1
|
Abstract
Eating behaviours are determined by the integration of interoceptive and environmental inputs. During pregnancy, numerous physiological adaptations take place in the maternal organism to provide an adequate environment for embryonic growth. Among them, whole-body physiological remodelling directly influences eating patterns, commonly causing notable taste perception alterations, food aversions and cravings. Recurrent food cravings for and compulsive eating of highly palatable food can contribute to the development and maintenance of gestational overweight and obesity with potential adverse health consequences for the offspring. Although much is known about how maternal eating habits influence offspring health, the mechanisms that underlie changes in taste perception and food preference during pregnancy (which guide and promote feeding) are only just starting to be elucidated. Given the limited and diffuse understanding of the neurobiology of gestational eating patterns, the aim of this Review is to compile, integrate and discuss the research conducted on this topic in both experimental models and humans. This article sheds light on the mechanisms that drive changes in female feeding behaviours during distinct physiological states. Understanding these processes is crucial to improve gestational parent health and decrease the burden of metabolic and food-related diseases in future generations.
Collapse
Affiliation(s)
- Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Boccalaro IL, Schwerdel C, Cristiá-Lara L, Fritschy JM, Rubi L. Dopamine depletion induces neuron-specific alterations of GABAergic transmission in the mouse striatum. Eur J Neurosci 2020; 52:3353-3374. [PMID: 32599671 DOI: 10.1111/ejn.14886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
Lack of dopamine (DA) in the striatum and the consequential dysregulation of thalamocortical circuits are major causes of motor impairments in Parkinson's disease. The striatum receives multiple cortical and subcortical afferents. Its role in movement control and motor skills learning is regulated by DA from the nigrostriatal pathway. In Parkinson's disease, DA loss affects striatal network activity and induces a functional imbalance of its output pathways, impairing thalamocortical function. Striatal projection neurons are GABAergic and form two functionally antagonistic pathways: the direct pathway, originating from DA receptor type 1-expressing medium spiny neurons (D1 R-MSN), and the indirect pathway, from D2 R-MSN. Here, we investigated whether DA depletion in mouse striatum also affects GABAergic function. We recorded GABAergic miniature IPSCs (mIPSC) and tonic inhibition from D1 R- and D2 R-MSN and used immunohistochemical labeling to study GABAA R function and subcellular distribution in DA-depleted and control mice. We observed slower decay kinetics and increased tonic inhibition in D1 R-MSN, while D2 R-MSN had increased mIPSC frequency after DA depletion. Perisomatic synapses containing the GABAA R subunits α1 or α2 were not affected, but there was a strong decrease in non-synaptic GABAA Rs containing these subunits, suggesting altered receptor trafficking. To broaden these findings, we also investigated GABAA Rs in GABAergic and cholinergic interneurons and found cell type-specific alterations in receptor distribution, likely reflecting changes in connectivity. Our results reveal that chronic DA depletion alters striatal GABAergic transmission, thereby affecting cellular and circuit activity. These alterations either result from pathological changes or represent a compensatory mechanism to counteract imbalance of output pathways.
Collapse
Affiliation(s)
- Ida Luisa Boccalaro
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Cornelia Schwerdel
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Lena Rubi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Lleó A, Núñez-Llaves R, Alcolea D, Chiva C, Balateu-Paños D, Colom-Cadena M, Gomez-Giro G, Muñoz L, Querol-Vilaseca M, Pegueroles J, Rami L, Lladó A, Molinuevo JL, Tainta M, Clarimón J, Spires-Jones T, Blesa R, Fortea J, Martínez-Lage P, Sánchez-Valle R, Sabidó E, Bayés À, Belbin O. Changes in Synaptic Proteins Precede Neurodegeneration Markers in Preclinical Alzheimer's Disease Cerebrospinal Fluid. Mol Cell Proteomics 2019; 18:546-560. [PMID: 30606734 PMCID: PMC6398205 DOI: 10.1074/mcp.ra118.001290] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
A biomarker of synapse loss, an early event in Alzheimer's disease (AD) pathophysiology that precedes neuronal death and symptom onset, would be a much-needed prognostic biomarker. With direct access to the brain interstitial fluid, the cerebrospinal fluid (CSF) is a potential source of synapse-derived proteins. In this study, we aimed to identify and validate novel CSF biomarkers of synapse loss in AD. Discovery: Combining shotgun proteomics of the CSF with an exhaustive search of the literature and public databases, we identified 251 synaptic proteins, from which we selected 22 for further study. Verification: Twelve proteins were discarded because of poor detection by Selected Reaction Monitoring (SRM). We confirmed the specific expression of 9 of the remaining proteins (Calsynytenin-1, GluR2, GluR4, Neurexin-2A, Neurexin-3A, Neuroligin-2, Syntaxin-1B, Thy-1, Vamp-2) at the human synapse using Array Tomography microscopy and biochemical fractionation methods. Exploration: Using SRM, we monitored these 9 synaptic proteins (20 peptides) in a cohort of CSF from cognitively normal controls and subjects in the pre-clinical and clinical AD stages (n = 80). Compared with controls, peptides from 8 proteins were elevated 1.3 to 1.6-fold (p < 0.04) in prodromal AD patients. Validation: Elevated levels of a GluR4 peptide at the prodromal stage were replicated (1.3-fold, p = 0.04) in an independent cohort (n = 60). Moreover, 7 proteins were reduced at preclinical stage 1 (0.6 to 0.8-fold, p < 0.04), a finding that was replicated (0.7 to 0.8-fold, p < 0.05) for 6 proteins in a third cohort (n = 38). In a cross-cohort meta-analysis, 6 synaptic proteins (Calsyntenin-1, GluR4, Neurexin-2A, Neurexin-3A, Syntaxin-1B and Thy-1) were reduced 0.8-fold (p < 0.05) in preclinical AD, changes that precede clinical symptoms and CSF markers of neurodegeneration. Therefore, these proteins could have clinical value for assessing disease progression, especially in preclinical stages of AD.
