1
|
Hao J, Beng S, Ma Z, Xu H, Yang T, Yang Q, Wang Y, Zheng W, Ma Y, Zhang S, Kuang L, Fu W. Short-Term Exposure of Bisphenol A Deteriorates the Quality of Rabbit Milk by Impairing Milk Fat Synthesis. Food Sci Nutr 2024; 12:10666-10679. [PMID: 39723079 PMCID: PMC11666964 DOI: 10.1002/fsn3.4561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 12/28/2024] Open
Abstract
This study aimed to investigate the effects of short-term exposure of Bisphenol A (BPA) on the growth and lactation performance, blood parameters, and milk composition of lactating rabbits and explore its potential molecular mechanisms. Eight lactating rabbits with similar body weight were selected and randomly divided into the experimental group (BPA) and the control group (Ctrl). The group BPA was orally administered 80 mg/kg/day BPA on the 15th day postpartum, while the group Ctrl received a corresponding volume of vehicle. Blood and milk samples were collected after 7 days treatment. The results showed that short-term ingestion of BPA did not obviously alter the body weight, feed intake, or milk yield of the lactating rabbits. ELISA assays indicated that BPA did not significantly affect the plasma levels of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), creatinine (CRE), alanine aminotransferase (ALT), aspartate aminotransferase (AST), uric acid (UA), and urea. Utilizing untargeted metabolomics, we first depicted the metabolomic profile of rabbit milk, and identified 277 differential metabolites (DMs), with 141 DMs upregulated (e.g., BPA, and its metabolites including Cetirizine N-oxide) and 136 DMs downregulated (e.g., Oleamide, Tiglic acid, PC O-38:4) in the group BPA. KEGG analysis revealed that the DMs were mainly enriched in pathways comprising fatty acid metabolism, fatty acid degradation, and phosphatidylinositol signaling system, emphasizing the effect of BPA on milk fat metabolism. Hence, we established the BPA-induced MAC-T model, and the results showed that BPA significantly reduced cell viability and impacted lipid synthesis, as evidenced by reduced lipid droplets (BODIPY and Oil Red O staining) and decreased expression of genes related to lipid synthesis (e.g., PPARγ, ACACA, LPL). In summary, we first drew the metabolomic profile of rabbit milk and confirmed that short-term BPA exposure impacted mammary lipid synthesis, thereby reducing the milk quality of lactating rabbits and providing fundamental data for resolving the toxicological mechanisms of BPA on mammal lactation.
Collapse
Affiliation(s)
- Jia Hao
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Shaohui Beng
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Zifeng Ma
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Hongmei Xu
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Ting Yang
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Qiman Yang
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Yunduan Wang
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Wenhui Zheng
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Yisha Ma
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Shuo Zhang
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | | | - Wei Fu
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of EducationSouthwest Minzu UniversityChengduChina
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of ChinaSouthwest Minzu UniversityChengduChina
| |
Collapse
|
2
|
Mercoeur B, Fervers B, Coudon T, Noh H, Giampiccolo C, Grassot L, Faure E, Couvidat F, Severi G, Mancini FR, Roy P, Praud D, Amadou A. Exposure to air pollutants and breast cancer risk: mediating effects of metabolic health biomarkers in a nested case-control study within the E3N-Generations cohort. Breast Cancer Res 2024; 26:159. [PMID: 39548533 PMCID: PMC11568591 DOI: 10.1186/s13058-024-01913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Growing epidemiological evidence suggests an association between exposure to air pollutants and breast cancer. Yet, the underlying mechanisms remain poorly understood. This study explored the mediating role of thirteen metabolic health biomarkers in the relationship between exposure to three air pollutants, i.e. nitrogen dioxide (NO2), polychlorinated biphenyls 153 (PCB153), and benzo[a]pyrene (BaP), and breast cancer risk. METHODS We used data from a nested case-control study within the French national prospective E3N-Generations cohort, involving 523 breast cancer cases and 523 matched controls. The four-way decomposition mediation of total effects for thirteen biomarkers was applied to estimate interaction and mediation effects (controlled direct, reference interaction, mediated interaction, and pure indirect effects). RESULTS The analyses indicated a significant increase in breast cancer risk associated with BaP exposure (odds ratio (OR)Q4 vs Q1 = 2.32, 95% confidence intervals (CI): 1.00-5.37). PCB153 exposure showed a positive association only in the third quartile (ORQ3 vs Q1 = 2.25, CI 1.13-4.57), but it appeared to be non-significant in the highest quartile (ORQ4 vs Q1 = 2.07, CI 0.93-4.61). No association was observed between NO2 exposure and breast cancer risk. Estradiol was associated with an increased risk of breast cancer (OR per one standard deviation (SD) increment = 1.22, CI 1.05-1.42), while thyroid-stimulating hormone was inversely related to breast cancer risk (OR per 1SD increase = 0.87, CI 0.75-1.00). We observed a suggestive mediated effect of the association between the three pollutants and breast cancer risk, through albumin, high-density lipoproteins cholesterol, low-density lipoprotein cholesterol, parathormone, and estradiol. CONCLUSION Although limited by a lack of statistical power, this study provides relevant insights into the potential mediating role of certain biomarkers in the association between air pollutant exposure and breast cancer risk, highlighting the need for further in-depth studies in large populations.
Collapse
Affiliation(s)
- Benoît Mercoeur
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Béatrice Fervers
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Thomas Coudon
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Hwayoung Noh
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Camille Giampiccolo
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
- Laboratoire de Biométrie Et Biologie Evolutive, CNRS UMR 5558, Villeurbanne, France
- Service de Biostatistique-Bioinformatique, Pole Sante Publique, Hospices Civils de Lyon, Lyon, France
| | - Lény Grassot
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Elodie Faure
- Universite Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Florian Couvidat
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Gianluca Severi
- Universite Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | | | - Pascal Roy
- Laboratoire de Biométrie Et Biologie Evolutive, CNRS UMR 5558, Villeurbanne, France
- Service de Biostatistique-Bioinformatique, Pole Sante Publique, Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Delphine Praud
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Amina Amadou
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France.
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France.
| |
Collapse
|
3
|
Hammarstrand S, Andersson EM, Andersson E, Larsson K, Xu Y, Li Y, Jakobsson K. The impact of high exposure to perfluoroalkyl substances and risk for hormone receptor-positive breast cancer - A Swedish cohort study. ENVIRONMENT INTERNATIONAL 2024; 193:109140. [PMID: 39547089 DOI: 10.1016/j.envint.2024.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Perfluoroalkyl substances (PFAS) are persisting chemicals with endocrine disruptive and carcinogenic properties. Previous studies involving cohorts with high PFAS exposure have not shown an increased risk of breast cancer. Research on PFAS and breast cancer according to hormone receptor status is limited. This study aims to investigate the association between PFAS exposure and hormone receptor-positive breast cancer. MATERIALS AND METHODS In 2013, high levels of PFAS (sum of PFAS >10,000 ng/L), dominated by perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS) were found in the drinking water from one of the two waterworks in Ronneby, Sweden. Breast cancer diagnoses and information of adjuvant endocrine therapy were retrieved from the Swedish Cancer Register and The Prescribed Drug Register 2006-2016 for a cohort of women residing in the municipality between 1985 and 2013 (n=24,509). Individual exposure was assessed based on municipality waterworks distribution data linked to annual residential addresses. Cox proportional hazards models were used in the analysis. The highest achieved educational level was used as an indicator of socioeconomic position. Sensitivity and subgroup analysis were performed for prepubertal exposure and diagnosis before or after age 50 (assumed menopause). RESULTS There were 313 cases of malignant breast cancer among women ≤85 years between 2006 and 2016. Of these, 224 cases (72%) were considered hormone receptor-positive based on the first prescription of adjuvant endocrine therapy, antiestrogens (40%) or aromatase inhibitor (60%). Among women ever living at a residential address with high PFAS exposure, the hazard ratio (HR) for breast cancer classified as hormone receptor-positive was 0.84; 95% confidence interval (CI) 0.61, 1.14. Findings were similar before and after menopause. CONCLUSION High PFAS exposure from drinking water, dominated by PFOS and PFHxS, was not associated with an elevated risk of hormone receptor-positive breast cancer.
Collapse
Affiliation(s)
- Sofia Hammarstrand
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Eva M Andersson
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Andersson
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karolina Larsson
- Institute for Clinical Sciences, Department of Oncology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yiyi Xu
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ying Li
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Jakobsson
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Chen L, Yuan A, Zhang D, Xie W, Peng H. Fluorescence and colorimetric analysis of β-estradiol based on aptamer assembled spherical nucleic acids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6356-6363. [PMID: 39221548 DOI: 10.1039/d4ay01283f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Detecting β-estradiol (E2) in environmental monitoring is a complex task due to its status as a significant environmental contaminant. The detection methods require precision, sensitivity, and the ability to be conducted on-site without expensive instrumentation. Herein, we developed a novel approach using E2 aptamer assembled spherical nucleic acids (SNAs), which combines the sensitivity of fluorescence and the simplicity of colorimetry. Initially, a fluorescein (FAM)-labeled DNA aptamer is attached to the surface of gold nanoparticles (AuNPs) through hybridization with thiol-labeled DNA, resulting in fluorescence quenching. However, when E2 is present, the aptamer specifically binds to it, displacing from the thiol-DNA and releasing from the AuNP's surface. This leads to the recovery of fluorescence, allowing for quantitative detection of E2 by measuring the increase in fluorescence signal. Additionally, E2 detection can also be achieved visually using ultraviolet light. For colorimetric analysis, we introduce another set of AuNPs modified with thiol-DNA complementary to the DNA remaining on the surface of the previous AuNPs. When E2 triggers the release of the aptamer, the DNA on both AuNPs hybridized to each other, causing the aggregation of AuNPs and resulting in a distinct color change from red to purple. The detection limits for fluorescence and colorimetric analyses are 1 nM and 5 nM, respectively. We successfully applied this biosensing strategy to determine E2 concentrations in tap water and serum samples. Furthermore, our assay exhibits high selectivity towards E2 over other estrogens. Overall, this innovative approach provides an effective and versatile method for convenient on-site monitoring of E2.
Collapse
Affiliation(s)
- Leyuan Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- School of Environment, Hangzhou Institution for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aijiao Yuan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- School of Environment, Hangzhou Institution for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanyong Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Tang L, Wang Y, Yan W, Zhang Z, Luo S, Wen Q, Wang S, Zhou N, Chen Q, Xu Y. Exposure to di-2-ethylhexyl phthalate and breast neoplasm incidence: A cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171819. [PMID: 38508268 DOI: 10.1016/j.scitotenv.2024.171819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Phthalates are ubiquitous environmental endocrine disruptors. As the predominant phthalate, di-2-ethylhexyl phthalate (DEHP) has been considered possibly carcinogenic to humans but large-scale longitudinal evidence is needed to further clarify its carcinogenicity. OBJECTIVES To examine the association between DEHP exposure and incidence of breast malignant neoplasm, carcinoma in situ and benign neoplasm. METHODS A total of 273,295 women from UK Biobank cohort were followed up for a median of 13.5 years. Disease information was collected from National Health Service Cancer Registry and National Death Index. Baseline and yearly-average level of DEHP exposure were estimated for each individual by linking chemical monitoring record of European Environment Agency with home address of the participants by Kriging interpolation model. Cox proportional hazard model was employed to estimate the association between DEHP exposure and breast neoplasms. RESULTS The median (IQR) of baseline and yearly-average DEHP concentration were 8000.25 (interquartile range: 6657.85-11,948.83) and 8000.25 (interquartile range: 1819.93-11,359.55) μg/L. The highest quartile of baseline DEHP was associated with 1.11 fold risk of carcinoma in situ (95 % CI, 1.00, 1.23, p < 0.001) and 1.27 fold risk of benign neoplasm (95 % CI, 1.05, 1.54, p < 0.001). As for yearly-average exposure, each quartile of DEHP was positively associated with higher risk of malignant neoplasm (HR, 1.05; 95 % CI, 1.03, 1.07, p < 0.001), carcinoma in situ (HR, 1.08; 95 % CI, 1.04, 1.11, p < 0.001) and benign neoplasm (HR, 1.13; 95 % CI, 1.07, 1.20, p < 0.001). Stratification analysis showed no significant modification effects on the DEHP-neoplasm relationship by menopausal status or ethnicity but a suggestive higher risk in younger women and those who underwent oral contraceptive pill therapy. In sensitivity analysis, the associations remained when excluding the cases diagnosed within 2 years post baseline. CONCLUSIONS Real-world level of DEHP exposure was associated with higher risk of breast neoplasms. Because of the health risks associated with DEHP, its release to the environment should be managed.
