1
|
Shinozuka K, Jerotic K, Mediano P, Zhao AT, Preller KH, Carhart-Harris R, Kringelbach ML. Synergistic, multi-level understanding of psychedelics: three systematic reviews and meta-analyses of their pharmacology, neuroimaging and phenomenology. Transl Psychiatry 2024; 14:485. [PMID: 39632810 PMCID: PMC11618481 DOI: 10.1038/s41398-024-03187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Serotonergic psychedelics induce altered states of consciousness and have shown potential for treating a variety of neuropsychiatric disorders, including depression and addiction. Yet their modes of action are not fully understood. Here, we provide a novel, synergistic understanding of psychedelics arising from systematic reviews and meta-analyses of three hierarchical levels of analysis: (1) subjective experience (phenomenology), (2) neuroimaging and (3) molecular pharmacology. Phenomenologically, medium and high doses of LSD yield significantly higher ratings of visionary restructuralisation than psilocybin on the 5-dimensional Altered States of Consciousness Scale. Our neuroimaging results reveal that, in general, psychedelics significantly strengthen between-network functional connectivity (FC) while significantly diminishing within-network FC. Pharmacologically, LSD induces significantly more inositol phosphate formation at the 5-HT2A receptor than DMT and psilocin, yet there are no significant between-drug differences in the selectivity of psychedelics for the 5-HT2A, 5-HT2C, or D2 receptors, relative to the 5-HT1A receptor. Our meta-analyses link DMT, LSD, and psilocybin to specific neural fingerprints at each level of analysis. The results show a highly non-linear relationship between these fingerprints. Overall, our analysis highlighted the high heterogeneity and risk of bias in the literature. This suggests an urgent need for standardising experimental procedures and analysis techniques, as well as for more research on the emergence between different levels of psychedelic effects.
Collapse
Affiliation(s)
- Kenneth Shinozuka
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Oxford Mathematics of Consciousness and Applications Network (OMCAN), University of Oxford, Oxford, UK.
| | - Katarina Jerotic
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Pedro Mediano
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Computing, Imperial College London, London, UK
| | - Alex T Zhao
- Department of Statistics and Data Science (Alumnus), The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Katrin H Preller
- Departments of Psychiatry, Neuroscience, and Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Imperial College London, London, UK
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Neurology, Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Tanaka M, Szabó Á, Vécsei L. Redefining Roles: A Paradigm Shift in Tryptophan-Kynurenine Metabolism for Innovative Clinical Applications. Int J Mol Sci 2024; 25:12767. [PMID: 39684480 DOI: 10.3390/ijms252312767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The tryptophan-kynurenine (KYN) pathway has long been recognized for its essential role in generating metabolites that influence various physiological processes. Traditionally, these metabolites have been categorized into distinct, often opposing groups, such as pro-oxidant versus antioxidant, excitotoxic/neurotoxic versus neuroprotective. This dichotomous framework has shaped much of the research on conditions like neurodegenerative and neuropsychiatric disorders, as well as cancer, where metabolic imbalances are a key feature. The effects are significantly influenced by various factors, including the concentration of metabolites and the particular cellular milieu in which they are generated. A molecule that acts as neuroprotective at low concentrations may exhibit neurotoxic effects at elevated levels. The oxidative equilibrium of the surrounding environment can alter the function of KYN from an antioxidant to a pro-oxidant. This narrative review offers a comprehensive examination and analysis of the contemporary understanding of KYN metabolites, emphasizing their multifaceted biological functions and their relevance in numerous physiological and pathological processes. This underscores the pressing necessity for a paradigm shift in the comprehension of KYN metabolism. Understanding the context-dependent roles of KYN metabolites is vital for novel therapies in conditions like Alzheimer's disease, multiple sclerosis, and cancer. Comprehensive pathway modulation, including balancing inflammatory signals and enzyme regulation, offers promising avenues for targeted, effective treatments.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Dahlgren C, Forsman H, Sundqvist M, Björkman L, Mårtensson J. Signaling by neutrophil G protein-coupled receptors that regulate the release of superoxide anions. J Leukoc Biol 2024; 116:1334-1351. [PMID: 39056275 DOI: 10.1093/jleuko/qiae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/18/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024] Open
Abstract
In human peripheral blood, the neutrophil granulocytes (neutrophils) are the most abundant white blood cells. These professional phagocytes are rapidly recruited from the bloodstream to inflamed tissues by chemotactic factors that signal danger. Neutrophils, which express many receptors that are members of the large family of G protein-coupled receptors (GPCRs), are critical for the elimination of pathogens and inflammatory insults, as well as for the resolution of inflammation leading to tissue repair. Danger signaling molecular patterns such as the N-formylated peptides that are formed during bacterial and mitochondrial protein synthesis and recognized by formyl peptide receptors (FPRs) and free fatty acids recognized by free fatty acid receptors (FFARs) regulate neutrophil functions. Short peptides and short-chain fatty acids activate FPR1 and FFA2R, respectively, while longer peptides and fatty acids activate FPR2 and GPR84, respectively. The activation profiles of these receptors include the release of reactive oxygen species (ROS) generated by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Activation of the oxidase and the production of ROS are processes that are regulated by proinflammatory mediators, including tumor necrosis factor α and granulocyte/macrophage colony-stimulating factor. The receptors have signaling and functional similarities, although there are also important differences, not only between the two closely related neutrophil FPRs, but also between the FPRs and the FFARs. In neutrophils, these receptors never walk alone, and additional mechanistic insights into the regulation of the GPCRs and the novel regulatory mechanisms underlying the activation of NADPH oxidase advance our understanding of the role of receptor transactivation in the regulation of inflammatory reactions.
Collapse
Affiliation(s)
- Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| |
Collapse
|
4
|
Hill SJ, Kilpatrick LE. Kinetic analysis of fluorescent ligand binding to cell surface receptors: Insights into conformational changes and allosterism in living cells. Br J Pharmacol 2024; 181:4091-4102. [PMID: 37386806 DOI: 10.1111/bph.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Equilibrium binding assays are one of the mainstays of current drug discovery efforts to evaluate the interaction of drugs with receptors in membranes and intact cells. However, in recent years, there has been increased focus on the kinetics of the drug-receptor interaction to gain insight into the lifetime of drug-receptor complexes and the rate of association of a ligand with its receptor. Furthermore, drugs that act on topically distinct sites (allosteric) from those occupied by the endogenous ligand (orthosteric site) can induce conformational changes in the orthosteric binding site leading to changes in the association and/or dissociation rate constants of orthosteric ligands. Conformational changes in the orthosteric ligand binding site can also be induced through interaction with neighbouring accessory proteins and receptor homodimerisation and heterodimerisation. In this review, we provide an overview of the use of fluorescent ligand technologies to interrogate ligand-receptor kinetics in living cells and the novel insights that they can provide into the conformational changes induced by drugs acting on a variety of cell surface receptors including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and cytokine receptors.
Collapse
Affiliation(s)
- Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Fan L, Zhuang Y, Wu H, Li H, Xu Y, Wang Y, He L, Wang S, Chen Z, Cheng J, Xu HE, Wang S. Structural basis of psychedelic LSD recognition at dopamine D 1 receptor. Neuron 2024; 112:3295-3310.e8. [PMID: 39094559 DOI: 10.1016/j.neuron.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
Understanding the kinetics of LSD in receptors and subsequent induced signaling is crucial for comprehending both the psychoactive and therapeutic effects of LSD. Despite extensive research on LSD's interactions with serotonin 2A and 2B receptors, its behavior on other targets, including dopamine receptors, has remained elusive. Here, we present cryo-EM structures of LSD/PF6142-bound dopamine D1 receptor (DRD1)-legobody complexes, accompanied by a β-arrestin-mimicking nanobody, NBA3, shedding light on the determinants of G protein coupling versus β-arrestin coupling. Structural analysis unveils a distinctive binding mode of LSD in DRD1, particularly with the ergoline moiety oriented toward TM4. Kinetic investigations uncover an exceptionally rapid dissociation rate of LSD in DRD1, attributed to the flexibility of extracellular loop 2 (ECL2). Moreover, G protein can stabilize ECL2 conformation, leading to a significant slowdown in ligand's dissociation rate. These findings establish a solid foundation for further exploration of G protein-coupled receptor (GPCR) dynamics and their relevance to signal transduction.
Collapse
Affiliation(s)
- Luyu Fan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Youwen Zhuang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongyu Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huiqiong Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yue Wang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Licong He
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shishan Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang 261021, China
| | - Zhangcheng Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lingang Laboratory, Shanghai 200031, China.
| | - Sheng Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
6
|
Hamshaw I, Cominetti MMD, Nana‐Akyin P, Yee Ho EH, Searcey M, Mueller A. IS4-FAM, a fluorescent tool to study CXCR4 affinity and competitive antagonism in native cancer cells. Pharmacol Res Perspect 2024; 12:e70003. [PMID: 39207051 PMCID: PMC11359705 DOI: 10.1002/prp2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The ability to accurately measure drug-target interaction is critical for the discovery of new therapeutics. Classical pharmacological bioassays such as radioligand or fluorescent ligand binding assays can define the affinity or Kd of a ligand for a receptor with the lower the Kd, the stronger the binding and the higher the affinity. However, in many drug discovery laboratories today, the target of interest if often artificially upregulated by means of transfection to modify the host cell's genetic makeup. This then potentially invalidates the assumptions of classical pharmacology affinity calculations as the receptor of interest is no longer at normal physiological densities. The CXCR4 receptor is expressed on many different cancer cell types and is associated with metastasis and poor prognosis. Therefore, the CXCR4 receptor is a desirable target for novel therapeutics. In this study, we explore the applicability of the newly developed fluorescently tagged CXCR4 antagonists, IS4-FAM as an investigative tool to study CXCR4 affinity and competitive antagonism in native, non-transfected cancer cells using confocal microscopy and flow cytometry. IS4-FAM directly labels CXCR4 in several cell lines including high CXCR4 expressing SK-MEL-28 (malignant melanoma) and PC3 (metastatic prostate cancer) and lower CXCR4 expressing THP-1 (acute monocytic leukemia) and was competitive with the established CXCR4 antagonist, AMD3100. This highlights the potential of IS4-FAM as a pharmacological tool for drug discovery in native cells lines and tissues.
