1
|
Labarque V, Okocha EC. Systematic Review of Genetic Modifiers Associated with the Development and/or Progression of Nephropathy in Patients with Sickle Cell Disease. Int J Mol Sci 2024; 25:5427. [PMID: 38791464 PMCID: PMC11121490 DOI: 10.3390/ijms25105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Sickle cell nephropathy (SCN) is a common complication of sickle cell disease (SCD) that significantly contributes to morbidity and mortality. In addition to clinical and life-style factors, genetic variants influence this risk. We performed a systematic review, searching five databases. Studies evaluating the effect of genetic modifiers on SCN were eligible. Twenty-eight studies (fair-to-good quality) were included: one genome-wide association study, twenty-six case-control studies, and one article combining both approaches. APOL1 was significantly associated with albuminuria and hyperfiltration in children and with worse glomerular filtration in adults. On the other hand, alpha-thalassemia protected patients against albuminuria and hyperfiltration, while BCL11A variants were protective against albuminuria alone. The HMOX1 long GT-tandem repeat polymorphism led to a lower glomerular filtration rate. No modifiers for the risk of hyposthenuria were identified. A genome-wide association approach identified three new loci for proteinuria (CRYL1, VWF, and ADAMTS7) and nine loci were linked with eGFR (PKD1L2, TOR2A, CUBN, AGGF1, CYP4B1, CD163, LRP1B, linc02288, and FPGT-TNNI3K/TNNI3K). In conclusion, this systematic review supports the role of genetic modifiers in influencing the risk and progression of SCN. Incorporating and expanding this knowledge is crucial to improving the management and clinical outcomes of patients at risk.
Collapse
Affiliation(s)
- Veerle Labarque
- Department of Pediatric Hemato-Oncology, University Hospitals Leuven, 3000 Leuven, Belgium
- Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Emmanuel Chide Okocha
- Haematology Department, Faculty of Basic Clinical Sciences, College of Health Sciences, Nnamdi Azikiwe University, Nnewi PMB 5025, Anambra State, Nigeria
| |
Collapse
|
2
|
Yun QS, Bao YX, Jiang JB, Guo Q. Mechanisms of norcantharidin against renal tubulointerstitial fibrosis. Pharmacol Rep 2024; 76:263-272. [PMID: 38472637 DOI: 10.1007/s43440-024-00578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Renal tubulointerstitial fibrosis (RTIF) is a common feature and inevitable consequence of all progressive chronic kidney diseases, leading to end-stage renal failure regardless of the initial cause. Although research over the past few decades has greatly improved our understanding of the pathophysiology of RTIF, until now there has been no specific treatment available that can halt the progression of RTIF. Norcantharidin (NCTD) is a demethylated analogue of cantharidin, a natural compound isolated from 1500 species of medicinal insect, the blister beetle (Mylabris phalerata Pallas), traditionally used for medicinal purposes. Many studies have found that NCTD can attenuate RTIF and has the potential to be an anti-RTIF drug. This article reviews the recent progress of NCTD in the treatment of RTIF, with emphasis on the pharmacological mechanism of NCTD against RTIF.
Collapse
Affiliation(s)
- Qin-Su Yun
- Department of Pharmacy, The First People's Hospital of Changzhou and the 3rd Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, Guizhou, China.
| | - Jie-Bing Jiang
- Department of Pharmacology, Naval Medical University, Shanghai, 200433, China
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, 226001 , Jiangsu, China.
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
3
|
Li B, Wu Z, Xu H, Ye H, Yang X. Downregulation of lncRNA XLOC_032768 in diabetic patients predicts the occurrence of diabetic nephropathy. Open Med (Wars) 2024; 19:20240903. [PMID: 38584844 PMCID: PMC10996977 DOI: 10.1515/med-2024-0903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 04/09/2024] Open
Abstract
LncRNA XLOC_032768 is reported to prevent renal tubular epithelial cells from cisplatin-induced apoptosis, suggesting its involvement in the development of kidney injury. The present study aimed to explore the role of XLOC_032768 in diabetic nephropathy (DN). The present study enrolled a total of 140 healthy controls (Control group) and 140 patients with type 2 diabetes (Diabetes group). Expression of XLOC_032768 in plasma from these participants was analyzed by performing RT-qPCR. The 140 diabetic patients were followed up for 5 years to monitor the occurrence of diabetic complications. The role of XLOC_032768 in predicting the occurrence of diabetic complications, including DN, diabetic cardiomyopathy (DC), diabetic retinopathy (DR), and diabetic foot (DF) were analyzed by plotting receiver operating characteristic curves and complication-free curves. On the day of admission, plasma levels of XLOC_032768 were not significantly different between Control and Diabetes groups. During follow-up, a total of 22, 15, 13, and 15 cases were diagnosed as DN, DC, DR, and DF, respectively. On the day of diagnosis, plasma levels of XLOC_032768 were only decreased in DN group, but not in other groups, compared to plasma levels of XLOC_032768 on the day of admission. Using plasma levels of XLOC_032768 on the day of admission as a biomarker, potential DN patients were effectively separated from patients with other potential complications and diabetic patients without complications. The 140 diabetic patients were grouped into high and low XLOC_032768 level groups. It was observed that low XLOC_032768 level group showed increased occurrence of DN, but not other complications, compared to high XLOC_032768 level group. Therefore, the downregulation of lncRNA XLOC_032768 in diabetic patients may predict the occurrence of DN.
Collapse
Affiliation(s)
- Baohua Li
- Department of Hemodialysis, Guangzhou Guanggang New City Hospital, Guangzhou, Guangdong, 510030, PR China
| | - ZhiLe Wu
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510030, PR China
| | - Haofeng Xu
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510030, PR China
| | - HuiLing Ye
- Department of General Practice, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, 510030, PR China
| | - Xin Yang
- Department of General Practice, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, 510030, PR China
| |
Collapse
|
4
|
Chen J, Zhong G, Qiu M, Ke W, Xue J, Chen J. Exploring lncRNA Expression Patterns in Patients With Hypertrophied Ligamentum Flavum. Neurospine 2024; 21:330-341. [PMID: 38291747 PMCID: PMC10992663 DOI: 10.14245/ns.2346994.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVE Hypertrophy ligamentum flavum (LFH) is a common cause of lumbar spinal stenosis, resulting in significant disability and morbidity. Although long noncoding RNAs (lncRNAs) have been associated with various biological processes and disorders, their involvement in LFH remains not fully understood. METHODS Human ligamentum flavum samples were analyzed using lncRNA sequencing followed by validation through quantitative real-time polymerase chain reaction. To explore the potential biological functions of differentially expressed lncRNA-associated genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. We also studied the impact of lncRNA PARD3-AS1 on the progression of LFH in vitro. RESULTS In the LFH tissues when compared to that in the nonhypertrophic ligamentum flavum (LFN) tissues, a total of 1,091 lncRNAs exhibited differential expression, with 645 upregulated and 446 downregulated. Based on GO analysis, the differentially expressed transcripts primarily participated in metabolic processes, organelles, nuclear lumen, cytoplasm, protein binding, nucleic acid binding, and transcription factor activity. Moreover, KEGG pathway analysis indicated that the differentially expressed lncRNAs were associated with the hippo signaling pathway, nucleotide excision repair, and nuclear factor-kappa B signaling pathway. The expression of PARD3-AS1, RP11-430G17.3, RP1-193H18.3, and H19 was confirmed to be consistent with the sequencing analysis. Inhibition of PARD3-AS1 resulted in the suppression of fibrosis in LFH cells, whereas the overexpression of PARD3-AS1 promoted fibrosis in LFH cells in vitro. CONCLUSION This study identified distinct expression patterns of lncRNAs that are linked to LFH, providing insights into its underlying mechanisms and potential prognostic and therapeutic interventions. Notably, PARD3-AS1 appears to play a significant role in the pathophysiology of LFH.
Collapse
Affiliation(s)
- Junling Chen
- Department of Orthopedics, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guibin Zhong
- Department of Orthopedics, Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Manle Qiu
- Department of Orthopedics, Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Wei Ke
- Department of Orthopedics, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingsong Xue
- Department of Orthopedics, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianwei Chen
- Department of Orthopedics, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Gradisteanu Pircalabioru G, Musat M, Elian V, Iliescu C. Liquid Biopsy: A Game Changer for Type 2 Diabetes. Int J Mol Sci 2024; 25:2661. [PMID: 38473908 DOI: 10.3390/ijms25052661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
As the burden of type 2 diabetes (T2D) continues to escalate globally, there is a growing need for novel, less-invasive biomarkers capable of early diabetes detection and monitoring of disease progression. Liquid biopsy, recognized for its minimally invasive nature, is increasingly being applied beyond oncology, and nevertheless shows its potential when the collection of the tissue biopsy is not possible. This diagnostic approach involves utilizing liquid biopsy markers such as cell-free nucleic acids, extracellular vesicles, and diverse metabolites for the molecular diagnosis of T2D and its related complications. In this context, we thoroughly examine recent developments in T2D liquid biopsy research. Additionally, we discuss the primary challenges and future prospects of employing liquid biopsy in the management of T2D. Prognosis, diagnosis and monitoring of T2D through liquid biopsy could be a game-changing technique for personalized diabetes management.