Collapse
Affiliation(s)
- Lijuan Tang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yimeng Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenting Yan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Siwen Luo
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiaorui Wen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Shengfeng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Niya Zhou
- Clinical Research Centre, Women and Children's Hospital of Chongqing Medical University and Chongqing Research Centre for Prevention & Control of Maternal and Child Diseases and Public Health, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Yan Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
6
|
Sangwan S, Bhattacharyya R, Banerjee D. Plastic compounds and liver diseases: Whether bisphenol A is the only culprit. Liver Int 2024; 44:1093-1105. [PMID: 38407523 DOI: 10.1111/liv.15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Plastics, while providing modern conveniences, have become an inescapable source of global concern due to their role in environmental pollution. Particularly, the focus on bisphenol A (BPA) reveals its biohazardous nature and association with liver issues, specifically steatosis. However, research indicates that BPA is just one facet of the problem, as other bisphenol analogues, microplastics, nanoplastics and additional plastic derivatives also pose potential risks. Notably, BPA is implicated in every stage of non-alcoholic fatty liver disease (NAFLD) onset and progression, surpassing hepatitis B virus as a primary cause of chronic liver disease worldwide. As plastic contamination tops the environmental contaminants list, urgent action is needed to assess causative factors and mitigate their impact. This review delves into the molecular disruptions linking plastic pollutant exposure to liver diseases, emphasizing the broader connection between plastics and the rising prevalence of NAFLD.
Collapse
Affiliation(s)
- Sonal Sangwan
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Meng M, Yang Y, Song L, Peng J, Li S, Gao Z, Bu Y, Gao J. Association between urinary phthalates and phthalate metabolites and cancer risk: A systematic review and meta-analysis. Heliyon 2024; 10:e29684. [PMID: 38665549 PMCID: PMC11044039 DOI: 10.1016/j.heliyon.2024.e29684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Phthalates, widely utilized in industrial products, are classified as endocrine-disrupting chemicals (EDCs). Although certain phthalate and their metabolites have been implicated in cancer development, the reported findings have exhibited inconsistencies. Therefore, we conducted the comprehensive literature search to assess the association between phthalate and their metabolites and cancer risk by identifying original studies measuring phthalates or their metabolites and reporting their correlation with cancer until July 4, 2023. The Odds Ratios (ORs) and corresponding 95% confidence intervals (CIs) were extracted and analyzed to estimate the risk. Pooled data from eleven studies, including 3101 cancer patients and 6858 controls, were analyzed using a fixed- or random-effects model based on heterogeneity tests. When comparing extreme categories of different phthalates and their metabolites, we observed a significant association between urinary phthalates and phthalate metabolites (MEHHP, MECPP, DBP and MBzP) and cancer risk. The findings of our meta-analysis reinforce the existing evidence that urinary phthalates and phthalate metabolites is strongly associated with cancer development. Further investigations are warranted to elucidate the underlying mechanisms of this association. These results may offer novel insights into cancer development.
Collapse
Affiliation(s)
- Meng Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yao Yang
- Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Liang Song
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Jian Peng
- Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shenglong Li
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhengjun Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
8
|
Moreira MG, Rodrigues GZP, da Silva DA, Bianchi E, Gehlen G, Ziulkoski AL. Differences in MCF-7 response to endocrine disruptors in waste, superficial, and treated water from Southern Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1539. [PMID: 38012428 DOI: 10.1007/s10661-023-12109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
The aim of this study was to evaluate the effect of possible endocrine disruptors in surface and wastewater using a cell proliferation assay in an estrogen-responsive cell line (MCF-7). This study was conducted in the Sinos River (Brazil). The residual water was collected from a Pilot Treatment Plant (using Typha domingensis) and surface waters of the Luis Rau stream, the Sinos River, and the Water Treatment Station (WTS). After exposures (24-120 h), a Sulforhodamine B assay was performed to determine the proliferation rate. The higher increase in proliferation rate was observed with the Luiz Rau stream and the sewage treated by macrophytes in a flotation filter. The results from WTS water remained with a proliferation rate similar to the negative control at all times, suggesting that the conventional treatment is partially effective for the withdrawal of endocrine-disrupting agents. The study demonstrated the efficiency of the MCF-7 line in assessing endocrine disruption caused by wastewater and surface water samples. Our results indicate that conventional water treatment can partially remove the polluting load of endocrine disruptors, minimizing their environmental and public health impacts. Besides, it demonstrates the need to expand sanitary services to improve the population's quality of life.
Collapse
Affiliation(s)
| | - Gabriela Zimmermann Prado Rodrigues
- Cytotoxicity Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil.
- Comparative Histology Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil.
| | - Diego Araújo da Silva
- Cytotoxicity Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Eloisa Bianchi
- Cytotoxicity Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Günther Gehlen
- Comparative Histology Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Ana Luiza Ziulkoski
- Cytotoxicity Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil
| |
Collapse
|
9
|
Nehring I, Staniszewska M. Comparison of prenatal and postnatal exposure to endocrine active phenol derivatives in mammals - Humans and Baltic grey seals. MARINE POLLUTION BULLETIN 2023; 196:115567. [PMID: 37741109 DOI: 10.1016/j.marpolbul.2023.115567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Bisphenol A (BPA), 4-tert-octylphenol (4-t-OP), and 4-nonylphenol (4-NP) are characterised by their endocrine active properties. Their negative effects on the development of the body are doubly important in the reproduction process. The goal was to compare the maternal transfer of phenol derivatives in humans and seals and identify factors that may affect the load of phenol derivatives entering the mother's body, which translates into a risk to the offspring. Phenol derivatives were determined using HPLC-FLD. It was shown that higher concentrations of phenol derivatives in blood or milk were detected in humans (mothers and newborns) compared to concentrations in Baltic seals. This was influenced by external exposure factors, i.e., leaching of phenol derivatives from food packaging or dermal contact. The authors conclude that milk is the main component in the maternal transfer of BPA to the next generation in humans, while blood is a carrier of alkylphenols, particularly 4-tert-octylphenol.
Collapse
Affiliation(s)
- Iga Nehring
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Marta Staniszewska
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| |
Collapse
|
10
|
Chen FP, Chien MH, Lee CH. The no-observed-adverse-effect level of phthalates promotes proliferation and cell cycle progression in normal human breast cells. Taiwan J Obstet Gynecol 2023; 62:874-883. [PMID: 38008508 DOI: 10.1016/j.tjog.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 11/28/2023] Open
Abstract
OBJECTIVE The data on the association between phthalates and breast cancer risk remains inconsistent. This study aimed to explore the possible mechanism of low-dose exposures of phthalates, including Butyl benzyl phthalate (BBP), di(n-butyl) phthalate (DBP), and di(20ethylhexyl) phthalate (DEHP), on breast tumorigenesis. METHODS AND METHODS MCF-10A normal breast cells were treated with phthalates (10 and 100 nM) and 17β-estradiol (E2, 10 nM), which were co-cultured with fibroblasts from normal mammary tissue. Cell viability, cycle, and apoptosis were detected by MTT assay, flow cytometry, and TUNEL assay respectively. The expression levels of related proteins were determined by Western blot. RESULTS Like E2, both 10 nM and 100 nM phthalates exerted significantly higher cell viability, lower apoptosis, and increased cell numbers in the S and G2/M phases with up-regulation of cyclin D/CDK4, cyclin E/CDK2, cyclin A/CDK2, cyclin A/CDK1, and cyclin B/CDK1, compared with the control group. Significant increase in PDK1, P13K, p-AKT, p-mTOR, and BCL-2 expression and a decrease in Bax protein, cytochrome C, caspase 8, and caspase 3 levels were noted in cells treated with 10 nM and 100 nM phthalates and E2, compared with the control group and MCF-10A cells co-cultured with fibroblasts. The effects of the three phthalates were noted to be dose-dependent. CONCLUSIONS The results indicate that phthalates at a level below its no-observed-adverse-effect concentration, as defined by the current standards, still induce cell cycle progression and proliferation as well as inhibit apoptosis of normal breast cells. Thus, the possibility of breast tumorigenesis through chronic phthalate exposure should be considered.
Collapse
Affiliation(s)
- Fang-Ping Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, 259, Taiwan.
| | - Mei-Hua Chien
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Chun-Hui Lee
- Department of General Surgery, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| |
Collapse
|
11
|
Hall KA, Filardo EJ. The G Protein-Coupled Estrogen Receptor (GPER): A Critical Therapeutic Target for Cancer. Cells 2023; 12:2460. [PMID: 37887304 PMCID: PMC10605794 DOI: 10.3390/cells12202460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Estrogens have been implicated in the pathogenesis of various cancers, with increasing concern regarding the overall rising incidence of disease and exposure to environmental estrogens. Estrogens, both endogenous and environmental, manifest their actions through intracellular and plasma membrane receptors, named ERα, ERβ, and GPER. Collectively, they act to promote a broad transcriptional response that is mediated through multiple regulatory enhancers, including estrogen response elements (EREs), serum response elements (SREs), and cyclic AMP response elements (CREs). Yet, the design and rational assignment of antiestrogen therapy for breast cancer has strictly relied upon an endogenous estrogen-ER binary rubric that does not account for environmental estrogens or GPER. New endocrine therapies have focused on the development of drugs that degrade ER via ER complex destabilization or direct enzymatic ubiquitination. However, these new approaches do not broadly treat all cancer-involved receptors, including GPER. The latter is concerning since GPER is directly associated with tumor size, distant metastases, cancer stem cell activity, and endocrine resistance, indicating the importance of targeting this receptor to achieve a more complete therapeutic response. This review focuses on the critical importance and value of GPER-targeted therapeutics as part of a more holistic approach to the treatment of estrogen-driven malignancies.
Collapse
|
12
|
Yuk JS, Yang SW, Yoon SH, Kim MH, Seo YS, Lee Y, Joo Y, Kim J, Yoon SY, Cho H, Yang K, Gwak G. Association between breast diseases and symptomatic uterine fibroids by using South Korean National Health Insurance database. Sci Rep 2023; 13:16772. [PMID: 37798304 PMCID: PMC10555995 DOI: 10.1038/s41598-023-43443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023] Open
Abstract
Both the uterus and breasts have sex hormone dependence, yet there are few studies on the association between breast disease and uterine fibroids (UFs). The purpose of this study was to investigate the incidence of benign breast disease (BBD), carcinoma in situ (CIS), and breast cancer (BC) in women treated for UFs compared to women who were not treated for UFs. This retrospective cohort study used national health insurance data from January 1st, 2011, to December 31st, 2020. We selected women between 20 and 50 years old who (1) were treated for UFs (UF group) or (2) visited medical institutions for personal health screening tests without UFs (control group). We analyzed independent variables such as age, socioeconomic status (SES), region, Charlson comorbidity index (CCI), delivery status, menopausal status, menopausal hormone therapy (MHT), endometriosis, hypertension (HTN), diabetes mellitus (DM), and dyslipidemia based on the first date of uterine myomectomy in the UF group and the first visiting date for health screening in the non-UF group. There were 190,583 and 439,940 participants in the UF and control groups, respectively. Compared with those of the control group, the RRs of BBD, CIS, and BC were increased in the UF group. The hazard ratios (HRs) of BBD, CIS, and BC in the UF group were 1.335 (95% confidence interval (CI) 1.299-1.372), 1.796 (95% CI 1.542-2.092), and 1.3 (95% CI 1.198-1.41), respectively. When we analyzed the risk of BC according to age at inclusion, UFs group had the increased risk of BCs in all age groups in comparison with control group. Women with low SES (HR 0.514, 95% CI 0.36-0.734) and living in rural areas (HR 0.889, 95% CI 0.822-0.962) had a lower risk of BC. Our study showed that women with UFs had a higher risk of BBD, CIS, and BC than those without UFs. This result suggests that women with UFs should be more conscious of BC than those without UFs. Therefore, doctors should consider recommending regular breast self-exams, mammography, or ultrasound for the early detection of BC in women with UFs.
Collapse
Affiliation(s)
- Jin-Sung Yuk
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea
| | - Seung-Woo Yang
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea
| | - Sang-Hee Yoon
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea
| | - Myoung Hwan Kim
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea
| | - Yong-Soo Seo
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea
| | - Yujin Lee
- Department of Surgery, Sanggye Paik Hospital, School of Medicine, Inje University, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, Republic of Korea
| | - Yilseok Joo
- Department of Surgery, Sanggye Paik Hospital, School of Medicine, Inje University, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, Republic of Korea
| | - Jungbin Kim
- Department of Surgery, Sanggye Paik Hospital, School of Medicine, Inje University, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, Republic of Korea
| | - Sam-Youl Yoon
- Department of Surgery, Sanggye Paik Hospital, School of Medicine, Inje University, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, Republic of Korea
| | - Hyunjin Cho
- Department of Surgery, Sanggye Paik Hospital, School of Medicine, Inje University, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, Republic of Korea
| | - Keunho Yang
- Department of Surgery, Sanggye Paik Hospital, School of Medicine, Inje University, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, Republic of Korea
| | - Geumhee Gwak
- Department of Surgery, Sanggye Paik Hospital, School of Medicine, Inje University, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, Republic of Korea.
| |
Collapse
|
13
|
He H, Zhang F, Zhou S, Zhang S, Wang L, Li J, Zeng Q, Zhu Y, Tian J, Chang J, Cheng L, Lu Q, Miao X, Shen N, Zhong R. Interaction of metabolism-related pathway gene variants with bisphenol A exposure on serum lipid profiles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104173. [PMID: 37302441 DOI: 10.1016/j.etap.2023.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) can be metabolized by metabolic enzymes and may induce abnormal lipid metabolism. We hypothesized that BPA exposure and its interaction with metabolism-related genes might be associated with serum lipid profiles. We performed a two-stage study among 955 middle-aged and elderly participants in Wuhan, China. Urinary BPA level was estimated without (BPA, μg/L) or with (BPA/Cr, μg/g) adjustments for urinary creatinine and ln-transformed values (ln-BPA or ln-BPA/Cr) were used to normalize the asymmetrical distributions. A total of 412 metabolism-related gene variants were selected and used for gene-BPA interaction analysis. Multiple linear regression was used to analyze the interactions between BPA exposure and metabolism-related genes on serum lipid profiles. In the discovery stage, both ln-BPA and ln-BPA/Cr was associated with decreased high-density lipoprotein cholesterol (HDL-C). Gene-urinary BPA interaction for IGFBP7 rs9992658 was observed to associate with HDL-C levels in both discovery and validation stages, with Pinteraction equal to 9.87×10-4 (ln-BPA) and 1.22×10-3 (ln-BPA/Cr) in combined analyses. In addition, the inverse association of urinary BPA with HDL-C levels was only observed among individuals carrying rs9992658 AA genotype, but not in individuals carrying rs9992658 AC or CC genotypes. The interaction between BPA exposure and metabolism-related gene IGFBP7 (rs9992658) was associated with HDL-C levels. AVAILABILITY OF DATA AND MATERIAL: Not applicable.
