17460441.2018.1501025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | | | - Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Frédérique Clément
- Inria, Université Paris-Saclay, Palaiseau, France
- LMS, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
15
|
Ulloa-Aguirre A, Reiter E, Crépieux P. FSH Receptor Signaling: Complexity of Interactions and Signal Diversity. Endocrinology 2018; 159:3020-3035. [PMID: 29982321 DOI: 10.1210/en.2018-00452] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022]
Abstract
FSH is synthesized in the pituitary by gonadotrope cells. By binding to and interacting with its cognate receptor [FSH receptor (FSHR)] in the gonads, this gonadotropin plays a key role in the control of gonadal function and reproduction. Upon activation, the FSHR undergoes conformational changes leading to transduction of intracellular signals, including dissociation of G protein complexes into components and activation of several associated interacting partners, which concertedly regulate downstream effectors. The canonical Gs/cAMP/protein kinase A pathway, considered for a long time as the sole effector of FSHR-mediated signaling, is now viewed as one of several mechanisms employed by this receptor to transduce intracellular signals in response to the FSH stimulus. This complex network of signaling pathways allows for a fine-tuning regulation of the gonadotropic stimulus, where activation/inhibition of its multiple components vary depending on the cell context, cell developmental stage, and concentration of associated receptors and corresponding ligands. Activation of these multiple signaling modules eventually converge to the hormone-integrated biological response, including survival, proliferation and differentiation of target cells, synthesis and secretion of paracrine/autocrine regulators, and, at the molecular level, functional selectivity and differential gene expression. In this mini-review, we discuss the complexity of FSHR-mediated intracellular signals activated in response to ligand stimulation. A better understanding of the signaling pathways involved in FSH action might potentially influence the development of new therapeutic strategies for reproductive disorders.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eric Reiter
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| | - Pascale Crépieux
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| |
Collapse
|
16
|
Nataraja S, Sriraman V, Palmer S. Allosteric Regulation of the Follicle-Stimulating Hormone Receptor. Endocrinology 2018; 159:2704-2716. [PMID: 29800292 DOI: 10.1210/en.2018-00317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/16/2018] [Indexed: 01/08/2023]
Abstract
Follicle-stimulating hormone receptor (FSHR) belongs to the leucine-rich repeat family of the G protein-coupled receptor (LGR), which includes the glycoprotein hormone receptors luteinizing hormone receptor, thyrotropin receptor, and other LGRs 4, 5, 6, and 7. FSH is the key regulator of folliculogenesis in females and spermatogenesis in males. FSH elicits its physiological response through its cognate receptor on the cell surface. Binding of the hormone FSH to its receptor FSHR brings about conformational changes in the receptor that are transduced through the transmembrane domain to the intracellular region, where the downstream effector interaction takes place, leading to activation of the downstream signaling cascade. Identification of small molecules that could activate or antagonize FSHR provided interesting tools to study the signal transduction mechanism of the receptor. However, because of the nature of the ligand-receptor interaction of FSH-FSHR, which contains multiple sites in the extracellular binding domain, most of the small-molecule modulators of FSHR are unable to bind to the orthosteric site of the receptors. Rather they modulate receptor activation through allosteric sites in the transmembrane region. This review will discuss allosteric modulation of FSHR primarily through the discovery of small-molecule modulators, focusing on current data on the status of development and the utility of these as tools to better understand signaling mechanisms.
Collapse
|
17
|
Qi X, Guo Y, Song Y, Yu C, Zhao L, Fang L, Kong D, Zhao J, Gao L. Follicle-stimulating hormone enhances hepatic gluconeogenesis by GRK2-mediated AMPK hyperphosphorylation at Ser485 in mice. Diabetologia 2018; 61:1180-1192. [PMID: 29442133 DOI: 10.1007/s00125-018-4562-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Increased serum follicle-stimulating hormone (FSH) is correlated with fasting hyperglycaemia. However, the underlying mechanism remains unclear. Because excessive hepatic gluconeogenesis is a major cause of fasting hyperglycaemia the present study investigated whether FSH increases hepatic gluconeogenesis in mice. METHODS Ovariectomised mice supplemented with oestradiol (E2) to maintain normal levels of serum E2 (OVX+E2 mice) were injected with low or high doses of FSH. We knocked out Crtc2, a crucial factor in gluconeogenesis, and Fshr to discern their involvement in FSH signalling. To evaluate the role of the G-protein-coupled receptor (GPCR) kinase 2 (GRK2), which could affect glucose metabolism and interact directly with non-GPCR components, a specific GRK2 inhibitor was used. The pyruvate tolerance test (PTT), quantification of PEPCK and glucose-6-phosphatase (G6Pase), key enzymes of gluconeogenesis, GRK2 and phosphorylation of AMP-activated protein kinase (AMPK) were examined to evaluate the level of gluconeogenesis in the liver. A nonphosphorylatable mutant of AMPK Ser485 (AMPK S485A) was transfected into HepG2 cells to evaluate the role of AMPK Ser485 phosphorylation. RESULTS FSH increased fasting glucose (OVX+E2+high-dose FSH 8.18 ± 0.60 mmol/l vs OVX+E2 6.23 ± 1.33 mmol/l), the PTT results, and the transcription of Pepck (also known as Pck1; 2.0-fold increase) and G6pase (also known as G6pc; 2.5-fold increase) in OVX+E2 mice. FSH also enhanced the promoter luciferase activities of the two enzymes in HepG2 cells. FSH promoted the membrane translocation of GRK2, which is associated with increased AMPK Ser485 and decreased AMPK Thr172 phosphorylation, and enhanced the nuclear translocation of cyclic AMP-regulated transcriptional coactivator 2 (CRTC2). GRK2 could bind with AMPK and induce Ser485 hyperphosphorylation. Furthermore, either the GRK2 inhibitor or AMPK S485A blocked FSH-regulated AMPK Thr172 dephosphorylation and gluconeogenesis. Additionally, the deletion of Crtc2 or Fshr abolished the function of FSH in OVX+E2 mice. CONCLUSIONS/INTERPRETATION The results indicate that FSH enhances CRTC2-mediated gluconeogenesis dependent on AMPK Ser485 phosphorylation via GRK2 in the liver, suggesting an essential role of FSH in the pathogenesis of fasting hyperglycaemia.
Collapse
Affiliation(s)
- Xiaoyi Qi
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, People's Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
| | - Yanjing Guo
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, People's Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, People's Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, People's Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
| | - Lifang Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, People's Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
| | - Li Fang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, People's Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
| | - Dehuan Kong
- Department of Geriatrics, Tai'an City Central Hospital, Tai'an, Shandong, People's Republic of China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China.
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, People's Republic of China.
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China.