Collapse
Affiliation(s)
| | | | | | | | - Mark Searcey
- School of PharmacyUniversity of East AngliaNorwichUK
| | - Anja Mueller
- School of PharmacyUniversity of East AngliaNorwichUK
| |
Collapse
|
7
|
Wang AL, Mishkit O, Mao H, Arivazhagan L, Dong T, Lee F, Bhattacharya A, Renfrew PD, Schmidt AM, Wadghiri YZ, Fisher EA, Montclare JK. Collagen-targeted protein nanomicelles for the imaging of non-alcoholic steatohepatitis. Acta Biomater 2024; 187:291-303. [PMID: 39236796 DOI: 10.1016/j.actbio.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
In vivo molecular imaging tools hold immense potential to drive transformative breakthroughs by enabling researchers to visualize cellular and molecular interactions in real-time and/or at high resolution. These advancements will facilitate a deeper understanding of fundamental biological processes and their dysregulation in disease states. Here, we develop and characterize a self-assembling protein nanomicelle called collagen type I binding - thermoresponsive assembled protein (Col1-TRAP) that binds tightly to type I collagen in vitro with nanomolar affinity. For ex vivo visualization, Col1-TRAP is labeled with a near-infrared fluorescent dye (NIR-Col1-TRAP). Both Col1-TRAP and NIR-Col1-TRAP display approximately a 3.8-fold greater binding to type I collagen compared to TRAP when measured by surface plasmon resonance (SPR). We present a proof-of-concept study using NIR-Col1-TRAP to detect fibrotic type I collagen deposition ex vivo in the livers of mice with non-alcoholic steatohepatitis (NASH). We show that NIR-Col1-TRAP demonstrates significantly decreased plasma recirculation time as well as increased liver accumulation in the NASH mice compared to mice without disease over 4 hours. As a result, NIR-Col1-TRAP shows potential as an imaging probe for NASH with in vivo targeting performance after injection in mice. STATEMENT OF SIGNIFICANCE: Direct molecular imaging of fibrosis in NASH patients enables the diagnosis and monitoring of disease progression with greater specificity and resolution than do elastography-based methods or blood tests. In addition, protein-based imaging probes are more advantageous than alternatives due to their biodegradability and scalable biosynthesis. With the aid of computational modeling, we have designed a self-assembled protein micelle that binds to fibrillar and monomeric collagen in vitro. After the protein was labeled with near-infrared fluorescent dye, we injected the compound into mice fed on a NASH diet. NIR-Col1-TRAP clears from the serum faster in these mice compared to control mice, and accumulates significantly more in fibrotic livers.This work advances the development of targeted protein probes for in vivo fibrosis imaging.
Collapse
Affiliation(s)
- Andrew L Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Biomedical Engineering, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Orin Mishkit
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY 10016, USA; Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Heather Mao
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Group, Department of Medicine, New York University Grossman School of Medicine, USA
| | - Tony Dong
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Frances Lee
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Aparajita Bhattacharya
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - P Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Ann Marie Schmidt
- Diabetes Research Group, Department of Medicine, New York University Grossman School of Medicine, USA
| | - Youssef Z Wadghiri
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY 10016, USA; Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Edward A Fisher
- Leon H. Charney Division of Cardiology and Cardiovascular Research Center, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Chemistry, New York University, New York, NY 10012, USA; Department of Biomaterials, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
8
|
Sajkowska JJ, Tsang CH, Kozielewicz P. Application of FRET- and BRET-based live-cell biosensors in deorphanization and ligand discovery studies on orphan G protein-coupled receptors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100174. [PMID: 39084335 DOI: 10.1016/j.slasd.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Bioluminescence- and fluorescence-based resonance energy transfer assays have gained considerable attention in pharmacological research as high-throughput scalable tools applicable to drug discovery. To this end, G protein-coupled receptors represent the biggest target class for marketed drugs, and among them, orphan G protein-coupled receptors have the biggest untapped therapeutic potential. In this review, the cases where biophysical methods, BRET and FRET, were employed for deorphanization and ligand discovery studies on orphan G protein-coupled receptors are listed and discussed.
Collapse
Affiliation(s)
- Joanna J Sajkowska
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Choi Har Tsang
- Department of Physiology and Pharmacology, Molecular Pharmacology of GPCRs, Karolinska Institute, Stockholm, Sweden
| | - Paweł Kozielewicz
- Department of Physiology and Pharmacology, Molecular Pharmacology of GPCRs, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
9
|
Mach L, Omran A, Bouma J, Radetzki S, Sykes DA, Guba W, Li X, Höffelmeyer C, Hentsch A, Gazzi T, Mostinski Y, Wasinska-Kalwa M, de Molnier F, van der Horst C, von Kries JP, Vendrell M, Hua T, Veprintsev DB, Heitman LH, Grether U, Nazare M. Highly Selective Drug-Derived Fluorescent Probes for the Cannabinoid Receptor Type 1 (CB 1R). J Med Chem 2024; 67:11841-11867. [PMID: 38990855 DOI: 10.1021/acs.jmedchem.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The cannabinoid receptor type 1 (CB1R) is pivotal within the endocannabinoid system regulating various signaling cascades with effects in appetite regulation, pain perception, memory formation, and thermoregulation. Still, understanding of CB1R's cellular signaling, distribution, and expression dynamics is very fragmentary. Real-time visualization of CB1R is crucial for addressing these questions. Selective drug-like CB1R ligands with a defined pharmacological profile were investigated for the construction of CB1R fluorescent probes using a reverse design-approach. A modular design concept with a diethyl glycine-based building block as the centerpiece allowed for the straightforward synthesis of novel probe candidates. Validated by computational docking studies, radioligand binding, and cAMP assay, this systematic approach allowed for the identification of novel pyrrole-based CB1R fluorescent probes. Application in fluorescence-based target-engagement studies and live cell imaging exemplify the great versatility of the tailored CB1R probes for investigating CB1R localization, trafficking, pharmacology, and its pathological implications.
Collapse
Affiliation(s)
- Leonard Mach
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Anahid Omran
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Jara Bouma
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Silke Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - David A Sykes
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH Nottingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Edgbaston, B15 2TT Birmingham, Midlands, U.K
| | - Wolfgang Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Xiaoting Li
- iHuman Institute, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Calvin Höffelmeyer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Axel Hentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Yelena Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | | | - Fabio de Molnier
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, EH16 4UU Edinburgh, U.K
| | - Cas van der Horst
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Marc Vendrell
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, EH16 4UU Edinburgh, U.K
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Dmitry B Veprintsev
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH Nottingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Edgbaston, B15 2TT Birmingham, Midlands, U.K
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Marc Nazare
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| |
Collapse
|
10
|
Ortiz AJ, Martín V, Romero D, Guillamon A, Giraldo J. Time-dependent ligand-receptor binding kinetics and functionality in a heterodimeric receptor model. Biochem Pharmacol 2024; 225:116299. [PMID: 38763260 DOI: 10.1016/j.bcp.2024.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
GPCRs heteromerize both in CNS and non-CNS regions. The cell uses receptor heteromerization to modulate receptor functionality and to provide fine tuning of receptor signaling. In order for pharmacologists to explore these mechanisms for therapeutic purposes, quantitative receptor models are needed. We have developed a time-dependent model of the binding kinetics and functionality of a preformed heterodimeric receptor involving two drugs. Two cases were considered: both or only one of the drugs are in excess with respect to the total concentration of the receptor. The latter case can be applied to those situations in which a drug causes unwanted side effects that need to be reduced by decreasing its concentration. The required efficacy can be maintained by the allosteric effects mutually exerted by the two drugs in the two-drug combination system. We discuss this concept assuming that the drug causing unwanted side effects is an opioid and that analgesia is the therapeutic effect. As additional points, allosteric modulation by endogenous compounds and synthetic bivalent ligands was included in the study. Receptor heteromerization offers a mechanistic understanding and quantification of the pharmacological effects elicited by combinations of two drugs at different doses and with different efficacies and cooperativity effects, thus providing a conceptual framework for drug combination therapy.
Collapse
Affiliation(s)
- Antonio J Ortiz
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Spain.
| | - Víctor Martín
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Matemàtiques, EPSEB, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain.
| | - David Romero
- Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Antoni Guillamon
- Departament de Matemàtiques, EPSEB, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain; IMTech, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain; Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
11
|
Poon MM, Lorrain KI, Stebbins KJ, Edu GC, Broadhead AR, Lorenzana AO, Paulson BE, Baccei CS, Roppe JR, Schrader TO, Valdez LJ, Xiong Y, Chen AC, Lorrain DS. Discovery of a brain penetrant small molecule antagonist targeting LPA1 receptors to reduce neuroinflammation and promote remyelination in multiple sclerosis. Sci Rep 2024; 14:10573. [PMID: 38719983 PMCID: PMC11079064 DOI: 10.1038/s41598-024-61369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic neurological disease characterized by inflammatory demyelination that disrupts neuronal transmission resulting in neurodegeneration progressive disability. While current treatments focus on immunosuppression to limit inflammation and further myelin loss, no approved therapies effectively promote remyelination to mitigate the progressive disability associated with chronic demyelination. Lysophosphatidic acid (LPA) is a pro-inflammatory lipid that is upregulated in MS patient plasma and cerebrospinal fluid (CSF). LPA activates the LPA1 receptor, resulting in elevated CNS cytokine and chemokine levels, infiltration of immune cells, and microglial/astrocyte activation. This results in a neuroinflammatory response leading to demyelination and suppressed remyelination. A medicinal chemistry effort identified PIPE-791, an oral, brain-penetrant, LPA1 antagonist. PIPE-791 was characterized in vitro and in vivo and was found to be a potent, selective LPA1 antagonist with slow receptor off-rate kinetics. In vitro, PIPE-791 induced OPC differentiation and promoted remyelination following a demyelinating insult. PIPE-791 further mitigated the macrophage-mediated inhibition of OPC differentiation and inhibited microglial and fibroblast activation. In vivo, the compound readily crossed the blood-brain barrier and blocked LPA1 in the CNS after oral dosing. Direct dosing of PIPE-791 in vivo increased oligodendrocyte number, and in the mouse experimental autoimmune encephalomyelitis (EAE) model of MS, we observed that PIPE-791 promoted myelination, reduced neuroinflammation, and restored visual evoked potential latencies (VEP). These findings support targeting LPA1 for remyelination and encourage development of PIPE-791 for treating MS patients with advantages not seen with current immunosuppressive disease modifying therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yifeng Xiong
- Contineum Therapeutics, San Diego, CA, 92121, USA
| | | | | |
Collapse
|
12
|
Smith MD, Darryl Quarles L, Demerdash O, Smith JC. Drugging the entire human proteome: Are we there yet? Drug Discov Today 2024; 29:103891. [PMID: 38246414 DOI: 10.1016/j.drudis.2024.103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Each of the ∼20,000 proteins in the human proteome is a potential target for compounds that bind to it and modify its function. The 3D structures of most of these proteins are now available. Here, we discuss the prospects for using these structures to perform proteome-wide virtual HTS (VHTS). We compare physics-based (docking) and AI VHTS approaches, some of which are now being applied with large databases of compounds to thousands of targets. Although preliminary proteome-wide screens are now within our grasp, further methodological developments are expected to improve the accuracy of the results.