Collapse
Affiliation(s)
- Heng He
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Fuwei Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Zhou
- Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan 430015, China
| | - Shanshan Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Wang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- School of Public Health, Wuhan University, Wuhan, China
| | - Jianbo Tian
- School of Public Health, Wuhan University, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- School of Public Health, Wuhan University, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Pridgen GW, Zhu J, Wei Y. Exposure to p-dichlorobenzene and prevalent endocrine-related reproductive cancers among US women. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27876-4. [PMID: 37269516 DOI: 10.1007/s11356-023-27876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
P-dichlorobenzene (p-DCB) is a pest repellent and air deodorant that is commonly found in the household and public buildings. Exposure to p-DCB has been suggested to have potential metabolic and endocrine effects. Little is known about its association with endocrine-related female cancers. In this cross-sectional study, a nationally representative subsample of 4459 women, aged 20 years or older, in the 2003-2016 National Health and Nutrition Examination Survey was analyzed for the association between p-DCB exposure, measured as urinary concentrations of 2,5-dichlorophenol (2,5-DCP), the primary metabolite of p-DCB, and prevalent endocrine-related female cancers (defined as breast, ovarian, and uterine cancers) using multivariate logistic regression models, adjusting for potential confounders. Of the study participants, 202 women (weighted prevalence, 4.20%) reported being diagnosed with any of these endocrine-related reproductive cancers. Women with reproductive cancers showed a statistically significant increase in urinary 2,5-DCP concentrations (weighted geometric mean, 7.97 vs. 5.84 µg/g creatinine; p < 0.0001), compared to women without these cancers. After adjusting for potential confounders, we found that women in the moderate (1.94- < 28.10 µg/g creatinine) and high level (≥ 28.10 µg/g creatinine) of 2,5-DCP had significantly increased odds of endocrine-related reproductive cancers (odds ratio of 1.66 (95% CI: 1.02, 2.71) and 1.89 (1.08, 3.29), respectively), as compared with those in the low exposure group (< 1.94 µg/g creatinine). This study demonstrates a potential relation between p-DCB exposure and prevalent endocrine-related reproductive cancers in US women. Prospective and mechanistic studies would further explore these interactions and elucidate the pathogenesis of endocrine-related female cancers potentially associated with p-DCB exposure.
Collapse
Affiliation(s)
| | - Jianmin Zhu
- Department of Mathematics and Computer Science, Fort Valley State University, Fort Valley, GA, USA
| | - Yudan Wei
- Department of Community Medicine, Mercer University School of Medicine, 1501 Mercer University Dr., Macon, GA, 31207, USA.
| |
Collapse
|
15
|
Weis KE, Thompson LM, Streifer M, Guardado I, Flaws JA, Gore AC, Raetzman LT. Pre- and postnatal developmental exposure to the polychlorinated biphenyl mixture aroclor 1221 alters female rat pituitary gonadotropins and estrogen receptor alpha levels. Reprod Toxicol 2023; 118:108388. [PMID: 37127253 PMCID: PMC10228234 DOI: 10.1016/j.reprotox.2023.108388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Polychlorinated-biphenyls (PCBs) are industrial compounds, which were widely used in manufacturing of electrical parts and transformers. Despite being banned in 1979 due to human health concerns, they persist in the environment. In humans and experimental model systems, PCBs elicit toxicity in part by acting as endocrine-disrupting chemicals (EDCs). Aroclor 1221 (A1221) is a weakly estrogenic PCB mixture known to alter reproductive function in rodents. EDCs can impact hormone signaling at any level of the hypothalamic-pituitary-gonadal (HPG) axis, and we investigated the effects of A1221 exposure during the prenatal and postnatal developmental periods on pituitary hormone and steroid receptor expression in female rats. Examining offspring at 3 ages, postnatal day 8 (P8), P32 and P60, we found that prenatal exposure to A1221 increased P8 neonate pituitary luteinizing hormone beta (Lhb) mRNA and LHβ gonadotrope cell number while decreasing LH serum hormone concentration. No changes in pituitary hormone or hormone receptor gene expression were observed peri-puberty at P32. In reproductively mature rats at P60, we found pituitary follicle stimulating hormone beta (Fshb) mRNA levels increased by prenatal A1221 exposure with no corresponding alterations in FSH hormone or FSHβ expressing cell number. Estrogen receptor alpha (ERα) mRNA and protein levels were also increased at P60, but only following postnatal A1221 dosing. Together, these data illustrate that exposure to the PCB A1221, during critical developmental windows, alters pituitary gonadotropin hormone subunits and ERα levels in offspring at different phases of maturation, potentially impacting reproductive function in concert with other components of the HPG axis.
Collapse
Affiliation(s)
- Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, United States
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Madeline Streifer
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Isabella Guardado
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois College of Veterinary Medicine, United States
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, United States.
| |
Collapse
|
16
|
Stiefel C, Stintzing F. Endocrine-active and endocrine-disrupting compounds in food – occurrence, formation and relevance. NFS JOURNAL 2023; 31:57-92. [DOI: 10.1016/j.nfs.2023.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Prueitt RL, Hixon ML, Fan T, Olgun NS, Piatos P, Zhou J, Goodman JE. Systematic review of the potential carcinogenicity of bisphenol A in humans. Regul Toxicol Pharmacol 2023:105414. [PMID: 37263405 DOI: 10.1016/j.yrtph.2023.105414] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Bisphenol A (BPA) is a synthetic chemical to which humans are exposed through a variety of environmental sources. We have conducted a comprehensive, systematic review of 29 epidemiology studies and 27 experimental animal studies, published through May 2022, evaluating the potential carcinogenicity of BPA to contribute to the understanding of whether BPA is carcinogenic in humans. We conducted this review according to best practices for systematic reviews and incorporating established frameworks for study quality evaluation and evidence integration. The epidemiology studies have many limitations that increase the risk of biased results, but overall, the studies do not provide clear and consistent evidence for an association between BPA exposure and the development of any type of cancer. The experimental animal studies also do not provide strong and consistent evidence that BPA is associated with the induction of any malignant tumor type. Some of the proposed mechanisms for BPA carcinogenicity are biologically plausible, but the relevance to human exposures is not clear. We conclude that there is inadequate evidence to support a causal relationship between BPA exposure and human carcinogenicity, based on inadequate evidence in humans, as well as evidence from experimental animal studies that suggests a causal relationship is not likely.
Collapse
Affiliation(s)
- Robyn L Prueitt
- Gradient, 600 Stewart Street, Suite 1900, Seattle, WA, 98101, USA.
| | - Mary L Hixon
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Tongyao Fan
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Nicole S Olgun
- Gradient, 103 East Water Street, 3rd Floor, Charlottesville, VA, 22902, USA
| | - Perry Piatos
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Jean Zhou
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | | |
Collapse
|
18
|
Zárate LV, Miret NV, Nicola Candia AJ, Zappia CD, Pontillo CA, Chiappini FA, Monczor F, Candolfi M, Randi AS. Breast cancer progression and kynurenine pathway enzymes are induced by hexachlorobenzene exposure in a Her2-positive model. Food Chem Toxicol 2023; 177:113822. [PMID: 37169060 DOI: 10.1016/j.fct.2023.113822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Breast cancer is one of the leading cancers among women worldwide. Given the evidence that pesticides play an important role in breast cancer, interest has grown in pesticide impact on disease progression. Hexachlorobenzene (HCB), an aryl hydrocarbon receptor (AhR) ligand, promotes triple-negative breast cancer cell migration and invasion. Estrogen receptor β (ERβ) inhibits cancer motility, while G protein-coupled ER (GPER) modulates the neoplastic transformation. Tryptophan is metabolized through the kynurenine pathway by indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO), with kynurenine signaling activation often predicting worse prognosis in cancer. In this context, we examined the HCB (0.005; 0.05; 0.5 and 5 μM) effect on LM3 cells, a human epidermal growth factor receptor 2 (HER2)-positive breast cancer model. Results show that HCB increases IDO and TDO mRNA levels and promotes cell viability, proliferation and migration through the AhR pathway. Moreover, HCB boosts mammosphere formation, vascular endothelial growth factor and cyclooxygenase-2 expression and reduces IL-10 levels. For some parameters, U-shaped or inverted U-shaped dose-response curves are shown. HCB alters ER levels, reducing ERβ while increasing GPER. These results demonstrate that exposure to environmentally relevant concentrations of HCB up-regulates the kynurenine pathway and dysregulates ERβ and GPER levels, collaborating in HER2-positive breast cancer progression.
Collapse
Affiliation(s)
- Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| | - Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er Subsuelo, (CP 1121), Buenos Aires, Argentina.
| | - Alejandro J Nicola Candia
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas, Laboratorio de Inmunoterapia Antitumoral, Paraguay 2155, Piso 10, (CP 1121), Buenos Aires, Argentina.
| | - C Daniel Zappia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptors, Junín 954, Planta Baja, (CP1113), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| | - Federico Monczor
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptors, Junín 954, Planta Baja, (CP1113), Buenos Aires, Argentina.
| | - Marianela Candolfi
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas, Laboratorio de Inmunoterapia Antitumoral, Paraguay 2155, Piso 10, (CP 1121), Buenos Aires, Argentina.
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
19
|
Zheng R, Zhang Y, Cheng S, Xiao T. Environmental estrogens shape disease susceptibility. Int J Hyg Environ Health 2023; 249:114125. [PMID: 36773581 DOI: 10.1016/j.ijheh.2023.114125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/12/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
Along with industrialization, the environment is flooded with endocrine-disrupting chemicals, among which substances with estrogenic effects have attracted widespread attention in medical research. In terms of molecular mechanism, environmental estrogens can cause endocrine and metabolic disorders; interfere with multiple carcinogenic pathways; and lead to neurobehavioral disorders, reproductive toxicity, and multi- or trans-generational phenotypic abnormalities. However, many of the results from molecular and animal experiments were not supported by epidemiology, which may be related to the existence of a window of sensitivity to environmental estrogen exposure over the human life course, where the consequences of exposure vary greatly from other times. This paper will introduce the main sources of environmental estrogens, their toxicity and mechanisms of action, the status of research on several representative types, and current monitoring and treatment methods. We also discussed the extent of the risks to human health dialectically in the context of laboratory and epidemiological findings, with a view to better addressing these chemicals to which we are constantly exposed.
Collapse
Affiliation(s)
- Ruiqi Zheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
20
|
Ahn C, Jeung EB. Endocrine-Disrupting Chemicals and Disease Endpoints. Int J Mol Sci 2023; 24:ijms24065342. [PMID: 36982431 PMCID: PMC10049097 DOI: 10.3390/ijms24065342] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) have significant impacts on biological systems, and have been shown to interfere with physiological systems, especially by disrupting the hormone balance. During the last few decades, EDCs have been shown to affect reproductive, neurological, and metabolic development and function and even stimulate tumor growth. EDC exposure during development can disrupt normal development patterns and alter susceptibility to disease. Many chemicals have endocrine-disrupting properties, including bisphenol A, organochlorines, polybrominated flame retardants, alkylphenols, and phthalates. These compounds have gradually been elucidated as risk factors for many diseases, such as reproductive, neural, and metabolic diseases and cancers. Endocrine disruption has been spread to wildlife and species that are connected to the food chains. Dietary uptake represents an important source of EDC exposure. Although EDCs represent a significant public health concern, the relationship and specific mechanism between EDCs and diseases remain unclear. This review focuses on the disease-EDC relationship and the disease endpoints associated with endocrine disruption for a better understanding of the relationship between EDCs-disease and elucidates the development of new prevention/treatment opportunities and screening methods.