Collapse
Affiliation(s)
- Alberto Lleó
- From the ‡Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Raúl Núñez-Llaves
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| | - Daniel Alcolea
- From the ‡Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Cristina Chiva
- ‖Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona
- **University Pompeu Fabra, 08003 Barcelona
| | | | - Martí Colom-Cadena
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| | - Gemma Gomez-Giro
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| | - Laia Muñoz
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| | - Marta Querol-Vilaseca
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| | - Jordi Pegueroles
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| | - Lorena Rami
- ‡‡Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08015 Barcelona, Spain
| | - Albert Lladó
- ‡‡Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08015 Barcelona, Spain
| | - José L Molinuevo
- ‡‡Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08015 Barcelona, Spain
| | - Mikel Tainta
- §§Department of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, 20009 San Sebastian, Spain
- ¶¶Servicio de Neurologia, Organización Sanitaria Integrada Goierri-Alto Urola, Osakidetza, Zumárraga, España
| | - Jordi Clarimón
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| | - Tara Spires-Jones
- ‖‖Centre for Discovery Brain Sciences and UK Dementia Research Institute, University of Edinburgh EH8 9JZ, UK
| | - Rafael Blesa
- From the ‡Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Juan Fortea
- From the ‡Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Pablo Martínez-Lage
- §§Department of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, 20009 San Sebastian, Spain
| | - Raquel Sánchez-Valle
- ‡‡Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08015 Barcelona, Spain
| | - Eduard Sabidó
- ‖Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona
- **University Pompeu Fabra, 08003 Barcelona
| | - Àlex Bayés
- ***Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025, Barcelona, Spain
- ‡‡‡Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Olivia Belbin
- §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- ¶Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025Barcelona, Spain
| |
Collapse
|
4
|
Skilbeck KJ, Johnston GA, Hinton T. Long-lasting effects of early-life intervention in mice on adulthood behaviour, GABA A receptor subunit expression and synaptic clustering. Pharmacol Res 2018; 128:179-189. [DOI: 10.1016/j.phrs.2017.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/21/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023]
|
5
|
Systems Pharmacological Approach to the Effect of Bulsu-san Promoting Parturition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7236436. [PMID: 29234425 PMCID: PMC5682096 DOI: 10.1155/2017/7236436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022]
Abstract
Bulsu-san (BSS) has been commonly used in oriental medicine for pregnant women in East Asia. The purpose of this research was to elucidate the effect of BSS on ease of parturition using a systems-level in silico analytic approach. Research results show that BSS is highly connected to the parturition related pathways, biological processes, and organs. There were numerous interactions between most compounds of BSS and multiple target genes, and this was confirmed using herb-compound-target network, target-pathway network, and gene ontology analysis. Furthermore, the mRNA expression of relevant target genes of BSS was elevated significantly in related organ tissues, such as those of the uterus, placenta, fetus, hypothalamus, and pituitary gland. This study used a network analytical approach to demonstrate that Bulsu-san (BSS) is closely related to the parturition related pathways, biological processes, and organs. It is meaningful that this systems-level network analysis result strengthens the basis of clinical applications of BSS on ease of parturition.
Collapse
|
6
|
Rozycka A, Liguz-Lecznar M. The space where aging acts: focus on the GABAergic synapse. Aging Cell 2017; 16:634-643. [PMID: 28497576 PMCID: PMC5506442 DOI: 10.1111/acel.12605] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2017] [Indexed: 12/19/2022] Open
Abstract
As it was established that aging is not associated with massive neuronal loss, as was believed in the mid‐20th Century, scientific interest has addressed the influence of aging on particular neuronal subpopulations and their synaptic contacts, which constitute the substrate for neural plasticity. Inhibitory neurons represent the most complex and diverse group of neurons, showing distinct molecular and physiological characteristics and possessing a compelling ability to control the physiology of neural circuits. This review focuses on the aging of GABAergic neurons and synapses. Understanding how aging affects synapses of particular neuronal subpopulations may help explain the heterogeneity of aging‐related effects. We reviewed the literature concerning the effects of aging on the numbers of GABAergic neurons and synapses as well as aging‐related alterations in their presynaptic and postsynaptic components. Finally, we discussed the influence of those changes on the plasticity of the GABAergic system, highlighting our results concerning aging in mouse somatosensory cortex and linking them to plasticity impairments and brain disorders. We posit that aging‐induced impairments of the GABAergic system lead to an inhibitory/excitatory imbalance, thereby decreasing neuron's ability to respond with plastic changes to environmental and cellular challenges, leaving the brain more vulnerable to cognitive decline and damage by synaptopathic diseases.