Collapse
Affiliation(s)
- Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research-Center, National University of Science and Technology "Politehnica" Bucharest, 6 Iuliu Maniu Bulevard, Campus Building, 061344 Bucharest, Romania
- Research Institute of University of Bucharest, University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., 050094 Bucharest, Romania
| | - Madalina Musat
- eBio-Hub Research-Center, National University of Science and Technology "Politehnica" Bucharest, 6 Iuliu Maniu Bulevard, Campus Building, 061344 Bucharest, Romania
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania
- Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, 011683 Bucharest, Romania
| | - Viviana Elian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 5-7 Ion Movila Street, 030167 Bucharest, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Prof. Dr. N. C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Ciprian Iliescu
- eBio-Hub Research-Center, National University of Science and Technology "Politehnica" Bucharest, 6 Iuliu Maniu Bulevard, Campus Building, 061344 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., 050094 Bucharest, Romania
- National Research and Development Institute in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania
| |
Collapse
|
6
|
王 一, 郭 建, 邵 宝, 陈 海, 蓝 辉. [The Role of TGF-β1/SMAD in Diabetic Nephropathy: Mechanisms and Research Development]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1065-1073. [PMID: 38162063 PMCID: PMC10752761 DOI: 10.12182/20231160108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 01/03/2024]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes and a leading cause of end-stage renal disease. Transforming growth factor-β1 (TGF-β1)/SMAD signaling activation plays an important role in the onset and progression of DN. Reported findings suggest that the activation of TGF-β1 (including the latent form, the active form, and the receptors) and its downstream signaling proteins (SMAD3, SMAD7, etc.) plays a critical role in DN. In addition, TGF-β1/SMAD signaling may mediate the pathogenesis and progression of DN via various microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence shows that TGF-β1, SMAD3, and SMAD7 are the main signaling proteins that contribute to the development of DN, and that they can be potential targets for the treatment of DN. However, recent clinical trials have shown that the anti-TGF-β1 monoclonal antibody treatment fails to effectively alleviate DN, which suggests that upstream inhibition of TGF-β1/SMAD signaling does not alleviate clinical symptoms and that this may be related to the fact that TGF-β1/SMAD has multiple biological effects. Targeted inhibition of the downstream TGF-β1 signaling (e.g., SMAD3 and SMAD7) may be an effective approach to attenuate DN. This article discussed the current understanding of the molecular mechanisms and potential targets for the treatment and prevention of DN by focusing on TGF-β1/SMAD signaling.
Collapse
Affiliation(s)
- 一帆 王
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
| | - 建波 郭
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
| | - 宝仪 邵
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
| | - 海勇 陈
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
- 香港大学深圳医院 中医部 (深圳 518053)Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - 辉耀 蓝
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
- 香港大学深圳医院 中医部 (深圳 518053)Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
7
|
Hussein RM. Long non-coding RNAs: The hidden players in diabetes mellitus-related complications. Diabetes Metab Syndr 2023; 17:102872. [PMID: 37797393 DOI: 10.1016/j.dsx.2023.102872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND AND AIM Long non-coding RNAs (lncRNAs) have been recognized as important regulators of gene expression in various human diseases. Diabetes mellitus (DM) is a long-term metabolic disorder associated with serious macro and microvascular complications. This review discusses the potential lncRNAs involved in DM-related complications such as dysfunction of pancreatic beta islets, nephropathy, retinopathy, cardiomyopathy, and peripheral neuropathy. METHODS An extensive literature search was conducted in the Scopus database to find information from reputed biomedical articles published on lncRNAs and diabetic complications from 2014 to 2023. All review articles were collected and statistically analyzed, and the findings were summarized. In addition, the potential lncRNAs involved in DM-related complications, molecular mechanisms, and gene targets were discussed in detail. RESULTS The lncRNAs ANRIL, E33, MALAT1, PVT1, Erbb4-IR, Gm4419, Gm5524, MIAT, MEG3, KNCQ1OT1, Uc.48+, BC168687, HOTAIR, and NONRATT021972 were upregulated in several diabetic complications. However, βlinc1, H19, PLUTO, MEG3, GAS5, uc.322, HOTAIR, MIAT, TUG1, CASC2, CYP4B1-PS1-001, SOX2OT, and Crnde were downregulated. Remarkably, lncRNAs MALAT1, ANRIL, MIAT, MEG3, H19, and HOTAIR were overlapping in more than one diabetic complication and were considered potential lncRNAs. CONCLUSION Several lncRNAs are identified as regulators of DM-related complications. The expression of lncRNAs is up or downregulated depending on the disease context, target genes, and regulatory partners. However, most lncRNAs target oxidative stress, inflammation, apoptosis, fibrosis, and angiogenesis pathways to mediate their protective/pathogenic mechanism of action and contribute to DM-related complications.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan.
| |
Collapse
|
8
|
Liu Z, Liu J, Wang W, An X, Luo L, Yu D, Sun W. Epigenetic modification in diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1133970. [PMID: 37455912 PMCID: PMC10348754 DOI: 10.3389/fendo.2023.1133970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common microangiopathy in diabetic patients and the main cause of death in diabetic patients. The main manifestations of DKD are proteinuria and decreased renal filtration capacity. The glomerular filtration rate and urinary albumin level are two of the most important hallmarks of the progression of DKD. The classical treatment of DKD is controlling blood glucose and blood pressure. However, the commonly used clinical therapeutic strategies and the existing biomarkers only partially slow the progression of DKD and roughly predict disease progression. Therefore, novel therapeutic methods, targets and biomarkers are urgently needed to meet clinical requirements. In recent years, increasing attention has been given to the role of epigenetic modification in the pathogenesis of DKD. Epigenetic variation mainly includes DNA methylation, histone modification and changes in the noncoding RNA expression profile, which are deeply involved in DKD-related inflammation, oxidative stress, hemodynamics, and the activation of abnormal signaling pathways. Since DKD is reversible at certain disease stages, it is valuable to identify abnormal epigenetic modifications as early diagnosis and treatment targets to prevent the progression of end-stage renal disease (ESRD). Because the current understanding of the epigenetic mechanism of DKD is not comprehensive, the purpose of this review is to summarize the role of epigenetic modification in the occurrence and development of DKD and evaluate the value of epigenetic therapies in DKD.
Collapse
Affiliation(s)
- Zhe Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiahui Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wanning Wang
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Distefano R, Ilieva M, Madsen JH, Ishii H, Aikawa M, Rennie S, Uchida S. T2DB: A Web Database for Long Non-Coding RNA Genes in Type II Diabetes. Noncoding RNA 2023; 9:30. [PMID: 37218990 PMCID: PMC10204529 DOI: 10.3390/ncrna9030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Type II diabetes (T2D) is a growing health problem worldwide due to increased levels of obesity and can lead to other life-threatening diseases, such as cardiovascular and kidney diseases. As the number of individuals diagnosed with T2D rises, there is an urgent need to understand the pathogenesis of the disease in order to prevent further harm to the body caused by elevated blood glucose levels. Recent advances in long non-coding RNA (lncRNA) research may provide insights into the pathogenesis of T2D. Although lncRNAs can be readily detected in RNA sequencing (RNA-seq) data, most published datasets of T2D patients compared to healthy donors focus only on protein-coding genes, leaving lncRNAs to be undiscovered and understudied. To address this knowledge gap, we performed a secondary analysis of published RNA-seq data of T2D patients and of patients with related health complications to systematically analyze the expression changes of lncRNA genes in relation to the protein-coding genes. Since immune cells play important roles in T2D, we conducted loss-of-function experiments to provide functional data on the T2D-related lncRNA USP30-AS1, using an in vitro model of pro-inflammatory macrophage activation. To facilitate lncRNA research in T2D, we developed a web application, T2DB, to provide a one-stop-shop for expression profiling of protein-coding and lncRNA genes in T2D patients compared to healthy donors or subjects without T2D.
Collapse
Affiliation(s)
- Rebecca Distefano
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Mirolyuba Ilieva
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (M.I.); (J.H.M.)
| | - Jens Hedelund Madsen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (M.I.); (J.H.M.)
| | - Hideshi Ishii
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan;
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Rennie
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (M.I.); (J.H.M.)
| |
Collapse
|
10
|
Chen YY, Chen XG, Zhang S. Druggability of lipid metabolism modulation against renal fibrosis. Acta Pharmacol Sin 2022; 43:505-519. [PMID: 33990764 PMCID: PMC8888625 DOI: 10.1038/s41401-021-00660-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/16/2021] [Indexed: 02/08/2023] Open
Abstract
Renal fibrosis contributes to progressive damage to renal structure and function. It is a common pathological process as chronic kidney disease develops into kidney failure, irrespective of diverse etiologies, and eventually leads to death. However, there are no effective drugs for renal fibrosis treatment at present. Lipid aggregation in the kidney and consequent lipotoxicity always accompany chronic kidney disease and fibrosis. Numerous studies have revealed that restoring the defective fatty acid oxidation in the kidney cells can mitigate renal fibrosis. Thus, it is an important strategy to reverse the dysfunctional lipid metabolism in the kidney, by targeting critical regulators of lipid metabolism. In this review, we highlight the potential "druggability" of lipid metabolism to ameliorate renal fibrosis and provide current pre-clinical evidence, exemplified by some representative druggable targets and several other metabolic regulators with anti-renal fibrosis roles. Then, we introduce the preliminary progress of noncoding RNAs as promising anti-renal fibrosis drug targets from the perspective of lipid metabolism. Finally, we discuss the prospects and deficiencies of drug targeting lipid reprogramming in the kidney.
Collapse
Affiliation(s)
- Yuan-yuan Chen
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050 China
| | - Xiao-guang Chen
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050 China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China.
| |
Collapse
|
11
|
Wang M, Chen X, Zhang H, Li L, Xu Y, Lu W, Lu Y. ENSMUST00000147869 regulates proliferation and fibrosis of mesangial cells in diabetic nephropathy by interacting with Hspa9. IUBMB Life 2022; 74:419-432. [PMID: 35103378 DOI: 10.1002/iub.2599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 11/07/2022]
Abstract
AIMS Our previous study showed that ENSMUST00000147869 was abnormally low expressed in the early stage of diabetic nephropathy (DN). ENSMUST00000147869 could inhibit the fibrosis and proliferation of mouse mesangial cells (MMCs), but the mechanism is still unclear. This study aims to explore the specific mechanism underline ENSMUST00000147869 regulates the proliferation and fibrosis of MMCs in DN. METHODS Nucleocytoplasmic fractionation was applied to define the location of ENSMUST00000147869 in MMCs. RNA-protein pulldown, RNA immunoprecipitation and mass spectrometry were used to identify upregulated Hspa9 directly interacting with ENSMUST00000147869. SiRNA and lentivirus packaging were used to clarify the role of Hspa9 downregulated by ENSMUST00000147869 in promoting proliferation and fibrosis in MMCs. CHX and MG132 were used to clarify the regulatory role of ENSMUST00000147869 to Hspa9. Immunoprecipitation confirmed the binding of Hspa9 and HMGB1. RESULTS HSPA9 was a direct binding protein of ENSMUST00000147869, and ENSMUST00000147869 could inhibit proliferation and fibrosis of MMCs by down-regulating HSPA9 through ubiquitination process. HMGB1 was the downstream binding protein of Hspa9, and ENSMUST00000147869 could inhibit the interaction between Hspa9 and HMGB1. CONCLUSION Our data showed that ENSMUST00000147869 regulates Hspa9 through the ubiquitin proteasome pathway, and inhibits the binding of Hspa9 and HMGB1. ENSMUST00000147869/Hspa9/HMGB1 axis may act as a diagnostic molecular marker and an effective therapeutic target for DN. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Min Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xin Chen
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Henglu Zhang
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Lanlan Li
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yang Xu
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Weiping Lu
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yibing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Alipoor B, Nikouei S, Rezaeinejad F, Malakooti-Dehkordi SN, Sabati Z, Ghasemi H. Long non-coding RNAs in metabolic disorders: pathogenetic relevance and potential biomarkers and therapeutic targets. J Endocrinol Invest 2021; 44:2015-2041. [PMID: 33792864 DOI: 10.1007/s40618-021-01559-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND It has been suggested that dysregulation of long non-coding RNAs (lncRNAs) could be associated with the incidence and development of metabolic disorders. AIM Accordingly, this narrative review described the molecular mechanisms of lncRNAs in the development of metabolic diseases including insulin resistance, diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), cirrhosis, and coronary artery diseases (CAD). Furthermore, we investigated the up-to-date findings on the association of deregulated lncRNAs in the metabolic disorders, and potential use of lncRNAs as biomarkers and therapeutic targets. CONCLUSION LncRNAs/miRNA/regulatory proteins axis plays a crucial role in progression of metabolic disorders and may be used in development of therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- B Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - S Nikouei
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - F Rezaeinejad
- Department of Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Z Sabati
- MSc student of Hematology, Student Research Committee, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - H Ghasemi
- Abadan Faculty of Medical Sciences, Abadan, Iran.