Collapse
Affiliation(s)
- Changhwan Ahn
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Correspondence: ; Tel.: +82-043-261-2397; Fax: +82-43-267-3150
| |
Collapse
|
21
|
Alwadi D, Felty Q, Yoo C, Roy D, Deoraj A. Endocrine Disrupting Chemicals Influence Hub Genes Associated with Aggressive Prostate Cancer. Int J Mol Sci 2023; 24:ijms24043191. [PMID: 36834602 PMCID: PMC9959535 DOI: 10.3390/ijms24043191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed cancers among men in the world. Its prevention has been limited because of an incomplete understanding of how environmental exposures to chemicals contribute to the molecular pathogenesis of aggressive PCa. Environmental exposures to endocrine-disrupting chemicals (EDCs) may mimic hormones involved in PCa development. This research aims to identify EDCs associated with PCa hub genes and/or transcription factors (TF) of these hub genes in addition to their protein-protein interaction (PPI) network. We are expanding upon the scope of our previous work, using six PCa microarray datasets, namely, GSE46602, GSE38241, GSE69223, GSE32571, GSE55945, and GSE26126, from the NCBI/GEO, to select differentially expressed genes based on |log2FC| (fold change) ≥ 1 and an adjusted p-value < 0.05. An integrated bioinformatics analysis was used for enrichment analysis (using DAVID.6.8, GO, KEGG, STRING, MCODE, CytoHubba, and GeneMANIA). Next, we validated the association of these PCa hub genes in RNA-seq PCa cases and controls from TCGA. The influence of environmental chemical exposures, including EDCs, was extrapolated using the chemical toxicogenomic database (CTD). A total of 369 overlapping DEGs were identified associated with biological processes, such as cancer pathways, cell division, response to estradiol, peptide hormone processing, and the p53 signaling pathway. Enrichment analysis revealed five up-regulated (NCAPG, MKI67, TPX2, CCNA2, CCNB1) and seven down-regulated (CDK1, CCNB2, AURKA, UBE2C, BUB1B, CENPF, RRM2) hub gene expressions. Expression levels of these hub genes were significant in PCa tissues with high Gleason scores ≥ 7. These identified hub genes influenced disease-free survival and overall survival of patients 60-80 years of age. The CTD studies showed 17 recognized EDCs that affect TFs (NFY, CETS1P54, OLF1, SRF, COMP1) that are known to bind to our PCa hub genes, namely, NCAPG, MKI67, CCNA2, CDK1, UBE2C, and CENPF. These validated differentially expressed hub genes can be potentially developed as molecular biomarkers with a systems perspective for risk assessment of a wide-ranging list of EDCs that may play overlapping and important role(s) in the prognosis of aggressive PCa.
Collapse
Affiliation(s)
- Diaaidden Alwadi
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Changwon Yoo
- Department of Biostatistics, Florida International University, Miami, FL 33199, USA
| | - Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Alok Deoraj
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
22
|
Muñoz JP, Araya-Osorio R, Mera-Adasme R, Calaf GM. Glyphosate mimics 17β-estradiol effects promoting estrogen receptor alpha activity in breast cancer cells. CHEMOSPHERE 2023; 313:137201. [PMID: 36379430 DOI: 10.1016/j.chemosphere.2022.137201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate, the active ingredient in several broad-spectrum herbicide formulations, has been validated and widely used throughout the world. Recent reports have questioned its safety, showing that glyphosate may act as an endocrine disruptor by promoting estrogenic activity. However, the molecular mechanism involved in this phenomenon remains unclear. Therefore, here we aimed to elucidate the mechanism by which glyphosate induces estrogenic activity using estrogen-sensitive breast cancer cell line models. Our results show that glyphosate mimics the cell effects of 17β-estradiol (E2), promoting estrogen receptor α (ERα) phosphorylation, its degradation, and transcriptional activity at high concentrations. The molecular mechanism seems involved in the ERα ligand-binding domain (LBD). Molecular simulations suggest a plausible interaction between glyphosate and the LBD through a coordinated complex involving divalent cations such as Zn (II). In addition, glyphosate exposure alters the level of Cyclin-dependent kinase 7 that contribute to ERα phosphorylation. Finally, glyphosate increases cell proliferation rate and levels of cell cycle regulators, accompanied by an increase in anchorage-independent growth capacity. These findings suggest that glyphosate at high concentrations, induces estrogen-like effects through an ERα ligand binding site-dependent mechanism, leading to cellular responses resulting from a complex interplay of genomic and non-genomic events.
Collapse
Affiliation(s)
- Juan P Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile.
| | - Rocío Araya-Osorio
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Chile.
| | - Raúl Mera-Adasme
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Chile.
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile.
| |
Collapse
|
23
|
Fauconnier MB, Albert C, Tondreau A, Maumy L, Rouzier R, Bonneau C. [Bisphenol A and breast cancer: State of knowledge and meta-analysis]. Bull Cancer 2023; 110:151-159. [PMID: 36543681 DOI: 10.1016/j.bulcan.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Bisphenol A is an endocrine disruptor used in the composition of food containers. It was partially banned in France in 2015 and classified as a "very high-risk substance" in 2017. Bisphenol A's carcinogenic effects have been demonstrated in animal testing. Bisphenol A acts through estrogen-dependent and estrogen-independent pathways. It induces epigenetic changes and impacts the microenvironment of the mammary gland. However, the role of bisphenol A exposure in the development of breast cancer in humans remains controversial. This study documents the current thinking on bisphenol A with an analysis of the mechanisms and a meta-analysis. MATERIALS AND METHODS A literature review and a statistical analysis of linear regression type, with the creation of a Forest plot, were used to perform the meta-analysis of 9 studies including 10,695 patients. RESULTS Nine case-control studies, published between 1990 and 2021, investigating the association between breast cancer and mean urinary, blood or tissue bisphenol A levels were selected. The meta-analysis did not find a significant association between bisphenol A exposure and the development of breast cancer with an OR=(1 IC95% [0.92-1.08]). DISCUSSION This meta-analysis does not show a link between breast cancer and bisphenol A exposure. Nevertheless, the analysis of a pathogenic link between bisphenol A and breast cancer requires additional cohort studies to conclude because of methods of available studies.
Collapse
Affiliation(s)
| | - Casilda Albert
- Institut Curie-Saint-Cloud, département de chirurgie, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Ambre Tondreau
- Institut Curie-Saint-Cloud, département de chirurgie, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Louise Maumy
- Institut Curie-Saint-Cloud, département de chirurgie, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Roman Rouzier
- Institut François-Baclesse, département de chirurgie, 3, avenue du Général Harris, 14000 Caen, France; Inserm U900, Institut Curie, Saint-Cloud, France
| | - Claire Bonneau
- Institut Curie-Saint-Cloud, département de chirurgie, 35, rue Dailly, 92210 Saint-Cloud, France; Inserm U900, Institut Curie, Saint-Cloud, France.
| |
Collapse
|
24
|
Wei Y, Shen H, Gao C, Du Y, Zhao Y, Wang Y, Zhou S, Li J, Zhao B, Wu D. Electrochemical detection mechanism of estrogen effect induced by cadmium: The regulation of purine metabolism by the estrogen effect of cadmium. CHEMOSPHERE 2023; 311:136970. [PMID: 36283430 DOI: 10.1016/j.chemosphere.2022.136970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Some heavy metals in the environment may have estrogen-like activity, which probably lead to major diseases such as breast cancer. It is of great importance to establish new methods to evaluate the estrogen effect of heavy metals from multiple angles due to the complex mechanism of estrogen effect. In this paper, using MCF-7 cells as model, the electrochemical detection mechanism of the estrogen effect of heavy metal cadmium (Cd) was studied. The two electrochemical signals of MCF-7 cells derived from uric acid (0.30 V) and the mixture of guanine and xanthine (0.68 V) increased in a time and dose-dependent manner when MCF-7 cells induced by Cd, reaching the maximum at 96 h and 10-9 mol L-1. Further studies found that three purine metabolism pathways about de novo synthesis, salvage synthesis and decomposition metabolism were activated by the estrogen effect of Cd. The expression of PRPP amidotransferase in purine de novo synthesis pathway and HPRT in purine salvage synthesis pathway up-regulated, especially HPRT, which promoted cell proliferation together. Nevertheless, the expression of GDA and ADA, the key enzymes in purine decomposition metabolism pathway, up-regulated in a time and dose-dependent manner, which had same tendency with that of ERα, thereby increased the content of intracellular hypoxanthine, guanine, xanthine and uric acid, and enhanced electrochemical signals.
Collapse
Affiliation(s)
- Ying Wei
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Hongkuan Shen
- Jiamusi Inspection and Testing Center, Jiamusi, Heilongjiang, 154007, PR China
| | - Changsheng Gao
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Yuan Du
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi, Heilongjiang, 154007, PR China
| | - Yanli Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi, Heilongjiang, 154007, PR China
| | - Yuhang Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Shi Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi, Heilongjiang, 154007, PR China.
| | - Baojiang Zhao
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi, Heilongjiang, 154007, PR China.
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi, Heilongjiang, 154007, PR China.
| |
Collapse
|
25
|
Khan NG, Eswaran S, Adiga D, Sriharikrishnaa S, Chakrabarty S, Rai PS, Kabekkodu SP. Integrated bioinformatic analysis to understand the association between phthalate exposure and breast cancer progression. Toxicol Appl Pharmacol 2022; 457:116296. [PMID: 36328110 DOI: 10.1016/j.taap.2022.116296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Phthalates have been extensively used as plasticizers while manufacturing plastic-based consumer products. Estradiol mimicking properties and association studies suggest phthalates may contribute to breast cancer (BC). We performed an in-silico analysis and functional studies to understand the association between phthalate exposure and BC progression. Search for phthalate-responsive genes using the comparative toxicogenomics database identified 20 genes as commonly altered in response to multiple phthalates exposure. Of the 20 genes, 12 were significantly differentially expressed between normal and BC samples. In BC samples, 9 out of 20 genes showed a negative correlation between promoter methylation and its expression. AHR, BAX, BCL2, CAT, ESR2, IL6, and PTGS2 expression differed significantly between metastatic and non-metastatic BC samples. Gene set enrichment analysis identified metabolism, ATP-binding cassette transporters, insulin signaling, and type II diabetes as highly enriched pathways. The diagnostic assessment based on 20 genes expression suggested a sensitivity and a specificity >0.91. The aberrantly expressed phthalate interactive gene influenced the overall survival of BC patients. Drug-gene interaction analysis identified 14 genes and 523 candidate drugs, including 19 BC treatment-approved drugs. Di(2-ethylhexyl) phthlate (DEHP) exposure increased the growth, proliferation, and migration of MCF-7 and MDA-MB-231 cells in-vitro. DEHP exposure induced morphological changes, actin cytoskeletal remodeling, increased ROS content, reduced basal level lipid peroxidation, and induced epithelial to mesenchymal transition (EMT). The present approach can help to explore the potentially damaging effects of environmental agents on cancer risk and understand the underlined pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Nadeem G Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Centre for DNA repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Centre for DNA repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
26
|
Kay JE, Cardona B, Rudel RA, Vandenberg LN, Soto AM, Christiansen S, Birnbaum LS, Fenton SE. Chemical Effects on Breast Development, Function, and Cancer Risk: Existing Knowledge and New Opportunities. Curr Environ Health Rep 2022; 9:535-562. [PMID: 35984634 PMCID: PMC9729163 DOI: 10.1007/s40572-022-00376-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Population studies show worrisome trends towards earlier breast development, difficulty in breastfeeding, and increasing rates of breast cancer in young women. Multiple epidemiological studies have linked these outcomes with chemical exposures, and experimental studies have shown that many of these chemicals generate similar effects in rodents, often by disrupting hormonal regulation. These endocrine-disrupting chemicals (EDCs) can alter the progression of mammary gland (MG) development, impair the ability to nourish offspring via lactation, increase mammary tissue density, and increase the propensity to develop cancer. However, current toxicological approaches to measuring the effects of chemical exposures on the MG are often inadequate to detect these effects, impairing our ability to identify exposures harmful to the breast and limiting opportunities for prevention. This paper describes key adverse outcomes for the MG, including impaired lactation, altered pubertal development, altered morphology (such as increased mammographic density), and cancer. It also summarizes evidence from humans and rodent models for exposures associated with these effects. We also review current toxicological practices for evaluating MG effects, highlight limitations of current methods, summarize debates related to how effects are interpreted in risk assessment, and make recommendations to strengthen assessment approaches. Increasing the rigor of MG assessment would improve our ability to identify chemicals of concern, regulate those chemicals based on their effects, and prevent exposures and associated adverse health effects.
Collapse
Affiliation(s)
| | | | | | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Linda S Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Suzanne E Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
27
|
Easson S, Singh RD, Connors L, Scheidl T, Baker L, Jadli A, Zhu HL, Thompson J. Exploring oxidative stress and endothelial dysfunction as a mechanism linking bisphenol S exposure to vascular disease in human umbilical vein endothelial cells and a mouse model of postnatal exposure. ENVIRONMENT INTERNATIONAL 2022; 170:107603. [PMID: 36335898 DOI: 10.1016/j.envint.2022.107603] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Structural analogues used to replace bisphenol A (BPA) since the introduction of new regulatory restrictions are considered emerging environmental toxicants and remain understudied with respect to their biological actions and health effects. Studies reveal a link between BPA exposure and vascular disease in human populations, whereas the vascular effects of BPA substitutes remain largely unknown. OBJECTIVES To determine the effect of BPS, a commonly used BPA substitute, on redox balance, nitric oxide (NO) availability and microvascular NO-dependent dilation. METHODS In human umbilical vein endothelial cells (HUVEC), production of reactive oxygen species (ROS) and NO after exposure to BPS was measured using fluorescent probes for DCFDA and DAF-FM diacetate, respectively. The contribution of endothelial NO synthase (eNOS) uncoupling to ROS generation was determined by measuring ROS in the presence or absence of an eNOS inhibitor (L-NAME) or eNOS co-factor, BH4, while the contribution of mitochondria-derived ROS was determined by treating cells with mitochondria-specific antioxidants prior to BPS exposure. Bioenergetic profiles were assessed using Seahorse extracellular flux analysis and mitochondria membrane polarization was measured with TMRE and JC-1 assays. In a mouse model of low dose BPS exposure, NO-mediated endothelial function was assessed in pressurized microvessels by inducing endothelium-dependent dilation in the presence or absence of L-NAME. RESULTS BPS exposure (≥25 nM) reduced NO and increased ROS production in HUVEC, the latter corrected by treating cells with L-NAME or BH4. BPS exposure led to a loss of mitochondria membrane potential but had no impact on bioenergetic parameters except for a decrease in the spare respiratory capacity. Treatment of HUVEC with mitochondria-specific antioxidants abolished the effect of BPS on NO and ROS. NO-mediated vasodilation was impaired in male mice exposed to BPS. DISCUSSION Exposure to BPS may promote cardiovascular disease by perturbing NO-mediated vascular homeostasis through the induction of oxidative stress.