| | - Ling Gao
- Scientific Centre, Shandong Provincial Hospital affiliated to Shandong University, No. 324 Jing 5 Rd, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
18
|
Li X, Jing L, Lin F, Huang H, Chen Z, Chen Y, Wang L, Lin X, Guo T, Yang J, Ruan J, Lin K, Li C, You Z, He L, Chen J, Li Z, Zhu P, Chen G. Diurnal rhythm of follicle-stimulating hormone is associated with nonalcoholic fatty liver disease in a Chinese elderly population. Eur J Obstet Gynecol Reprod Biol 2018; 222:166-170. [PMID: 29408750 DOI: 10.1016/j.ejogrb.2018.01.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 01/14/2018] [Accepted: 01/29/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Previous studies have found that impairment of the circadian clock appears to contribute to the development of nonalcoholic fatty liver disease (NAFLD) and the circulating follicle-stimulating hormone (FSH) level showed a diurnal cycle. A recent study reported that a lower FSH level was associated with NAFLD. However, the effects of the diurnal rhythm of FSH on NAFLD have not been reported. The aim of this study was to evaluate whether the diurnal rhythm of FSH was associated with NAFLD in an elderly population. STUDY DESIGN We performed a cross-sectional study among 71 elderly patients between August 2015 and November 2015 at Fujian Provincial Hospital. Anthropometrics and tests for laboratory were performed for each patient. FSH was determined by radioimmunoassay. The FSH receptor (FSHR) expression was identified in liver and ovary tissue by immunohistochemical staining. NAFLD was diagnosed by sonographic features. RESULTS Of the 71 patients, 33 (42.9%) had NAFLD on their ultrasound. There were no significant differences between subjects with NAFLD and those without NAFLD in terms of age, sex, body mass index, waist-to-hip ratio, fasting plasma glucose, postload plasma glucose, liver enzyme, triglycerides, total cholesterol, high-density lipoprotein-cholesterol and low-density lipoprotein-cholesterol. Both the serum FSH levels of 8AM and 0AM showed no differences between the groups. The proportion of the 'normal' diurnal rhythm of FSH was higher among the patients with NAFLD (78.1% vs. 52.6%, P = .027). After adjusting for all potential confounders, the fully adjusted odds ratios (OR) of diurnal rhythm of FSH for NAFLD was 3.86 (95%CI: 1.01, 14.81, P = .049). Immunohistochemical staining showed that the FSHR protein was detected in human ovarian and hepatic tissues. CONCLUSIONS These results suggest that the 'normal' diurnal rhythm of FSH was independently associated with NAFLD in an elderly population. This study provides a novel insight into the diurnal rhythm of FSH in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China
| | - Long Jing
- Department of Pathology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Fang Lin
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China
| | - Huan Huang
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China
| | - Zhizhong Chen
- Department of Pathology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Yan Chen
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China
| | - Lina Wang
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China
| | - Xing Lin
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China
| | - Tailin Guo
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China
| | - Jin Yang
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China
| | - Jingming Ruan
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China
| | - Kaiyang Lin
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China
| | - Chunjing Li
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China
| | - Zhebing You
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China
| | - Linlin He
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China
| | - Jiankang Chen
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China
| | - Zhuzhou Li
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China
| | - Pengli Zhu
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Key Laboratory of Geriatric Diseases, Fujian Medical University, Fuzhou, 350001, China.
| | - Gang Chen
- Department of Endocrinology, Fujian Provincial Hospital Key Laboratory of Endocrinology, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
19
|
Ulloa-Aguirre A, Zariñán T, Gutiérrez-Sagal R, Dias JA. Intracellular Trafficking of Gonadotropin Receptors in Health and Disease. Handb Exp Pharmacol 2018; 245:1-39. [PMID: 29063275 DOI: 10.1007/164_2017_49] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gonadotropin receptors belong to the highly conserved subfamily of the G protein-coupled receptor (GPCR) superfamily, the so-called Rhodopsin-like family (class A), which is the largest class of GPCRs and currently a major drug target. Both the follicle-stimulating hormone receptor (FSHR) and the luteinizing hormone/chorionic gonadotropin hormone receptor (LHCGR) are mainly located in the gonads where they play key functions associated to essential reproductive functions. As any other protein, gonadotropin receptors must be properly folded into a mature tertiary conformation compatible with quaternary assembly and endoplasmic reticulum export to the cell surface plasma membrane. Several primary and secondary structural features, including presence of particular amino acid residues and short motifs and in addition, posttranslational modifications, regulate intracellular trafficking of gonadotropin receptors to the plasma membrane as well as internalization and recycling of the receptor back to the cell surface after activation by agonist. Inactivating mutations of gonadotropin receptors may derive from receptor misfolding and lead to absent or reduced plasma membrane expression of the altered receptor, thereby manifesting an array of phenotypical abnormalities mostly characterized by reproductive failure and/or abnormal or absence of development of secondary sex characteristics. In this chapter we review the structural requirements necessary for intracellular trafficking of the gonadotropin receptors, and describe how mutations in these receptors may lead to receptor misfolding and disease in humans.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico.
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico
| | - James A Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| |
Collapse
|
20
|
Sayers N, Hanyaloglu AC. Intracellular Follicle-Stimulating Hormone Receptor Trafficking and Signaling. Front Endocrinol (Lausanne) 2018; 9:653. [PMID: 30450081 PMCID: PMC6225286 DOI: 10.3389/fendo.2018.00653] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
Models of G protein-coupled receptor (GPCR) signaling have dramatically altered over the past two decades. Indeed, GPCRs such as the follicle-stimulating hormone receptor (FSHR) have contributed to these new emerging models. We now understand that receptor signaling is highly organized at a spatial level, whereby signaling not only occurs from the plasma membrane but distinct intracellular compartments. Recent studies in the role of membrane trafficking and spatial organization of GPCR signaling in regulating gonadotropin hormone receptor activity has identified novel intracellular compartments, which are tightly linked with receptor signaling and reciprocally regulated by the cellular trafficking machinery. Understanding the impact of these cell biological mechanisms to physiology and pathophysiology is emerging for certain GPCRs. However, for FSHR, the potential impact in both health and disease and the therapeutic possibilities of these newly identified systems is currently unknown, but offers the potential to reassess prior strategies, or unveil novel opportunities, in targeting this receptor.
Collapse
|
21
|
Szymańska K, Kałafut J, Przybyszewska A, Paziewska B, Adamczuk G, Kiełbus M, Rivero-Müller A. FSHR Trans-Activation and Oligomerization. Front Endocrinol (Lausanne) 2018; 9:760. [PMID: 30619090 PMCID: PMC6301190 DOI: 10.3389/fendo.2018.00760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Follicle stimulating hormone (FSH) plays a key role in human reproduction through, among others, induction of spermatogenesis in men and production of estrogen in women. The function FSH is performed upon binding to its cognate receptor-follicle-stimulating hormone receptor (FSHR) expressed on the surface of target cells (granulosa and Sertoli cells). FSHR belongs to the family of G protein-coupled receptors (GPCRs), a family of receptors distinguished by the presence of various signaling pathway activation as well as formation of cross-talking aggregates. Until recently, it was claimed that the FSHR occurred naturally as a monomer, however, the crystal structure as well as experimental evidence have shown that FSHR both self-associates and forms heterodimers with the luteinizing hormone/chorionic gonadotropin receptor-LHCGR. The tremendous gain of knowledge is also visible on the subject of receptor activation. It was once thought that activation occurs only as a result of ligand binding to a particular receptor, however there is mounting evidence of trans-activation as well as biased signaling between GPCRs. Herein, we describe the mechanisms of aforementioned phenomena as well as briefly describe important experiments that contributed to their better understanding.
Collapse
Affiliation(s)
- Kamila Szymańska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Alicja Przybyszewska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Beata Paziewska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Medical University of Lublin, Lublin, Poland
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- *Correspondence: Adolfo Rivero-Müller ;
| |
Collapse
|
22
|
Anderson RC, Newton CL, Millar RP. Small Molecule Follicle-Stimulating Hormone Receptor Agonists and Antagonists. Front Endocrinol (Lausanne) 2018; 9:757. [PMID: 30728807 PMCID: PMC6352558 DOI: 10.3389/fendo.2018.00757] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022] Open
Abstract
The follicle-stimulating hormone receptor (FSHR) has been targeted therapeutically for decades, due to its pivotal role in reproduction. To date, only purified and recombinant/biosimilar FSH have been used to target FSHR in assisted reproduction, with the exception of corifollitropin alfa; a modified gonadotropin in which the FSH beta subunit is joined to the C-terminal peptide of the human choriogonadotropin beta subunit, to extend serum half-life. Assisted reproduction protocols usually entail the trauma of multiple injections of FSH to initiate and promote folliculogenesis, which has prompted the development of a number of orally-available low molecular weight (LMW) chemical scaffolds targeting the FSHR. Furthermore, the recently documented roles of the FSHR in diverse extragonadal tissues, including cancer, fat metabolism, and bone density regulation, has highlighted the potential utility of LMW modulators of FSHR activity. Despite these chemical scaffolds encompassing a spectrum of in vitro and in vivo activities and pharmacological profiles, none have yet reached the clinic. In this review we discuss the major chemical classes of LMW molecules targeting the FSHR, and document their activity profiles and current status of development, in addition to discussing potential clinical applications.