Collapse
Affiliation(s)
- Micholas Dean Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN 37830, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - L Darryl Quarles
- Departments of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; ORRxD LLC, 3404 Olney Drive, Durham, NC 27705, USA
| | - Omar Demerdash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jeremy C Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN 37830, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
13
|
Stampelou M, Ladds G, Kolocouris A. Computational Workflow for Refining AlphaFold Models in Drug Design Using Kinetic and Thermodynamic Binding Calculations: A Case Study for the Unresolved Inactive Human Adenosine A 3 Receptor. J Phys Chem B 2024; 128:914-936. [PMID: 38236582 DOI: 10.1021/acs.jpcb.3c05986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A structure-based drug design pipeline that considers both thermodynamic and kinetic binding data of ligands against a receptor will enable the computational design of improved drug molecules. For unresolved GPCR-ligand complexes, a workflow that can apply both thermodynamic and kinetic binding data in combination with alpha-fold (AF)-derived or other homology models and experimentally resolved binding modes of relevant ligands in GPCR-homologs needs to be tested. Here, as test case, we studied a congeneric set of ligands that bind to a structurally unresolved G protein-coupled receptor (GPCR), the inactive human adenosine A3 receptor (hA3R). We tested three available homology models from which two have been generated from experimental structures of hA1R or hA2AR and one model was a multistate alphafold 2 (AF2)-derived model. We applied alchemical calculations with thermodynamic integration coupled with molecular dynamics (TI/MD) simulations to calculate the experimental relative binding free energies and residence time (τ)-random accelerated MD (τ-RAMD) simulations to calculate the relative residence times (RTs) for antagonists. While the TI/MD calculations produced, for the three homology models, good Pearson correlation coefficients, correspondingly, r = 0.74, 0.62, and 0.67 and mean unsigned error (mue) values of 0.94, 1.31, and 0.81 kcal mol-1, the τ-RAMD method showed r = 0.92 and 0.52 for the first two models but failed to produce accurate results for the multistate AF2-derived model. With subsequent optimization of the AF2-derived model by reorientation of the side chain of R1735.34 located in the extracellular loop 2 (EL2) that blocked ligand's unbinding, the computational model showed r = 0.84 for kinetic data and improved performance for thermodynamic data (r = 0.81, mue = 0.56 kcal mol-1). Overall, after refining the multistate AF2 model with physics-based tools, we were able to show a strong correlation between predicted and experimental ligand relative residence times and affinities, achieving a level of accuracy comparable to an experimental structure. The computational workflow used can be applied to other receptors, helping to rank candidate drugs in a congeneric series and enabling the prioritization of leads with stronger binding affinities and longer residence times.
Collapse
Affiliation(s)
- Margarita Stampelou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| |
Collapse
|
14
|
Simon IA, Bjørn-Yoshimoto WE, Harpsøe K, Iliadis S, Svensson B, Jensen AA, Gloriam DE. Ligand selectivity hotspots in serotonin GPCRs. Trends Pharmacol Sci 2023; 44:978-990. [PMID: 37914598 DOI: 10.1016/j.tips.2023.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Serotonin is a neurotransmitter regulating numerous physiological processes also modulated by drugs, for example, schizophrenia, depression, migraine, and obesity. However, these drugs typically have adverse effects caused by promiscuous binding across 12 serotonin and more than 20 homologous receptors. Recently, structures of the entire serotonin receptor family uncovered molecular ligand recognition. Here, we present a map of 19 'selectivity hotspots', that is, nonconserved binding site residues governing selectivity via favorable target interactions or repulsive 'off-target' contacts. Furthermore, we review functional rationale from observed ligand-binding affinities and mutagenesis effects. Unifying knowledge underlying specific probes and drugs is critical toward the functional characterization of different receptors and alleviation of adverse effects.
Collapse
Affiliation(s)
- Icaro A Simon
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Walden E Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Stylianos Iliadis
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, University of London, London EC1M 6BQ, UK
| | - Bo Svensson
- SARomics Biostructures AB, Scheelevägen 2, 223 63 Lund, Sweden
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
15
|
Yano H, Chitsazi R, Lucaj C, Tran P, Hoffman AF, Baumann MH, Lupica CR, Shi L. Subtle Structural Modification of a Synthetic Cannabinoid Receptor Agonist Drastically Increases its Efficacy at the CB1 Receptor. ACS Chem Neurosci 2023; 14:3928-3940. [PMID: 37847546 PMCID: PMC10623572 DOI: 10.1021/acschemneuro.3c00530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
The emergence of synthetic cannabinoid receptor agonists (SCRAs) as illicit psychoactive substances has posed considerable public health risks, including fatalities. Many SCRAs exhibit much higher efficacy and potency compared with the phytocannabinoid Δ9-tetrahydrocannabinol (THC) at the cannabinoid receptor 1 (CB1R), leading to dramatic differences in signaling levels that can be toxic. In this study, we investigated the structure-activity relationships of aminoalkylindole SCRAs at CB1Rs, focusing on 5F-pentylindoles containing an amide linker attached to different head moieties. Using in vitro bioluminescence resonance energy transfer assays, we identified a few SCRAs exhibiting significantly higher efficacy in engaging the Gi protein and recruiting β-arrestin than the reference CB1R full agonist CP55940. Importantly, the extra methyl group on the head moiety of 5F-MDMB-PICA, as compared to that of 5F-MMB-PICA, led to a large increase in efficacy and potency at the CB1R. This pharmacological observation was supported by the functional effects of these SCRAs on glutamate field potentials recorded in hippocampal slices. Molecular modeling and simulations of the CB1R models bound with both of the SCRAs revealed critical structural determinants contributing to the higher efficacy of 5F-MDMB-PICA and how these subtle differences propagated to the receptor-G protein interface. Thus, we find that apparently minor structural changes in the head moiety of SCRAs can cause major changes in efficacy. Our results highlight the need for close monitoring of the structural modifications of newly emerging SCRAs and their potential for toxic drug responses in humans.
Collapse
Affiliation(s)
- Hideaki Yano
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Center for Drug
Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rezvan Chitsazi
- Computational
Chemistry and Molecular Biophysics Section, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Christopher Lucaj
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Center for Drug
Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Phuong Tran
- Computational
Chemistry and Molecular Biophysics Section, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Alexander F. Hoffman
- Electrophysiology
Research Section, National Institutes of
Health, Baltimore, Maryland 21224, United States
| | - Michael H. Baumann
- Designer
Drug Research Unit, Intramural Research Program, National Institute
on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Carl R. Lupica
- Electrophysiology
Research Section, National Institutes of
Health, Baltimore, Maryland 21224, United States
| | - Lei Shi
- Computational
Chemistry and Molecular Biophysics Section, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
16
|
Asadollahi K, Rajput S, Jameson GNL, Scott DJ, Gooley PR. Encounter Complexes Between the N-terminal of Neurotensin with the Extracellular Loop 2 of the Neurotensin Receptor 1 Steer Neurotensin to the Orthosteric Binding Pocket. J Mol Biol 2023; 435:168244. [PMID: 37625583 DOI: 10.1016/j.jmb.2023.168244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Neurotensin (NT) is a linear disordered peptide that activates two different class A GPCRs, neurotensin receptor 1 (NTS1) and NTS2. Resolved structures of the complex of the C-terminal fragment of NT, NT8-13, with NTS1 shows the peptide takes a well-defined structure in the bound state. However, the mechanisms underlying NT recognition of NTS1, and the conformational transition of NT upon binding NTS1 is an open question that if answered may aid discovery of highly selective drugs and reveal potential secondary binding sites on the surface of the receptor. Herein we investigated the interactions guiding NT to the orthosteric binding pocket of NTS1 by combining NMR experiments with kinetic analysis of the binding pathway using stopped-flow fluorescence and mutagenesis on both NT and NTS1. We show the presence of transient structures in the middle part of NT that kinetically regulate the binding of NT to NTS1. Moreover, our results indicate that the binding pathway of NT onto NTS1 is mediated via electrostatic interactions between the N-terminal region of NT with the extracellular loop 2 of NTS1. These interactions induce backbone conformational changes in neurotensin similar to the bound-state neurotensin, suggesting that the N-terminal region of NT and these interactions should be considered for development of selective drugs against NTS1.
Collapse
Affiliation(s)
- Kazem Asadollahi
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; The Florey, University of Melbourne, Parkville, VIC 3010, Australia. https://twitter.com/@KazemAsadollahi
| | - Sunnia Rajput
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Guy N L Jameson
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniel J Scott
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; The Florey, University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
17
|
Ullrich M, Brandt F, Löser R, Pietzsch J, Wodtke R. Comparative Saturation Binding Analysis of 64Cu-Labeled Somatostatin Analogues Using Cell Homogenates and Intact Cells. ACS OMEGA 2023; 8:24003-24009. [PMID: 37426243 PMCID: PMC10324063 DOI: 10.1021/acsomega.3c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
The development of novel ligands for G-protein-coupled receptors (GPCRs) typically entails the characterization of their binding affinity, which is often performed with radioligands in a competition or saturation binding assay format. Since GPCRs are transmembrane proteins, receptor samples for binding assays are prepared from tissue sections, cell membranes, cell homogenates, or intact cells. As part of our investigations on modulating the pharmacokinetics of radiolabeled peptides for improved theranostic targeting of neuroendocrine tumors with a high abundance of the somatostatin receptor sub-type 2 (SST2), we characterized a series of 64Cu-labeled [Tyr3]octreotate (TATE) derivatives in vitro in saturation binding assays. Herein, we report on the SST2 binding parameters measured toward intact mouse pheochromocytoma cells and corresponding cell homogenates and discuss the observed differences taking the physiology of SST2 and GPCRs in general into account. Furthermore, we point out method-specific advantages and limitations.