Collapse
Affiliation(s)
- Sarah Easson
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Radha Dutt Singh
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Liam Connors
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Taylor Scheidl
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Larissa Baker
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Anshul Jadli
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Hai-Lei Zhu
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Jennifer Thompson
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada.
| |
Collapse
|
28
|
Molina-López AM, Bujalance-Reyes F, Urbano MT, Lora-Benítez A, Ayala-Soldado N, Moyano-Salvago R. Analysis of Blood Biochemistry and Pituitary-Gonadal Histology after Chronic Exposure to Bisphenol-A of Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113894. [PMID: 36360773 PMCID: PMC9659152 DOI: 10.3390/ijerph192113894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 05/12/2023]
Abstract
Bisphenol-A is an emerging pollutant that is widespread in the environment, and to which live beings are continuously and inadvertently exposed. It is a substance with an endocrine-disrupting capacity, causing alterations in the reproductive, immunological, and neurological systems, among others, as well as metabolic alterations. Our study aimed to assess its clinical signs, and effects on the most relevant blood biochemical parameters, and to evaluate pituitary and gonadal histology after a chronic exposure of adult mice to different BPA doses (0.5, 2, 4, 50 and 100 µg/kg BW/day) through their drinking water. The biochemical results showed that a marked significant reduction (p < 0.05) was produced in the levels of serum glucose, hypoproteinaemia and hypoalbuminemia in the groups exposed to the highest doses, whereas in the group exposed to 50 µg/kg BW/day the glucose and total protein levels dropped, and the animals exposed to 100 µg/kg BW/day experienced a diminution in albumin levels. In the case of the group exposed to 50 µg/kg BW/day, however, hypertriglyceridemia and hypercholesterolemia were determined, and the blood parameters indicating kidney alterations such as urea and creatinine experienced a significant increase (p < 0.05) with respect to the controls. Regarding the pituitary and gonads, none of the animals exposed presented histological alterations at the doses tested, giving similar images to those of the control group. These results suggest that continuous exposure to low BPA doses could trigger an inhibition of hepatic gluconeogenesis, which would result in a hypoglycaemic state, together with an induction of the enzymes responsible for lipidic synthesis, a mechanism by which the increase in the lipid and serum cholesterol levels could be explained. Likewise, the decline in the protein and albumin levels would be indicative of a possible hepatic alteration, and the increase in urea and creatinine would point to a possible renal perturbation, derived from continuous exposure to this xenobiotic. Based on our results, it could be said that chronic exposure to low BPA doses would not produce any clinical signs or histological pituitary-gonadal effects, but it could cause modifications in some blood biochemical parameters, that could initially indicate a possible hepatic and renal effect.
Collapse
Affiliation(s)
- Ana M. Molina-López
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes Desde la Perspectiva de Una Salud ENZOEM, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
- Correspondence: (A.M.M.-L.); (A.L.-B.)
| | - Francisca Bujalance-Reyes
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - María Teresa Urbano
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - Antonio Lora-Benítez
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
- Correspondence: (A.M.M.-L.); (A.L.-B.)
| | - Nahúm Ayala-Soldado
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - Rosario Moyano-Salvago
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes Desde la Perspectiva de Una Salud ENZOEM, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| |
Collapse
|
29
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
30
|
Protective effects of polyphenols against endocrine disrupting chemicals. Food Sci Biotechnol 2022; 31:905-934. [DOI: 10.1007/s10068-022-01105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
|
31
|
Segovia-Mendoza M, Palacios-Arreola MI, Monroy-Escamilla LM, Soto-Piña AE, Nava-Castro KE, Becerril-Alarcón Y, Camacho-Beiza R, Aguirre-Quezada DE, Cardoso-Peña E, Amador-Muñoz O, Garduño-García JDJ, Morales-Montor J. Association of Serum Levels of Plasticizers Compounds, Phthalates and Bisphenols, in Patients and Survivors of Breast Cancer: A Real Connection? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138040. [PMID: 35805702 PMCID: PMC9265398 DOI: 10.3390/ijerph19138040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023]
Abstract
Phthalates and bisphenols are ubiquitous environmental pollutants with the ability to perturb different systems. Specifically, they can alter the endocrine system, and this is why they are also known as endocrine-disrupting compounds (EDCs). Interestingly, they are related to the development and progression of breast cancer (BC), but the threshold concentrations at which they trigger that are not well established. Objectives: The aim of this study was to compare the concentration measures of parent EDCs in three groups of women (without BC, with BC, and BC survivors) from two urban populations in Mexico, to establish a possible association between EDCs and this disease. We consider the measure of the parent compounds would reflect the individual’s exposure. Methods: The levels of di-ethyl-hexyl-phthalate (DEHP), butyl-benzyl-phthalate (BBP), di-n-butyl phthalate (DBP) and di-ethyl-phthalate (DEP), bisphenol A (BPA) and bisphenol S (BPS) were determined by gas chromatograph-mass spectrometry in 102 subjects, including 37 women without any pathological disease, 46 patients with BC and 19 women survivals of BC of Mexico and Toluca City. Results: All phthalates were detected in 100% of women, two of them were significantly higher in patients with different BC subtypes in Mexico City. Differential increases were observed mainly in the serum concentration of phthalates in women with BC compared to women without disease between Mexico and Toluca City. In addition, when performing an analysis of the concentrations of phthalates by molecular type of BC, DEP and BBP were found mainly in aggressive and poorly differentiated types of BC. It should be noted that female BC survivors treated with anti-hormonal therapy showed lower levels of BBP than patients with BC. BPA and BPS were found in most samples from Mexico City. However, BPS was undetectable in women from Toluca City. Discussion: The results of our study support the hypothesis of a positive association between exposure to phthalates and BC incidence.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
- Correspondence: (M.S.-M.); (J.M.-M.)
| | - Margarita Isabel Palacios-Arreola
- Grupo de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (M.I.P.-A.); (O.A.-M.)
| | | | - Alexandra Estela Soto-Piña
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50000, Mexico; (A.E.S.-P.); (Y.B.-A.); (R.C.-B.); (E.C.-P.); (J.d.J.G.-G.)
| | - Karen Elizabeth Nava-Castro
- Grupo de Biología y Química Ambientales, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Yizel Becerril-Alarcón
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50000, Mexico; (A.E.S.-P.); (Y.B.-A.); (R.C.-B.); (E.C.-P.); (J.d.J.G.-G.)
| | - Roberto Camacho-Beiza
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50000, Mexico; (A.E.S.-P.); (Y.B.-A.); (R.C.-B.); (E.C.-P.); (J.d.J.G.-G.)
- Unidad Médica Especializada para la Detección y Diagnóstico de Cáncer de Mama, Instituto de Salud del Estado de México, Toluca 51760, Mexico;
| | - David Eduardo Aguirre-Quezada
- Unidad Médica Especializada para la Detección y Diagnóstico de Cáncer de Mama, Instituto de Salud del Estado de México, Toluca 51760, Mexico;
| | - Elías Cardoso-Peña
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50000, Mexico; (A.E.S.-P.); (Y.B.-A.); (R.C.-B.); (E.C.-P.); (J.d.J.G.-G.)
- Unidad de Medicina Familiar 220, Instituto Mexicano del Seguro Social, Toluca 50070, Mexico
| | - Omar Amador-Muñoz
- Grupo de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (M.I.P.-A.); (O.A.-M.)
| | - José de Jesús Garduño-García
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50000, Mexico; (A.E.S.-P.); (Y.B.-A.); (R.C.-B.); (E.C.-P.); (J.d.J.G.-G.)
- Hospital Regional 251, Instituto Mexicano del Seguro Social, Toluca 50070, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
- Correspondence: (M.S.-M.); (J.M.-M.)
| |
Collapse
|
32
|
Das JK, Deoraj A, Roy D, Felty Q. Brain infiltration of breast cancer stem cells is facilitated by paracrine signaling by inhibitor of differentiation 3 to nuclear respiratory factor 1. J Cancer Res Clin Oncol 2022; 148:2881-2891. [PMID: 35678885 DOI: 10.1007/s00432-022-04026-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/09/2022] [Indexed: 11/28/2022]
Abstract
Treatment options for brain metastatic breast cancer are limited because the molecular mechanism for how breast cancer cells infiltrate the brain is not fully understood. For breast tumors to metastasize to the brain first, cells need to detach from the primary tumor, enter in the blood circulation, survive within the microvascular niche, and then cross the blood-brain barrier (BBB) to colonize into the brain. It is critical to understand how breast cancer cells transmigrate through the BBB to prevent brain metastasis. Nuclear respiratory factor 1 (NRF1) transcription factor has been reported to be highly active in several human cancers and its aberrant expression facilitates in the acquisition of breast cancer stem cells (BCSCs). Inhibitor of differentiation protein 3 (ID3), a transcription regulating protein, induces pluripotent endothelial stem cells (ESCs). Herein, we investigated if NRF1-induced BCSCs could cross a BBB model and guiding of BCSCs by ID3-induced ESCs across the BBB. BCSCs and ESCs were subjected to functional gain/loss experiments to determine if NRF1/ID3 contributed to lineage-specific BCSCs organ entry. First, we tested whether NRF1 promoted migration of breast cancer using a BBB model consisting of BCSCs or MDA-MB231 cells, brain endothelial cell layer, and astrocytes. NRF1 overexpression increased the propensity for BCSCs and NRF1-induced MDA-MB231 cells to adhere to brain endothelial cells and migrate across a human BBB model. Increased adhesion of NRF1-induced BCSCs to ESCsID3 was detected. NRF1-induced BCSCs crossed through the BBB model and this was promoted by ESCsID3. We also showed that environmental relevant exposure to PCBs (PCB153 and PCB77) produced differential effects. Treatment with PCB153 showed increased growth of NRF1-induced BCSCs tumor spheroids and increased in vivo migration of ESCsID3. Exosomal ID3 released from endothelial cells also supported the growth of NRF1-induced BCSCs and provide the basis for paracrine effects by ESCsID3 associated with breast tumors. Xenograft experiments showed that ID3 overexpressing brain ESCs not only supported the growth of BCSC tumor spheroids but guided them to the neural crest in zebrafish. These findings show for the first time a novel role for ID3 and NRF1 by which ESCsID3 help guide BCSCsNRF1 to distant metastatic sites where they most likely facilitate the colonization, survival, and proliferation of BCSCs. This knowledge is important for pre-clinical testing of NRF1/ID3 modifying agents to prevent the spread of breast cancer to the brain.