| |
Collapse
|
13
|
Poitras TM, Munchrath E, Zochodne DW. Neurobiological Opportunities in Diabetic Polyneuropathy. Neurotherapeutics 2021; 18:2303-2323. [PMID: 34935118 PMCID: PMC8804062 DOI: 10.1007/s13311-021-01138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
This review highlights a selection of potential translational directions for the treatment of diabetic polyneuropathy (DPN) currently irreversible and without approved interventions beyond pain management. The list does not include all diabetic targets that have been generated over several decades of research but focuses on newer work. The emphasis is firstly on approaches that support the viability and growth of peripheral neurons and their ability to withstand a barrage of diabetic alterations. We include a section describing Schwann cell targets and finally how mitochondrial damage has been a common element in discussing neuropathic damage. Most of the molecules and pathways described here have not yet reached clinical trials, but many trials have been negative to date. Nonetheless, these failures clear the pathway for new thoughts over reversing DPN.
Collapse
Affiliation(s)
- Trevor M Poitras
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Easton Munchrath
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
14
|
Xia W, He Y, Gan Y, Zhang B, Dai G, Ru F, Jiang Z, Chen Z, Chen X. Long Non-coding RNA: An Emerging Contributor and Potential Therapeutic Target in Renal Fibrosis. Front Genet 2021; 12:682904. [PMID: 34386039 PMCID: PMC8353329 DOI: 10.3389/fgene.2021.682904] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Renal fibrosis (RF) is a pathological process that culminates in terminal renal failure in chronic kidney disease (CKD). Fibrosis contributes to progressive and irreversible decline in renal function. However, the molecular mechanisms involved in RF are complex and remain poorly understood. Long non-coding RNAs (lncRNAs) are a major type of non-coding RNAs, which significantly affect various disease processes, cellular homeostasis, and development through multiple mechanisms. Recent investigations have implicated aberrantly expressed lncRNA in RF development and progression, suggesting that lncRNAs play a crucial role in determining the clinical manifestation of RF. In this review, we comprehensively evaluated the recently published articles on lncRNAs in RF, discussed the potential application of lncRNAs as diagnostic and/or prognostic biomarkers, proposed therapeutic targets for treating RF-associated diseases and subsequent CKD transition, and highlight future research directions in the context of the role of lncRNAs in the development and treatment of RF.
Collapse
Affiliation(s)
- Weiping Xia
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Guoyu Dai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Feng Ru
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zexiang Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Zhou X, Li Y, Wu C, Yu W, Cheng F. Novel lncRNA XLOC_032768 protects against renal tubular epithelial cells apoptosis in renal ischemia-reperfusion injury by regulating FNDC3B/TGF-β1. Ren Fail 2021; 42:994-1003. [PMID: 32972270 PMCID: PMC7534267 DOI: 10.1080/0886022x.2020.1818579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Renal ischemia–reperfusion injury is a leading cause of acute kidney injury, but its underlying mechanism remains poorly understood and effective therapies are still lacking. Here, we identified lncRNA XLOC_032768 as a novel target in renal ischemia–reperfusion injury by analyzing differentially expressed genes of the transcriptome data. PCR results show that XLOC_032768 was markedly downregulated in the kidney during renal ischemia–reperfusion in mice and in cultured kidney cells during hypoxia. Upon induction in vitro, XLOC_032768 overexpression repressed the expression of fibronectin type III domain containing 3B (FNDC3B) and tubular epithelial cells apoptosis. Administration of XLOC_032768 preserved FNDC3B expression and attenuated renal tubular epithelial cells apoptosis, resulting in protection against kidney injury in mice. Knockdown of FNDC3B markedly reduced the expression of TGF-β1 and apoptosis of renal tubular cells. Thus, XLOC_032768/FNDC3B/TGF-β1signaling pathway in ischemia–reperfusion injury may be targeted for therapy.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongwei Li
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Cheng Wu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Chen K, Yu B, Liao J. LncRNA SOX2OT alleviates mesangial cell proliferation and fibrosis in diabetic nephropathy via Akt/mTOR-mediated autophagy. Mol Med 2021; 27:71. [PMID: 34238205 PMCID: PMC8268185 DOI: 10.1186/s10020-021-00310-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/29/2021] [Indexed: 01/13/2023] Open
Abstract
Background Accumulating evidences have demonstrated that long non-coding RNAs (lncRNAs) are involved in the pathophysiology of diabetic nephropathy (DN). lncRNA SOX2OT plays an essential role in many diseases, including diabetes. Herein, we aim to investigate the underlying mechanism of lncRNA SOX2OT in DN pathogenesis. Methods Streptozotocin-induced DN mouse models and high glucose-induced mouse mesangial cells were constructed to examine the expression pattern of lncRNA SOX2OT. The activation of autophagy was evaluated using immunohistochemistry, immunofluorescence and western blot analysis, respectively. SOX2OT overexpressing plasmid was applied to further verify the functional role of SOX2OT in DN pathogenesis. CCK-8 and EDU assays were performed to the proliferation of mesangial cells. Additionally, rapamycin, the inhibitor of mTOR signaling, was used to further clarify whether SOX2OT controls DN development through Akt/mTOR pathway. Results lncRNA SOX2OT was markedly down-regulated both in streptozotocin-induced DN mice and high glucose-induced mouse mesangial cells. Moreover, overexpression of lncRNA SOX2OT was able to diminish the suppression of autophagy and alleviate DN-induced renal injury. Functionally, CCK-8 and EDU assays indicated that lncRNA SOX2OT overexpression significantly suppressed the proliferation and fibrosis of mesangial cells. Additionally, an obvious inhibition of Akt/mTOR was also observed with lncRNA SOX2OT overexpression, which was then further verified in vivo. Conclusion In summary, we demonstrated that lncRNA SOX2OT alleviates the pathogenesis of DN via regulating Akt/mTOR-mediated autophagy, which may provide a novel target for DN therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00310-6.
Collapse
Affiliation(s)
- Ke Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Bo Yu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jie Liao
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
17
|
Rey F, Urrata V, Gilardini L, Bertoli S, Calcaterra V, Zuccotti GV, Cancello R, Carelli S. Role of long non-coding RNAs in adipogenesis: State of the art and implications in obesity and obesity-associated diseases. Obes Rev 2021; 22:e13203. [PMID: 33443301 PMCID: PMC8244036 DOI: 10.1111/obr.13203] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022]
Abstract
Obesity is an evolutionary, chronic, and relapsing disease that consists of a pathological accumulation of adipose tissue able to increase morbidity for high blood pressure, type 2 diabetes, metabolic syndrome, and obstructive sleep apnea in adults, children, and adolescents. Despite intense research over the last 20 years, obesity remains today a disease with a complex and multifactorial etiology. Recently, long non-coding RNAs (lncRNAs) are emerging as interesting new regulators as different lncRNAs have been found to play a role in early and late phases of adipogenesis and to be implicated in obesity-associated complications onset. In this review, we discuss the most recent advances on the role of lncRNAs in adipocyte biology and in obesity-associated complications. Indeed, more and more researchers are focusing on investigating the underlying roles that these molecular modulators could play. Even if a significant number of evidence is correlation-based, with lncRNAs being differentially expressed in a specific disease, recent works are now focused on deeply analyzing how lncRNAs can effectively modulate the disease pathogenesis onset and progression. LncRNAs possibly represent new molecular markers useful in the future for both the early diagnosis and a prompt clinical management of patients with obesity.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Valentina Urrata
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Luisa Gilardini
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Simona Bertoli
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Raffaella Cancello
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| |
Collapse
|
18
|
Wang S, Yi P, Wang N, Song M, Li W, Zheng Y. LncRNA TUG1/miR-29c-3p/SIRT1 axis regulates endoplasmic reticulum stress-mediated renal epithelial cells injury in diabetic nephropathy model in vitro. PLoS One 2021; 16:e0252761. [PMID: 34097717 PMCID: PMC8183992 DOI: 10.1371/journal.pone.0252761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/22/2021] [Indexed: 02/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are important regulators in diabetic nephropathy. In this study, we investigated the potential role of lncRNA TUG1 in regulating endoplasmic reticulum stress (ERS)-mediated apoptosis in high glucose induced renal tubular epithelial cells. Human renal tubular epithelial cell line HK-2 was challenged with high glucose following transfection with lncRNA TUG1, miR-29c-3p mimics or inhibitor expression plasmid, either alone or in combination, for different experimental purposes. Potential binding effects between TUG1 and miR-29c-3p, as well as between miR-29c-3p and SIRT1 were verified. High glucose induced apoptosis and ERS in HK-2 cells, and significantly decreased TUG1 expression. Overexpressed TUG1 could prevent high glucose-induced apoptosis and alleviated ERS via negatively regulating miR-29c-3p. In contrast, miR-29c-3p increased HK-2 cells apoptosis and ERS upon high glucose-challenge. SIRT1 was a direct target gene of miR-29c-3p in HK-2 cells, which participated in the effects of miR-29c-3p on HK-2 cells. Mechanistically, TUG1 suppressed the expression of miR-29c-3p, thus counteracting its function in downregulating the level of SIRT1. TUG1 regulates miR-29c-3p/SIRT1 and subsequent ERS to relieve high glucose induced renal epithelial cells injury, and suggests a potential role for TUG1 as a promising diagnostic marker of diabetic nephropathy.