Collapse
Affiliation(s)
- Martin Ullrich
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
| | - Florian Brandt
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
- School
of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01069, Germany
| | - Reik Löser
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
- School
of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01069, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
- School
of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01069, Germany
| | - Robert Wodtke
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
| |
Collapse
|
18
|
Yano H, Chitsazi R, Lucaj C, Tran P, Hoffman AF, Baumann MH, Lupica CR, Shi L. A subtle structural modification of a synthetic cannabinoid receptor agonist drastically increases its efficacy at the CB1 receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.10.544442. [PMID: 37398099 PMCID: PMC10312643 DOI: 10.1101/2023.06.10.544442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The emergence of synthetic cannabinoid receptor agonists (SCRAs) as illicit psychoactive substances has posed considerable public health risks that include fatalities. Many SCRAs exhibit much higher efficacy and potency, compared with the phytocannabinoid Δ9-tetrahydrocannabinol (THC), at the cannabinoid receptor 1 (CB1R), a G protein-coupled receptor involved in modulating neurotransmitter release. In this study, we investigated structure activity relationships (SAR) of aminoalkylindole SCRAs at CB1Rs, focusing on 5F-pentylindoles containing an amide linker attached to different head moieties. Using in vitro bioluminescence resonance energy transfer (BRET) assays, we identified a few of SCRAs exhibiting significantly higher efficacy in engaging the Gi protein and recruiting β-arrestin than the reference CB1R full agonist CP55940. Importantly, adding a methyl group at the head moiety of 5F-MMB-PICA yielded 5F-MDMB-PICA, an agonist exhibiting a large increase in efficacy and potency at the CB1R. This pharmacological observation was supported by a functional assay of the effects of these SCRAs on glutamate field potentials recorded in hippocampal slices. Molecular modeling and simulations of the CB1R bound with either of the SCRAs revealed critical structural determinants contributing to the higher efficacy of 5F-MDMB-PICA, and how these subtle differences propagated to the receptor-G protein interface. Thus, we find that apparently minor structural changes in the head moiety of SCRAs can cause major changes in efficacy. Our results highlight the need for close monitoring of structural modifications of newly emerging SCRAs and their potential for toxic drug responses in humans.
Collapse
Affiliation(s)
- Hideaki Yano
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Center for Drug Discovery, Northeastern University
| | - Rezvan Chitsazi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Christopher Lucaj
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Center for Drug Discovery, Northeastern University
| | - Phuong Tran
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Alexander F Hoffman
- Electrophysiology Research Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Carl R Lupica
- Electrophysiology Research Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
19
|
Lind S, Wu Y, Sundqvist M, Forsman H, Dahlgren C. An increase in the cytosolic concentration of free calcium ions activates the neutrophil NADPH-oxidase provided that the free fatty acid receptor 2 has been allosterically modulated. Cell Signal 2023; 107:110687. [PMID: 37105507 DOI: 10.1016/j.cellsig.2023.110687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Signals generated by free fatty acid receptor 2 (FFA2R) can activate the neutrophil NADPH-oxidase without involvement of any orthosteric FFA2R agonist. The initiating signals may be generated by P2Y2R, the receptor for ATP. An FFA2R specific allosteric modulator (PAM; Cmp58) was required for this response and used to investigate the mechanism by which signals generated by ATP/P2Y2R activate an FFA2R dependent process. The P2Y2R induced signal that together with the modulated FFA2R activates neutrophils, was generated downstream of the Gαq containing G protein coupled to P2Y2R. A rise in the cytosolic concentration of ionized calcium ([Ca2+]i) was hypothesized to be the important signal. The hypothesis gained support from the finding that the modulator transferred the neutrophils to a Ca2+sensitive state. The rise in [Ca2+]i induced by the Ca2+ specific ionophore ionomycin, activated the neutrophils provided that an allosteric modulator was bound to FFA2R. The activity of the superoxide generating NADPH-oxidase induced by ionomycin was rapidly terminated and the FFA2Rs could then no longer be activated by the FFA2R agonist propionate or by the signal generated by ATP/P2Y2R. The non-responding state of FFA2R was, however, revoked by a cross-activating allosteric FFA2R modulator. The [Ca2+]i mediated activation of neutrophils with their FFA2Rs allosterically modulated, represent a unique regulatory receptor crosstalk mechanism by which the activation potency of a G protein coupled receptor is controlled by a receptor-crosstalk signaling system operating from the cytosolic side of the plasma membrane.
Collapse
Affiliation(s)
- Simon Lind
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Yanling Wu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
20
|
Sharma R, Singh S, Whiting ZM, Molitor M, Vernall AJ, Grimsey NL. Novel Cannabinoid Receptor 2 (CB2) Low Lipophilicity Agonists Produce Distinct cAMP and Arrestin Signalling Kinetics without Bias. Int J Mol Sci 2023; 24:ijms24076406. [PMID: 37047385 PMCID: PMC10094510 DOI: 10.3390/ijms24076406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Cannabinoid Receptor 2 (CB2) is a promising target for treating inflammatory diseases. We designed derivatives of 3-carbamoyl-2-pyridone and 1,8-naphthyridin-2(1H)-one-3-carboxamide CB2-selective agonists with reduced lipophilicity. The new compounds were measured for their affinity (radioligand binding) and ability to elicit cyclic adenosine monophosphate (cAMP) signalling and β-arrestin-2 translocation with temporal resolution (BRET-based biosensors). For the 3-carbamoyl-2-pyridone derivatives, we found that modifying the previously reported compound UOSS77 (also known as S-777469) by appending a PEG2-alcohol via a 3-carbomylcyclohexyl carboxamide (UOSS75) lowered lipophilicity, and preserved binding affinity and signalling profile. The 1,8-naphthyridin-2(1H)-one-3-carboxamide UOMM18, containing a cis configuration at the 3-carboxamide cyclohexyl and with an alcohol on the 4-position of the cyclohexyl, had lower lipophilicity but similar CB2 affinity and biological activity to previously reported compounds of this class. Relative to CP55,940, the new compounds acted as partial agonists and did not exhibit signalling bias. Interestingly, while all compounds shared similar temporal trajectories for maximal efficacy, differing temporal trajectories for potency were observed. Consequently, when applied at sub-maximal concentrations, CP55,940 tended to elicit sustained (cAMP) or increasing (arrestin) responses, whereas responses to the new compounds tended to be transient (cAMP) or sustained (arrestin). In future studies, the compounds characterised here may be useful in elucidating the consequences of differential temporal signalling profiles on CB2-mediated physiological responses.
Collapse
Affiliation(s)
- Raahul Sharma
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.S.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Sameek Singh
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand (M.M.); (A.J.V.)
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zak M. Whiting
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.S.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Maximilian Molitor
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand (M.M.); (A.J.V.)
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Andrea J. Vernall
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand (M.M.); (A.J.V.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Natasha L. Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.S.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
- Correspondence:
| |
Collapse
|
21
|
Biophysical investigations of class A GPCRs. Biochimie 2023; 205:86-94. [PMID: 36220484 DOI: 10.1016/j.biochi.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/29/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
Abstract
G protein-coupled receptors (GPCRs) play a central role in cellular communication, converting external stimuli into intracellular responses. GPCRs bind a very broad panel of ligands, such as hormones, neurotransmitters, peptides and lipids. Ligand binding triggers a series of receptor conformational rearrangements, enabling the coupling to intracellular partners and the activation of signaling cascades. The major breakthrough in GPCRs structural biology of the past decade has considerably advanced our understanding of GPCR activation. However, structural information cannot fully explain the molecular details of GPCRs pharmacology. Biophysical investigations reveal that GPCRs are very dynamic proteins, capable of exploring a wide range of conformational states. Binding to ligands of various pharmacological classes, as well as intracellular effectors and allosteric modulators, can shift the equilibrium between these states and the kinetic of interconversions among the different conformers. Investigation of GPCR dynamic interplay is therefore important to better understand the complex pharmacology and signaling profile of these receptors.
Collapse
|
22
|
Allosteric binding cooperativity in a kinetic context. Drug Discov Today 2023; 28:103441. [PMID: 36372329 DOI: 10.1016/j.drudis.2022.103441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Allosteric modulators are of prime interest in drug discovery. These drugs regulate the binding and function of endogenous ligands, with some advantages over orthosteric ligands. A typical pharmacological parameter in allosteric modulation is binding cooperativity. This property can yield unexpected but illuminating results when decomposed into its kinetic parameters. Using two reference models (the allosteric ternary complex receptor model and a heterodimer receptor model), a relationship has been derived for the cooperativity rate constant parameters. This relationship allows many combinations of the cooperativity kinetic parameters for a single binding cooperativity value obtained under equilibrium conditions. This assessment may help understand striking experimental results involving allosteric modulation and suggest further investigations in the field.
Collapse
|
23
|
Casajuana-Martin N, Navarro G, Gonzalez A, Llinas del Torrent C, Gómez-Autet M, Quintana García A, Franco R, Pardo L. A Single Point Mutation Blocks the Entrance of Ligands to the Cannabinoid CB 2 Receptor via the Lipid Bilayer. J Chem Inf Model 2022; 62:5771-5779. [PMID: 36302505 PMCID: PMC9709915 DOI: 10.1021/acs.jcim.2c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular dynamic (MD) simulations have become a common tool to study the pathway of ligand entry to the orthosteric binding site of G protein-coupled receptors. Here, we have combined MD simulations and site-directed mutagenesis to study the binding process of the potent JWH-133 agonist to the cannabinoid CB2 receptor (CB2R). In CB2R, the N-terminus and extracellular loop 2 fold over the ligand binding pocket, blocking access to the binding cavity from the extracellular environment. We, thus, hypothesized that the binding pathway is a multistage process consisting of the hydrophobic ligand diffusing in the lipid bilayer to contact a lipid-facing vestibule, from which the ligand enters an allosteric site inside the transmembrane bundle through a tunnel formed between TMs 1 and 7 and finally moving from the allosteric to the orthosteric binding cavity. This pathway was experimentally validated by the Ala2827.36Phe mutation that blocks the entrance of the ligand, as JWH-133 was not able to decrease the forskolin-induced cAMP levels in cells expressing the mutant receptor. This proposed ligand entry pathway defines transient binding sites that are potential cavities for the design of synthetic modulators.
Collapse
Affiliation(s)
- Nil Casajuana-Martin
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Gemma Navarro
- Department
of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain,Centro
de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Angel Gonzalez
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Claudia Llinas del Torrent
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Marc Gómez-Autet
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Aleix Quintana García
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Rafael Franco
- Centro
de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain,Department
of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Leonardo Pardo
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain,E-mail:
| |
Collapse
|
24
|
Preti B, Suchankova A, Deganutti G, Leuenberger M, Barkan K, Manulak I, Huang X, Carvalho S, Ladds G, Lochner M. Discovery and Structure-Activity Relationship Studies of Novel Adenosine A 1 Receptor-Selective Agonists. J Med Chem 2022; 65:14864-14890. [PMID: 36270633 PMCID: PMC9661479 DOI: 10.1021/acs.jmedchem.2c01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/29/2022]
Abstract
A series of benzyloxy and phenoxy derivatives of the adenosine receptor agonists N6-cyclopentyl adenosine (CPA) and N6-cyclopentyl 5'-N-ethylcarboxamidoadenosine (CP-NECA) were synthesized, and their potency and selectivity were assessed. We observed that the most potent were the compounds with a halogen in the meta position on the aromatic ring of the benzyloxy- or phenoxycyclopentyl substituent. In general, the NECA-based compounds displayed greater A1R selectivity than the adenosine-based compounds, with N6-2-(3-bromobenzyloxy)cyclopentyl-NECA and N6-2-(3-methoxyphenoxy)cyclopentyl-NECA showing ∼1500-fold improved A1R selectivity compared to NECA. In addition, we quantified the compounds' affinity and kinetics of binding at both human and rat A1R using a NanoBRET binding assay and found that the halogen substituent in the benzyloxy- or phenoxycyclopentyl moiety seems to confer high affinity for the A1R. Molecular modeling studies suggested a hydrophobic subpocket as contributing to the A1R selectivity displayed. We believe that the identified selective potent A1R agonists are valuable tool compounds for adenosine receptor research.