Collapse
Affiliation(s)
- Jayanta K Das
- Department of Environmental Health Sciences, Florida International University, 11200 SW 8th Street, AHC-5 Bldg. Rm 351, Miami, FL, 33199, USA
| | - Alok Deoraj
- Department of Environmental Health Sciences, Florida International University, 11200 SW 8th Street, AHC-5 Bldg. Rm 351, Miami, FL, 33199, USA
| | - Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, 11200 SW 8th Street, AHC-5 Bldg. Rm 351, Miami, FL, 33199, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, 11200 SW 8th Street, AHC-5 Bldg. Rm 351, Miami, FL, 33199, USA.
| |
Collapse
|
33
|
Maddela NR, Ramakrishnan B, Kakarla D, Venkateswarlu K, Megharaj M. Major contaminants of emerging concern in soils: a perspective on potential health risks. RSC Adv 2022; 12:12396-12415. [PMID: 35480371 PMCID: PMC9036571 DOI: 10.1039/d1ra09072k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Soil pollution by the contaminants of emerging concern (CECs) or emerging contaminants deserves attention worldwide because of their toxic health effects and the need for developing regulatory guidelines. Though the global soil burden by certain CECs is in several metric tons, the source-tracking of these contaminants in soil environments is difficult due to heterogeneity of the medium and complexities associated with the interactive mechanisms. Most CECs have higher affinities towards solid matrices for adsorption. The CECs alter not only soil functionalities but also those of plants and animals. Their toxicities are at nmol to μmol levels in cell cultures and test animals. These contaminants have a higher propensity in accumulating mostly in root-based food crops, threatening human health. Poor understanding on the fate of certain CECs in anaerobic environments and their transfer pathways in the food web limits the development of effective bioremediation strategies and restoration of the contaminated soils and endorsement of global regulatory efforts. Despite their proven toxicities to the biotic components, there are no environmental laws or guidelines for certain CECs. Moreover, the information available on the impact of soil pollution with CECs on human health is fragmentary. Therefore, we provide here a comprehensive account on five significantly important CECs, viz., (i) PFAS, (ii) micro/nanoplastics, (iii) additives (biphenyls, phthalates), (iv) novel flame retardants, and (v) nanoparticles. The emphasis is on (a) degree of soil burden of CECs and the consequences, (b) endocrine disruption and immunotoxicity, (c) genotoxicity and carcinogenicity, and (d) soil health guidelines.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí Portoviejo 130105 Ecuador
- Instituto de Investigación, Universidad Técnica de Manabí Portoviejo 130105 Ecuador
| | | | - Dhatri Kakarla
- University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University Anantapuramu 515003 India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Faculty of Science, The University of Newcastle Callaghan NSW 2308 Australia
| |
Collapse
|
34
|
Alwadi D, Felty Q, Roy D, Yoo C, Deoraj A. Environmental Phenol and Paraben Exposure Risks and Their Potential Influence on the Gene Expression Involved in the Prognosis of Prostate Cancer. Int J Mol Sci 2022; 23:3679. [PMID: 35409038 PMCID: PMC8998918 DOI: 10.3390/ijms23073679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer (PCa) is one of the leading malignant tumors in US men. The lack of understanding of the molecular pathology on the risk of food supply chain exposures of environmental phenol (EP) and paraben (PB) chemicals limits the prevention, diagnosis, and treatment options. This research aims to utilize a risk assessment approach to demonstrate the association of EP and PB exposures detected in the urine samples along with PCa in US men (NHANES data 2005−2015). Further, we employ integrated bioinformatics to examine how EP and PB exposure influences the molecular pathways associated with the progression of PCa. The odds ratio, multiple regression model, and Pearson coefficients were used to evaluate goodness-of-fit analyses. The results demonstrated associations of EPs, PBs, and their metabolites, qualitative and quantitative variables, with PCa. The genes responsive to EP and PB exposures were identified using the Comparative Toxicogenomic Database (CTD). DAVID.6.8, GO, and KEGG enrichment analyses were used to delineate their roles in prostate carcinogenesis. The plug-in CytoHubba and MCODE completed identification of the hub genes in Cytoscape software for their roles in the PCa prognosis. It was then validated by using the UALCAN database by evaluating the expression levels and predictive values of the identified hub genes in prostate cancer prognosis using TCGA data. We demonstrate a significant association of higher levels of EPs and PBs in the urine samples, categorical and numerical confounders, with self-reported PCa cases. The higher expression levels of the hub genes (BUB1B, TOP2A, UBE2C, RRM2, and CENPF) in the aggressive stages (Gleason score > 8) of PCa tissues indicate their potential role(s) in the carcinogenic pathways. Our results present an innovative approach to extrapolate and validate hub genes responsive to the EPs and PBs, which may contribute to the severity of the disease prognosis, especially in the older population of US men.
Collapse
Affiliation(s)
- Diaaidden Alwadi
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; (D.A.); (Q.F.); (D.R.)
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; (D.A.); (Q.F.); (D.R.)
| | - Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; (D.A.); (Q.F.); (D.R.)
| | - Changwon Yoo
- Biostatistics Department, Florida International University, Miami, FL 33199, USA;
| | - Alok Deoraj
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; (D.A.); (Q.F.); (D.R.)
| |
Collapse
|
35
|
Association between recurrent breast cancer and phthalate exposure modified by hormone receptors and body mass index. Sci Rep 2022; 12:2858. [PMID: 35190574 PMCID: PMC8861041 DOI: 10.1038/s41598-022-06709-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
The association between phthalate exposure and breast cancer remains controversial. We performed a prospective patient cohort design to explore the interaction between creatinine-corrected urinary phthalate metabolites and hormone receptors as well as body mass index (BMI) on recurrent breast cancer. In this follow-up study, 636 female breast cancer patients and 45 new recurrent cases diagnosed for a total of 1576.68 person-years of follow-up were recruited. Mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) was negatively associated with breast cancer recurrence, with adjusted hazard ratio (aHR) 3rd vs. 1st quartile of 0.15 (95% CI 0.04–0.51). The MEOHP presented as a non-monotonic dose–response (NMDR) curve, being U-shaped. In the stratification of hormone receptors, MEOHP still exhibited a U-shaped dose–response curve. The third quartile of MEOHP showed significant lowest recurrent risk in the status of ER-positive (aHR 0.18, 95% CI 0.05–0.66), PR-negative (aHR 0.14, 95% CI 0.03–0.63), and HER2-negative (aHR 0.24, 95% CI 0.08–0.76). Whether in BMI < 25 or in BMI ≥ 25, the third quartile of MEOHP was negatively associated with recurrent breast cancer, and there was a negative interaction on an additive scale between MEOHP and BMI (pinteraction = 0.042). The association between MEOHP and recurrent breast cancer was modified by hormone receptors and BMI.
Collapse
|
36
|
Ahern TP, Spector LG, Damkier P, Öztürk Esen B, Ulrichsen SP, Eriksen K, Lash TL, Sørensen HT, Cronin-Fenton DP. Medication-Associated Phthalate Exposure and Childhood Cancer Incidence. J Natl Cancer Inst 2022; 114:885-894. [PMID: 35179607 PMCID: PMC9194627 DOI: 10.1093/jnci/djac045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/03/2022] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Human phthalate exposure is widespread through contact with myriad consumer products. Exposure is particularly high through medications formulated with phthalates. Phthalates disrupt normal endocrine signaling and are associated with reproductive outcomes and incidence of some cancers. We measured associations between gestational and childhood medication-associated phthalate exposures and the incidence of childhood cancers. METHODS We identified all live births in Denmark between 1997 and 2017, including both children and birth mothers. Using drug ingredient data merged with the Danish National Prescription Registry, we measured phthalate exposure through filled prescriptions for mothers during pregnancy (gestational exposure) and for children from birth until age 19 years (childhood exposure). Incident childhood cancers were ascertained from the Danish Cancer Registry, and associations were estimated with Cox regression models. RESULTS Among 1 278 685 children, there were 2027 childhood cancer cases diagnosed over 13.1 million person-years of follow-up. Childhood phthalate exposure was strongly associated with incidence of osteosarcoma (hazard ratio [HR] = 2.78, 95% confidence interval [CI] = 1.63 to 4.75). We also observed a positive association with incidence of lymphoma (HR = 2.07, 95% CI = 1.36 to 3.14), driven by associations with Hodgkin and non-Hodgkin lymphoma but not Burkitt lymphoma. Associations were apparent only for exposure to low-molecular phthalates, which have purportedly greater biological activity. CONCLUSIONS Childhood phthalate exposure was associated with incidence of osteosarcoma and lymphoma before age 19 years. Lingering questions include which specific phthalate(s) are responsible for these associations, by what mechanisms they occur, and to what extent childhood cancer cases could be avoided by reducing or eliminating the phthalate content of medications and other consumer products.
Collapse
Affiliation(s)
- Thomas P Ahern
- *Correspondence to: Thomas P. Ahern, PhD, MPH, Department of Surgery, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Given Building D317A, Burlington, VT 05405, USA (e-mail: )
| | - Logan G Spector
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Per Damkier
- Department of Clinical Pharmacology, University of Southern Denmark, Odense, Denmark,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Buket Öztürk Esen
- Department of Clinical Epidemiology, Aarhus University; and Aarhus University Hospital, Aarhus, Denmark
| | - Sinna P Ulrichsen
- Department of Clinical Epidemiology, Aarhus University; and Aarhus University Hospital, Aarhus, Denmark
| | - Katrine Eriksen
- Department of Clinical Epidemiology, Aarhus University; and Aarhus University Hospital, Aarhus, Denmark
| | - Timothy L Lash
- Department of Clinical Epidemiology , Aarhus University; and Aarhus University Hospital, Aarhus, Denmark,Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University ; and Aarhus University Hospital, Aarhus, Denmark
| | - Deirdre P Cronin-Fenton
- Department of Clinical Epidemiology, Aarhus University; and Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
37
|
Yuan YZ, Ye C, Sun JH, Hu MY, Huo SJ, Zhu YT, Xiang SY, Yu SQ. Toxicokinetics of mono-(2-ethylhexyl) phthalate with low-dose exposure applying fluorescence tracing technique. Toxicol Appl Pharmacol 2022; 434:115814. [PMID: 34843800 DOI: 10.1016/j.taap.2021.115814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) belongs to environmental endocrine disrupting chemicals (EEDCs) and can be rapidly hydrolyzed into the ultimate toxicant mono-2-ethylhexyl phthalate (MEHP). In this study, we used 5-aminofluorescein modified MEHP (MEHP-AF) as a fluorescence tracer to explore the toxicokinetics, including toxicokinetic parameters, absorption and transport across the intestinal mucosal barrier, distribution and pathological changes of organs. While the dose was as lower than 10 mg/kg by intragastric administration, the toxicokinetic parameters obtained by fluorescence microplate method were similar to those with the literatures by chromatography. MEHP-AF can be rapidly absorbed through the intestinal mucosal barrier in rats. In situ organ distribution in mice showed that MEHP-AF was mainly concentrated in the liver, kidney and testis. Our results suggested that the fluorescence tracing technique had the advantages with easy processing, less time-consuming, higher sensitivity for the quantitative determination, In addition, this technology also avoids the interference of exogenous or endogenous DEHP and MEHP in the experimental system. It also can be utilized to the visualization detection of MEHP in situ localization in the absorption organ and the toxic target organ. The results show that this may be a more feasible MEHP toxicological research method.
Collapse
Affiliation(s)
- Yi-Zhen Yuan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Chong Ye
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Jia-Hui Sun
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Meng-Yuan Hu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Shao-Jie Huo
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Yu-Ting Zhu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Su-Yun Xiang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, People's Republic of China.
| | - Shu-Qin Yu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China.
| |
Collapse
|
38
|
He H, Deng Y, Wan H, Shen N, Li J, Zeng Q, Chang J, Lu Q, Miao X, Tian J, Zhong R. Urinary bisphenol A and its interaction with CYP17A1 rs743572 are associated with breast cancer risk. CHEMOSPHERE 2022; 286:131880. [PMID: 34426286 DOI: 10.1016/j.chemosphere.2021.131880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Bisphenol A (BPA), a common endocrine disrupter, can be activated by cytochrome P450 (CYP) metabolizing enzymes and might influence the development of breast cancer (BC). We hypothesized that BPA could interact with CYP genes, synergistically contributing to the BC risk. METHODS Urinary BPA was measured in a total of 302 newly diagnosed BC patients and 302 healthy controls by ultra-high performance liquid chromatography-high resolution mass spectrometry. A set of seven CYP gene polymorphisms was genotyped by using the Sequenom MassARRAY system. A multivariate logistic regression model was used to assess the associations of BPA and BPA-SNP interaction with BC risk. RESULTS BC patients had a higher urinary BPA concentration than healthy individuals (P < 0.001). Each 1-unit increase in log-transformed urinary BPA was associated with a 54 % increased BC risk [95 % confidence interval (CI), 1.34-1.77, P < 0.001]. Individuals with the CYP19A1 rs1902580 GA + AA genotype showed a significantly higher BC risk than those with the GG genotype (OR = 1.45, 95 % CI, 1.01-2.09, P < 0.05). A significant BPA-CYP17A1 rs743572 interaction was found to be associated with a higher risk of BC (Pinteraction = 0.020). Compared with low-BPA individuals carrying CYP17A1 rs743572 GG genotypes, high-BPA individuals with the GA + AA genotype had a higher BC risk, with an odds ratio of 2.49 (95 % CI, 1.52-4.13, P < 0.05). CONCLUSIONS The positive association of BPA exposure with BC risk might be modified by CYP17A1 rs743572, providing evidence for the interaction effect of environment-genes on the etiology of BC.
Collapse
Affiliation(s)
- Heng He
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Deng
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Hao Wan
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
39
|
Velarde MC, Chan AFO, Sajo MEJV, Zakharevich I, Melamed J, Uy GLB, Teves JMY, Corachea AJM, Valparaiso AP, Macalindong SS, Cabaluna ND, Dofitas RB, Giudice LC, Gerona RR. Elevated levels of perfluoroalkyl substances in breast cancer patients within the Greater Manila Area. CHEMOSPHERE 2022; 286:131545. [PMID: 34293563 DOI: 10.1016/j.chemosphere.2021.131545] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Several studies have reported exposure of humans to various endocrine disrupting chemicals (EDCs) worldwide. However, there is a lack of data regarding EDC exposures in humans living in Southeast Asian countries, such as the Philippines. Hence, this study measured levels of 41 EDCs in women residing in the Greater Manila Area, home to the second largest city in Southeast Asia. Urine samples from women with versus without breast cancer were analyzed for 11 phthalate metabolites, 8 environmental phenols, and 10 bisphenols, while serum samples were analyzed for 12 perfluoroalkyl substances (PFAS). Out of the four groups of EDCs analyzed, PFAS were significantly associated with breast cancer (adjusted OR = 13.63, 95% CI: 3.24-94.88 p-trend = 0.001 for PFDoA; adjusted OR = 9.26, 95% CI 2.54-45.10, p-trend = 0.002 for PFDA; and adjusted OR = 2.66, 95% CI: 0.95-7.66, p-trend = 0.004 for PFHxA). Long-chain PFAS levels were positively correlated with age and were significantly higher in women from Region IV-A, a heavily industrialized region, than from the National Capital Region. Overall, this study showed baseline information regarding the level of EDCs in Filipinas, providing a glimpse of EDC exposure in women living in a megalopolis city in Southeast Asia.