Collapse
Affiliation(s)
- Shaoqiang Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining city, Shandong Province, P.R.China
| | - Pengfei Yi
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining city, Shandong Province, P.R.China
| | - Na Wang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining city, Shandong Province, P.R.China
| | - Min Song
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining city, Shandong Province, P.R.China
| | - Wenhui Li
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining city, Shandong Province, P.R.China
| | - Yingying Zheng
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining city, Shandong Province, P.R.China
- * E-mail:
| |
Collapse
|
19
|
Srivastava SP, Goodwin JE, Tripathi P, Kanasaki K, Koya D. Interactions among Long Non-Coding RNAs and microRNAs Influence Disease Phenotype in Diabetes and Diabetic Kidney Disease. Int J Mol Sci 2021; 22:ijms22116027. [PMID: 34199672 PMCID: PMC8199750 DOI: 10.3390/ijms22116027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Large-scale RNA sequencing and genome-wide profiling data revealed the identification of a heterogeneous group of noncoding RNAs, known as long noncoding RNAs (lncRNAs). These lncRNAs play central roles in health and disease processes in diabetes and cancer. The critical association between aberrant expression of lncRNAs in diabetes and diabetic kidney disease have been reported. LncRNAs regulate diverse targets and can function as sponges for regulatory microRNAs, which influence disease phenotype in the kidneys. Importantly, lncRNAs and microRNAs may regulate bidirectional or crosstalk mechanisms, which need to be further investigated. These studies offer the novel possibility that lncRNAs may be used as potential therapeutic targets for diabetes and diabetic kidney diseases. Here, we discuss the functions and mechanisms of actions of lncRNAs, and their crosstalk interactions with microRNAs, which provide insight and promise as therapeutic targets, emphasizing their role in the pathogenesis of diabetes and diabetic kidney disease.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
- Correspondence: or (S.P.S.); (D.K.)
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Pratima Tripathi
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow 226010, India;
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo 693-0021, Japan;
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa 920-0293, Japan
- Correspondence: or (S.P.S.); (D.K.)
| |
Collapse
|
20
|
George MN, Leavens KF, Gadue P. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers. Front Endocrinol (Lausanne) 2021; 12:682625. [PMID: 34149620 PMCID: PMC8206553 DOI: 10.3389/fendo.2021.682625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
A mechanistic understanding of the genetic basis of complex diseases such as diabetes mellitus remain elusive due in large part to the activity of genetic disease modifiers that impact the penetrance and/or presentation of disease phenotypes. In the face of such complexity, rare forms of diabetes that result from single-gene mutations (monogenic diabetes) can be used to model the contribution of individual genetic factors to pancreatic β-cell dysfunction and the breakdown of glucose homeostasis. Here we review the contribution of protein coding and non-protein coding genetic disease modifiers to the pathogenesis of diabetes subtypes, as well as how recent technological advances in the generation, differentiation, and genome editing of human pluripotent stem cells (hPSC) enable the development of cell-based disease models. Finally, we describe a disease modifier discovery platform that utilizes these technologies to identify novel genetic modifiers using induced pluripotent stem cells (iPSC) derived from patients with monogenic diabetes caused by heterozygous mutations.
Collapse
Affiliation(s)
- Matthew N. George
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Karla F. Leavens
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
21
|
Chenxu G, Shaoyu Z, Lili L, Dai X, Kuang Q, Qiang L, Linfeng H, Deshuai L, Jun T, Minxuan X. Betacyanins attenuates diabetic nephropathy in mice by inhibiting fibrosis and oxidative stress via the improvement of Nrf2 signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
22
|
Yu D, Yang X, Zhu Y, Xu F, Zhang H, Qiu Z. Knockdown of plasmacytoma variant translocation 1 (PVT1) inhibits high glucose-induced proliferation and renal fibrosis in HRMCs by regulating miR-23b-3p/early growth response factor 1 (EGR1). Endocr J 2021; 68:519-529. [PMID: 33408314 DOI: 10.1507/endocrj.ej20-0642] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been reported to play critical role in the development of diabetic nephropathy (DN). However, the effects and mechanism of plasmacytoma variant translocation 1 (PVT1) remain poorly understood. The expression of PVT1, miR-23b-3p, early growth response factor 1 (EGR1), Fibronectin (FN), Collagen IV (Col IV), alpha smooth muscle actin (α-SMA), E-cadherin, and vimentin, transforming growth factor (TGF)-β1 was examined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was assessed by Cell Counting-8 (CCK-8) assay. Western blot assay was conducted to measure the protein levels of FN, Col IV, E-cadherin, α-SMA, vimentin, TGF-β1, and EGR1. The interaction between miR-23b-3p and PVT1 or EGR1 was predicted by starBase or TargetScan and confirmed by the dual luciferase reporter assay. The oxidative stress factors were analyzed by corresponding kits. We found that the expression of PVT1 and EGR1 was increased and miR-23b-3p was decreased in serum samples of DN patients and HG-induced HRMCs. Knockdown of PVT1 significantly inhibited HG-induced proliferation, extracellular matrix (ECM) accumulation, epithelial-mesenchymal transition (EMT), and oxidative stress in HRMCs, while these effects were abated by inhibiting miR-23b-3p. In addition, EGR1 was confirmed as downstream target of miR-23b-3p and miR-23b-3p could specially bind to PVT1. Besides, downregulation of PVT1 inhibited the progression of DN partially via upregulating miR-23b-3p and downregulating EGR1. In conclusion, our results suggested that PVT1 knockdown suppressed DN progression though functioning as ceRNA of miR-23b-3p to regulate EGR1 expression in vitro, providing potential value for the treatment of DN.
Collapse
Affiliation(s)
- Dongmei Yu
- Department of Endocrinology, The First People's Hospital of Lanzhou New District, Lanzhou, Gansu, China
| | - Xiaohong Yang
- Department of Nursing, The First People's Hospital of Lanzhou New District, Lanzhou, Gansu, China
| | - Yong Zhu
- Department of Endocrinology, The First People's Hospital of Lanzhou New District, Lanzhou, Gansu, China
| | - Fenyan Xu
- Department of Endocrinology, The First People's Hospital of Lanzhou New District, Lanzhou, Gansu, China
| | - Hong Zhang
- Department of Endocrinology, The First People's Hospital of Lanzhou New District, Lanzhou, Gansu, China
| | - Zhiqiang Qiu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First People's Hospital of Lanzhou New District, Lanzhou, Gansu, China
| |
Collapse
|
23
|
Gu YY, Dou JY, Huang XR, Liu XS, Lan HY. Transforming Growth Factor-β and Long Non-coding RNA in Renal Inflammation and Fibrosis. Front Physiol 2021; 12:684236. [PMID: 34054586 PMCID: PMC8155637 DOI: 10.3389/fphys.2021.684236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Renal fibrosis is one of the most characterized pathological features in chronic kidney disease (CKD). Progressive fibrosis eventually leads to renal failure, leaving dialysis or allograft transplantation the only clinical option for CKD patients. Transforming growth factor-β (TGF-β) is the key mediator in renal fibrosis and is an essential regulator for renal inflammation. Therefore, the general blockade of the pro-fibrotic TGF-β may reduce fibrosis but may risk promoting renal inflammation and other side effects due to the diverse role of TGF-β in kidney diseases. Long non-coding RNAs (lncRNAs) are RNA transcripts with more than 200 nucleotides and have been regarded as promising therapeutic targets for many diseases. This review focuses on the importance of TGF-β and lncRNAs in renal inflammation, fibrogenesis, and the potential applications of TGF-β and lncRNAs as the therapeutic targets and biomarkers in renal fibrosis and CKD are highlighted.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing-Yun Dou
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Weihai Hospital of Traditional Chinese Medicine, Weihai, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
MRC2 Promotes Proliferation and Inhibits Apoptosis of Diabetic Nephropathy. ACTA ACUST UNITED AC 2021; 2021:6619870. [PMID: 34012764 PMCID: PMC8102129 DOI: 10.1155/2021/6619870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/15/2021] [Accepted: 04/17/2021] [Indexed: 11/26/2022]
Abstract
Diabetic nephropathy (DN) is an important microvascular complication of diabetes and is the main cause of end-stage renal disease. Type 2 mannose receptor C (MRC2) is a member of the mannose receptor protein family, which has been confirmed to have the ability to promote the cell migration signaling pathway and invasion. By complementary DNA chip screening and analysis, we found that the expression of MRC2 was upregulated in the kidneys of mice with diabetic nephropathy. However, the role of MRC2 in diabetic nephropathy is still unclear. This work studied the effect of MRC2 on diabetic nephropathy. After verifying the results of the chip by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, we used small interfering RNAs (siRNAs) to knock down the expression of MRC2 in mouse mesangial cells (MMCs) and analyzed the level of cell proliferation and apoptosis using western blotting, Cell Counting Kit-8, and flow cytometry. The results showed that the MRC2 knockdown inhibited MMC proliferation and induced cell apoptosis. These results suggest that MRC2 may be a molecular marker and a therapeutic target for diabetic nephropathy.