Collapse
Affiliation(s)
- Barbara Preti
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012Bern, Switzerland
| | - Anna Suchankova
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, CambridgeCB2 1PD, U.K.
| | - Giuseppe Deganutti
- Centre
for Sport, Exercise and Life Sciences, Faculty of Health and Life
Sciences, Coventry University, CoventryCV1 5FB, U.K.
| | - Michele Leuenberger
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012Bern, Switzerland
| | - Kerry Barkan
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, CambridgeCB2 1PD, U.K.
| | - Iga Manulak
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, CambridgeCB2 1PD, U.K.
| | - Xianglin Huang
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, CambridgeCB2 1PD, U.K.
| | - Sabrina Carvalho
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, CambridgeCB2 1PD, U.K.
| | - Graham Ladds
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, CambridgeCB2 1PD, U.K.
| | - Martin Lochner
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012Bern, Switzerland
| |
Collapse
|
25
|
Farmer JP, Mistry SN, Laughton CA, Holliday ND. Development of fluorescent peptide G protein-coupled receptor activation biosensors for NanoBRET characterization of intracellular allosteric modulators. FASEB J 2022; 36:e22576. [PMID: 36183332 DOI: 10.1096/fj.202201024r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are widely therapeutically targeted, and recent advances in allosteric modulator development at these receptors offer further potential for exploitation. Intracellular allosteric modulators (IAM) represent a class of ligands that bind to the receptor-effector interface (e.g., G protein) and inhibit agonist responses noncompetitively. This potentially offers greater selectivity between receptor subtypes compared to classical orthosteric ligands. However, while examples of IAM ligands are well described, a more general methodology for assessing compound interactions at the IAM site is lacking. Here, fluorescent labeled peptides based on the Gα peptide C terminus are developed as novel binding and activation biosensors for the GPCR-IAM site. In TR-FRET binding studies, unlabeled peptides derived from the Gαs subunit were first characterized for their ability to positively modulate agonist affinity at the β2 -adrenoceptor. On this basis, a tetramethylrhodamine (TMR) labeled tracer was synthesized based on the 19 amino acid Gαs peptide (TMR-Gαs19cha18, where cha = cyclohexylalanine). Using NanoBRET technology to detect binding, TMR-Gαs19cha18 was recruited to Gs coupled β2 -adrenoceptor and EP2 receptors in an agonist-dependent manner, but not the Gi-coupled CXCR2 receptor. Moreover, NanoBRET competition binding assays using TMR-Gαs19cha18 enabled direct assessment of the affinity of unlabeled ligands for β2 -adrenoceptor IAM site. Thus, the NanoBRET platform using fluorescent-labeled G protein peptide mimetics offers novel potential for medium-throughput screens to identify IAMs, applicable across GPCRs coupled to a G protein class. Using the same platform, Gs peptide biosensors also represent useful tools to probe orthosteric agonist efficacy and the dynamics of receptor activation.
Collapse
Affiliation(s)
- James P Farmer
- School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK
| | | | | | - Nicholas D Holliday
- School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Excellerate Bioscience, Biocity, Nottingham, UK
| |
Collapse
|
26
|
Ortiz-Riaño EJ, Mancera-Zapata DL, Ulloa-Ramírez M, Arce-Vega F, Morales-Narváez E. Measurement of Protein Kinetics Using a Liquid Phase-Based Biosensing Platform. Anal Chem 2022; 94:15553-15557. [PMID: 36253365 DOI: 10.1021/acs.analchem.2c03305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macromolecular association is crucial to many fields in biomedical sciences, including drug development, gene editing, and diagnostics. In particular, protein-protein association and dissociation rate constants are typically determined using surface plasmon resonance systems, which require costly instrumentation and cumbersome procedures (e.g., blocking, washing, and separation). Herein, we demonstrate that protein-binding constants can be readily determined using a real-time biosensing platform facilitated by graphene oxide-modified microwell plates and fluorophore-labeled proteins, where the fluorescent probes remain highly fluorescent during protein association, whereas fluorescent bioprobes that are not associated with their counterparts are quenched by graphene oxide. Binding data of three pairs of proteins were systematically determined employing this single-step platform and compared with those data reported by the suppliers or the literature, suggesting that this approach is comparable and consistent with the existing ones. Such pairs include (i) human immunoglobulin G (H-IgG)-fluorophore-labeled anti-H-IgG, (ii) prostate-specific antigen (PSA)-quantum dot-labeled anti-PSA, and (iii) anti-RBD-fluorophore-labeled SARS-CoV-2 spike receptor-binding domain recombinant protein. We also offer an open-source software that automatically determines the binding kinetics constants of proteins. This Technical Note introduces a simple, yet effective, platform to determine relevant information on protein kinetics, which can be performed using a microwell plate reader and economical materials like graphene oxide. We foresee a new generation of diagnostics based on our affordable protein kinetics analysis.
Collapse
Affiliation(s)
- Edwin J Ortiz-Riaño
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, Guanajuato37150, Mexico
| | - Diana L Mancera-Zapata
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, Guanajuato37150, Mexico
| | - Martha Ulloa-Ramírez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, Guanajuato37150, Mexico.,Universidad de Guadalajara, Guadalajara44100, Jalisco, Mexico
| | - Fernando Arce-Vega
- Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León37150, Guanajuato, Mexico
| | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, Guanajuato37150, Mexico
| |
Collapse
|
27
|
Stampelou M, Suchankova A, Tzortzini E, Dhingra L, Barkan K, Lougiakis N, Marakos P, Pouli N, Ladds G, Kolocouris A. Dual A1/A3 Adenosine Receptor Antagonists: Binding Kinetics and Structure-Activity Relationship Studies Using Mutagenesis and Alchemical Binding Free Energy Calculations. J Med Chem 2022; 65:13305-13327. [PMID: 36173355 DOI: 10.1021/acs.jmedchem.2c01123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drugs targeting adenosine receptors (AR) can provide treatment for diseases. We report the identification of 7-(phenylamino)-pyrazolo[3,4-c]pyridines L2-L10, A15, and A17 as low-micromolar to low-nanomolar A1R/A3R dual antagonists, with 3-phenyl-5-cyano-7-(trimethoxyphenylamino)-pyrazolo[3,4-c]pyridine (A17) displaying the highest affinity at both receptors with a long residence time of binding, as determined using a NanoBRET-based assay. Two binding orientations of A17 produce stable complexes inside the orthosteric binding area of A1R in molecular dynamics (MD) simulations, and we selected the most plausible orientation based on the agreement with alanine mutagenesis supported by affinity experiments. Interestingly, for drug design purposes, the mutation of L2506.51 to alanine increased the binding affinity of A17 at A1R. We explored the structure-activity relationships against A1R using alchemical binding free energy calculations with the thermodynamic integration coupled with the MD simulation (TI/MD) method, applied on the whole G-protein-coupled receptor-membrane system, which showed a good agreement (r = 0.73) between calculated and experimental relative binding free energies.
Collapse
Affiliation(s)
- Margarita Stampelou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Anna Suchankova
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Efpraxia Tzortzini
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Lakshiv Dhingra
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Kerry Barkan
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Nikolaos Lougiakis
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Panagiotis Marakos
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Nicole Pouli
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| |
Collapse
|
28
|
Obi P, Natesan S. Membrane Lipids Are an Integral Part of Transmembrane Allosteric Sites in GPCRs: A Case Study of Cannabinoid CB1 Receptor Bound to a Negative Allosteric Modulator, ORG27569, and Analogs. J Med Chem 2022; 65:12240-12255. [PMID: 36066412 PMCID: PMC9512009 DOI: 10.1021/acs.jmedchem.2c00946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/28/2022]
Abstract
A growing number of G-protein-coupled receptor (GPCR) structures reveal novel transmembrane lipid-exposed allosteric sites. Ligands must first partition into the surrounding membrane and take lipid paths to these sites. Remarkably, a significant part of the bound ligands appears exposed to the membrane lipids. The experimental structures do not usually account for the surrounding lipids, and their apparent contribution to ligand access and binding is often overlooked and poorly understood. Using classical and enhanced molecular dynamics simulations, we show that membrane lipids are critical in the access and binding of ORG27569 and its analogs at the transmembrane site of cannabinoid CB1 receptor. The observed differences in the binding affinity and cooperativity arise from the functional groups that interact primarily with lipids. Our results demonstrate the significance of incorporating membrane lipids as an integral component of transmembrane sites for accurate characterization, binding-affinity calculations, and lead optimization in drug discovery.
Collapse
Affiliation(s)
- Peter Obi
- College of Pharmacy and Pharmaceutical
Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Senthil Natesan
- College of Pharmacy and Pharmaceutical
Sciences, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
29
|
Wingert B, Doruker P, Bahar I. Activation and Speciation Mechanisms in Class A GPCRs. J Mol Biol 2022; 434:167690. [PMID: 35728652 PMCID: PMC10129049 DOI: 10.1016/j.jmb.2022.167690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/03/2023]
Abstract
Accurate development of allosteric modulators of GPCRs require a thorough assessment of their sequence, structure, and dynamics, toward gaining insights into their mechanisms of actions shared by family members, as well as dynamic features that distinguish subfamilies. Building on recent progress in the characterization of the signature dynamics of proteins, we analyzed here a dataset of 160 Class A GPCRs to determine their sequence similarities, structural landscape, and dynamic features across different species (human, bovine, mouse, squid, and rat), different activation states (active/inactive), and different subfamilies. The two dominant directions of variability across experimentally resolved structures, identified by principal component analysis of the dataset, shed light to cooperative mechanisms of activation, subfamily differentiation, and speciation of Class A GPCRs. The analysis reveals the functional significance of the conformational flexibilities of specific structural elements, including: the dominant role of the intracellular loop 3 (ICL3) together with the cytoplasmic ends of the adjoining helices TM5 and TM6 in enabling allosteric activation; the role of particular structural motifs at the extracellular loop 2 (ECL2) connecting TM4 and TM5 in binding ligands specific to different subfamilies; or even the differentiation of the N-terminal conformation across different species. Detailed analyses of the modes of motions accessible to the members of the dataset and their variations across members demonstrate how the active and inactive states of GPCRs obey distinct conformational dynamics. The collective fluctuations of the GPCRs are robustly defined in the active state, while the inactive conformers exhibit broad variance among members.