Collapse
Affiliation(s)
- Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
| | - Alison Faye O Chan
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Ma Easter Joy V Sajo
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines; Department of Biology, College of Science, University of the Philippines Baguio, Baguio City, Philippines
| | - Igor Zakharevich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan Melamed
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Gemma Leonora B Uy
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Joji Marie Y Teves
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Allen Joy M Corachea
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Apple P Valparaiso
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Shiela S Macalindong
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Nelson D Cabaluna
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Rodney B Dofitas
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Roy R Gerona
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
40
|
Bisphenol-A in biological samples of breast cancer mastectomy and mammoplasty patients and correlation with levels measured in urine and tissue. Sci Rep 2021; 11:18411. [PMID: 34531470 PMCID: PMC8446007 DOI: 10.1038/s41598-021-97864-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/30/2021] [Indexed: 01/02/2023] Open
Abstract
Endocrine disrupting chemicals (EDCs) are organic compounds that have estrogenic activity and can interfere with the endocrine system. Bisphenol-A (BPA) is one of these compounds which possess a potential risk for breast cancer. The aim of this research was to evaluate BPA concentration in both the urine and breast adipose tissue samples of breast cancer mastectomy and mammoplasty patients and study correlations of BPA levels in breast adipose tissue with urine samples in the both groups. Urine and breast adipose tissue samples from 41 breast cancer mastectomy and 11 mammoplasty patients were taken. BPA concentrations were detected using an ELISA assay. Urinary BPA concentrations were significantly higher in cancerous patients (2.12 ± 1.48 ng/ml; P < 0.01) compared to non-cancerous (0.91 ± 0.42 ng/ml). Likewise, tissue BPA concentrations in cancerous patients (4.20 ± 2.40 ng/g tissue; P < 0.01) were significantly higher than non- cancerous (1.80 ± 1.05 ng/g tissue). Urinary BPA concentrations were positively correlated with breast adipose tissue BPA in the case group (P < 0.001, R = 0.896). We showed that BPA was present in urine and breast adipose tissue samples of the studied populations. With regard to higher BPA mean concentration in cancerous patients than non-cancerous individuals in this study, BPA might increase the risk of breast cancer incidence.
Collapse
|
41
|
Zhang B, Li X, Zhang X, Ye J, Zhao W, Zhang M, Xing J, Qi W, Ye L. Role of Notch pathway in effect of mono-2-ethylhexyl phthalate on the proliferation and cell cycle of SH-SY5Y cell. ENVIRONMENTAL TOXICOLOGY 2021; 36:1944-1952. [PMID: 34165231 DOI: 10.1002/tox.23314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/17/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Neuroblastoma (NB) is an estrogen-dependent tumor. Mono-2-ethylhexyl phthalate (MEHP) has an estrogen-like effect. However, the effects of MEHP on the progression of NB are not well illustrated. This study was to clarify the effect of Notch pathway on proliferation and cell cycle of SH-SY5Y cell induced by MEHP. The viability of SH-SY5Y and BE2C cells were detected by CCK8; cell cycle and apoptosis were detected by flow cytometry; the protein expression levels of Notch pathway and cell cycle related proteins were detected by Western-blot. Results show that MEHP exposure can promote cell proliferation and altered the cell cycle. MEHP exposure can up-regulate the expression of C-MYC, Cyclin D1, Bcl-2 and affected the Notch pathway. In conclusion, MEHP exposure can promote NB cell proliferation and affect the cell cycle and apoptosis. Notch pathway plays a critical role in accelerating the cell cycle and inhibiting the apoptosis of SH-SY5Y cells caused by MEHP.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
- Department of Pediatric Neurology, the First Hospital of Jilin University, Changchun, China
| | - Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jiaming Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Weisen Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Meng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jiqiang Xing
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
42
|
Tao YR, Zhang YT, Han XY, Zhang L, Jiang LG, Ma Y, Meng LJ, He QL, Liu SZ. Intrauterine exposure to 2,3',4,4',5-pentachlorobiphenyl alters spermatogenesis and testicular DNA methylation levels in F1 male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112652. [PMID: 34461319 DOI: 10.1016/j.ecoenv.2021.112652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) are synthetic biphenyl compounds with high toxicity. There are a total of 209 homologs, among which 2,3',4,4',5-pentachlorobiphenyl (PCB118) is one of the dioxin-like PCBs. PCB118 can accumulate in pregnant mice, leading to fetus directly exposure during development. The stage of migration of mouse primordial germ cells ranges from 8.5 to 13.5 days of pregnancy, which is the stage undergoing a genome-wide DNA demethylation process. In this study, the mice were exposed to 20 μg/kg/day and 100 μg/kg/day PCB118 from 8.5 to 13.5 days of pregnancy. During the embryo stage at 18.5 days (E18.5 days), the expression level of DNA methyltransferase 1 (Dnmt1) was reduced in the testes, and the DNA methylation level in mouse testes were also decreased. We found that the seminiferous tubules showed vacuolization and that the sperm deformity rate increased in the treated groups compared with the control group in 7-week-old mice. Because exposure to PCB118 during pregnancy causes damage to the reproductive system of male offspring mice, attention should be devoted to the toxicity transmission of persistent environmental pollutants such as PCBs.
Collapse
Affiliation(s)
- Yu-Rong Tao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yong-Tao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Shandong First Medical University, Jinan 250062, Shandong, China
| | - Xiao-Ying Han
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lin Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Li-Gang Jiang
- Infertility Center, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ying Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ling-Jiao Meng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Qi-Long He
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Shu-Zhen Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
43
|
Salamanca-Fernández E, Rodríguez-Barranco M, Amiano P, Delfrade J, Chirlaque MD, Colorado S, Guevara M, Jimenez A, Arrebola JP, Vela F, Olea N, Agudo A, Sánchez MJ. Bisphenol-A exposure and risk of breast and prostate cancer in the Spanish European Prospective Investigation into Cancer and Nutrition study. Environ Health 2021; 20:88. [PMID: 34399780 PMCID: PMC8369702 DOI: 10.1186/s12940-021-00779-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/29/2021] [Indexed: 06/03/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine disruptor that it is present in numerous products of daily use. The aim of this study was to assess the potential association of serum BPA concentrations and the risk of incident breast and prostate cancer in a sub-cohort of the Spanish European Prospective Investigation into Cancer and Nutrition (EPIC). METHODS We designed a case-cohort study within the EPIC-Spain cohort. Study population consisted on 4812 participants from 4 EPIC-Spain centers (547 breast cancer cases, 575 prostate cancer cases and 3690 sub-cohort participants). BPA exposure was assessed by means of chemical analyses of serum samples collected at recruitment. Borgan II weighted Cox regression was used to estimate hazard ratios. RESULTS Median follow-up time in our study was 16.9 years. BPA geometric mean serum values of cases and sub-cohort were 1.12 ng/ml vs 1.10 ng/ml respectively for breast cancer and 1.33 ng/ml vs 1.29 ng/ml respectively for prostate cancer. When categorizing BPA into tertiles, a 40% increase in risk of prostate cancer for tertile 1 (p = 0.022), 37% increase for tertile 2 (p = 0.034) and 31% increase for tertile 3 (p = 0.072) was observed with respect to values bellow the limit of detection. No significant association was observed between BPA levels and breast cancer risk. CONCLUSIONS We found a similar percentage of detection of BPA among cases and sub-cohort from our population, and no association with breast cancer risk was observed. However, we found a higher risk of prostate cancer for the increase in serum BPA levels. Further investigation is needed to understand the influence of BPA in prostate cancer risk.
Collapse
Affiliation(s)
- Elena Salamanca-Fernández
- Andalusian School of Public Health (EASP), Campus Universitario de Cartuja, C/Cuesta del Observatorio 4, 18080, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Miguel Rodríguez-Barranco
- Andalusian School of Public Health (EASP), Campus Universitario de Cartuja, C/Cuesta del Observatorio 4, 18080, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain.
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Pilar Amiano
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, Donostia-San Sebastian, Spain
| | - Josu Delfrade
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maria Dolores Chirlaque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Department of Health and Sciences, University of Murcia, Murcia, Spain
| | - Sandra Colorado
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Marcela Guevara
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ana Jimenez
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, Donostia-San Sebastian, Spain
| | - Juan Pedro Arrebola
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Fernando Vela
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Radiology, University of Granada, Granada, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Maria-José Sánchez
- Andalusian School of Public Health (EASP), Campus Universitario de Cartuja, C/Cuesta del Observatorio 4, 18080, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| |
Collapse
|
44
|
Prichystalova R, Caron-Beaudoin E, Richardson L, Dirkx E, Amadou A, Zavodna T, Cihak R, Cogliano V, Hynes J, Pelland-St-Pierre L, Verner MA, van Tongeren M, Ho V. An approach to classifying occupational exposures to endocrine disrupting chemicals by sex hormone function using an expert judgment process. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:753-768. [PMID: 32704083 DOI: 10.1038/s41370-020-0253-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that interfere with the endocrine system and cause adverse effects. We aimed to classify the effects of 24 known EDCs, prevalent in certain occupations, according to four modes of action (estrogenic, antiestrogenic, androgenic, and/or antiandrogenic). A literature search, stratified into four types of literature was conducted (namely: national and international agency reports; review articles; primary studies; ToxCastTM). The state of the evidence of each EDC on sex hormone function was summarized and reviewed by an expert panel. For each mode of action, the experts evaluated the likelihood of endocrine disruption in five categories: "No", "Unlikely", "Possibly", "Probably", and "Yes". Seven agents were categorized as "Yes," or having strong evidence for their effects on sex hormone function (antiandrogenic: lead, arsenic, butylbenzyl phthalate, dibutyl phthalate, dicyclohexyl phthalate; estrogenic: nonylphenol, bisphenol A). Nine agents were categorized as "Probable," or having probable evidence (antiandrogenic: bis(2-ethylhexyl)phthalate, nonylphenol, toluene, bisphenol A, diisononyl phthalate; androgenic: cadmium; estrogenic: copper, cadmium and; anti-estrogenic: lead). Two agents (arsenic, polychlorinated biphenyls) had opposing conclusions supporting both "probably" estrogenic and antiestrogenic effects. This synthesis will allow researchers to evaluate the health effects of selected EDCs with an added level of precision related to the mode of action.
Collapse
Affiliation(s)
- R Prichystalova
- Faculty of Safety Engineering, Technical University of Ostrava, Ostrava, Czech Republic
| | - E Caron-Beaudoin
- Department of Occupational and Environmental Health, Université de Montréal, Montréal, QC, Canada
| | - L Richardson
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - E Dirkx
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - A Amadou
- Département Prévention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm UA 08 Radiations: Défense, Santé, Environement, Lyon, France
| | - T Zavodna
- Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - R Cihak
- Výzkumný ústav organických syntéz a.s., Centre for Ecology, Toxicology and Analytics, Rybitví, Czech Republic
| | - V Cogliano
- National Center for Environmental Health Hazard Assessment, US Environmental Protection Agency, Washington, DC, USA
| | - J Hynes
- JH Tox Consulting, Maastricht, Netherlands
| | - L Pelland-St-Pierre
- Department of Social and Preventive Medicine, Université de Montréal, Montréal, QC, Canada
| | - M A Verner
- Department of Occupational and Environmental Health, Université de Montréal, Montréal, QC, Canada
- Centre de recherche en santé publique (CReSP), Université de Montréal, Montréal, QC, Canada
| | - M van Tongeren
- Faculty of Science and Engineering, Division of Population Health, Health Services Research & Primary Care, University of Manchester, Manchester, UK
| | - V Ho
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada.