Collapse
Affiliation(s)
- Aleksandra Rozycka
- Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology; Polish Academy of Sciences; 3 Pasteur Street Warsaw 02-093 Poland
| | - Monika Liguz-Lecznar
- Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology; Polish Academy of Sciences; 3 Pasteur Street Warsaw 02-093 Poland
| |
Collapse
|
7
|
Olza-Fernández I, Marín Gabriel MA, Gil-Sanchez A, Garcia-Segura LM, Arevalo MA. Neuroendocrinology of childbirth and mother-child attachment: the basis of an etiopathogenic model of perinatal neurobiological disorders. Front Neuroendocrinol 2014; 35:459-72. [PMID: 24704390 DOI: 10.1016/j.yfrne.2014.03.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022]
Abstract
This review focuses on the neuroendocrine mechanisms in the mother and the newborn that are involved in the generation and consolidation of mother-child attachment. The role that different hormones and neurotransmitters play on the regulation of these mechanisms during parturition, the immediate postpartum period and lactation is discussed. Interferences in the initiation of mother-child attachment may have potential long-term effects for the behavior and affection of the newborn. Therefore, the possible consequences of alterations in the physiological neuroendocrine mechanisms of attachment, caused by elective Cesarean section, intrapartum hormonal manipulations, preterm delivery, mother-infant postpartum separation and bottle-feeding instead of breastfeeding are also discussed.
Collapse
Affiliation(s)
- Ibone Olza-Fernández
- Department of Psychiatry, Autonomous University of Madrid, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Alfonso Gil-Sanchez
- Unidad Docente de Salud Mental de la Región de Murcia, Hospital General Universitario Santa María del Rosell de Cartagena, Murcia, Spain
| | | | | |
Collapse
|
8
|
Fritschy JM, Panzanelli P. GABAAreceptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur J Neurosci 2014; 39:1845-65. [DOI: 10.1111/ejn.12534] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH; Zurich Switzerland
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini; University of Turin; Turin Italy
| |
Collapse
|
9
|
Brunton PJ, Russell JA, Hirst JJ. Allopregnanolone in the brain: protecting pregnancy and birth outcomes. Prog Neurobiol 2014; 113:106-36. [PMID: 24012715 DOI: 10.1016/j.pneurobio.2013.08.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/12/2013] [Accepted: 08/25/2013] [Indexed: 01/09/2023]
Abstract
A successful pregnancy requires multiple adaptations in the mother's brain that serve to optimise foetal growth and development, protect the foetus from adverse prenatal programming and prevent premature delivery of the young. Pregnancy hormones induce, organise and maintain many of these adaptations. Steroid hormones play a critical role and of particular importance is the progesterone metabolite and neurosteroid, allopregnanolone. Allopregnanolone is produced in increasing amounts during pregnancy both in the periphery and in the maternal and foetal brain. This review critically examines a role for allopregnanolone in both the maternal and foetal brain during pregnancy and development in protecting pregnancy and birth outcomes, with particular emphasis on its role in relation to stress exposure at this time. Late pregnancy is associated with suppressed stress responses. Thus, we begin by considering what is known about the central mechanisms in the maternal brain, induced by allopregnanolone, that protect the foetus(es) from exposure to harmful levels of maternal glucocorticoids as a result of stress during pregnancy. Next we discuss the central mechanisms that prevent premature secretion of oxytocin and consider a role for allopregnanolone in minimising the risk of preterm birth. Allopregnanolone also plays a key role in the foetal brain, where it promotes development and is neuroprotective. Hence we review the evidence about disruption to neurosteroid production in pregnancy, through prenatal stress or other insults, and the immediate and long-term adverse consequences for the offspring. Finally we address whether progesterone or allopregnanolone treatment can rescue some of these deficits in the offspring.
Collapse
Affiliation(s)
- Paula J Brunton
- Division of Neurobiology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, UK.
| | - John A Russell
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Scotland, UK
| | - Jonathan J Hirst
- Mothers and Babies Research Centre, School of Biomedical Sciences, University of Newcastle, Newcastle, N.S.W., Australia
| |
Collapse
|
10
|
Jo YH, Boué-Grabot E. Interplay between ionotropic receptors modulates inhibitory synaptic strength. Commun Integr Biol 2012; 4:706-9. [PMID: 22446533 DOI: 10.4161/cib.17291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The essence of neuronal function is to generate outputs in response to synaptic potentials. Synaptic integration at a synapse determines neuronal outputs in the CNS. In a recent study, we describe that excitatory and inhibitory transmitter-gated channels physically crosstalk each other at the cellular and molecular level. Increased membrane expression of ATP P2X4 receptors by using an interference peptide competing with the intracellular endocytosis motif enhances neuronal excitability, which is further enhanced by reciprocal interaction between post-synaptic ATP- and GABA-gated channels. Molecular interaction is supported by experiments of co-immunoprecipitation and mutagenesis of P2X4 subunit. Two amino acids in the intracellular carboxyl tail of P2X4 subunit appears to be responsible for this crosstalk. Our recent study provides molecular and electrophysiological evidence for physical interaction between excitatory and inhibitory receptors that appears to be crucial in determining synaptic strength at central synapses.