Collapse
Affiliation(s)
- Ross C. Anderson
- Centre for Neuroendocrinology, Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- *Correspondence: Ross C. Anderson
| | - Claire L. Newton
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Robert P. Millar
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
23
|
Bousfield GR, May JV, Davis JS, Dias JA, Kumar TR. In Vivo and In Vitro Impact of Carbohydrate Variation on Human Follicle-Stimulating Hormone Function. Front Endocrinol (Lausanne) 2018; 9:216. [PMID: 29867757 PMCID: PMC5960776 DOI: 10.3389/fendo.2018.00216] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
Human follicle-stimulating hormone (FSH) exhibits both macro- and microheterogeneity in its carbohydrate moieties. Macroheterogeneity results in three physiologically relevant FSHβ subunit variants, two that possess a single N-linked glycan at either one of the two βL1 loop glycosylation sites or one with both glycans. Microheterogeneity is characterized by 80 to over 100 unique oligosaccharide structures attached to each of the 3 to 4 occupied N-glycosylation sites. With respect to its receptor, partially glycosylated (hypo-glycosylated) FSH variants exhibit higher association rates, greater apparent affinity, and greater occupancy than fully glycosylated FSH. Higher receptor binding-activity is reflected by greater in vitro bioactivity and, in some cases, greater in vivo bioactivity. Partially glycosylated pituitary FSH shows an age-related decline in abundance that may be associated with decreased fertility. In this review, we describe an integrated approach involving genetic models, in vitro signaling studies, FSH biochemistry, relevance of physiological changes in FSH glycoform abundance, and characterize the impact of FSH macroheterogeneity on fertility and reproductive aging. We will also address the controversy with regard to claims of a direct action of FSH in mediating bone loss especially at the peri- and postmenopausal stages.
Collapse
Affiliation(s)
- George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
- *Correspondence: George R. Bousfield,
| | - Jeffrey V. May
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - John S. Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
- Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - James A. Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
| | - T. Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
24
|
Follicle-Stimulating Hormone Receptor: Advances and Remaining Challenges. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:1-58. [DOI: 10.1016/bs.ircmb.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Mastrangeli R, Satwekar A, Cutillo F, Ciampolillo C, Palinsky W, Longobardi S. In-vivo biological activity and glycosylation analysis of a biosimilar recombinant human follicle-stimulating hormone product (Bemfola) compared with its reference medicinal product (GONAL-f). PLoS One 2017; 12:e0184139. [PMID: 28880909 PMCID: PMC5589168 DOI: 10.1371/journal.pone.0184139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 08/18/2017] [Indexed: 02/03/2023] Open
Abstract
Recombinant human follicle-stimulating hormone (r-hFSH) is widely used in fertility treatment. Although biosimilar versions of r-hFSH (follitropin alfa) are currently on the market, given their structural complexity and manufacturing process, it is important to thoroughly evaluate them in comparison with the reference product. This evaluation should focus on how they differ (e.g., active component molecular characteristics, impurities and potency), as this could be associated with clinical outcome. This study compared the site-specific glycosylation profile and batch-to-batch variability of the in-vivo bioactivity of Bemfola, a biosimilar follitropin alfa, with its reference medicinal product GONAL-f. The focus of this analysis was the site-specific glycosylation at asparagine (Asn) 52 of the α-subunit of FSH, owing to the pivotal role of Asn52 glycosylation in FSH receptor (FSHR) activation/signalling. Overall, Bemfola had bulkier glycan structures and greater sialylation than GONAL-f. The nominal specific activity for both Bemfola and GONAL-f is 13,636 IU/mg. Taking into account both the determined potency and the nominal amount the average specific activity of Bemfola was 14,522 IU/mg (105.6% of the nominal value), which was greater than the average specific activity observed for GONAL-f (13,159 IU/mg; 97.3% of the nominal value; p = 0.0048), although this was within the range stated in the product label. A higher batch-to-batch variability was also observed for Bemfola versus GONAL-f (coefficient of variation: 8.3% vs 5.8%). A different glycan profile was observed at Asn52 in Bemfola compared with GONAL-f (a lower proportion of bi-antennary structures [~53% vs ~77%], and a higher proportion of tri-antennary [~41% vs ~23%] and tetra-antennary structures [~5% vs <1%]). These differences in the Asn52 glycan profile might potentially lead to differences in FSHR activation. This, together with the greater bioactivity and higher batch-to-batch variability of Bemfola, could partly explain the reported differences in clinical outcomes. The clinical relevance of the differences observed between GONAL-f and Bemfola should be further investigated.
Collapse
Affiliation(s)
- Renato Mastrangeli
- Biotech Development Programme, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Guidonia Montecelio, Rome, Italy
- * E-mail:
| | - Abhijeet Satwekar
- Pharamceutical & Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Guidonia Montecelio, Rome, Italy
| | - Francesca Cutillo
- Pharamceutical & Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Guidonia Montecelio, Rome, Italy
| | - Cinzia Ciampolillo
- Analytical BQC, Merck RBM S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Ivrea, Turin, Italy
| | - Wolf Palinsky
- Biotech Development Programme, Merck Biopharma (an affiliate of Merck KGaA, Darmstadt, Germany), Aubonne, Switzerland
| | - Salvatore Longobardi
- Global Medical Affairs Fertility, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Guidonia Montecelio, Rome, Italy
| |
Collapse
|
26
|
Andreone L, Ambao V, Pellizzari EH, Loreti N, Cigorraga SB, Campo S. Role of FSH glycan structure in the regulation of Sertoli cell inhibin production. Reproduction 2017; 154:711-721. [PMID: 28855248 DOI: 10.1530/rep-17-0393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 01/16/2023]
Abstract
Variations in follicle-stimulating hormone (FSH) carbohydrate composition and structure are associated with important structural and functional changes in Sertoli cells (SCs) during sexual maturation. The aim of the present study was to investigate the impact of FSH oligosaccharide structure and its interaction with gonadal factors on the regulation of monomeric and dimeric inhibin production at different maturation stages of the SC. Recombinant human FSH (rhFSH) glycosylation variants were isolated according to their sialylation degree (AC and BA) and complexity of oligosaccharides (CO and HY). Native rhFSH stimulated inhibin α-subunit (Pro-αC) but did not show any effect on inhibin B (INHB) production in immature SCs isolated from 8-day-old rats. Activin A stimulated INHB and had a synergistic effect on FSH to stimulate Pro-αC. The less acidic/sialylated rhFSH charge analogues, BA, were the only charge analogue mix that stimulated INHB as well as the most potent stimulus for Pro-αC production. Native rhFSH stimulated both Pro-αC and INHB in SCs at a more advanced maturation stage, isolated from 20-day-old rats. In these cells, all rhFSH glycosylation variants increased INHB and Pro-αC production, even in the presence of growth factors. The BA preparation exerted a more marked stimulatory effect on INHB and Pro-αC than the AC. Glycoforms bearing high mannose and hybrid-type oligosaccharides, HY, stimulated INHB and Pro-αC more effectively than those bearing complex oligosaccharides, CO, even in the presence of gonadal growth factors. These findings demonstrate the modulatory effect of FSH oligosaccharide structure on the regulation of inhibin production in the male gonad.