Collapse
Affiliation(s)
- Bentley Wingert
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
30
|
Chaudhary A, Mani A. Aβ peptides stabilize GPCRs in inactive form and trigger inverse agonism in Alzheimer's disease. Biochimie 2022; 201:75-78. [PMID: 35839919 DOI: 10.1016/j.biochi.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
Several G-protein coupled receptors (GPCR) are upregulated in Alzheimer's Disease (AD), which ought to facilitate neurotransmission, and improve cognition. Yet, despite this upregulation, associated physiological effects are not observed in AD patients. This paradox solicits urgent attention to find a suitable justification for disturbed neurotransmission in AD. This article focuses on the role of Aβ granules and their possible interaction with GPCRs that modulate neurotransmission and AD progression.
Collapse
Affiliation(s)
- Amit Chaudhary
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India.
| |
Collapse
|
31
|
Kahana A, Lancet D, Palmai Z. Micellar Composition Affects Lipid Accretion Kinetics in Molecular Dynamics Simulations: Support for Lipid Network Reproduction. Life (Basel) 2022; 12:955. [PMID: 35888044 PMCID: PMC9325298 DOI: 10.3390/life12070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mixed lipid micelles were proposed to facilitate life through their documented growth dynamics and catalytic properties. Our previous research predicted that micellar self-reproduction involves catalyzed accretion of lipid molecules by the residing lipids, leading to compositional homeostasis. Here, we employ atomistic Molecular Dynamics simulations, beginning with 54 lipid monomers, tracking an entire course of micellar accretion. This was done to examine the self-assembly of variegated lipid clusters, allowing us to measure entry and exit rates of monomeric lipids into pre-micelles with different compositions and sizes. We observe considerable rate-modifications that depend on the assembly composition and scrutinize the underlying mechanisms as well as the energy contributions. Lastly, we describe the measured potential for compositional homeostasis in our simulated mixed micelles. This affirms the basis for micellar self-reproduction, with implications for the study of the origin of life.
Collapse
Affiliation(s)
| | | | - Zoltan Palmai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 761001, Israel; (A.K.); (D.L.)
| |
Collapse
|
32
|
Köck Z, Ermel U, Martin J, Morgner N, Achilleas Frangakis S, Dötsch V, Hilger D, Bernhard F. Biochemical characterization of cell-free synthesized human β 1 adrenergic receptor cotranslationally inserted into nanodiscs. J Mol Biol 2022; 434:167687. [PMID: 35717996 DOI: 10.1016/j.jmb.2022.167687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
Cell-free expression enables direct cotranslational insertion of G protein coupled receptors (GPCRs) and other membrane proteins into the defined membrane environments of nanodiscs. This technique avoids GPCR contacts with detergents and allows rapid identification of lipid effects on GPCR function as well as fast screening of receptor derivatives. Critical steps of conventional GPCR preparation from cellular membranes followed by detergent-based reconstitution into nanodisc membranes are thus eliminated. We report the efficient cotranslational insertion of full-length human β1-adrenergic receptor and of a truncated derivative into preformed nanodisc membranes. Their biochemical characterization revealed significant differences in lipid requirements, dimer formation and ligand binding activity. The truncated receptor showed a higher affinity to most tested ligands, in particular in presence of choline-containing lipids. However, introducing the naturally occurring G389R polymorphism in the full-length receptor resulted into an increased affinity to the antagonists alprenolol and carvedilol. Receptor quality was generally improved by coexpression with the agonist isoproterenol and the percentage of the ligand binding active fraction was twofold increased. Specific coupling of full-length and truncated human receptors in nanodisc membranes to Mini-Gαs protein as well as to purified Gs heterotrimer could be demonstrated and homogeneity of purified GPCR/Gs protein complexes in nanodiscs was demonstrated by negative stain single particle analysis.
Collapse
Affiliation(s)
- Zoe Köck
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main
| | - Utz Ermel
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe University of Frankfurt/Main
| | - Janosch Martin
- Institute of Physical and Theoretical Chemistry, Goethe University of Frankfurt/Main
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University of Frankfurt/Main
| | - S Achilleas Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe University of Frankfurt/Main
| | - Volker Dötsch
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main
| | - Daniel Hilger
- Department of Pharmaceutical Chemistry, Philipps-University Marburg
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main.
| |
Collapse
|
33
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
34
|
Eberle SA, Gustavsson M. A Scintillation Proximity Assay for Real-Time Kinetic Analysis of Chemokine-Chemokine Receptor Interactions. Cells 2022; 11:1317. [PMID: 35455996 PMCID: PMC9024993 DOI: 10.3390/cells11081317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Chemokine receptors are extensively involved in a broad range of physiological and pathological processes, making them attractive drug targets. However, despite considerable efforts, there are very few approved drugs targeting this class of seven transmembrane domain receptors to date. In recent years, the importance of including binding kinetics in drug discovery campaigns was emphasized. Therefore, kinetic insight into chemokine-chemokine receptor interactions could help to address this issue. Moreover, it could additionally deepen our understanding of the selectivity and promiscuity of the chemokine-chemokine receptor network. Here, we describe the application, optimization and validation of a homogenous Scintillation Proximity Assay (SPA) for real-time kinetic profiling of chemokine-chemokine receptor interactions on the example of ACKR3 and CXCL12. The principle of the SPA is the detection of radioligand binding to receptors reconstituted into nanodiscs by scintillation light. No receptor modifications are required. The nanodiscs provide a native-like environment for receptors and allow for full control over bilayer composition and size. The continuous assay format enables the monitoring of binding reactions in real-time, and directly accounts for non-specific binding and potential artefacts. Minor adaptations additionally facilitate the determination of equilibrium binding metrics, making the assay a versatile tool for the study of receptor-ligand interactions.
Collapse
Affiliation(s)
| | - Martin Gustavsson
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
| |
Collapse
|
35
|
Vlachodimou A, de Vries H, Pasoli M, Goudswaard M, Kim SA, Kim YC, Scortichini M, Marshall M, Linden J, Heitman LH, Jacobson KA, IJzerman AP. Kinetic profiling and functional characterization of 8-phenylxanthine derivatives as A 2B adenosine receptor antagonists. Biochem Pharmacol 2022; 200:115027. [PMID: 35395239 DOI: 10.1016/j.bcp.2022.115027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022]
Abstract
A2B adenosine receptor (A2BAR) antagonists have therapeutic potential in inflammation-related diseases such as asthma, chronic obstructive pulmonary disease and cancer. However, no drug is currently clinically approved, creating a demand for research on novel antagonists. Over the last decade, the study of target binding kinetics, along with affinity and potency, has been proven valuable in early drug discovery stages, as it is associated with improved in vivo drug efficacy and safety. In this study, we report the synthesis and biological evaluation of a series of xanthine derivatives as A2BAR antagonists, including an isothiocyanate derivative designed to bind covalently to the receptor. All 28 final compounds were assessed in radioligand binding experiments, to evaluate their affinity and for those qualifying, kinetic binding parameters. Both structure-affinity and structure-kinetic relationships were derived, providing a clear relationship between affinity and dissociation rate constants. Two structurally similar compounds, 17 and 18, were further evaluated in a label-free assay due to their divergent kinetic profiles. An extended cellular response was associated with long A2BAR residence times. This link between a ligand's A2BAR residence time and its functional effect highlights the importance of binding kinetics as a selection parameter in the early stages of drug discovery.
Collapse
Affiliation(s)
- Anna Vlachodimou
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Henk de Vries
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Milena Pasoli
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Miranda Goudswaard
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Soon-Ai Kim
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Yong-Chul Kim
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mirko Scortichini
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Melissa Marshall
- Department of Internal Medicine and Molecular Physiology & Biological Physics, University of Virginia Health Science Center, Charlottesville, VA 22908, USA
| | - Joel Linden
- Department of Internal Medicine and Molecular Physiology & Biological Physics, University of Virginia Health Science Center, Charlottesville, VA 22908, USA
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands; Oncode Institute, Leiden, the Netherlands
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands.
| |
Collapse
|
36
|
Egyed A, Kiss DJ, Keserű GM. The Impact of the Secondary Binding Pocket on the Pharmacology of Class A GPCRs. Front Pharmacol 2022; 13:847788. [PMID: 35355719 PMCID: PMC8959758 DOI: 10.3389/fphar.2022.847788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are considered important therapeutic targets due to their pathophysiological significance and pharmacological relevance. Class A receptors represent the largest group of GPCRs that gives the highest number of validated drug targets. Endogenous ligands bind to the orthosteric binding pocket (OBP) embedded in the intrahelical space of the receptor. During the last 10 years, however, it has been turned out that in many receptors there is secondary binding pocket (SBP) located in the extracellular vestibule that is much less conserved. In some cases, it serves as a stable allosteric site harbouring allosteric ligands that modulate the pharmacology of orthosteric binders. In other cases it is used by bitopic compounds occupying both the OBP and SBP. In these terms, SBP binding moieties might influence the pharmacology of the bitopic ligands. Together with others, our research group showed that SBP binders contribute significantly to the affinity, selectivity, functional activity, functional selectivity and binding kinetics of bitopic ligands. Based on these observations we developed a structure-based protocol for designing bitopic compounds with desired pharmacological profile.
Collapse
Affiliation(s)
| | | | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
37
|
Penna E, Niso M, Podlewska S, Volpicelli F, Crispino M, Perrone-Capano C, Bojarski AJ, Lacivita E, Leopoldo M. In Vitro and In Silico Analysis of the Residence Time of Serotonin 5-HT 7 Receptor Ligands with Arylpiperazine Structure: A Structure-Kinetics Relationship Study. ACS Chem Neurosci 2022; 13:497-509. [PMID: 35099177 DOI: 10.1021/acschemneuro.1c00710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During the last decade, the kinetics of drug-target interaction has received increasing attention as an important pharmacological parameter in the drug development process. Several studies have suggested that the lipophilicity of a molecule can play an important role. To date, this aspect has been studied for several G protein-coupled receptors (GPCRs) ligands but not for the 5-HT7 receptor (5-HT7R), a GPCR proposed as a valid therapeutic target in neurodevelopmental and neuropsychiatric disorders associated with abnormal neuronal connectivity. In this study, we report on structure-kinetics relationships of a set of arylpiperazine-based 5-HT7R ligands. We found that it is not the overall lipophilicity of the molecule that influences drug-target interaction kinetics but rather the position of polar groups within the molecule. Next, we performed a combination of molecular docking studies and molecular dynamics simulations to gain insights into structure-kinetics relationships. These studies did not suggest specific contact patterns between the ligands and the receptor-binding site as determinants for compounds kinetics. Finally, we compared the abilities of two 5-HT7R agonists with similar receptor-binding affinities and different residence times to stimulate the 5-HT7R-mediated neurite outgrowth in mouse neuronal primary cultures and found that the compounds induced the effect with different timing. This study provides the first insights into the binding kinetics of arylpiperazine-based 5-HT7R ligands that can be helpful to design new 5-HT7R ligands with fine-tuning of the kinetic profile.