Collapse
|
11
|
Estrous cycle variations in GABA(A) receptor phosphorylation enable rapid modulation by anabolic androgenic steroids in the medial preoptic area. Neuroscience 2012; 226:397-410. [PMID: 22989919 DOI: 10.1016/j.neuroscience.2012.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/31/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
Abstract
Anabolic androgenic steroids (AAS), synthetic testosterone derivatives that are used for ergogenic purposes, alter neurotransmission and behaviors mediated by GABA(A) receptors. Some of these effects may reflect direct and rapid action of these synthetic steroids at the receptor. The ability of other natural allosteric steroid modulators to alter GABA(A) receptor-mediated currents is dependent upon the phosphorylation state of the receptor complex. Here we show that phosphorylation of the GABA(A) receptor complex immunoprecipitated by β(2)/β(3) subunit-specific antibodies from the medial preoptic area (mPOA) of the mouse varies across the estrous cycle; with levels being significantly lower in estrus. Acute exposure to the AAS, 17α-methyltestosterone (17α-MeT), had no effect on the amplitude or kinetics of inhibitory postsynaptic currents in the mPOA of estrous mice when phosphorylation was low, but increased the amplitude of these currents from mice in diestrus, when it was high. Inclusion of the protein kinase C (PKC) inhibitor, calphostin, in the recording pipette eliminated the ability of 17α-MeT to enhance currents from diestrous animals, suggesting that PKC-receptor phosphorylation is critical for the allosteric modulation elicited by AAS during this phase. In addition, a single injection of 17α-MeT was found to impair an mPOA-mediated behavior (nest building) in diestrus, but not in estrus. PKC is known to target specific serine residues in the β(3) subunit of the GABA(A) receptor. Although phosphorylation of these β(3) serine residues showed a similar profile across the cycle, as did phosphoserine in mPOA lysates immunoprecipitated with β2/β3 antibody (lower in estrus than in diestrus or proestrus), the differences were not significant. These data suggest that the phosphorylation state of the receptor complex regulates both the ability of AAS to modulate receptor function in the mPOA and the expression of a simple mPOA-dependent behavior through a PKC-dependent mechanism that involves the β(3) subunit and other sites within the GABA(A) receptor complex.
Collapse
|
12
|
Abstract
Synaptic activity in magnocellular neurosecretory neurones is influenced by the retrograde (i.e. somatodendritic) release of vasopressin, oxytocin and cannabinoids (CBs). For oxytocin neurones, oxytocin exerts constitutive effects on pre-synaptic activity through its ability to release CBs post-synaptically. In the present study, we examined evoked inhibitory post-synaptic currents (eIPSCs) and spontaneous inhibitory post-synaptic currents (sIPSCs) in identified vasopressin (VP) neurones in coronal slices from virgin rats to determine: (i) the extent to which CBs may also tonically modulate VP synaptic activity; and (ii) to determine whether depolarisation-induced suppression of inhibition was present in VP neurones, and if so, whether it was mediated by VP or CBs. The CB1 antagonists AM251 (1 μm) and SR14171 (1 μm) consistently increased the frequency of sIPSCs in VP neurones without affecting their amplitude, suggesting a tonic CB presence. This effect on frequency was independent of action potential activity, and blocked by chelating intracellular calcium with 10 mm ethylene glycol tetraacetic acid (EGTA). AM251 also increased the amplitude of eIPSCs and decreased the paired-pulse ratio (PPR) in VP neurones-effects that were completely blocked with even low (1 mm EGTA) internal calcium chelation. Bouts of evoked firing of VP neurones consistently suppressed sIPSCs but had no effect on eIPSCs or the PPR. This depolarisation-induced suppression of IPSCs was reduced by AM251, and was totally blocked by 10 μm of the mixed vasopressin/oxytocin antagonist, Manning compound. We then tested the effect of vasopressin on IPSCs at the same time as blocking CB1 receptors. Vasopressin (10-100 nm) inhibited sIPSC frequency but had no effect on sIPSC or eIPSC amplitudes, or on the PPR, in the presence of AM251. Taken together, these results suggest a tonic, pre-synaptic inhibitory modulation of IPSCs in VP neurones by CBs that is largely dependent on post-synaptic calcium, and an inhibitory effect of VP on IPSCs that is independent of CB release.
Collapse
Affiliation(s)
- L Wang
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|
13
|
Chun SK, Jo YH. Loss of leptin receptors on hypothalamic POMC neurons alters synaptic inhibition. J Neurophysiol 2010; 104:2321-8. [PMID: 20844117 DOI: 10.1152/jn.00371.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adaptive changes in hypothalamic neural circuitry occur in response to alterations in nutritional status. This plasticity at hypothalamic synapses contributes to the control of food intake and body weight. Here we show that genetic ablation of leptin receptor gene expression in pro-opiomelanocortin (POMC) neurons (POMC: Lepr(-/-) GFP) induces alterations at synapses on POMC neurons in the arcuate nucleus of the hypothalamus. Our studies reveal that POMC: Lepr(-/-) GFP mice have decreased frequency of spontaneous GABAergic, but not glutamatergic, postsynaptic currents at synapses on POMC neurons. The decay time course of GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) onto POMC neurons in POMC: Lepr(-/-) GFP mice is significantly slower than that of sIPSCs in control animals. While analysis of individual miniature IPSCs shows lowered baseline activity, this tonic decrease is associated with an increased amplitude and slow decay of mini-IPSCs onto POMC neurons in POMC: Lepr(-/-) GFP mice. Moreover, POMC neurons receive greater total ionic flux per GABAergic event in the absence of leptin receptor signaling. In addition, treatment with the alpha 3 subunit-containing GABA(A) receptor modulator SB-205384 enhances GABAergic transmission only onto POMC neurons in POMC: Lepr(-/-) GFP mice. Single-cell RT-PCR analysis further supports the expression of the alpha 3 subunit of the GABA(A) receptor on POMC neurons in POMC: Lepr(-/-) GFP mice. Finally, the responses to the GABA(A) receptor agonist isoguvacine of POMC neurons are significantly smaller in POMC: Lepr(-/-) GFP than in control animals. Therefore our present work demonstrates that loss of leptin signaling in POMC neurons induces synaptic alterations at POMC synapses that may play an essential role in energy homeostasis.