Collapse
Affiliation(s)
| | - Verónica Ambao
- Centro de Investigaciones Endocrinológicas 'Dr. Cesar Bergadá' (CEDIE-CONICET) Hospital de Niños 'R. Gutiérrez', Buenos Aires, Argentina
| | - Eliana H Pellizzari
- Centro de Investigaciones Endocrinológicas 'Dr. Cesar Bergadá' (CEDIE-CONICET) Hospital de Niños 'R. Gutiérrez', Buenos Aires, Argentina
| | - Nazareth Loreti
- Centro de Investigaciones Endocrinológicas 'Dr. Cesar Bergadá' (CEDIE-CONICET) Hospital de Niños 'R. Gutiérrez', Buenos Aires, Argentina
| | - Selva B Cigorraga
- Centro de Investigaciones Endocrinológicas 'Dr. Cesar Bergadá' (CEDIE-CONICET) Hospital de Niños 'R. Gutiérrez', Buenos Aires, Argentina
| | - Stella Campo
- Centro de Investigaciones Endocrinológicas 'Dr. Cesar Bergadá' (CEDIE-CONICET) Hospital de Niños 'R. Gutiérrez', Buenos Aires, Argentina
| |
Collapse
|
27
|
Reiter E, Ayoub MA, Pellissier LP, Landomiel F, Musnier A, Tréfier A, Gandia J, De Pascali F, Tahir S, Yvinec R, Bruneau G, Poupon A, Crépieux P. β-arrestin signalling and bias in hormone-responsive GPCRs. Mol Cell Endocrinol 2017; 449:28-41. [PMID: 28174117 DOI: 10.1016/j.mce.2017.01.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) play crucial roles in the ability of target organs to respond to hormonal cues. GPCRs' activation mechanisms have long been considered as a two-state process connecting the agonist-bound receptor to heterotrimeric G proteins. This view is now challenged as mounting evidence point to GPCRs being connected to large arrays of transduction mechanisms involving heterotrimeric G proteins as well as other players. Amongst the G protein-independent transduction mechanisms, those elicited by β-arrestins upon their recruitment to the active receptors are by far the best characterized and apply to most GPCRs. These concepts, in conjunction with remarkable advances made in the field of GPCR structural biology and biophysics, have supported the notion of ligand-selective signalling also known as pharmacological bias. Interestingly, recent reports have opened intriguing prospects to the way β-arrestins control GPCR-mediated signalling in space and time within the cells. In the present paper, we review the existing evidence linking endocrine-related GPCRs to β-arrestin recruitement, signalling, pathophysiological implications and selective activation by biased ligands and/or receptor modifications. Emerging concepts surrounding β-arrestin-mediated transduction are discussed in the light of the peculiarities of endocrine systems.
Collapse
Affiliation(s)
- Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Mohammed Akli Ayoub
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, 45000, Orléans, France; Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Flavie Landomiel
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Astrid Musnier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Aurélie Tréfier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Jorge Gandia
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Shifa Tahir
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Gilles Bruneau
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Pascale Crépieux
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
28
|
Human Luteinizing Hormone and Chorionic Gonadotropin Display Biased Agonism at the LH and LH/CG Receptors. Sci Rep 2017; 7:940. [PMID: 28424471 PMCID: PMC5430435 DOI: 10.1038/s41598-017-01078-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Human luteinizing hormone (LH) and chorionic gonadotropin (hCG) have been considered biologically equivalent because of their structural similarities and their binding to the same receptor; the LH/CGR. However, accumulating evidence suggest that LH/CGR differentially responds to the two hormones triggering differential intracellular signaling and steroidogenesis. The mechanistic basis of such differential responses remains mostly unknown. Here, we compared the abilities of recombinant rhLH and rhCG to elicit cAMP, β-arrestin 2 activation, and steroidogenesis in HEK293 cells and mouse Leydig tumor cells (mLTC-1). For this, BRET and FRET technologies were used allowing quantitative analyses of hormone activities in real-time and in living cells. Our data indicate that rhLH and rhCG differentially promote cell responses mediated by LH/CGR revealing interesting divergences in their potencies, efficacies and kinetics: rhCG was more potent than rhLH in both HEK293 and mLTC-1 cells. Interestingly, partial effects of rhLH were found on β-arrestin recruitment and on progesterone production compared to rhCG. Such a link was further supported by knockdown experiments. These pharmacological differences demonstrate that rhLH and rhCG act as natural biased agonists. The discovery of novel mechanisms associated with gonadotropin-specific action may ultimately help improve and personalize assisted reproduction technologies.
Collapse
|
29
|
Ayoub MA, Yvinec R, Jégot G, Dias JA, Poli SM, Poupon A, Crépieux P, Reiter E. Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in steroidogenesis. Mol Cell Endocrinol 2016; 436:10-22. [PMID: 27424143 DOI: 10.1016/j.mce.2016.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/09/2016] [Accepted: 07/10/2016] [Indexed: 01/14/2023]
Abstract
Biased signaling has recently emerged as an interesting means to modulate the function of many G protein-coupled receptors (GPCRs). Previous studies reported two negative allosteric modulators (NAMs) of follicle-stimulating hormone receptor (FSHR), ADX68692 and ADX68693, with differential effects on FSHR-mediated steroidogenesis and ovulation. In this study, we attempted to pharmacologically profile these NAMs on the closely related luteinizing hormone/chorionic gonadotropin hormone receptor (LH/CGR) with regards to its canonical Gs/cAMP pathway as well as to β-arrestin recruitment in HEK293 cells. The NAMs' effects on cAMP, progesterone and testosterone production were also assessed in murine Leydig tumor cell line (mLTC-1) as well as rat primary Leydig cells. We found that both NAMs strongly antagonized LH/CGR signaling in the different cell models used with ADX68693 being more potent than ADX68692 to inhibit hCG-induced cAMP production in HEK293, mLTC-1 and rat primary Leydig cells as well as β-arrestin 2 recruitment in HEK293 cells. Interestingly, differential antagonism of the two NAMs on hCG-promoted steroidogenesis in mLTC-1 and rat primary Leydig cells was observed. Indeed, a significant inhibition of testosterone production by the two NAMs was observed in both cell types, whereas progesterone production was only inhibited by ADX68693 in rat primary Leydig cells. In addition, while ADX68693 totally abolished testosterone production, ADX68692 had only a partial effect in both mLTC-1 and rat primary Leydig cells. These observations suggest biased effects of the two NAMs on LH/CGR-dependent pathways controlling steroidogenesis. Interestingly, the pharmacological profiles of the two NAMs with respect to steroidogenesis were found to differ from that previously shown on FSHR. This illustrates the complexity of signaling pathways controlling FSHR- and LH/CGR-mediated steroidogenesis, suggesting differential implication of cAMP and β-arrestins mediated by FSHR and LH/CGR. Together, our data demonstrate that ADX68692 and ADX68693 are biased NAMs at the LH/CGR in addition to the FSHR. These pharmacological characteristics are important to consider for potential contraceptive and therapeutic applications based on such compounds.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, 45000, Orléans, France.
| | - Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Gwenhaël Jégot
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - James A Dias
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| | | | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Pascale Crépieux
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
30
|
Melo-Nava B, Casas-González P, Pérez-Solís MA, Castillo-Badillo J, Maravillas-Montero JL, Jardón-Valadez E, Zariñán T, Aguilar-Rojas A, Gallay N, Reiter E, Ulloa-Aguirre A. Role of Cysteine Residues in the Carboxyl-Terminus of the Follicle-Stimulating Hormone Receptor in Intracellular Traffic and Postendocytic Processing. Front Cell Dev Biol 2016; 4:76. [PMID: 27489855 PMCID: PMC4951517 DOI: 10.3389/fcell.2016.00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/01/2016] [Indexed: 01/21/2023] Open
Abstract
Posttranslational modifications occurring during the biosynthesis of G protein-coupled receptors include glycosylation and palmitoylation at conserved cysteine residues located in the carboxyl-terminus of the receptor. In a number of these receptors, these modifications play an important role in receptor function and particularly, in intracellular trafficking. In the present study, the three cysteine residues present in the carboxyl-terminus of the human FSHR were replaced with glycine by site-directed mutagenesis. Wild-type and mutant (Cys627/629/655Gly) FSHRs were then transiently expressed in HEK-293 cells and analyzed for cell-surface plasma membrane expression, agonist-stimulated signaling and internalization, and postendocytic processing in the absence and presence of lysosome and/or proteasome inhibitors. Compared with the wild-type FSHR, the triple mutant FSHR exhibited ~70% reduction in plasma membrane expression as well as a profound attenuation in agonist-stimulated cAMP production and ERK1/2 phosphorylation. Incubation of HEK-293 cells expressing the wild-type FSHR with 2-bromopalmitate (palmitoylation inhibitor) for 6 h, decreased plasma membrane expression of the receptor by ~30%. The internalization kinetics and β-arrestin 1 and 2 recruitment were similar between the wild-type and triple mutant FSHR as disclosed by assays performed in non-equilibrium binding conditions and by confocal microscopy. Cells expressing the mutant FSHR recycled the internalized FSHR back to the plasma membrane less efficiently than those expressing the wild-type FSHR, an effect that was counteracted by proteasome but not by lysosome inhibition. These results indicate that replacement of the cysteine residues present in the carboxyl-terminus of the FSHR, impairs receptor trafficking from the endoplasmic reticulum/Golgi apparatus to the plasma membrane and its recycling from endosomes back to the cell surface following agonist-induced internalization. Since in the FSHR these cysteine residues are S-palmitoylated, the data presented emphasize on this posttranslational modification as an important factor for both upward and downward trafficking of this receptor.