Collapse
|
25
|
Coellar JD, Long J, Danesh FR. Long Noncoding RNAs and Their Therapeutic Promise in Diabetic Nephropathy. Nephron Clin Pract 2021; 145:404-414. [PMID: 33853077 PMCID: PMC8266727 DOI: 10.1159/000515422] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
Recent advances in large-scale RNA sequencing and genome-wide profiling projects have unraveled a heterogeneous group of RNAs, collectively known as long noncoding RNAs (lncRNAs), which play central roles in many diverse biological processes. Importantly, an association between aberrant expression of lncRNAs and diverse human pathologies has been reported, including in a variety of kidney diseases. These observations have raised the possibility that lncRNAs may represent unexploited potential therapeutic targets for kidney diseases. Several important questions regarding the functionality of lncRNAs and their impact in kidney diseases, however, remain to be carefully addressed. Here, we provide an overview of the main functions and mechanisms of actions of lncRNAs, and their promise as therapeutic targets in kidney diseases, emphasizing on the role of some of the best-characterized lncRNAs implicated in the pathogenesis and progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Juan D. Coellar
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, TX 77030
| | - Jianyin Long
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, TX 77030
| | - Farhad R. Danesh
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, TX 77030
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
26
|
Silencing of LncRNA PVT1 inhibits the proliferation, migration and fibrosis of high glucose-induced mouse mesangial cells via targeting microRNA-93-5p. Biosci Rep 2021; 40:222762. [PMID: 32329508 PMCID: PMC7199453 DOI: 10.1042/bsr20194427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: The present study aimed to investigate the regulatory role of long non-coding RNA plasmacytoma variant translocation 1 (PVT1) on high glucose (HG)-induced mouse mesangial cells (MMCs). Methods: PVT1 expression in diabetic nephropathy (DN) mice and HG-induced MMCs was detected by qRT-PCR. EdU and Colony formation, Annexin V-PI staining, Muse cell cycle, Scratch, and Transwell assays were performed to detect the cell proliferation, apoptosis, cell cycle, migration, and invasion, respectively. The contents of fibrosis factors in cell-culture supernatants were detected by enzyme-linked immunosorbent assay (ELISA). Western blot was performed to detect the expression of factors involved in apoptosis, cell cycle, migration and invasion, fibrosis, and PI3K/Akt/mTOR pathway. The targeting relation between miR-93-5p and PVT1 was predicted by StarBase3.0 (an online software for analyzing the targeting relationship) and identified by Dual-luciferase reporter (DLR) assay. Results: PVT1 was overexpressed in DN kidney tissues and HG-induced MMCs. HG-induced MMCs exhibited significantly increased EdU-positive cells, cell colonies, S and G2/M phase cells, migration and invasion ability, and contents of fibrosis factors, as well as significantly decreased apoptosis rate compared with NG-induced MMCs. HG significantly up-regulated Bcl-2, CyclinD1, CDK4, N-cadherin, vimentin, Col. IV, FN, TGF-β1 and PAI-1, and down-regulated Bax, cleaved caspase-3, cleaved PARP, and E-cadherin in MMCs. Silencing of PVT1 eliminated the effects of HG in MMCs and blocked PI3K/Akt/mTOR pathway. MiR-93-5p was a target of PVT1, which eliminated the effects of PVT1 on HG-induced MMCs. Conclusions: PVT1 silencing inhibited the proliferation, migration, invasion and fibrosis, promoted the apoptosis, and blocked PI3K/Akt/mTOR pathway in HG-induced MMCs via up-regulating miR-93-5p.
Collapse
|
27
|
Sultan HK, El-Ayat WM, AbouGhalia AH, Lasheen NN, Moustafa AS. Study of long non-coding RNA and mitochondrial dysfunction in diabetic rats. Tissue Cell 2021; 71:101516. [PMID: 33744742 DOI: 10.1016/j.tice.2021.101516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus (DM) is a worldwide health problem. The Micro- and macro-vascular complications are the major causes of morbidity and mortality of DM. Molecular regulation of mitochondrial fission/fusion cycles is being studied, but the results were not conclusive. The aim of this study is to investigate the possible functional role of lncRNA H19 and its relation to mitofusin-2 (Mfn-2) gene expression in diabetic rats with cardiac and renal complications. Streptozotocin-induced diabetic male, albino rats and a matched control group were investigated. Cardiac weights, blood pressure and ECG were recorded. Biochemical evaluation of cardiac and renal functions was performed. Molecular determination of lncRNA H19 and Mfn-2 gene expression and histological examination by light and electron microscopy for cardiac and renal tissues were performed. Diabetic rats showed a significant increase of left ventricle weight/whole body weight ratio, R wave voltage, and a significant decrease of blood pressure, heart rate, and P wave voltage. At the molecular level, lncRNA H19 and Mfn-2 mRNA showed altered expression with a statistically significant downregulation of Mfn-2 mRNA expression in renal tissues. In conclusion, the changes in lncRNA H19 and Mfn-2 mRNA expression may help better understanding of the pathogenesis of cardiac and renal dysfunctions associated with type 1 DM.
Collapse
Affiliation(s)
- Haytham K Sultan
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt.
| | - Wael M El-Ayat
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt
| | - Azza H AbouGhalia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt
| | - Noha N Lasheen
- Medical Physiology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt
| | - Amr S Moustafa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt
| |
Collapse
|
28
|
Abstract
Diabetic kidney disease (DKD) is one of the most common chronic microvascular complications of diabetes. In addition to the characteristic clinical manifestations of proteinuria, it also has a complex pathological process that results from the combined effects of multiple factors involving the whole renal structure such as glomeruli, renal tubules, and blood vessels. Non-coding RNAs (ncRNA) are transcripts with no or low coding potential, among which micro RNA (miRNA) has been widely studied as a functional miRNA involved in regulation and a potential biomarker for disease prediction. The abundance of long coding RNA (lncRNA) in vivo is highly expressed with a certain degree of research progress, but the structural similarity makes the research still challenging. The research of circular RNA (circRNA) is still in its early stages. It is more relevant to the study to provide a more relevant link between diseases in the kidney and other tissues or organs. This classification review mainly summarized the biogenesis characteristics, the pathological mechanism of ncRNA-regulating diseases, the ways of ncRNA in the clinical prediction as a potential biomarker, and the interaction networks of ncRNA.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiuyue Wang
- Department of Endocrinology, the First Hospital Affiliated of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Gu YY, Lu FH, Huang XR, Zhang L, Mao W, Yu XQ, Liu XS, Lan HY. Non-Coding RNAs as Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Front Pharmacol 2021; 11:583528. [PMID: 33574750 PMCID: PMC7870688 DOI: 10.3389/fphar.2020.583528] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney disease (DKD) is the most common diabetic complication and is a leading cause of end-stage kidney disease. Increasing evidence shows that DKD is regulated not only by many classical signaling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation, and non-coding RNA (ncRNAs). In this review, we focus on our current understanding of the role and mechanisms of ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the pathogenesis of DKD. Of them, the regulatory role of TGF-β/Smad3-dependent miRNAs and lncRNAs in DKD is highlighted. Importantly, miRNAs and lncRNAs as biomarkers and therapeutic targets for DKD are also described, and the perspective of ncRNAs as a novel therapeutic approach for combating diabetic nephropathy is also discussed.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Fu-Hua Lu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei Zhang
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Non-coding RNAs modulate function of extracellular matrix proteins. Biomed Pharmacother 2021; 136:111240. [PMID: 33454598 DOI: 10.1016/j.biopha.2021.111240] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) creates a multifaceted system for the interaction of diverse structural proteins, matricellular molecules, proteoglycans, hyaluronan, and various glycoproteins that collaborate and bind with each other to produce a bioactive polymer. Alterations in the composition and configuration of ECM elements influence the cellular phenotype, thus participating in the pathogenesis of several human disorders. Recent studies indicate the crucial roles of non-coding RNAs in the modulation of ECM. Several miRNAs such as miR-21, miR-26, miR-19, miR-140, miR-29, miR-30, miR-133 have been dysregulated in disorders that are associated with disruption or breakdown of the ECM. Moreover, expression of MALAT1, PVT1, SRA1, n379519, RMRP, PFL, TUG1, TM1P3, FAS-AS1, PART1, XIST, and expression of other lncRNAs is altered in disorders associated with the modification of ECM components. In the current review, we discuss the role of lncRNAs and miRNAs in the modification of ECM and their relevance with the pathophysiology of human disorders such as cardiac/ lung fibrosis, cardiomyopathy, heart failure, asthma, osteoarthritis, and cancers.
Collapse
|
31
|
Drag MH, Kilpeläinen TO. Cell-free DNA and RNA-measurement and applications in clinical diagnostics with focus on metabolic disorders. Physiol Genomics 2020; 53:33-46. [PMID: 33346689 DOI: 10.1152/physiolgenomics.00086.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) and RNA (cfRNA) hold enormous potential as a new class of biomarkers for the development of noninvasive liquid biopsies in many diseases and conditions. In recent years, cfDNA and cfRNA have been studied intensely as tools for noninvasive prenatal testing, solid organ transplantation, cancer screening, and monitoring of tumors. In obesity, higher cfDNA concentration indicates accelerated cellular turnover of adipocytes during expansion of adipose mass and may be directly involved in the development of adipose tissue insulin resistance by inducing inflammation. Furthermore, cfDNA and cfRNA have promising diagnostic value in a range of obesity-related metabolic disorders, such as nonalcoholic fatty liver disease, type 2 diabetes, and diabetic complications. Here, we review the current and future applications of cfDNA and cfRNA within clinical diagnostics, discuss technical and analytical challenges in the field, and summarize the opportunities of using cfDNA and cfRNA in the diagnostics and prognostics of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Markus H Drag
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Norcantharidin protects against renal interstitial fibrosis by suppressing TWEAK-mediated Smad3 phosphorylation. Life Sci 2020; 260:118488. [PMID: 32979359 DOI: 10.1016/j.lfs.2020.118488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/17/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
AIMS This study investigated the role and mechanism of action of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in the pathogenesis of renal interstitial fibrosis (RIF), and its involvement in the anti-RIF effect of norcantharidin (NCTD). MAIN METHODS Mice with unilateral ureteral obstruction and BUMPT mouse proximal tubular cells exposed to transforming growth factor (TGF)-β1 were used as in vivo and in vitro models of RIF, respectively. NCTD was administered to mice by intraperitoneal injection (0.075 mg kg-1·day-1). Hematoxylin-eosin and Masson's trichrome staining were performed to assess pathologic changes in the kidney. Immunohistochemistry, western blotting, and real-time PCR were performed to evaluate the expression of TWEAK and the fibrotic factors fibronectin (FN) and collagen type I (Col-I). The role of TWEAK in RIF and in the anti-RIF effect of NCTD was evaluated by TWEAK overexpression and neutralization with a specific antibody, and specific inhibitor of Mothers against decapentaplegic homolog (Smad)3 (SIS3) was used to examine the involvement of TGF-β1/Smad3 signaling. KEY FINDINGS TWEAK was mainly expressed in renal tubules in mice; the level was markedly elevated in both in vivo and in vitro RIF models. TWEAK overexpression in BUMPT cells increased the levels of phosphorylated Smad3, FN, and Col-I, which were reduced by treatment with SIS3. NCTD suppressed FN and Col-I expression by blocking TWEAK-mediated Smad3 phosphorylation. SIGNIFICANCE Upregulation of TWEAK contributes to RIF by promoting Smad3 phosphorylation, while NCTD inhibits this process.