- Department of Social and Preventive Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
45
|
Houghton SC, Hankinson SE. Cancer Progress and Priorities: Breast Cancer. Cancer Epidemiol Biomarkers Prev 2021; 30:822-844. [PMID: 33947744 PMCID: PMC8104131 DOI: 10.1158/1055-9965.epi-20-1193] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 02/19/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Serena C Houghton
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, Massachusetts.
| | - Susan E Hankinson
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
46
|
Omoike OE, Pack RP, Mamudu HM, Liu Y, Wang L. A cross-sectional study of the association between perfluorinated chemical exposure and cancers related to deregulation of estrogen receptors. ENVIRONMENTAL RESEARCH 2021; 196:110329. [PMID: 33068574 DOI: 10.1016/j.envres.2020.110329] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Environmental exposures acting through different mechanisms have been linked with a number of cancers. Perfluoroalkyl chemicals (PFCs) are endocrine disrupting chemicals affecting estrogen homeostasis. OBJECTIVES We examined the association between PFCs and a group of estrogen related cancers and explored if increased non-occupational exposure was associated with increased odds of developing these cancers. We also explored which of these chemical exposures was more correlated with each cancer. METHODS Using data from the National Health and Nutrition Examination Survey (NHANES), we selected participants ≥ 20 years of age. Our outcome variable was presence or absence of breast, prostate, ovarian and uterine cancer (yes/no); our exposure variables were serum PFCs. Logistic regression models were used in investigating the association between PFCs and cancer types and between quartiles of PFCs exposure concentrations and presence or absence of cancer while adjusting for covariates. Discriminant analysis was used to assess the correlation between individual PFCs compounds and individual cancer types. RESULTS PFCs were associated with increased odds of ovarian cancer; PFOA: 1.02(1.01, 1.02), PFOS: 1.01 (1.012, 1.013), PFHS 1.031 (1.030, 1.033), PFDE: 1.29(1.27, 1.30) and increased odds of breast cancer; PFOA: 1.089(1.089, 1.09), PFOS: 1.011(1.011, 1.011), PFNA: 1.031(1.030, 1.033), PFHS: 1.02 (1.02, 1.02), PFDE: 1.19(1.18, 1.19). PFCs were not associated with increased odds of prostate or uterine cancers. Comparing the odds in quartile 4 to quartile 1 for ovarian cancer, PFOA: 1.77(1.75,1.79), PFOS: 2.25(2.22, 2.28), PFHS: 1.86(1.84, 1.88), PFDE: 2.11(2.09, 2.14). For breast cancer, PFOA: 2.30(2.28, 2.31), PFOS: 1.47(1.46, 1.48), PFNA: 1.04(1.03, 1.05), PFHS:7.07(6.97,7.17), PFDE: 1.38(1.37, 1.39). PFOA was more correlated with breast cancer (0.7) and PFHS was more correlated with ovarian cancer (0.9). DISCUSSION PFCs were associated with increased odds of ovarian and breast cancers with a positive dose-response relationship. PFOA was more correlated with breast cancer and PFHS more with ovarian cancer.
Collapse
Affiliation(s)
- Ogbebor Enaholo Omoike
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA.
| | - Robert P Pack
- Department of Community and Behavioral Health, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Hadii M Mamudu
- Department of Health Services Management and Policy, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Ying Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Liang Wang
- Baylor University, Robbins College of Health and Human Sciences, USA
| |
Collapse
|
47
|
Wu AH, Franke AA, Wilkens LR, Tseng C, Conroy SM, Li Y, Polfus LM, De Rouen M, Caberto C, Haiman C, Stram DO, Le Marchand L, Cheng I. Urinary phthalate exposures and risk of breast cancer: the Multiethnic Cohort study. Breast Cancer Res 2021; 23:44. [PMID: 33823904 PMCID: PMC8025373 DOI: 10.1186/s13058-021-01419-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/15/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The epidemiologic evidence from observational studies on breast cancer risk and phthalates, endocrine disrupting chemicals, has been inconsistent. In the only previous study based on pre-diagnostic urinary phthalates and risk of breast cancer, results were null in mostly white women. METHODS We examined the association between pre-diagnostic urinary phthalates and breast cancer in a nested case-control study within the Multiethnic Cohort (MEC) study, presenting the first data from five major racial/ethnic groups in the USA. We measured 10 phthalate metabolites and phthalic acid, using a sensitive liquid chromatography mass spectrometry assay on 1032 women with breast cancer (48 African Americans, 77 Latinos, 155 Native Hawaiians, 478 Japanese Americans, and 274 Whites) and 1030 matched controls. Conditional logistic regression was used to examine risk with individual metabolites and ratios of primary (MEHP, mono-2-ethylhexyl-phthalate) to secondary (MEHHP, mono(2-ethyl-5-hydroxyhexyl); MEOHP, mono(2-ethyl-5-oxohexy)) metabolites of di-2-ethylhexyl phthalate (DEHP), a widely used plasticizer. In addition, we investigated risk associations with high (∑HMWP) and low molecular weight (∑LMWP) phthalates, as well as total phthalates which included high and low molecular weight phthalates with phthalic acid (∑LMHMPA) or without phthalic acid in molar ratios (∑LMHMmolar) and adjusted for creatinine and potential confounders. RESULTS Among all women, breast cancer risk was higher for those in tertile 2 and tertile 3 of primary to secondary metabolites of DEHP (MEHP/(MEHHP + MEOHP)) in comparison to those in tertile 1; the respective odds ratios were 1.32 (95% CI 1.04-1.68) and 1.26 (95% CI 0.96-1.66) (Ptrend = 0.05). Risk among Native Hawaiian women increased with exposures to eight of ten individual phthalates and total phthalates (∑LMHMPA ORT3 vs T1 = 2.66, 95% CI 1.39-5.12, Ptrend = 0.001). In analysis by hormone receptor (HR) status, exposure above the median of ∑LMWP was associated with an increased risk of HR-positive breast cancer (OR = 1.30, 95% CI 1.05-1.60) while above the median exposure to phthalic acid was associated with an increased risk of HR-negative breast cancer (ORabove vs below median = 1.59, 95% CI 1.01-2.48). CONCLUSIONS Further investigations of suggestive associations of elevated breast cancer risk with higher ratios of primary to secondary metabolites of DEHP, and differences in risk patterns by race/ethnicity and HR status are warranted.
Collapse
Affiliation(s)
- Anna H Wu
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Rm 4443, Los Angeles, CA, 90089, USA.
| | | | | | - Chiuchen Tseng
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Rm 4443, Los Angeles, CA, 90089, USA
| | - Shannon M Conroy
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Yuqing Li
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Linda M Polfus
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Rm 4443, Los Angeles, CA, 90089, USA
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, USA
| | - Mindy De Rouen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Christopher Haiman
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Rm 4443, Los Angeles, CA, 90089, USA
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, USA
| | - Daniel O Stram
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Rm 4443, Los Angeles, CA, 90089, USA
| | | | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
48
|
Wan MLY, Co VA, El-Nezami H. Endocrine disrupting chemicals and breast cancer: a systematic review of epidemiological studies. Crit Rev Food Sci Nutr 2021; 62:6549-6576. [PMID: 33819127 DOI: 10.1080/10408398.2021.1903382] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Endocrine-disrupting compounds (EDCs) are ubiquitous substances that are found in our everyday lives, including pesticides, plasticizers, pharmaceutical agents, personal care products, and also in food products and food packaging. Increasing epidemiological evidence suggest that EDCs may affect the development or progression of breast cancer and consequently lead to lifelong harmful health consequences, especially when exposure occurs during early life in humans. Yet so far no appraisal of the available evidence has been conducted on this topic. OBJECTIVE To systematically review all the available epidemiological studies about the association of the levels of environmental exposures of EDCs with breast cancer risk. METHODS The search was performed in accordance with the PRISMA guidelines. We retrieved articles from PubMed (MEDLINE) until 10 March 2021. The key words used in this research were: "Endocrine disruptor(s)" OR "Endocrine disrupting chemical(s)" OR any of the EDCs mentioned below AND "Breast cancer" to locate all relevant articles published. We included only cohort studies and case-control studies. All relevant articles were accessed in full text and were evaluated and summarized in tables. RESULTS We identified 131 studies that met the search criteria and were included in this systematic review. EDCs reviewed herein included pesticides (e.g. p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (DDE), atrazine, 2,3,7,8-tetrachloridibenzo-p-dioxin (TCDD or dioxin)), synthetic chemicals (e.g. bisphenol A (BPA), phthalates, per- and polyfluoroalkyl substances (PFAS), parabens, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), contraceptive pills), phytoestrogens (e.g. genistein, resveratrol), and certain mycotoxins (e.g. zearalenone). Most studies assessed environmental EDCs exposure via biomarker measurements. CONCLUSION We identified certain EDC exposures could potentially elevate the risk of breast cancer. As majority of EDCs are highly persistent in the environment and bio-accumulative, it is essential to assess the long-term impacts of EDC exposures, especially multi-generational and transgenerational. Also, since food is often a major route of exposure to EDCs, well-designed exposure assessments of potential EDCs in food and food packing are necessary and their potential link to breast cancer development need to be carefully evaluated for subsequent EDC policy making and regulations.
Collapse
Affiliation(s)
- Murphy Lam Yim Wan
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R.,Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Vanessa Anna Co
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Hani El-Nezami
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
49
|
Deygas F, Amadou A, Coudon T, Grassot L, Couvidat F, Bessagnet B, Faure E, Salizzoni P, Gulliver J, Caudeville J, Severi G, Mancini FR, Leffondré K, Fervers B, Praud D. Long-term atmospheric exposure to PCB153 and breast cancer risk in a case-control study nested in the French E3N cohort from 1990 to 2011. ENVIRONMENTAL RESEARCH 2021; 195:110743. [PMID: 33450235 DOI: 10.1016/j.envres.2021.110743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Although the genetic and hormonal risk factors of breast cancer are well identified, they cannot fully explain the occurrence of all cases. Epidemiological and experimental studies have suggested that exposure to environmental pollutants, especially those with potential estrogenic properties, as polychlorinated biphenyls (PCBs) may have a role in breast cancer development. Being the most abundantly detected in human tissues and in the environment, congener 153 (PCB153) is widely used in epidemiological studies as indicator for total PCBs exposure. OBJECTIVES We aimed to estimate the association between cumulative atmospheric exposure to PCB153 and breast cancer risk. METHODS We conducted a case-control study of 5222 cases and 5222 matched controls nested within the French E3N cohort from 1990 to 2011. Annual atmospheric PCB153 concentrations were simulated with the deterministic chemistry-transport model (CHIMERE) and were assigned to women using their geocoded residential history. Their cumulative PCB153 exposure was calculated for each woman from their cohort inclusion to their index date. Breast cancer odds ratios (ORs) associated with cumulative PCB153 exposure and their 95% confidence intervals (95% CIs) were estimated using multivariate conditional logistic regression models. RESULTS Overall, our results showed a statistically significant linear increase in breast cancer risk related to cumulative atmospheric exposure to PCB153 as a continuous variable (adjusted OR = 1.19; 95% CI: 1.08-1.31, for an increment of one standard deviation among controls (55 pg/m3)). Among women who became postmenopausal during follow-up, the association remained statistically significant (adjusted OR = 1.23; 95% CI: 1.09-1.39). In analyses by hormone receptors status, the positive association remained significant only for ER-positive breast cancer (adjusted OR = 1.18; 95% CI: 1.05-1.33). DISCUSSION This study is the first to have estimated the impact of atmospheric exposure to PCB153 on breast cancer risk. Our results showed a statistically significant increase in breast cancer risk, which may be limited to ER-positive breast cancer. These results warrant confirmation in further independent studies but raise the possibility that exposure to PCB153 increase breast cancer risk.
Collapse
Affiliation(s)
- Floriane Deygas
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Centre Léon Bérard, Lyon, France
| | - Amina Amadou
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Centre Léon Bérard, Lyon, France
| | - Thomas Coudon
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Centre Léon Bérard, Lyon, France; Ecole Centrale de Lyon, University Claude Bernard Lyon 1, Ecully, France
| | - Lény Grassot
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Centre Léon Bérard, Lyon, France
| | - Florian Couvidat
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Bertrand Bessagnet
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France; Citepa, Technical Reference Center for Air Pollution and Climate Change, Paris, France
| | - Elodie Faure
- Inserm U1018, Centre for Research in Epidemiology and Population Health (CESP), Team "Exposome and Heredity", Gustave Roussy, Villejuif, France
| | - Pietro Salizzoni
- Ecole Centrale de Lyon, University Claude Bernard Lyon 1, Ecully, France
| | - John Gulliver
- Centre for Environmental Health and Sustainability, School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Julien Caudeville
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Gianluca Severi
- Inserm U1018, Centre for Research in Epidemiology and Population Health (CESP), Team "Exposome and Heredity", Gustave Roussy, Villejuif, France; Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Italy
| | - Francesca Romana Mancini
- Inserm U1018, Centre for Research in Epidemiology and Population Health (CESP), Team "Exposome and Heredity", Gustave Roussy, Villejuif, France.
| | - Karen Leffondré
- University of Bordeaux, ISPED, Inserm U1219, Bordeaux Population Health Center, Bordeaux, France
| | - Béatrice Fervers
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Centre Léon Bérard, Lyon, France.
| | - Delphine Praud
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Centre Léon Bérard, Lyon, France
| |
Collapse
|
50
|
Winz C, Suh N. Understanding the Mechanistic Link between Bisphenol A and Cancer Stem Cells: A Cancer Prevention Perspective. J Cancer Prev 2021; 26:18-24. [PMID: 33842402 PMCID: PMC8020171 DOI: 10.15430/jcp.2021.26.1.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Endocrine disruptors, such as bisphenol A (BPA), have become more frequently present in the environment as contaminants, especially in industrialized countries. Long-term effects of these environmental contaminants in humans are elusive. With their structural similarity to estrogen, many environmental contaminants including BPA, have been shown to mimic the biological functions of estrogen, potentially contributing to the development of breast cancer. It has been well established that BPA exerts estrogenic activity in animal models and in vitro systems. There is a concern for adverse effects from the exposure to BPA in regard to developmental and reproductive toxicities. However, the mechanisms by which BPA promotes breast cancer development remain unknown. Understanding the role of endocrine disruptors and their key mechanisms of action is important for public health, especially by providing a foundation for a better intervention approach in cancer prevention.
Collapse
Affiliation(s)
- Cassandra Winz
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
- Toxicology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|