Collapse
Affiliation(s)
- Brenda Melo-Nava
- Research Unit in Reproductive Medicine, Unidad Medica de Alta Especialidad Hospital de Ginecobstetricia "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social Mexico City, Mexico
| | - Patricia Casas-González
- Research Unit in Reproductive Medicine, Unidad Medica de Alta Especialidad Hospital de Ginecobstetricia "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social Mexico City, Mexico
| | - Marco A Pérez-Solís
- Research Unit in Reproductive Medicine, Unidad Medica de Alta Especialidad Hospital de Ginecobstetricia "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social Mexico City, Mexico
| | - Jean Castillo-Badillo
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" Mexico City, Mexico
| | - José L Maravillas-Montero
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" Mexico City, Mexico
| | | | - Teresa Zariñán
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" Mexico City, Mexico
| | - Arturo Aguilar-Rojas
- Research Unit in Reproductive Medicine, Unidad Medica de Alta Especialidad Hospital de Ginecobstetricia "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social Mexico City, Mexico
| | - Nathalie Gallay
- BIOS Group, UMR85, Unité Physiologie de la Reproduction et des Comportements, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, UMR7247, Université François Rabelais Tours, France
| | - Eric Reiter
- BIOS Group, UMR85, Unité Physiologie de la Reproduction et des Comportements, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, UMR7247, Université François Rabelais Tours, France
| | - Alfredo Ulloa-Aguirre
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" Mexico City, Mexico
| |
Collapse
|
31
|
Munier M, Grouleff J, Gourdin L, Fauchard M, Chantreau V, Henrion D, Coutant R, Schiøtt B, Chabbert M, Rodien P. In Vitro Effects of the Endocrine Disruptor p,p'-DDT on Human Follitropin Receptor. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:991-9. [PMID: 26895433 PMCID: PMC4937862 DOI: 10.1289/ehp.1510006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/25/2015] [Accepted: 02/09/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND 1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene (p,p'-DDT) is a persistent environmental endocrine disruptor (ED). Several studies have shown an association between p,p'-DDT exposure and reproductive abnormalities. OBJECTIVES To investigate the putative effects of p,p'-DDT on the human follitropin receptor (FSHR) function. METHODS AND RESULTS We used Chinese hamster ovary (CHO) cells stably expressing human FSHR to investigate the impact of p,p'-DDT on FSHR activity and its interaction with the receptor. At a concentration of 5 μM p,p'-DDT increased the maximum response of the FSHR to follitropin by 32 ± 7.45%. However, 5 μM p,p'-DDT decreased the basal activity and did not influence the maximal response of the closely related LH/hCG receptor to human chorionic gonadotropin (hCG). The potentiating effect of p,p'-DDT was specific for the FSHR. Moreover, in cells that did not express FSHR, p,p'-DDT had no effect on cAMP response. Thus, the potentiating effect of p,p'-DDT was dependent on the FSHR. In addition, p,p'-DDT increased the sensitivity of FSHR to hCG and to a low molecular weight agonist of the FSHR, 3-((5methyl)-2-(4-benzyloxy-phenyl)-5-{[2-[3-ethoxy-4-methoxy-phenyl)-ethylcarbamoyl]-methyl}-4-oxo-thiazolidin-3-yl)-benzamide (16a). Basal activity in response to p,p'-DDT and potentiation of the FSHR response to FSH by p,p'-DDT varied among FSHR mutants with altered transmembrane domains (TMDs), consistent with an effect of p,p'-DDT via TMD binding. This finding was corroborated by the results of simultaneously docking p,p'-DDT and 16a into the FSHR transmembrane bundle. CONCLUSION p,p'-DDT acted as a positive allosteric modulator of the FSHR in our experimental model. These findings suggest that G protein-coupled receptors are additional targets of endocrine disruptors. CITATION Munier M, Grouleff J, Gourdin L, Fauchard M, Chantreau V, Henrion D, Coutant R, Schiøtt B, Chabbert M, Rodien P. 2016. In vitro effects of the endocrine disruptor p,p'-DDT on human follitropin receptor. Environ Health Perspect 124:991-999; http://dx.doi.org/10.1289/ehp.1510006.
Collapse
Affiliation(s)
- Mathilde Munier
- MITOVASC Institute, Angers, France
- UMR CNRS 6214, INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
- Reference center for rare diseases of hormonal receptivity, Angers, France
| | - Julie Grouleff
- Department of Endocrinology, University Hospital, Angers, France
- Interdisciplinary Nanoscience Center,
| | - Louis Gourdin
- MITOVASC Institute, Angers, France
- UMR CNRS 6214, INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
- Reference center for rare diseases of hormonal receptivity, Angers, France
| | - Mathilde Fauchard
- MITOVASC Institute, Angers, France
- UMR CNRS 6214, INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Vanessa Chantreau
- MITOVASC Institute, Angers, France
- UMR CNRS 6214, INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Daniel Henrion
- MITOVASC Institute, Angers, France
- UMR CNRS 6214, INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Régis Coutant
- MITOVASC Institute, Angers, France
- UMR CNRS 6214, INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
- Reference center for rare diseases of hormonal receptivity, Angers, France
- Department of Endocrinology, University Hospital, Angers, France
| | - Birgit Schiøtt
- Interdisciplinary Nanoscience Center,
- Center for Insoluble Protein Structures, and
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Marie Chabbert
- MITOVASC Institute, Angers, France
- UMR CNRS 6214, INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Patrice Rodien
- MITOVASC Institute, Angers, France
- UMR CNRS 6214, INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
- Reference center for rare diseases of hormonal receptivity, Angers, France
- Department of Pediatric Endocrinology, University Hospital, Angers, France
| |
Collapse
|
32
|
Ayoub MA, Yvinec R, Crépieux P, Poupon A. Computational modeling approaches in gonadotropin signaling. Theriogenology 2016; 86:22-31. [DOI: 10.1016/j.theriogenology.2016.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/27/2016] [Accepted: 04/13/2016] [Indexed: 01/14/2023]
|
33
|
Tsoulis MW, Chang PE, Moore CJ, Chan KA, Gohir W, Petrik JJ, Vickers MH, Connor KL, Sloboda DM. Maternal High-Fat Diet-Induced Loss of Fetal Oocytes Is Associated with Compromised Follicle Growth in Adult Rat Offspring. Biol Reprod 2016; 94:94. [PMID: 26962114 PMCID: PMC4861169 DOI: 10.1095/biolreprod.115.135004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/25/2016] [Indexed: 11/12/2022] Open
Abstract
Maternal obesity predisposes offspring to metabolic and reproductive dysfunction. We have shown previously that female rat offspring born to mothers fed a high-fat (HF) diet throughout pregnancy and lactation enter puberty early and display aberrant reproductive cyclicity. The mechanisms driving this reproductive phenotype are currently unknown thus we investigated whether changes in ovarian function were involved. Wistar rats were mated and randomized to: dams fed a control diet (CON) or dams fed a HF diet from conception until the end of lactation (HF). Ovaries were collected from fetuses at Embryonic Day (E) 20, and neonatal ovaries at Day 4 (P4), prepubertal ovaries at P27 and adult ovaries at P120. In a subset of offspring, the effects of a HF diet fed postweaning were evaluated. The present study shows that fetuses of mothers fed a HF diet had significantly fewer oocytes at E20, and in neonates, have reduced AMH signaling that may facilitate an increased number of assembled primordial follicles. Both prepubertally and in adulthood, ovaries show increased follicular atresia. As adults, offspring have reduced FSH responsiveness, low expression levels of estrogen receptor alpha (Eralpha), the oocyte-secreted factor, Gdf9, oocyte-specific RNA binding protein, Dazl, and high expression levels of the granulosa-cell derived factor, AMH, in antral follicles. Together, these data suggest that ovarian compromise in offspring born to HF-fed mothers may arise from changes already observable in the fetus and neonate and in the long term, associated with increased follicular atresia through adulthood.