Collapse
|
33
|
Cheng L, Cheng J, Peng W, Jiang X, Huang S. Long non-coding RNA Dlx6os1 serves as a potential treatment target for diabetic nephropathy via regulation of apoptosis and inflammation. Exp Ther Med 2020; 20:3791-3797. [PMID: 32855728 PMCID: PMC7444328 DOI: 10.3892/etm.2020.9112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
The present study investigated the effect of long non-coding RNA (lncRNA) Dlx6os1 silencing on cell proliferation, apoptosis and fibrosis, and further explored its influence on the mRNA expression profile in mouse mesangial cells (MMCs) of a diabetic nephropathy (DN) cellular model. A DN cellular model was constructed in SV40 MES13 MMCs under high glucose conditions (30 mmol/l glucose culture). lncRNA Dlx6os1 short hairpin (sh)RNA plasmids and negative control (NC) shRNA plasmids were transfected into the MMCs of the DN cellular model as the sh-lncRNA group and sh-NC group respectively. The mRNA expression profile was determined in the sh-lncRNA and sh-NC groups. Compared with the sh-NC group, the cell proliferation, mRNA and protein expression levels of proliferative markers (cyclin D1 and proliferating cell nuclear antigen) as well as fibrosis markers (fibronectin and collagen I) were suppressed, whereas cell apoptosis was promoted in the sh-lncRNA group. The mRNA expression profile identified 423 upregulated mRNAs and 438 downregulated mRNAs in the sh-lncRNA group compared with the sh-NC group. Additionally, Gene Ontology/Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the differentially expressed mRNAs were enriched in apoptosis and inflammation-related pathways. Further gene-set enrichment analysis of apoptosis and inflammation revealed that lncRNA Dlx6os1 inhibition promoted apoptosis and suppressed inflammation in MMCs of the DN cellular model. In conclusion, lncRNA Dlx6os1 may serve as a potential treatment target for DN via regulation of multiple apoptosis- and inflammation-related pathways.
Collapse
Affiliation(s)
- Li Cheng
- Department of Gynecology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Jie Cheng
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Wenfang Peng
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Xiaohong Jiang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Shan Huang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
34
|
Chen H, Fan Y, Jing H, Tang S, Zhou J. Emerging role of lncRNAs in renal fibrosis. Arch Biochem Biophys 2020; 692:108530. [PMID: 32768395 DOI: 10.1016/j.abb.2020.108530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the final common pathological feature of a wide variety of chronic kidney disease (CKD). However, an understanding of the mechanisms underlying the development of renal fibrosis remains challenging and controversial. As the current focus of molecular research, noncoding RNAs (ncRNAs), mainly microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular noncoding RNAs (circRNAs), have powerful and abundant biological functions, which essentially makes them mediators of the physiological and pathological processes of various system diseases. The role of ncRNAs in renal fibrosis has also received great attention in recent years, but most research has mainly focused on miRNAs. In fact, although a large number of studies of lncRNAs have emerged recently, the role these molecules play in renal fibrosis haven't been fully understood till now. Thus, this review discusses the discovery of lncRNAs and their biological functions in different types of renal fibrosis, as well as the imminent applications of these findings in clinical use. Undoubtedly, in the future, further understanding of the function of all types of lncRNAs will reveal large breakthroughs in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510060, China
| | - Youling Fan
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, Guangdong Province, 511400, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
35
|
Emerging Roles of Long Non-Coding RNAs in Renal Fibrosis. Life (Basel) 2020; 10:life10080131. [PMID: 32752143 PMCID: PMC7460436 DOI: 10.3390/life10080131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Renal fibrosis is an unavoidable consequence that occurs in nearly all of the nephropathies. It is characterized by a superabundant deposition and accumulation of extracellular matrix (ECM). All compartments in the kidney can be affected, including interstitium, glomeruli, vasculature, and other connective tissue, during the pathogenesis of renal fibrosis. The development of this process eventually causes destruction of renal parenchyma and end-stage renal failure, which is a devastating disease that requires renal replacement therapies. Recently, long non-coding RNAs (lncRNAs) have been emerging as key regulators governing gene expression and affecting various biological processes. These versatile roles include transcriptional regulation, organization of nuclear domains, and the regulation of RNA molecules or proteins. Current evidence proposes the involvement of lncRNAs in the pathologic process of kidney fibrosis. In this review, the biological relevance of lncRNAs in renal fibrosis will be clarified as important novel regulators and potential therapeutic targets. The biology, and subsequently the current understanding, of lncRNAs in renal fibrosis are demonstrated—highlighting the involvement of lncRNAs in kidney cell function, phenotype transition, and vascular damage and rarefaction. Finally, we discuss challenges and future prospects of lncRNAs in diagnostic markers and potential therapeutic targets, hoping to further inspire the management of renal fibrosis.
Collapse
|
36
|
Abstract
Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs that are longer than 200 nucleotides without protein-coding potential. Becasuse of which these RNAs have no significant protein-coding potential, they were initially considered as "junk-products" of transcription without biological meaning. Nevertheless, recent research advancements have shown that lncRNAs are involved in many physiological processes such as cell cycle regulation, cell apoptosis and survival, cancer migration and metabolism. This review described the function of lncRNAs and the potential underlying mechanism involved in diabetes and diabetic microvascular complications. The roles of lncRNAs in the pathogenesis of type 2 diabetes mellitus have only recently been recognized, involving hepatic glucose production and insulin resistance. We further investigated the mechanisms of lncRNAs in diabetic nephropathy (DN), including the roles of lncRNAs in mesangial cells (MCs) proliferation and fibrosis, inflammatory processes, extracellular matrix accumulation in the glomeruli and tubular injury. We also discussed the potential mechanism of lncRNAs in diabetic retinopathy (DR), including aberrant neovascularization and neuronal dysfunction. This review summarized the current knowledge of the functions and underlying mechanisms of lncRNAs in type 2 diabetes mellitus and related renal and retinal complications. Accumulating evidence suggests the potential of lncRNAs as therapeutic targets for clinical applications in the management of diabetes.
Collapse
Affiliation(s)
- Yanxia Chen
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Yinxi He
- Department of Orthopaedic Trauma, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, PR China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| |
Collapse
|
37
|
Cai S, Liu J, Ma Q, Bao Y, Chen J, Li Y. Coptis inhibited epithelial-mesenchymal transition and fibrogenesis of diabetic nephropathy through lncRNA CLYBL-AS2-miR-204-5p-SNAI1 axis. J Drug Target 2020; 28:939-948. [PMID: 32310009 DOI: 10.1080/1061186x.2020.1759077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Diabetic nephropathy (DN) is one of the severe complications of diabetes. Nowadays, effective treatment for end-stage renal disease (ESRD) patients is still limited. HK-2 cells were stimulated with serum from phosphate-buffered saline (PBS) or Jiawei Shuilu Erxiandan (JSE)-treated DN mice, then long non-coding RNA (lncRNA) CLYBL-AS2 was discovered by RNA sequence, following the comparison of the serum from normal patients with DN patients to confirm the role of lncCLYBL-AS2. Next, we performed in vitro studies to explore the effect of lncCLYBL-AS2 in DN and its molecular mechanism. Coptis, as one of the components of JSE, could decrease the expression of lncCLYBL-AS2, which is increased in DN and correlated with the severity of DN. Knockdown/overexpression of lncCLYBL-AS2 inhibited/promoted the invasion and fibrogenesis of HK-2 cells. Furthermore, lncCLYBL-AS2 was negatively correlated with miR-204-4p with a positive correlation with SNAI1; eventually, CLYBL-AS2 regulated SNAI1 by binding to miR-204-5p, which accounted for the inhibition of epithelial-mesenchymal transition (EMT) and fibrogenesis. LncCLYBL-AS2 inhibited by Coptis improved EMT and fibrogenesis in HK-2 cells through miR-204-5p-SNAI1 axis, therefore, lncCLYBL-AS2 could serve as a potential diagnosis and therapeutic target for DN.
Collapse
Affiliation(s)
- Shengyu Cai
- The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, PR China.,Integrated Chinese and Western Medicine, Postdoctoral Research Station, Jinan University, Guangzhou, PR China
| | - Juan Liu
- Department of Hematology & Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Qingyu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, PR China
| | - Yuxiao Bao
- Longgang Traditional Chinese Medicine Hospital, Beijing University of Chinese Medicine Shenzhen Hospital, Shenzhen, PR China
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, PR China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yousheng Li
- The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, PR China
| |
Collapse
|
38
|
Jung HJ, Kim HJ, Park KK. Potential Roles of Long Noncoding RNAs as Therapeutic Targets in Renal Fibrosis. Int J Mol Sci 2020; 21:ijms21082698. [PMID: 32295041 PMCID: PMC7216020 DOI: 10.3390/ijms21082698] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 01/14/2023] Open
Abstract
Many studies have made clear that most of the genome is transcribed into noncoding RNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), both of which can affect different cell features. LncRNAs are long heterogeneous RNAs that regulate gene expression and a variety of signaling pathways involved in cellular homeostasis and development. Several studies have demonstrated that lncRNA is an important class of regulatory molecule that can be targeted to change cellular physiology and function. The expression or dysfunction of lncRNAs is closely related to various hereditary, autoimmune, and metabolic diseases, and tumors. Specifically, recent work has shown that lncRNAs have an important role in kidney pathogenesis. The effective roles of lncRNAs have been recognized in renal ischemia, injury, inflammation, fibrosis, glomerular diseases, renal transplantation, and renal-cell carcinoma. The present review focuses on the emerging role and function of lncRNAs in the pathogenesis of kidney inflammation and fibrosis as novel essential regulators. Although lncRNAs are important players in the initiation and progression of many pathological processes, their role in renal fibrosis remains unclear. This review summarizes the current understanding of lncRNAs in the pathogenesis of kidney fibrosis and elucidates the potential role of these novel regulatory molecules as therapeutic targets for the clinical treatment of kidney inflammation and fibrosis.