Collapse
Affiliation(s)
- Sung Kun Chun
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10467, USA
| | | |
Collapse
|
14
|
Armstrong WE, Wang L, Li C, Teruyama R. Performance, properties and plasticity of identified oxytocin and vasopressin neurones in vitro. J Neuroendocrinol 2010; 22:330-42. [PMID: 20210845 PMCID: PMC2910405 DOI: 10.1111/j.1365-2826.2010.01989.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neurohypophysial hormones oxytocin (OT) and vasopressin (VP) originate from hypothalamic neurosecretory cells in the paraventricular and supraoptic (SON) nuclei. The firing rate and pattern of action potentials arising from these neurones determine the timing and quantity of peripheral hormone release. We have used immunochemical identification of biocytin-filled SON neurones in hypothalamic slices in vitro to uncover differences between OT and VP neurones in membrane and synaptic properties, firing patterns, and plasticity during pregnancy and lactation. In this review, we summarise some recent findings from this approach: (i) VP neuronal excitability is influenced by slow (sDAP) and fast (fDAP) depolarising afterpotentials that underlie phasic bursting activity. The fDAP may relate to a transient receptor potential (TRP) channel, type melastatin (TRPM4 and/or TRPM5), both of which are immunochemically localised more to VP neurones, and especially, to their dendrites. Both TRPM4 and TRPM5 mRNAs are found in the SON, but single cell reverse transcriptase-polymerisation suggests that TRPM4 might be the more prominent channel. Phasic bursting in VP neurones is little influenced by spontaneous synaptic activity in slices, being shaped largely by intrinsic currents. (ii) The firing pattern of OT neurones ranges from irregular to continuous, with the coefficient of variation determined by randomly distributed, spontaneous GABAergic, inhibitory synaptic currents (sIPSCs). These sIPSCs are four- to five-fold more frequent in OT versus VP neurones, and much more frequent than spontaneous excitatory synaptic currents. (iii) Both cell types express Ca(2+)-dependent afterhyperpolarisations (AHPs), including an apamin-sensitive, medium duration AHP and a slower, apamin-insensitive AHP (sAHP). In OT neurones, both AHPs are enhanced during pregnancy and lactation. During pregnancy, the plasticity of the sAHP is blocked by antagonism of central OT receptors. AHP enhancement is mimicked by exposing slices from day 19 pregnant rats to OT and oestradiol, suggesting that central OT and sex steroids programme this plasticity during pregnancy by direct hypothalamic actions. In conclusion, the differences in VP and OT neuronal function are underlain by differences in both membrane and synaptic properties, and differentially modulated by reproductive state.
Collapse
Affiliation(s)
- W E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
15
|
Pisu MG, Mostallino MC, Dore R, Mura ML, Maciocco E, Russo E, De Sarro G, Serra M. Neuroactive steroids and GABAA receptor plasticity in the brain of the WAG/Rij rat, a model of absence epilepsy. J Neurochem 2008; 106:2502-14. [PMID: 18624910 DOI: 10.1111/j.1471-4159.2008.05538.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of neuroactive steroids and GABA(A) receptors in the generation of spontaneous spike-and-wave discharges (SWDs) was investigated in the WAG/Rij rat model of absence epilepsy. The plasma, cerebrocortical, and thalamic concentrations of the progesterone metabolite 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG) were increased in the WAG/Rij rat at 2 months of age compared with those in control (Wistar) rats. In contrast, the brain and peripheral levels of 3alpha,5alpha-tetrahydrodeoxycorticosterone (3alpha,5alpha-TH DOC) did not differ between the two rat strains at this age. At 6 months of age, when absence epilepsy worsens in WAG/Rij rats, the plasma concentration of 3alpha,5alpha-TH PROG remained high whereas that of 3alpha,5alpha-TH DOC had increased, the cerebrocortical levels of both 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC had increased, and the thalamic concentrations of these metabolites had decreased. At 6 months of age the expression of the alpha(4) and delta subunits of the GABA(A) receptor in relay nuclei was increased. Finally, chronic stress induced by social isolation elicited a reduction in the amount of 3alpha,5alpha-TH PROG in the thalamus of 2-month-old WAG/Rij rats that was associated with a reduction in the number and overall duration of SWDs at 6 months of age. Absence epilepsy in the WAG/Rij rat is thus associated with changes in the abundance of neuroactive steroids and in the expression of specific GABA(A) receptor subunits in the thalamus, a brain area key to the pathophysiology of this condition.