Collapse
Affiliation(s)
- Michael W Tsoulis
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Pauline E Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Caroline J Moore
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kaitlyn A Chan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Wajiha Gohir
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - James J Petrik
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mark H Vickers
- Liggins Institute and Gravida, National Centre for Growth and Development, University of Auckland, Aukland, New Zealand
| | - Kristin L Connor
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
34
|
Casarini L, Brigante G, Simoni M, Santi D. Clinical Applications of Gonadotropins in the Female: Assisted Reproduction and Beyond. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:85-119. [DOI: 10.1016/bs.pmbts.2016.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Graves J, Markman S, Alegranti Y, Gechtler J, Johnson RI, Cagan R, Ben-Menahem D. The LH/CG receptor activates canonical signaling pathway when expressed in Drosophila. Mol Cell Endocrinol 2015; 413:145-56. [PMID: 26112185 DOI: 10.1016/j.mce.2015.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/29/2015] [Accepted: 06/18/2015] [Indexed: 01/12/2023]
Abstract
G-protein coupled receptors (GPCRs) and their ligands provide precise tissue regulation and are therefore often restricted to specific animal phyla. For example, the gonadotropins and their receptors are crucial for vertebrate reproduction but absent from invertebrates. In mammals, LHR mainly couples to the PKA signaling pathway, and CREB is the major transcription factor of this pathway. Here we present the results of expressing elements of the human gonadotropin system in Drosophila. Specifically, we generated transgenic Drosophila expressing the human LH/CG receptor (denoted as LHR), a constitutively active form of LHR, and an hCG analog. We demonstrate activation-dependent signaling by LHR to direct Drosophila phenotypes including lethality and specific midline defects; these phenotypes were due to LHR activation of PKA/CREB pathway activity. That the LHR can act in an invertebrate demonstrates the conservation of factors required for GPCR function among phylogenetically distant organisms. This novel gonadotropin model may assist the identification of new modulators of mammalian fertility by exploiting the powerful genetic and pharmacological tools available in Drosophila.
Collapse
Affiliation(s)
- Justin Graves
- Dept. of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New-York, NY, USA
| | - Svetlana Markman
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yair Alegranti
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jenia Gechtler
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ruth I Johnson
- Dept. of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New-York, NY, USA
| | - Ross Cagan
- Dept. of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New-York, NY, USA
| | - David Ben-Menahem
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
36
|
Marada S, Navarro G, Truong A, Stewart DP, Arensdorf AM, Nachtergaele S, Angelats E, Opferman JT, Rohatgi R, McCormick PJ, Ogden SK. Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling. PLoS Genet 2015; 11:e1005473. [PMID: 26291458 PMCID: PMC4546403 DOI: 10.1371/journal.pgen.1005473] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/28/2015] [Indexed: 01/06/2023] Open
Abstract
The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice. N-linked glycosylation is a post-translational modification occurring on membrane proteins such as G protein-coupled receptors (GPCR). Smoothened (Smo) is a GPCR that functions as the signal transducer of the Hedgehog (Hh) pathway. We used a mutagenesis approach to assess the role of N-glycans in Smo signaling in two genetic models for Hh pathway activity, Drosophila and mouse. In doing so, we discovered a divergence in glycan function between them. We mapped an essential N-glycan acceptor site that when lost in Drosophila, triggered ER retention, altered Smo protein stability and blunted its signaling capacity. Conversely, ER exit of the murine protein was unaffected by glycan loss, as was its ability to traffic and induce a G protein-independent signal to activate Hh target genes. However, the ability of vertebrate Smo to induce a distinct G protein-dependent signal was lost. This suggests that N-linked glycosylation may influence signal bias of vertebrate Smo to favor one signal output over the other. We therefore propose that the role of this conserved post-translational modification may have been repurposed from governing Smo ER exit in the fly to influencing effector route selection in vertebrates.
Collapse
Affiliation(s)
- Suresh Marada
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biology, Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)University of Barcelona, Barcelona, Spain
| | - Ashley Truong
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Summer Plus Program, Rhodes College, Memphis, Tennessee, United States of America
| | - Daniel P. Stewart
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Angela M. Arensdorf
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sigrid Nachtergaele
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Edgar Angelats
- Department of Biochemistry and Molecular Biology, Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)University of Barcelona, Barcelona, Spain
| | - Joseph T. Opferman
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Rajat Rohatgi
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter J. McCormick
- Department of Biochemistry and Molecular Biology, Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)University of Barcelona, Barcelona, Spain
- School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Stacey K. Ogden
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
37
|
Asraf H, Amsterdam A, Ben-Menahem D. Modulation of the steroidogenic related activity according to the design of single-chain bovine FSH analogs. Gen Comp Endocrinol 2015; 216:171-81. [PMID: 25863346 DOI: 10.1016/j.ygcen.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/22/2015] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
Abstract
Single-chain (SC) gonadotropins have been genetically engineered to increase the repertoire of analogs for potential use in humans and domestic animals. The major aim of the current study was to examine the steroidogenic related activity of SC FSH analogs carrying structural differences. To address this issue, we designed and expressed three SC bovine FSH analogs in CHO cells: (i) FSHβα in which the tethered subunit domains are linked in tandem; (ii) FSHβCTPα that contains the carboxy terminal peptide (CTP) of the human choriogonadotropin (hCG) β subunit as a spacer, and (iii) FSHβboCTPα in which the linker is derived from a CTP-like sequence (boCTP) decoded from the bovine LHβ DNA. The data suggested that the secretion efficiency of these variants from the transfected cells was unaffected by the presence or absence of the CTP linker, N-glycans were attached to the analogs and the hCGβ-CTP domain in the FSHβCTPα variant was O-glycosylated. In a rat immortalized granulosa cell bioassay the potency of the three variants towards progesterone secretion varied. In immature mice, the analogs increased the ovary weight and induced StAR, Cyp11a (P450scc), Cyp17 (P450c17) and Cyp19 (P450aromatase) transcripts. However, the dose dependence and amplitude of these transcript levels differed in response to FSHβα, FSHβboCTPα and FSHβCTPα. Collectively, these data suggest that the design of the FSH analog can modulate the bioactivity in vitro and in vivo. A systematic analysis of receptor activation with ligands carrying structural differences may identify new regulatory factor/s involved in the pleiotropic FSH activity.