Collapse
Affiliation(s)
- Hyun Jin Jung
- Department of Urology, College of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea;
| | - Hyun-Ju Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea;
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea;
- Correspondence: ; Tel.: +82-53-650-4149
| |
Collapse
|
39
|
Loganathan TS, Sulaiman SA, Abdul Murad NA, Shah SA, Abdul Gafor AH, Jamal R, Abdullah N. Interactions Among Non-Coding RNAs in Diabetic Nephropathy. Front Pharmacol 2020; 11:191. [PMID: 32194418 PMCID: PMC7062796 DOI: 10.3389/fphar.2020.00191] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetic Nephropathy (DN) is the most common cause of End-stage renal disease (ESRD). Although various treatments and diagnosis applications are available, DN remains a clinical and economic burden. Recent findings showed that noncoding RNAs (ncRNAs) play an important role in DN progression, potentially can be used as biomarkers and therapeutic targets. NcRNAs refers to the RNA species that do not encode for any protein, and the most known ncRNAs are the microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Dysregulation of these ncRNAs was reported before in DN patients and animal models of DN. Importantly, there are some interactions between these ncRNAs to regulate the crucial steps in DN progression. Here, we aimed to discuss the reported ncRNAs in DN and their interactions with critical genes in DN progression. Elucidating these ncRNAs regulatory network will allow for a better understanding of the molecular mechanisms in DN and how they can act as new biomarkers for DN and also as the potential targets for treatment.
Collapse
Affiliation(s)
- Tamil Selvi Loganathan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shamsul Azhar Shah
- Department of Community Health, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Abdul Halim Abdul Gafor
- Nephrology Unit, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Zhou Q, Chen W, Yu XQ. Long non-coding RNAs as novel diagnostic and therapeutic targets in kidney disease. Chronic Dis Transl Med 2020; 5:252-257. [PMID: 32055784 PMCID: PMC7005109 DOI: 10.1016/j.cdtm.2019.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have critical roles in the development of many diseases including kidney disease. An increasing number of studies have shown that lncRNAs are involved in kidney development and that their dysregulation can result in distinct disease processes, including acute kidney injury (AKI), chronic kidney disease (CKD), and renal cell carcinoma (RCC). Understanding the roles of lncRNAs in kidney disease may provide new diagnostic and therapeutic opportunities in the clinic. This review provides an overview of lncRNA characteristics, biological function and discusses specific studies that provide insight into the function and potential application of lncRNAs in kidney disease treatment.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xue-Qing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Guangdong General Hospital, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
41
|
Wang(a) J, Wang S, Wang(b) J, Xiao M, Guo Y, Tang Y, Zhang J, Gu J. Epigenetic Regulation Associated With Sirtuin 1 in Complications of Diabetes Mellitus. Front Endocrinol (Lausanne) 2020; 11:598012. [PMID: 33537003 PMCID: PMC7848207 DOI: 10.3389/fendo.2020.598012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023] Open
Abstract
Diabetes mellitus (DM) has been one of the largest health concerns of the 21st century due to the serious complications associated with the disease. Therefore, it is essential to investigate the pathogenesis of DM and develop novel strategies to reduce the burden of diabetic complications. Sirtuin 1 (SIRT1), a nicotinamide adenosine dinucleotide (NAD+)-dependent deacetylase, has been reported to not only deacetylate histones to modulate chromatin function but also deacetylate numerous transcription factors to regulate the expression of target genes, both positively and negatively. SIRT1 also plays a crucial role in regulating histone and DNA methylation through the recruitment of other nuclear enzymes to the chromatin. Furthermore, SIRT1 has been verified as a direct target of many microRNAs (miRNAs). Recently, numerous studies have explored the key roles of SIRT1 and other related epigenetic mechanisms in diabetic complications. Thus, this review aims to present a summary of the rapidly growing field of epigenetic regulatory mechanisms, as well as the epigenetic influence of SIRT1 on the development and progression of diabetic complications, including cardiomyopathy, nephropathy, and retinopathy.
Collapse
Affiliation(s)
- Jie Wang(a)
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, China
| | - Jie Wang(b)
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanfang Guo
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, and Department of Cardiology at the People’s Hospital of Liaoning Province, Shenyang, China
| | - Junlian Gu
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Junlian Gu,
| |
Collapse
|
42
|
Zhong W, Zeng J, Xue J, Du A, Xu Y. Knockdown of lncRNA PVT1 alleviates high glucose-induced proliferation and fibrosis in human mesangial cells by miR-23b-3p/WT1 axis. Diabetol Metab Syndr 2020; 12:33. [PMID: 32322310 PMCID: PMC7161221 DOI: 10.1186/s13098-020-00539-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/01/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe complication of diabetes with type 1 and 2. Long non-coding RNAs (lncRNAs) are being found to be involved in the DN pathogenesis. In this study, we aimed to further explore the effect and underlying mechanism of plasmacytoma variant translocation 1 (PVT1) in DN pathogenesis. METHODS The expression levels of PVT1, miR-23b-3p, and Wilms tumor protein 1 (WT1) mRNA were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot analysis was performed to determine protein expression. Cell proliferation was detected using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetr-azolium (MTS) assay. The targeted correlation between miR-23b-3p and PVT1 or WT1 was verified by dual-luciferase reporter assay. RESULTS PVT1 and WT1 were highly expressed in the serum of DN patients and high glucose (HG)-induced mesangial cells (MCs). The knockdown of PVT1 or WT1 ameliorated HG-induced proliferation and fibrosis in MCs. Mechanistically, PVT1 modulated WT1 expression through acting as a molecular sponge of miR-23b-3p. The miR-23b-3p/WT1 axis mediated the protective effect of PVT1 knockdown on HG-induced proliferation and fibrosis in MCs. The NF-κB pathway was involved in the regulatory network of the PVT1/miR-23b-3p/WT1 axis in HG-induced MCs. CONCLUSION Our study suggested that PVT1 knockdown ameliorated HG-induced proliferation and fibrosis in MCs at least partially by regulating the miR-23b-3p/WT1/NF-κB pathway. Targeting PVT1 might be a potential therapeutic strategy for DN treatment.
Collapse
Affiliation(s)
- Wen Zhong
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan, 430071 Hubei China
| | - Jiaoe Zeng
- Department of Endocrine, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou, 434020 Hubei China
| | - Junli Xue
- Department of Endocrine, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou, 434020 Hubei China
| | - Aimin Du
- Department of Endocrine, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou, 434020 Hubei China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan, 430071 Hubei China
| |
Collapse
|
43
|
Chen B, Li Y, Liu Y, Zang C, Wu M, Xu Z. Diagnostic value of neutrophil gelatinase-associated lipocalin in diabetic nephropathy: a meta-analysis. Ren Fail 2019; 41:489-496. [PMID: 31215304 PMCID: PMC6586135 DOI: 10.1080/0886022x.2019.1619581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: This meta-analysis aimed to determine the diagnostic performance of neutrophil gelatinase-associated lipocalin (NGAL) in diabetic nephropathy (DN). Methods: We searched the PubMed, Embase, Wanfang, and China National Knowledge Infrastructure databases for articles published up to 24 April 2019. The meta-analyses were conducted by Stata 11.0, and diagnostic accuracy, sensitivity, specificity, negative and positive likelihood ratios (NLR and PLR), diagnostic odds ratio (DOR), and receiver operating characteristic (ROC) curve data were pooled. Moreover, heterogeneity and small trials bias were evaluated. Results: Six cross-sectional studies were included in the meta-analysis. For the studies of microalbuminuria versus normoalbuminuria, the estimates (95% confidence interval) were as follows: sensitivity, 0.75 (0.51-0.89); specificity, 0.78 (0.70-0.84); PLR, 3.37 (2.49-4.56); NLR, 0.33 (0.16-0.69); DOR, 10.31 (4.05-26.25); and area under the ROC curve (AUC), 0.81 (0.77-0.84). For the studies of microalbuminuria + macroalbuminuria versus normoalbuminuria, the results were as follows: sensitivity, 0.83 (0.66-0.93); specificity, 0.88 (0.67-0.97); PLR, 7.20 (1.97-26.31); NLR, 0.19 (0.08-0.46); DOR, 37.83 (4.84-295.65); AUC, 0.92 (0.90-0.94). Deeks' funnel plot suggested that small trials bias was insignificant in this study. Conclusions: Our findings suggest that NGAL is a potential diagnostic marker for patients with DN and that its diagnostic value for microalbuminuria + macroalbuminuria is superior to that for microalbuminuria. Highlights The first meta-analysis to investigate NGAL diagnostic role in DN. NGAL is valuable for the early diagnosis of DN. The diagnostic value of NGAL in microalbuminuria + macroalbuminuria was much higher.
Collapse
Affiliation(s)
- Bin Chen
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yanhua Li
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Chongsen Zang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Meiyan Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
44
|
Wang J, Gao X, Liu J, Wang J, Zhang Y, Zhang T, Zhang H. Effect of intravitreal conbercept treatment on the expression of Long Noncoding RNAs and mRNAs in Proliferative Diabetic Retinopathy Patients. Acta Ophthalmol 2019; 97:e902-e912. [PMID: 30900812 DOI: 10.1111/aos.14083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/16/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE To evaluate the effect of conbercept on the expression of long noncoding RNAs (lncRNAs) and mRNAs in the fibrovascular membranes of proliferative diabetic retinopathy (PDR) patients. METHODS Twenty patients, diagnosed with PDR, who underwent pars plana vitrectomy (PPV), were recruited for this study. Ten patients were treated for PPV alone (Control Group), and the others received conbercept injections before PPV (Treated Group). The fibrovascular membranes were harvested during surgery. Expression of lncRNAs and mRNAs in the membranes was tested using lncRNA Arrays. Bioinformatics analyses were performed to identify the related biological modules and pathways of the differentially expressed genes. A lncRNA/mRNA coexpression network was built to identify the correlations between lncRNAs and mRNAs. Real-time PCR was conducted to verify the microarray results. RESULTS We identified 427 differentially expressed lncRNAs, of which 263 were upregulated and 164 were downregulated. Gene ontology (GO) analysis indicated that these lncRNAs-coexpressed mRNAs targeted various metabolic processes, especially the gluconeogenesis. Kyoto Encyclopaedia of Genes and Genomes (KEGG) results indicated that 16 pathways had significant differences in gene expression, including gluconeogenesis, HIF-1 signalling pathway, NOD-like receptor pathway, etc. The lncRNA/mRNA coexpression network revealed that many differentially expressed lncRNAs were enriched in the HIF-1, TNF-α and NOD-like receptor pathways. LincRNAs were the largest category and further bioinformatics analysis implied that these lincRNAs-coexpressed mRNAs were mainly involved in PDR-related biological processes and pathological pathways. CONCLUSION Conbercept treatment can change the expression profiles of lncRNAs and mRNAs in the fibrovascular membranes of PDR patients. A complete understanding of the relationship between lncRNAs and anti-VEGF drugs may contribute to new therapeutic regimen for PDR.