Collapse
|
16
|
Brunton PJ, Russell JA. The expectant brain: adapting for motherhood. Nat Rev Neurosci 2008; 9:11-25. [PMID: 18073776 DOI: 10.1038/nrn2280] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A successful pregnancy requires multiple adaptations of the mother's physiology to optimize fetal growth and development, to protect the fetus from adverse programming, to provide impetus for timely parturition and to ensure that adequate maternal care is provided after parturition. Many of these adaptations are organized by the mother's brain, predominantly through changes in neuroendocrine systems, and these changes are primarily driven by the hormones of pregnancy. By contrast, adaptations in the mother's brain during lactation are maintained by external stimuli from the young. The changes in pregnancy are not necessarily innocuous: they may predispose the mother to post-partum mood disorders.
Collapse
Affiliation(s)
- Paula J Brunton
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, Scotland, UK
| | | |
Collapse
|
17
|
Eva C, Mele P, Collura D, Nai A, Pisu MG, Serra M, Biggio G. Modulation of neuropeptide Y and Y1 receptor expression in the amygdala by fluctuations in the brain content of neuroactive steroids during ethanol drinking discontinuation in Y1R/LacZ transgenic mice. J Neurochem 2007; 104:1043-54. [PMID: 18036156 DOI: 10.1111/j.1471-4159.2007.05077.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have shown that GABAergic neuroactive steroids increase Y1 receptor (Y1R) gene expression in the amygdala of Y1R/LacZ transgenic mice, harbouring the murine Y1R gene promoter linked to a LacZ reporter gene. As ethanol is known to increase GABAergic neuroactive steroids, we investigated the relationship between fluctuations in the brain content of neuroactive steroids induced by chronic voluntary ethanol consumption or ethanol discontinuation and both the level of neuropeptide Y (NPY) immunoreactivity and Y1R gene expression in the amygdala of Y1R/LacZ transgenic mice. Ethanol discontinuation (48 h) after voluntary consumption of consecutive solutions of 3%, 6%, 10% and 20% (v/v) ethanol over 4 weeks produced an anxiety-like behaviour as measured by elevated plus maze. Voluntary ethanol intake increased the cerebrocortical concentration of the progesterone metabolite 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG) that returned to control level 48 h after discontinuation of ethanol intake. Ethanol discontinuation significantly decreased NPY immunoreactivity and concomitantly increased Y1R/LacZ transgene expression in the amygdala, whereas chronic ethanol intake failed to affect these parameters. The 5alpha-reductase inhibitor finasteride prevented both the increase in the cerebrocortical concentration of 3alpha,5alpha-TH PROG apparent after 4 weeks of ethanol intake and the changes in NPY immunoreactivity and transgene expression induced by ethanol discontinuation. Data suggest that 3alpha,5alpha-TH PROG plays an important role in the changes in NPY-Y1R signalling in the amygdala during ethanol discontinuation.
Collapse
Affiliation(s)
- Carola Eva
- Dipartimento di Anatomia, Farmacologia e Medicina Legale, Sezione di Farmacologia, Università di Torino, Torino, Italy, and Neuroscience Institute of Torino, Università di Torino, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Schneider Gasser EM, Straub CJ, Panzanelli P, Weinmann O, Sassoè-Pognetto M, Fritschy JM. Immunofluorescence in brain sections: simultaneous detection of presynaptic and postsynaptic proteins in identified neurons. Nat Protoc 2007; 1:1887-97. [PMID: 17487173 DOI: 10.1038/nprot.2006.265] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Elucidating the molecular organization of synapses is essential for understanding brain function and plasticity. Immunofluorescence, combined with various fluorescent probes, is a sensitive and versatile method for morphological studies. However, analysis of synaptic proteins in situ is limited by epitope-masking after tissue fixation. Furthermore, postsynaptic proteins (such as ionotropic receptors and scaffolding proteins) often require weaker fixation for optimal detection than most intracellular markers, thereby hindering simultaneous visualization of these molecules. We present three protocols, which are alternatives to perfusion fixation, to overcome these restrictions. Brief tissue fixation shortly after interruption of vital functions preserves morphology and antigenicity. Combined with specific neuronal markers, selective detection of gamma-aminobutyric acid A (GABA(A)) receptors and the scaffolding protein gephyrin in relation to identified inhibitory presynaptic terminals in the rodent brain is feasible by confocal laser scanning microscopy. The most sophisticated of these protocols can be associated with electrophysiology for correlative studies of synapse structure and function. These protocols require 2-3 consecutive days for completion.