Collapse
Affiliation(s)
- Hila Asraf
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abraham Amsterdam
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Ben-Menahem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
38
|
Bhattacharya I, Basu S, Sarda K, Gautam M, Nagarajan P, Pradhan BS, Sarkar H, Devi YS, Majumdar SS. Low levels of Gαs and Ric8b in testicular sertoli cells may underlie restricted FSH action during infancy in primates. Endocrinology 2015; 156:1143-55. [PMID: 25549048 DOI: 10.1210/en.2014-1746] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
FSH acts via testicular Sertoli cells (Sc) bearing FSH receptor (FSH-R) for regulating male fertility. Despite an adult-like FSH milieu in infant boys and monkeys, spermatogenesis is not initiated until the onset of puberty. We used infant and pubertal monkey Sc to reveal the molecular basis underlying developmental differences of FSH-R signaling in them. Unlike pubertal Sc, increasing doses of FSH failed to augment cAMP production by infant Sc. The expression of Gαs subunit and Ric8b, which collectively activate adenylyl cyclase (AC) for augmenting cAMP production and gene transcription, were significantly low in infant Sc. However, forskolin, which acts directly on AC bypassing FSH-R, augmented cAMP production and gene transcription uniformly in both infant and pubertal Sc. FSH-induced Gαs mRNA expression was higher in pubertal Sc. However, Gαi-2 expression was down-regulated by FSH in pubertal Sc, unlike infant Sc. FSH failed, but forskolin or 8-Bromoadenosine 3',5'-cyclic monophosphate treatment to infant Sc significantly augmented the expression of transferrin, androgen binding protein, inhibin-β-B, stem cell factor, and glial-derived neurotropic factor, which are usually up-regulated by FSH in pubertal Sc during spermatogenic onset. This suggested that lack of FSH mediated down-regulation of Gαi-2 expression and limited expression of Gαs subunit as well as Ric8b may underlie limited FSH responsiveness of Sc during infancy. This study also divulged that intracellular signaling events downstream of FSH-R are in place and can be activated exogenously in infant Sc. Additionally, this information may help in the proper diagnosis and treatment of infertile individuals having abnormal G protein-coupled FSH-R.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Cellular Endocrinology Laboratory (I.B., S.B., K.S., M.G., B.S.P., H.S., Y.S.D., S.S.M.) and Primate Research Centre (P.N., S.S.M.), National Institute of Immunology, New Delhi, India 110067
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang R, Zhang S, Zhu X, Zhou Y, Wu X. Molecular characterization of the Chinese alligator follicle-stimulating hormone β subunit (FSHβ) and its expression during the female reproductive cycle. Comp Biochem Physiol B Biochem Mol Biol 2015; 183:49-57. [PMID: 25626184 DOI: 10.1016/j.cbpb.2015.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/17/2014] [Accepted: 01/16/2015] [Indexed: 11/25/2022]
Abstract
The Chinese alligator Alligator sinensis is an endangered species endemic to China, it has a highly specialized reproductive pattern with low fecundity. Up to date, little is known about the regulation of its female reproductive cycle. Follicle-stimulating hormone (FSH), a glycoprotein hormone, plays a key role in stimulating and regulating ovarian follicular development and egg production. In this study, the complete FSHβ cDNA from the ovary of the Chinese alligator was obtained for the first time, it consists of 843-bp nucleotides, including 120-bp nucleotides of the 5'-untranslated region (UTR), 396-bp of the open reading frame, and 3'-UTR of 327-bp nucleotides. It encodes a 131-amino acid precursor molecule of FSHβ with a signal peptide of 18 amino acids followed by a mature protein of 113 amino acids. Its deduced amino acid sequence shares high identities with the American alligator (100%) and birds (89-92%). Phylogenetic tree analysis of the FSHβ amino acid sequence indicated that alligators cluster into the bird branch. Tissue distribution analyses indicated that FSHβ mRNA is expressed in ovary, intestine and liver with the highest level in the ovary, while not in stomach, pancreas, heart, thymus and thyroid. Expression of FSHβ in ovary increases in May (breeding prophase) and peaks in July (breeding period), it is maintained at high levels through September, then decreases significantly in November (post-reproductive period) and remains relatively low from January to March (hibernating period). These temporal changes of FSHβ expression implicated that it might play an important role in promoting ovarian development during the female reproductive cycle.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Shengzhou Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Xue Zhu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yongkang Zhou
- Alligator Research Center of Anhui Province, Xuanzhou 242000, China
| | - Xiaobing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
40
|
Nataraja SG, Yu HN, Palmer SS. Discovery and Development of Small Molecule Allosteric Modulators of Glycoprotein Hormone Receptors. Front Endocrinol (Lausanne) 2015; 6:142. [PMID: 26441832 PMCID: PMC4568768 DOI: 10.3389/fendo.2015.00142] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 11/30/2022] Open
Abstract
Glycoprotein hormones, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and thyroid-stimulating hormone (TSH) are heterodimeric proteins with a common α-subunit and hormone-specific β-subunit. These hormones are dominant regulators of reproduction and metabolic processes. Receptors for the glycoprotein hormones belong to the family of G protein-coupled receptors. FSH receptor (FSHR) and LH receptor are primarily expressed in somatic cells in ovary and testis to promote egg and sperm production in women and men, respectively. TSH receptor is expressed in thyroid cells and regulates the secretion of T3 and T4. Glycoprotein hormones bind to the large extracellular domain of the receptor and cause a conformational change in the receptor that leads to activation of more than one intracellular signaling pathway. Several small molecules have been described to activate/inhibit glycoprotein hormone receptors through allosteric sites of the receptor. Small molecule allosteric modulators have the potential to be administered orally to patients, thus improving the convenience of treatment. It has been a challenge to develop a small molecule allosteric agonist for glycoprotein hormones that can mimic the agonistic effects of the large natural ligand to activate similar signaling pathways. However, in the past few years, there have been several promising reports describing distinct chemical series with improved potency in preclinical models. In parallel, proposal of new structural model for FSHR and in silico docking studies of small molecule ligands to glycoprotein hormone receptors provide a giant leap on the understanding of the mechanism of action of the natural ligands and new chemical entities on the receptors. This review will focus on the current status of small molecule allosteric modulators of glycoprotein hormone receptors, their effects on common signaling pathways in cells, their utility for clinical application as demonstrated in preclinical models, and use of these molecules as novel tools to dissect the molecular signaling pathways of these receptors.
Collapse
Affiliation(s)
- Selvaraj G. Nataraja
- TocopheRx Inc., Burlington, MA, USA
- *Correspondence: Selvaraj G. Nataraja, TocopheRx Inc., 15 New England Executive Park, Suite 1087, Burlington, MA 01803, USA,
| | - Henry N. Yu
- TocopheRx Inc., Burlington, MA, USA
- EMD Serono Research and Development Institute Inc., Billerica, MA, USA
| | | |
Collapse
|
41
|
Szkudlinski MW. New Frontier in Glycoprotein Hormones and Their Receptors Structure-Function. Front Endocrinol (Lausanne) 2015; 6:155. [PMID: 26539160 PMCID: PMC4609891 DOI: 10.3389/fendo.2015.00155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/18/2015] [Indexed: 01/27/2023] Open
Abstract
Last two decades of structure-function studies performed in numerous laboratories provided substantial progress in understanding basic science, physiological, pathophysiological, pharmacological, and comparative aspects of glycoprotein hormones (GPHs) and their cognate receptors. Multiple concepts and models developed based on experimental data in the past stood the test of time and have been, at least in part, confirmed and/or remained compatible with the new structures resolved at the atomic level. Major advances in understanding of the ligand-receptor relationships are heralding the dawn of a new era for GPHs and their receptors, although many basic questions still remain unanswered. This article examines retrospectively several basic science aspects of GPH super-agonists and related "biosuperiors" in a broader context of the advances in the ligand-receptor structure-function relationships and new mechanistic models generated based on the structure elucidation. Due to selective focus of my comments and perspectives in certain parts, the reader is directed to the most relevant publications and reviews in the field for more comprehensive analyses.