Collapse
Affiliation(s)
- Eduardo Penna
- Department of Biology, University of Naples Federico II, via Cintia 26, 80126 Naples, Italy
- Biofordrug srl, via Dante 99, 70019 Triggiano (Bari), Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, via Cintia 26, 80126 Naples, Italy
| | - Carla Perrone-Capano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, National Research Council (CNR), via Pietro Castellino 111, 80131 Naples, Italy
| | - Andrzej J. Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
38
|
Kinetic intracellular assay measures compound binding kinetics at intracellular targets within living cells. FUTURE DRUG DISCOVERY 2021. [DOI: 10.4155/fdd-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Kokh DB, Wade RC. G Protein-Coupled Receptor-Ligand Dissociation Rates and Mechanisms from τRAMD Simulations. J Chem Theory Comput 2021; 17:6610-6623. [PMID: 34495672 DOI: 10.1021/acs.jctc.1c00641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
There is a growing appreciation of the importance of drug-target binding kinetics for lead optimization. For G protein-coupled receptors (GPCRs), which mediate signaling over a wide range of time scales, the drug dissociation rate is often a better predictor of in vivo efficacy than binding affinity, although it is more challenging to compute. Here, we assess the ability of the τ-Random Acceleration Molecular Dynamics (τRAMD) approach to reproduce relative residence times and reveal dissociation mechanisms and the effects of allosteric modulation for two important membrane-embedded drug targets: the β2-adrenergic receptor and the muscarinic acetylcholine receptor M2. The dissociation mechanisms observed in the relatively short RAMD simulations (in which molecular dynamics (MD) simulations are performed using an additional force with an adaptively assigned random orientation applied to the ligand) are in general agreement with much more computationally intensive conventional MD and metadynamics simulations. Remarkably, although decreasing the magnitude of the random force generally reduces the number of egress routes observed, the ranking of ligands by dissociation rate is hardly affected and agrees well with experiment. The simulations also reproduce changes in residence time due to allosteric modulation and reveal associated changes in ligand dissociation pathways.
Collapse
Affiliation(s)
- Daria B Kokh
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
40
|
Deganutti G, Atanasio S, Rujan RM, Sexton PM, Wootten D, Reynolds CA. Exploring Ligand Binding to Calcitonin Gene-Related Peptide Receptors. Front Mol Biosci 2021; 8:720561. [PMID: 34513925 PMCID: PMC8427520 DOI: 10.3389/fmolb.2021.720561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 01/31/2023] Open
Abstract
Class B1 G protein-coupled receptors (GPCRs) are important targets for many diseases, including cancer, diabetes, and heart disease. All the approved drugs for this receptor family are peptides that mimic the endogenous activating hormones. An understanding of how agonists bind and activate class B1 GPCRs is fundamental for the development of therapeutic small molecules. We combined supervised molecular dynamics (SuMD) and classic molecular dynamics (cMD) simulations to study the binding of the calcitonin gene-related peptide (CGRP) to the CGRP receptor (CGRPR). We also evaluated the association and dissociation of the antagonist telcagepant from the extracellular domain (ECD) of CGRPR and the water network perturbation upon binding. This study, which represents the first example of dynamic docking of a class B1 GPCR peptide, delivers insights on several aspects of ligand binding to CGRPR, expanding understanding of the role of the ECD and the receptor-activity modifying protein 1 (RAMP1) on agonist selectivity.
Collapse
Affiliation(s)
- Giuseppe Deganutti
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Silvia Atanasio
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Roxana-Maria Rujan
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | |
Collapse
|
41
|
Suchankova A, Harris M, Ladds G. Measuring the rapid kinetics of receptor-ligand interactions in live cells using NanoBRET. Methods Cell Biol 2021; 166:1-14. [PMID: 34752328 DOI: 10.1016/bs.mcb.2021.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The importance of receptor-ligand binding kinetics has often been overlooked during drug development, however, over the past decade it has become increasingly clear that a better understanding of the kinetic parameters is crucial for fully evaluating pharmacological effects of a drug. One technique enabling us to measure the real-time kinetics of receptor-ligand interactions in live cells is NanoBRET, which is a bioluminescence resonance energy transfer (BRET)-based assay that uses Nano luciferase. The assay described here allows the measurement of kinetic parameters of a fluorescent ligand and an unlabeled ligand binding to the same place at the receptor, as well as monitoring the effects of another compound like an allosteric modulator on the ligand binding.
Collapse
Affiliation(s)
- Anna Suchankova
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
42
|
Hoare SRJ. The Problems of Applying Classical Pharmacology Analysis to Modern In Vitro Drug Discovery Assays: Slow Binding Kinetics and High Target Concentration. SLAS DISCOVERY 2021; 26:835-850. [PMID: 34112012 DOI: 10.1177/24725552211019653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The analysis framework used to quantify drug potency in vitro (e.g., Kd or Ki) was initially developed for classical pharmacology bioassays, for example, organ bath experiments testing moderate-affinity natural products. Modern drug discovery can infringe the assumptions of the classical pharmacology analysis equations, owing to the reduction of assay volume in miniaturization, target overexpression, and the increase of compound-target affinity in medicinal chemistry. These assumptions are that (1) the compound concentration greatly exceeds the target concentration (i.e., minimal ligand depletion), and (2) the compound is at equilibrium with the receptor (i.e., rapid ligand binding kinetics). Unappreciated infringement of these assumptions can lead to substantial underestimation of compound affinity, which negatively impacts the drug discovery process, from early-stage lead optimization to prediction of human dosing. This study evaluates the real-world impact of these factors on the target interaction assays used in drug discovery using literature examples, database searches, and simulations. The ranges of compound affinity and the assay types that are prone to depletion and equilibration artifacts are identified. Importantly, the highest-affinity compounds, usually the highest value chemical matter in drug discovery, are the most affected. Methods and simulation tools are provided to enable investigators to evaluate, manage, and minimize depletion or equilibration artifacts. This study enables the correct application of pharmacological data analysis to accurately quantify affinity using modern drug discovery assay technology.
Collapse
|
43
|
Goulding J, Mistry SJ, Soave M, Woolard J, Briddon SJ, White CW, Kellam B, Hill SJ. Subtype selective fluorescent ligands based on ICI 118,551 to study the human β2-adrenoceptor in CRISPR/Cas9 genome-edited HEK293T cells at low expression levels. Pharmacol Res Perspect 2021; 9:e00779. [PMID: 34003582 PMCID: PMC8130569 DOI: 10.1002/prp2.779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
Fluorescent ligand technologies have proved to be powerful tools to improve our understanding of ligand‐receptor interactions. Here we have characterized a small focused library of nine fluorescent ligands based on the highly selective β2‐adrenoceptor (β2AR) antagonist ICI 118,551. The majority of fluorescent ICI 118,551 analogs had good affinity for the β2AR (pKD >7.0) with good selectivity over the β1AR (pKD <6.0). The most potent and selective ligands being 8c (ICI 118,551‐Gly‐Ala‐BODIPY‐FL‐X; β2AR pKD 7.48), 9c (ICI 118,551‐βAla‐βAla‐BODIPY‐FL‐X; β2AR pKD 7.48), 12a (ICI 118,551‐PEG‐BODIPY‐X‐630/650; β2AR pKD 7.56), and 12b (ICI 118,551‐PEG‐BODIPY‐FL; β2AR pKD 7.42). 9a (ICI 118,551‐βAla‐βAla‐BODIPY‐X‐630/650) had the highest affinity at recombinant β2ARs (pKD 7.57), but also exhibited significant binding affinity to the β1AR (pKD 6.69). Nevertheless, among the red fluorescent ligands, 9a had the best imaging characteristics in recombinant HEK293 T cells and labeling was mostly confined to the cell surface. In contrast, 12a showed the highest propensity to label intracellular β2ARs in HEK293 T cell expressing exogenous β2ARs. This suggests that a combination of the polyethylene glycol (PEG) linker and the BODIPY‐X‐630/650 makes this ICI 118,551 derivative particularly susceptible to crossing the cell membrane to access the intracellular β2ARs. We have also used these ligands in combination with CRISPR/Cas9 genome‐edited HEK293 T cells to undertake for the first time real‐time ligand binding to native HEK293 T β2ARs at low native receptor expression levels. These studies provided quantitative data on ligand‐binding characteristics but also allowed real‐time visualization of the ligand‐binding interactions in genome‐edited cells using NanoBRET luminescence imaging.
Collapse
Affiliation(s)
- Joëlle Goulding
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Sarah J Mistry
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Carl W White
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
44
|
Killoran MP, Levin S, Boursier ME, Zimmerman K, Hurst R, Hall MP, Machleidt T, Kirkland TA, Friedman Ohana R. An Integrated Approach toward NanoBRET Tracers for Analysis of GPCR Ligand Engagement. Molecules 2021; 26:molecules26102857. [PMID: 34065854 PMCID: PMC8151276 DOI: 10.3390/molecules26102857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/22/2023] Open
Abstract
Gaining insight into the pharmacology of ligand engagement with G-protein coupled receptors (GPCRs) under biologically relevant conditions is vital to both drug discovery and basic research. NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) monitoring competitive binding between fluorescent tracers and unmodified test compounds has emerged as a robust and sensitive method to quantify ligand engagement with specific GPCRs genetically fused to NanoLuc luciferase or the luminogenic HiBiT peptide. However, development of fluorescent tracers is often challenging and remains the principal bottleneck for this approach. One way to alleviate the burden of developing a specific tracer for each receptor is using promiscuous tracers, which is made possible by the intrinsic specificity of BRET. Here, we devised an integrated tracer discovery workflow that couples machine learning-guided in silico screening for scaffolds displaying promiscuous binding to GPCRs with a blend of synthetic strategies to rapidly generate multiple tracer candidates. Subsequently, these candidates were evaluated for binding in a NanoBRET ligand-engagement screen across a library of HiBiT-tagged GPCRs. Employing this workflow, we generated several promiscuous fluorescent tracers that can effectively engage multiple GPCRs, demonstrating the efficiency of this approach. We believe that this workflow has the potential to accelerate discovery of NanoBRET fluorescent tracers for GPCRs and other target classes.