Collapse
Affiliation(s)
- Edith M Schneider Gasser
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Biggio G, Concas A, Follesa P, Sanna E, Serra M. Stress, ethanol, and neuroactive steroids. Pharmacol Ther 2007; 116:140-71. [PMID: 17555824 PMCID: PMC3000046 DOI: 10.1016/j.pharmthera.2007.04.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 04/06/2007] [Indexed: 12/27/2022]
Abstract
Neurosteroids play a crucial role in stress, alcohol dependence and withdrawal, and other physiological and pharmacological actions by potentiating or inhibiting neurotransmitter action. This review article focuses on data showing that the interaction among stress, ethanol, and neuroactive steroids may result in plastic molecular and functional changes of GABAergic inhibitory neurotransmission. The molecular mechanisms by which stress-ethanol-neuroactive steroids interactions can produce plastic changes in GABA(A) receptors have been studied using different experimental models in vivo and in vitro in order to provide useful evidence and new insights into the mechanisms through which acute and chronic ethanol and stress exposure modulate the activity of GABAergic synapses. We show detailed data on a) the effect of acute and chronic stress on peripheral and brain neurosteroid levels and GABA(A) receptor gene expression and function; b) ethanol-stimulated brain steroidogenesis; c) plasticity of GABA(A) receptor after acute and chronic ethanol exposure. The implications of these new mechanistic insights to our understanding of the effects of ethanol during stress are also discussed. The understanding of these neurochemical and molecular mechanisms may shed new light on the physiopathology of diseases, such as anxiety, in which GABAergic transmission plays a pivotal role. These data may also lead to the need for new anxiolytic, hypnotic and anticonvulsant selective drugs devoid of side effects.
Collapse
Affiliation(s)
- Giovanni Biggio
- Department of Experimental Biology, Center of Excellence for the Neurobiology of Dependence, University of Cagliari, Cagliari, Italy.
| | | | | | | | | |
Collapse
|
20
|
Sassoè-Pognetto M, Follesa P, Panzanelli P, Perazzini AZ, Porcu P, Sogliano C, Cherchi C, Concas A. Fluctuations in brain concentrations of neurosteroids are not associated to changes in gephyrin levels. Brain Res 2007; 1169:1-8. [PMID: 17698049 DOI: 10.1016/j.brainres.2007.06.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 06/20/2007] [Accepted: 06/23/2007] [Indexed: 11/24/2022]
Abstract
Fluctuations in the brain concentrations of neurosteroids are accompanied by changes in the expression of GABA(A) receptor subunits in the cerebral cortex and hippocampus. Here, we investigated the expression of the postsynaptic molecule gephyrin in the cerebral cortex and hippocampus of pregnant rats, as well as in rats treated chronically with contraceptive drugs. The amounts of gephyrin mRNA and protein did not change during pregnancy and after delivery, as well as in rats treated with ethynylestradiol (EE) and levonorgestrel (LNG) for 4 weeks. Similarly, using immunofluorescence and laser scanning confocal microscopy, we did not detect significant changes in the number and size of gephyrin-immunopositive clusters, which likely represent inhibitory postsynaptic sites. These findings indicate that the expression of gephyrin and the density of cortical inhibitory synapses are not influenced by endogenous neurosteroids.
Collapse
Affiliation(s)
- Marco Sassoè-Pognetto
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, and Istituto Nazionale di Neuroscienze, Corso Massimo d'Azeglio 52, I-10126 Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ing T, Poulter MO. Diversity of GABA(A) receptor synaptic currents on individual pyramidal cortical neurons. Eur J Neurosci 2007; 25:723-34. [PMID: 17313570 DOI: 10.1111/j.1460-9568.2007.05331.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Miniature GABA(A) receptor-mediated inhibitory postsynaptic currents (mIPSCs) in cortical pyramidal neurons have previously been categorized into two types: small amplitude mIPSCs with a mono-exponential deactivation (mono-mIPSCs) and relatively larger mIPSCs with bi-exponential deactivation (bi-mIPSCs). The aim of this study was to determine if the GABA(A) channels that underlie these mIPSCSs are molecularly distinct. We found, using non-stationary noise analysis, that the difference in their amplitude could be not accounted for by their single channel conductance (both were 40 pS). Next, using alpha subunit selective GABA(A) receptor modulators, we examined the identity of the alpha subunits that may be expressed in the synapses that give rise to these mIPSCs. Zolpidem (100 and 500 nM, alpha1 selective) affected the deactivation of a subset of the mono-mIPSCs, indicating that alpha1 subunits are not highly expressed in these synapses. However, zolpidem (100 nM) prolonged the deactivation of all bi-mIPSCs, indicating a high abundance of alpha1 subunits in these synapses. SB-205384 (alpha3 selective) had no effect on the mono-mIPSCs but the bi-mIPSCs were prolonged. Furosemide (alpha4 selective) reduced the amplitude of only the mono-mIPSCs. L655,708 (alpha5 selective) reduced the amplitude of both populations and shortened the duration of the mono-mIPSCs. Finally, we found that the neuroactive steroid pregesterone sulphate reduced the amplitude of both mIPSC types. These results provide pharmacological evidence that synapses on cortical pyramidal neurons are molecularly distinct. The purpose of these different types of synapses may be to provide different inhibitory timing patterns on these cells.