Collapse
Affiliation(s)
- Mariusz W. Szkudlinski
- Trophogen Inc., Rockville, MD, USA
- *Correspondence: Mariusz W. Szkudlinski, Trophogen Inc., 9714 Medical Center Drive, Rockville, MD, USA,
| |
Collapse
|
42
|
Ayoub MA, Landomiel F, Gallay N, Jégot G, Poupon A, Crépieux P, Reiter E. Assessing Gonadotropin Receptor Function by Resonance Energy Transfer-Based Assays. Front Endocrinol (Lausanne) 2015; 6:130. [PMID: 26379624 PMCID: PMC4550792 DOI: 10.3389/fendo.2015.00130] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/10/2015] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin receptors belong to the super family of G protein-coupled receptors and mediate the physiological effects of follicle-stimulating hormone (FSHR) and luteinizing hormone (LHR). Their central role in the control of reproductive function has made them the focus of intensive studies. Upon binding to their cognate hormone, they trigger complex signaling and trafficking mechanisms that are tightly regulated in concentration, time, and space. Classical cellular assays often fail to capture all these dynamics. Here, we describe the use of various bioluminescence and fluorescence resonance energy transfer (BRET and FRET) assays to investigate the activation and regulation of FSHR and LHR in real-time, in living cells (i.e., transiently expressed in human embryonic kidney 293 cells). Indeed, the dynamics of hormone-mediated heterotrimeric G protein activation, cyclic adenosine-monophosphate (cAMP) production, calcium release, β-arrestin 2 recruitment, and receptor internalization/recycling was assessed. Kinetics and dose-response analyses confirmed the expected pharmacological and signaling properties of hFSHR and hLHR but revealed interesting characteristics when considering the two major pathways (cAMP and β-arrestin 2) of the two receptors assessed by BRET. Indeed, the EC50 values were in picomolar range for cAMP production while nanomolar range was observed for β-arrestin 2 recruitment as well as receptor internalization. Interestingly, the predicted receptor occupancy indicates that the maximal G protein activation and cAMP response occur at <10% of receptor occupancy whereas >90% of activated receptors is required to achieve full β-arrestin 2 recruitment and subsequent receptor internalization. The rapid receptor internalization was also followed by a recycling phase. Collectively, our data reveal that β-arrestin-mediated desensitization, internalization, and the subsequent fast recycling of receptors at the plasma membrane may provide a mechanistic ground to the "spare receptor" paradigm. More generally, the novel tools described here will undoubtedly provide the scientific community investigating gonadotropin receptors with powerful means to decipher their pharmacology and signaling with the prospect of pathophysiological and drug discovery applications.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Biologie et Bioinformatique des Systèmes de Signalisation (BIOS) Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- L’Institut français du cheval et de l’équitation (IFCE), Nouzilly, France
- LE STUDIUM Loire Valley Institute for Advanced Studies, Orléans, France
- *Correspondence: Mohammed Akli Ayoub, Institut National de la Recherche Agronomique (INRA) UMR85, CNRS-Université François Rabelais UMR7247, Physiologie de la Reproduction et des Comportements (PRC) - Nouzilly 37380, France,
| | - Flavie Landomiel
- Biologie et Bioinformatique des Systèmes de Signalisation (BIOS) Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- L’Institut français du cheval et de l’équitation (IFCE), Nouzilly, France
| | - Nathalie Gallay
- Biologie et Bioinformatique des Systèmes de Signalisation (BIOS) Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- L’Institut français du cheval et de l’équitation (IFCE), Nouzilly, France
| | - Gwenhael Jégot
- Biologie et Bioinformatique des Systèmes de Signalisation (BIOS) Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- L’Institut français du cheval et de l’équitation (IFCE), Nouzilly, France
| | - Anne Poupon
- Biologie et Bioinformatique des Systèmes de Signalisation (BIOS) Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- L’Institut français du cheval et de l’équitation (IFCE), Nouzilly, France
| | - Pascale Crépieux
- Biologie et Bioinformatique des Systèmes de Signalisation (BIOS) Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- L’Institut français du cheval et de l’équitation (IFCE), Nouzilly, France
| | - Eric Reiter
- Biologie et Bioinformatique des Systèmes de Signalisation (BIOS) Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- L’Institut français du cheval et de l’équitation (IFCE), Nouzilly, France
| |
Collapse
|
43
|
Casarini L, Moriondo V, Marino M, Adversi F, Capodanno F, Grisolia C, La Marca A, La Sala GB, Simoni M. FSHR polymorphism p.N680S mediates different responses to FSH in vitro. Mol Cell Endocrinol 2014; 393:83-91. [PMID: 24970684 DOI: 10.1016/j.mce.2014.06.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023]
Abstract
The single nucleotide polymorphism p.N680S of the follicle-stimulating hormone (FSH) receptor (FSHR) is a discrete marker of ovarian response but previous in vitro studies failed to demonstrate differences in the response to FSH between N and S carrier cells. Here we demonstrate that p.N680S mediates different kinetics of the response to FSH in vitro. Intracellular cAMP production is faster in p.N680S N than in S homozygous human granulosa cells (45 versus 90 min to achieve the plateau, respectively; Mann-Whitney's U-test; p < 0.005; n = 4). Reflecting the cAMP kinetics, phospho-ERK1/2 and -CREB activation, AREG and STARD1 gene expressions and progesterone production were qualitatively and quantitatively different in N versus S homozygous cells. Finally, the blockade of ERK pathway by U0126 abolishes the genotype-mediated different effects on gene expression and progesterone production (Mann-Whitney's U-test; p ≥ 0.005; n = 3).
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy.
| | - Valeria Moriondo
- Unit of Endocrinology, Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Marino
- Unit of Endocrinology, Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Adversi
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Francesco Capodanno
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Chiarina Grisolia
- Dept. of Laboratory Medicine and Pathology, Laboratory of Chemical-Clinical Analysis, University Hospital of Modena, Modena, Italy
| | - Antonio La Marca
- Dept. of Medical and Mother-Infant and Adult Surgical Sciences, Unit of Obstetrics and Gynecology, University Hospital of Modena, Modena, Italy
| | - Giovanni Battista La Sala
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy; Dept. of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy; Azienda USL, Modena, Italy
| |
Collapse
|
44
|
Yu HN, Richardson TE, Nataraja S, Fischer DJ, Sriraman V, Jiang X, Bharathi P, Foglesong RJ, Haxell TF, Heasley BH, Jenks M, Li J, Dugas MS, Collis R, Tian H, Palmer S, Goutopoulos A. Discovery of substituted benzamides as follicle stimulating hormone receptor allosteric modulators. Bioorg Med Chem Lett 2014; 24:2168-72. [DOI: 10.1016/j.bmcl.2014.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 12/31/2022]
|
45
|
Jiang X, Fischer D, Chen X, McKenna SD, Liu H, Sriraman V, Yu HN, Goutopoulos A, Arkinstall S, He X. Evidence for Follicle-stimulating Hormone Receptor as a Functional Trimer. J Biol Chem 2014; 289:14273-82. [PMID: 24692546 PMCID: PMC4022893 DOI: 10.1074/jbc.m114.549592] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Follicle-stimulating hormone receptor (FSHR), a G-protein coupled receptor, is an important drug target in the development of novel therapeutics for reproductive indications. The FSHR extracellular domains were observed in the crystal structure as a trimer, which enabled us to propose a novel model for the receptor activation mechanism. The model predicts that FSHR binds Asnα52-deglycosylated FSH at a 3-fold higher capacity than fully glycosylated FSH. It also predicts that, upon dissociation of the FSHR trimer into monomers, the binding of glycosylated FSH, but not deglycosylated FSH, would increase 3-fold, and that the dissociated monomers would in turn enhance FSHR binding and signaling activities by 3-fold. This study presents evidence confirming these predictions and provides crystallographic and mutagenesis data supporting the proposed model. The model also provides a mechanistic explanation to the agonist and antagonist activities of thyroid-stimulating hormone receptor autoantibodies. We conclude that FSHR exists as a functional trimer.
Collapse
Affiliation(s)
- Xuliang Jiang
- From the EMD Serono Research and Development Institute, Billerica, Massachusetts 01821 and
| | - David Fischer
- From the EMD Serono Research and Development Institute, Billerica, Massachusetts 01821 and
| | - Xiaoyan Chen
- the Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Sean D McKenna
- From the EMD Serono Research and Development Institute, Billerica, Massachusetts 01821 and
| | - Heli Liu
- the Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Venkataraman Sriraman
- From the EMD Serono Research and Development Institute, Billerica, Massachusetts 01821 and
| | - Henry N Yu
- From the EMD Serono Research and Development Institute, Billerica, Massachusetts 01821 and
| | - Andreas Goutopoulos
- From the EMD Serono Research and Development Institute, Billerica, Massachusetts 01821 and
| | - Steve Arkinstall
- From the EMD Serono Research and Development Institute, Billerica, Massachusetts 01821 and
| | - Xiaolin He
- the Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
46
|
Davis JS, Kumar TR, May JV, Bousfield GR. Naturally Occurring Follicle-Stimulating Hormone Glycosylation Variants. ACTA ACUST UNITED AC 2014; 4:e117. [PMID: 25893134 PMCID: PMC4398967 DOI: 10.4172/2153-0637.1000e117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- John S Davis
- VA Nebraska-Western Iowa Health Care System and Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - T Rajendra Kumar
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey V May
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| |
Collapse
|