Collapse
Affiliation(s)
- Michael P. Killoran
- Promega Corporation, 2800 Woods Hollow, Fitchburg, WI 53711, USA; (M.P.K.); (M.E.B.); (K.Z.); (R.H.); (M.P.H.); (T.M.)
| | - Sergiy Levin
- Promega Biosciences LLC, 277 Granada Drive, San Luis Obispo, CA 93401, USA; (S.L.); (T.A.K.)
| | - Michelle E. Boursier
- Promega Corporation, 2800 Woods Hollow, Fitchburg, WI 53711, USA; (M.P.K.); (M.E.B.); (K.Z.); (R.H.); (M.P.H.); (T.M.)
| | - Kristopher Zimmerman
- Promega Corporation, 2800 Woods Hollow, Fitchburg, WI 53711, USA; (M.P.K.); (M.E.B.); (K.Z.); (R.H.); (M.P.H.); (T.M.)
| | - Robin Hurst
- Promega Corporation, 2800 Woods Hollow, Fitchburg, WI 53711, USA; (M.P.K.); (M.E.B.); (K.Z.); (R.H.); (M.P.H.); (T.M.)
| | - Mary P. Hall
- Promega Corporation, 2800 Woods Hollow, Fitchburg, WI 53711, USA; (M.P.K.); (M.E.B.); (K.Z.); (R.H.); (M.P.H.); (T.M.)
| | - Thomas Machleidt
- Promega Corporation, 2800 Woods Hollow, Fitchburg, WI 53711, USA; (M.P.K.); (M.E.B.); (K.Z.); (R.H.); (M.P.H.); (T.M.)
| | - Thomas A. Kirkland
- Promega Biosciences LLC, 277 Granada Drive, San Luis Obispo, CA 93401, USA; (S.L.); (T.A.K.)
| | - Rachel Friedman Ohana
- Promega Corporation, 2800 Woods Hollow, Fitchburg, WI 53711, USA; (M.P.K.); (M.E.B.); (K.Z.); (R.H.); (M.P.H.); (T.M.)
- Correspondence: ; Tel.: +1-608-274-1181
| |
Collapse
|
45
|
Soave M, Stoddart LA, White CW, Kilpatrick LE, Goulding J, Briddon SJ, Hill SJ. Detection of genome-edited and endogenously expressed G protein-coupled receptors. FEBS J 2021; 288:2585-2601. [PMID: 33506623 PMCID: PMC8647918 DOI: 10.1111/febs.15729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and major targets for FDA-approved drugs. The ability to quantify GPCR expression and ligand binding characteristics in different cell types and tissues is therefore important for drug discovery. The advent of genome editing along with developments in fluorescent ligand design offers exciting new possibilities to probe GPCRs in their native environment. This review provides an overview of the recent technical advances employed to study the localisation and ligand binding characteristics of genome-edited and endogenously expressed GPCRs.
Collapse
Affiliation(s)
- Mark Soave
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Leigh A. Stoddart
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Carl W. White
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
- Harry Perkins Institute of Medical Research and Centre for Medical ResearchQEII Medical CentreThe University of Western AustraliaNedlandsAustralia
- Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia
| | - Laura E. Kilpatrick
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
- Division of Biomolecular Science and Medicinal ChemistrySchool of Pharmacy, Biodiscovery InstituteUniversity of NottinghamUK
| | - Joëlle Goulding
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Stephen J. Briddon
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| |
Collapse
|
46
|
Souza PCT, Limongelli V, Wu S, Marrink SJ, Monticelli L. Perspectives on High-Throughput Ligand/Protein Docking With Martini MD Simulations. Front Mol Biosci 2021; 8:657222. [PMID: 33855050 PMCID: PMC8039319 DOI: 10.3389/fmolb.2021.657222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/05/2021] [Indexed: 01/12/2023] Open
Abstract
Molecular docking is central to rational drug design. Current docking techniques suffer, however, from limitations in protein flexibility and solvation models and by the use of simplified scoring functions. All-atom molecular dynamics simulations, on the other hand, feature a realistic representation of protein flexibility and solvent, but require knowledge of the binding site. Recently we showed that coarse-grained molecular dynamics simulations, based on the most recent version of the Martini force field, can be used to predict protein/ligand binding sites and pathways, without requiring any a priori information, and offer a level of accuracy approaching all-atom simulations. Given the excellent computational efficiency of Martini, this opens the way to high-throughput drug screening based on dynamic docking pipelines. In this opinion article, we sketch the roadmap to achieve this goal.
Collapse
Affiliation(s)
- Paulo C. T. Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
- PharmCADD, Busan, South Korea
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, Lyon, France
| | - Vittorio Limongelli
- Faculty of Biomedical Sciences, Institute of Computational Science, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Sangwook Wu
- PharmCADD, Busan, South Korea
- Department of Physics, Pukyong National University, Busan, South Korea
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, Lyon, France
| |
Collapse
|
47
|
Comeo E, Trinh P, Nguyen AT, Nowell CJ, Kindon ND, Soave M, Stoddart LA, White JM, Hill SJ, Kellam B, Halls ML, May LT, Scammells PJ. Development and Application of Subtype-Selective Fluorescent Antagonists for the Study of the Human Adenosine A 1 Receptor in Living Cells. J Med Chem 2021; 64:6670-6695. [PMID: 33724031 DOI: 10.1021/acs.jmedchem.0c02067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The adenosine A1 receptor (A1AR) is a G-protein-coupled receptor (GPCR) that provides important therapeutic opportunities for a number of conditions including congestive heart failure, tachycardia, and neuropathic pain. The development of A1AR-selective fluorescent ligands will enhance our understanding of the subcellular mechanisms underlying A1AR pharmacology facilitating the development of more efficacious and selective therapies. Herein, we report the design, synthesis, and application of a novel series of A1AR-selective fluorescent probes based on 8-functionalized bicyclo[2.2.2]octylxanthine and 3-functionalized 8-(adamant-1-yl) xanthine scaffolds. These fluorescent conjugates allowed quantification of kinetic and equilibrium ligand binding parameters using NanoBRET and visualization of specific receptor distribution patterns in living cells by confocal imaging and total internal reflection fluorescence (TIRF) microscopy. As such, the novel A1AR-selective fluorescent antagonists described herein can be applied in conjunction with a series of fluorescence-based techniques to foster understanding of A1AR molecular pharmacology and signaling in living cells.
Collapse
Affiliation(s)
- Eleonora Comeo
- Medicinal Chemistry, Monash University, Parkville, Victoria 3052, Australia.,Division of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Phuc Trinh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Anh T Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nicholas D Kindon
- Division of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Leigh A Stoddart
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Jonathan M White
- School of Chemistry and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Barrie Kellam
- Division of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
48
|
Yusuf SM, Zhang F, Zeng M, Li M. DeepPPF: A deep learning framework for predicting protein family. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.11.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Deganutti G, Barkan K, Preti B, Leuenberger M, Wall M, Frenguelli BG, Lochner M, Ladds G, Reynolds CA. Deciphering the Agonist Binding Mechanism to the Adenosine A1 Receptor. ACS Pharmacol Transl Sci 2021; 4:314-326. [PMID: 33615181 PMCID: PMC7887845 DOI: 10.1021/acsptsci.0c00195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 12/21/2022]
Abstract
Despite being among the most characterized G protein-coupled receptors (GPCRs), adenosine receptors (ARs) have always been a difficult target in drug design. To date, no agonist other than the natural effector and the diagnostic regadenoson has been approved for human use. Recently, the structure of the adenosine A1 receptor (A1R) was determined in the active, Gi protein complexed state; this has important repercussions for structure-based drug design. Here, we employed supervised molecular dynamics simulations and mutagenesis experiments to extend the structural knowledge of the binding of selective agonists to A1R. Our results identify new residues involved in the association and dissociation pathway, they suggest the binding mode of N6-cyclopentyladenosine (CPA) related ligands, and they highlight the dramatic effect that chemical modifications can have on the overall binding mechanism, paving the way for the rational development of a structure-kinetics relationship of A1R agonists.
Collapse
Affiliation(s)
- Giuseppe Deganutti
- Centre
for Sport, Exercise and Life Sciences, Faculty of Health and Life
Sciences, Coventry University, Alison Gingell Building, Coventry CV1 5FB, U.K.
| | - Kerry Barkan
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, U.K.
| | - Barbara Preti
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Michele Leuenberger
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Mark Wall
- School
of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Bruno G. Frenguelli
- School
of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Martin Lochner
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Graham Ladds
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, U.K.
| | - Christopher A. Reynolds
- Centre
for Sport, Exercise and Life Sciences, Faculty of Health and Life
Sciences, Coventry University, Alison Gingell Building, Coventry CV1 5FB, U.K.
| |
Collapse
|
50
|
Dengler DG, Sun Q, Holleran J, Pollari S, Beutel J, Brown BT, Shinoki Iwaya A, Ardecky R, Harikumar KG, Miller LJ, Sergienko EA. Development of a Testing Funnel for Identification of Small-Molecule Modulators Targeting Secretin Receptors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:1-16. [PMID: 32749201 PMCID: PMC8278649 DOI: 10.1177/2472555220945284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The secretin receptor (SCTR), a prototypical class B G protein-coupled receptor (GPCR), exerts its effects mainly by activating Gαs proteins upon binding of its endogenous peptide ligand secretin. SCTRs can be found in a variety of tissues and organs across species, including the pancreas, stomach, liver, heart, lung, colon, kidney, and brain. Beyond that, modulation of SCTR-mediated signaling has therapeutic potential for the treatment of multiple diseases, such as heart failure, obesity, and diabetes. However, no ligands other than secretin and its peptide analogs have been described to regulate SCTRs, probably due to inherent challenges in family B GPCR drug discovery. Here we report creation of a testing funnel that allowed targeted detection of SCTR small-molecule activators. Pursuing the strategy to identify positive allosteric modulators (PAMs), we established a unique primary screening assay employing a mixture of three orthosteric stimulators that was compared in a screening campaign testing 12,000 small-molecule compounds. Beyond that, we developed a comprehensive set of secondary assays, such as a radiolabel-free target engagement assay and a NanoBiT (NanoLuc Binary Technology)-based approach to detect β-arrestin-2 recruitment, all feasible in a high-throughput environment as well as capable of profiling ligands and hits regarding their effect on binding and receptor function. This combination of methods enabled the discovery of five promising scaffolds, four of which have been validated and further characterized with respect to their allosteric activities. We propose that our results may serve as starting points for developing the first in vivo active small molecules targeting SCTRs.
Collapse
Affiliation(s)
- Daniela G. Dengler
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Qing Sun
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - John Holleran
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Sirkku Pollari
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jannis Beutel
- Department of Chemistry and Pharmacy, Chemikum, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Brock T. Brown
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Aki Shinoki Iwaya
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Robert Ardecky
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, USA
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, USA
| | - Eduard A. Sergienko
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|