Collapse
Affiliation(s)
- Jiawei Wang
- Eye Center of Shandong University The Second Hospital of Shandong University Jinan People's Republic of China
| | - Xue Gao
- Eye Center of Shandong University The Second Hospital of Shandong University Jinan People's Republic of China
| | - Jing Liu
- Eye Center of Shandong University The Second Hospital of Shandong University Jinan People's Republic of China
| | - Jing Wang
- Eye Center of Shandong University The Second Hospital of Shandong University Jinan People's Republic of China
| | - Yue Zhang
- Department of surgery The Second Hospital of Shandong University Jinan People's Republic of China
| | - Tonghe Zhang
- Department of ophthalmology The second people's Hospital of Jinan 148# Jingyi Road Jinan People's Republic of China
| | - Han Zhang
- Eye Center of Shandong University The Second Hospital of Shandong University Jinan People's Republic of China
| |
Collapse
|
45
|
Liu X, Li X. Key Genes Involved in Diabetic Nephropathy Investigated by Microarray Analysis. J Comput Biol 2019; 26:1438-1447. [PMID: 31356112 DOI: 10.1089/cmb.2019.0182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We aimed to investigate significant genes associated with diabetic nephropathy (DN), and their potential mechanisms in the process of DN pathogenesis. We downloaded the microarray data of GSE111154 from gene expression omnibus (GEO) database. First, we analyzed differentially expressed genes (DEGs) between early diabetic nephropathy (EDN) samples and nondiabetic control samples. Functional and pathway enrichment analysis was carried out. Disease-related gene sets were analyzed. Then, we constructed the protein-protein interaction (PPI) network and predicted the relation. Finally, transcriptional regulation analyses of microRNA and transcription factors were performed. Totally 554 DEGs between EDN samples and nondiabetic control samples were obtained. Enrichment analysis of disease-related gene sets showed that transforming growth factor beta 1 (TGFB1) was significantly enriched in DN. TGFB1 was involved in more pathways, such as proteoglycans in cancer, malaria, and amebiasis. Furthermore, TGFB1 had the highest degree in PPI network. In addition, TGFB1 was correlated with miR-21-5p, miR-146a-5p, and RAD21. TGFB1, miR-146a-5p, and miR-21-5p are important for DN development. Furthermore, TGFB1 may be involved in DN progression through the regulation of miR-21-5p, miR-146a-5p, and RAD21.
Collapse
Affiliation(s)
- Xinxin Liu
- Public Health of College, Zhengzhou University, Zhengzhou, China
| | - Xinqiang Li
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Chen W, Peng R, Sun Y, Liu H, Zhang L, Peng H, Zhang Z. The topological key lncRNA H2k2 from the ceRNA network promotes mesangial cell proliferation in diabetic nephropathyviathe miR‐449a/b/Trim11/Mek signaling pathway. FASEB J 2019; 33:11492-11506. [DOI: 10.1096/fj.201900522r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wenyun Chen
- Molecular Medicine and Cancer Research CenterChongqing Medical UniversityChongqingChina
| | - Rui Peng
- Department of BioinformaticsChongqing Medical UniversityChongqingChina
| | - Yan Sun
- Molecular Medicine and Cancer Research CenterChongqing Medical UniversityChongqingChina
| | - Handeng Liu
- Molecular Medicine and Cancer Research CenterChongqing Medical UniversityChongqingChina
| | - Luyu Zhang
- Molecular Medicine and Cancer Research CenterChongqing Medical UniversityChongqingChina
| | - Huimin Peng
- Molecular Medicine and Cancer Research CenterChongqing Medical UniversityChongqingChina
| | - Zheng Zhang
- Molecular Medicine and Cancer Research CenterChongqing Medical UniversityChongqingChina
| |
Collapse
|
47
|
Long Non-Coding RNAs in Kidney Disease. Int J Mol Sci 2019; 20:ijms20133276. [PMID: 31277300 PMCID: PMC6650856 DOI: 10.3390/ijms20133276] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 02/01/2023] Open
Abstract
Non-coding RNA species contribute more than 90% of all transcripts and have gained increasing attention in the last decade. One of the most recent members of this group are long non-coding RNAs (lncRNAs) which are characterized by a length of more than 200 nucleotides and a lack of coding potential. However, in contrast to this simple definition, lncRNAs are heterogenous regarding their molecular function—including the modulation of small RNA and protein function, guidance of epigenetic modifications and a role as enhancer RNAs. Furthermore, they show a highly tissue-specific expression pattern. These aspects already point towards an important role in cellular biology and imply lncRNAs as players in development, health and disease. This view has been confirmed by numerous publications from different fields in the last years and has raised the question as to whether lncRNAs may be future therapeutic targets in human disease. Here, we provide a concise overview of the current knowledge on lncRNAs in both glomerular and tubulointerstitial kidney disease.
Collapse
|
48
|
Zhang YY, Tang PMK, Tang PCT, Xiao J, Huang XR, Yu C, Ma RCW, Lan HY. LRNA9884, a Novel Smad3-Dependent Long Noncoding RNA, Promotes Diabetic Kidney Injury in db/ db Mice via Enhancing MCP-1-Dependent Renal Inflammation. Diabetes 2019; 68:1485-1498. [PMID: 31048367 DOI: 10.2337/db18-1075] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/14/2019] [Indexed: 11/13/2022]
Abstract
Transforming growth factor-β/Smad3 signaling plays an important role in diabetic nephropathy, but its underlying working mechanism remains largely unexplored. The current study uncovered the pathogenic role and underlying mechanism of a novel Smad3-dependent long noncoding RNA (lncRNA) (LRNA9884) in type 2 diabetic nephropathy (T2DN). We found that LRNA9884 was significantly upregulated in the diabetic kidney of db/db mice at the age of 8 weeks preceding the onset of microalbuminuria and was associated with the progression of diabetic renal injury. LRNA9884 was induced by advanced glycation end products and tightly regulated by Smad3, and its levels were significantly blunted in db/db mice and cells lacking Smad3. More importantly, kidney-specific silencing of LRNA9884 effectively attenuated diabetic kidney injury in db/db mice, as shown by the reduction of histological injury, albuminuria excretion, and serum creatinine. Mechanistically, we identified that LRNA9884 promoted renal inflammation-driven T2DN by triggering MCP-1 production at the transcriptional level, and its direct binding significantly enhanced the promoter activity of MCP-1. Thus, LRNA9884 is a novel Smad3-dependent lncRNA that is highly expressed in db/db mice associated with T2DN development. Targeting of LRNA9884 effectively blocked MCP-1-dependent renal inflammation, therefore suppressing the progressive diabetic renal injury in db/db mice. This study reveals that LRNA9884 may be a novel and precision therapeutic target for T2DN in the future.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Patrick Ming-Kuen Tang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Philip Chiu-Tsun Tang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jun Xiao
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Xiao-Ru Huang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ronald C W Ma
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
49
|
Yang Z, Jiang S, Shang J, Jiang Y, Dai Y, Xu B, Yu Y, Liang Z, Yang Y. LncRNA: Shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res Rev 2019; 52:17-31. [PMID: 30954650 DOI: 10.1016/j.arr.2019.04.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is universally observed in multiple aging-related diseases and progressions and is characterized by excess accumulation of the extracellular matrix. Fibrosis occurs in various human organs and eventually results in organ failure. Noncoding RNAs (ncRNAs) have emerged as essential regulators of cellular signaling and relevant human diseases. In particular, the enigmatic class of long noncoding RNAs (lncRNAs) is a kind of noncoding RNA that is longer than 200 nucleotides and does not possess protein coding ability. LncRNAs have been identified to exert both promotive and inhibitory effects on the multifaceted processes of fibrosis. A growing body of studies has revealed that lncRNAs are involved in fibrosis in various organs, including the liver, heart, lung, and kidney. As lncRNAs have been increasingly identified, they have become promising targets for anti-fibrosis therapies. This review systematically highlights the recent advances regarding the roles of lncRNAs in fibrosis and sheds light on the use of lncRNAs as a potential treatment for fibrosis.
Collapse
|
50
|
Long noncoding RNA: an emerging player in diabetes and diabetic kidney disease. Clin Sci (Lond) 2019; 133:1321-1339. [PMID: 31221822 DOI: 10.1042/cs20190372] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is among the most common complications of diabetes mellitus (DM), and remains the leading cause of end-stage renal diseases (ESRDs) in developed countries, with no definitive therapy yet available. It is imperative to decipher the exact mechanisms underlying DKD and identify novel therapeutic targets. Burgeoning evidence indicates that long non-coding RNAs (lncRNAs) are essential for diverse biological processes. However, their roles and the mechanisms of action remain to be defined in disease conditions like diabetes and DKD. The pathogenesis of DKD is twofold, so is the principle of treatments. As the underlying disease, diabetes per se is the root cause of DKD and thus a primary focus of therapy. Meanwhile, aberrant molecular signaling in kidney parenchymal cells and inflammatory cells may directly contribute to DKD. Evidence suggests that a number of lncRNAs are centrally involved in development and progression of DKD either via direct pathogenic roles or as indirect mediators of some nephropathic pathways, like TGF-β1, NF-κB, STAT3 and GSK-3β signaling. Some lncRNAs are thus likely to serve as biomarkers for early diagnosis or prognosis of DKD or as therapeutic targets for slowing progression or even inducing regression of established DKD. Here, we elaborated the latest evidence in support of lncRNAs as a key player in DKD. In an attempt to strengthen our understanding of the pathogenesis of DKD, and to envisage novel therapeutic strategies based on targeting lncRNAs, we also delineated the potential mechanisms of action as well as the efficacy of targeting lncRNA in preclinical models of DKD.
Collapse
|