Collapse
Affiliation(s)
- Timothy Ing
- Neuroscience Research Institute, Department of Psychology, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
22
|
Douglas AJ, Johnstone LE, Leng G. Neuroendocrine mechanisms of change in food intake during pregnancy: a potential role for brain oxytocin. Physiol Behav 2007; 91:352-65. [PMID: 17512024 DOI: 10.1016/j.physbeh.2007.04.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During pregnancy body weight, and particularly adiposity, increase, due to hyperphagia rather than decreased energy metabolism. These physiological adaptations provide the growing fetus(es) with nutrition and prepare the mother for the metabolically-demanding lactation period following birth. Mechanisms underlying the hyperphagia are still poorly understood. Although the peripheral signals that drive appetite and satiety centers of the brain are increased in pregnancy, the brain may become insensitive to their effects. For example, leptin secretion increases but hypothalamic resistance to leptin actions develops. However, several adaptations in hypothalamic neuroendocrine systems may converge to increase ingestive behavior. Oxytocin is one of the anorectic hypothalamic neuropeptides. Oxytocin neurons, both centrally-projecting parvocellular oxytocin neurons and central dendritic release of oxytocin from magnocellular neurons, may play a key role in regulating energy intake. During feeding in non-pregnant rats, magnocellular oxytocin neurons, especially those in the supraoptic nucleus, become strongly activated indicating their imminent role in meal termination. However, in mid-pregnancy the excitability of these neurons is reduced, central dendritic oxytocin release is inhibited and patterns of oxytocin receptor binding in the brain alter. Our recent data suggest that lack of central oxytocin action may partly contribute to maternal hyperphagia. However, although opioid inhibition is a major factor in oxytocin neuron restraint during pregnancy and opioids enhance food intake, an increase in opioid orexigenic actions were not observed. While changes in several central input pathways to oxytocin neurons are likely to be involved, the high level of progesterone secretion during pregnancy is probably the ultimate trigger for the adaptations.
Collapse
Affiliation(s)
- Alison J Douglas
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
23
|
Lorenzo LE, Barbe A, Portalier P, Fritschy JM, Bras H. Differential expression of GABAA and glycine receptors in ALS-resistant vs. ALS-vulnerable motoneurons: possible implications for selective vulnerability of motoneurons. Eur J Neurosci 2007; 23:3161-70. [PMID: 16820006 DOI: 10.1111/j.1460-9568.2006.04863.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Summary Amyotrophic lateral sclerosis (ALS) is a devastating motoneuronal degenerative disease, which is inevitably fatal in adults. ALS is characterized by an extensive loss of motoneurons in the cerebrospinal axis, except for those motoneurons that control eye movements and bladder contraction. The reason for this selectivity is not known. Systematic differences have been found in the organization of excitatory synaptic transmission in ALS-resistant vs. ALS-susceptible motor nuclei. However, although motoneurons express high levels of glycine receptors (GlyR) and GABA(A) receptors (GABA(A)R), no such studies have been carried out yet for inhibitory synaptic transmission. In this study, we compared the subunit composition, patterns of expression, density and synaptic localization of inhibitory synaptic receptors in ALS-resistant (oculomotor, trochlear and abducens) and ALS-vulnerable motoneurons (trigeminal, facial and hypoglossi). Triple immunofluorescent stainings of the major GABA(A)R subunits (alpha1, alpha2, alpha3, and alpha5), the GlyR alpha1 subunit and gephyrin, were visualized by confocal microscopy and analysed quantitatively. A strong correlation was observed between the vulnerability of motoneurons and the subunit composition of GABA(A)R, the GlyR/GABA(A)R density ratios and the incidence of synaptic vs. extrasynaptic GABA(A)R. These differences contrast strikingly with the uniform gephyrin cluster density and synaptic GlyR levels recorded in all motor nuclei examined. These results suggest that the specific patterns of inhibitory receptor organization observed might reflect functional differences that are relevant to the physiopathology of ALS.
Collapse
|
24
|
Steroid modulation of GABAA receptor-mediated transmission in the hypothalamus: effects on reproductive function. Neuropharmacology 2007; 52:1439-53. [PMID: 17433821 DOI: 10.1016/j.neuropharm.2007.01.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
The hypothalamus, the seat of neuroendocrine control, is exquisitely sensitive to gonadal steroids. For decades it has been known that androgens, estrogens and progestins, acting through nuclear hormone receptors, elicit both organizational and activational effects in the hypothalamus and basal forebrain that are essential for reproductive function. While changes in gene expression mediated by these classical hormone pathways are paramount in governing both sexual differentiation and the neural control of reproduction, it is also clear that steroids impart critical control of neuroendocrine functions through non-genomic mechanisms. Specifically, endogenous neurosteroid derivatives of deoxycorticosterone, progesterone and testosterone, as well and synthetic anabolic androgenic steroids that are self-administered as drugs of abuse, elicit acute effects via allosteric modulation of gamma-aminobutyric acid type A receptors. GABAergic transmission within the hypothalamus and basal forebrain is a key regulator of pubertal onset, the expression of sexual behaviors, pregnancy and parturition. Summarized here are the known actions of steroid modulators on GABAergic transmission within the hypothalamus/basal forebrain, with a focus on the medial preoptic area and the supraoptic/paraventricular nuclei that are known to be central players in the control of reproduction.
Collapse
|
25
|
Lee G, Gammie SC. GABA enhancement of maternal defense in mice: possible neural correlates. Pharmacol Biochem Behav 2007; 86:176-87. [PMID: 17275080 PMCID: PMC1853310 DOI: 10.1016/j.pbb.2006.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 12/08/2006] [Accepted: 12/27/2006] [Indexed: 11/28/2022]
Abstract
Previous studies have shown that low doses of GABA(A) receptor agonists facilitate maternal defense of offspring (maternal aggression), without significantly affecting other maternal behaviors. In addition, it has been demonstrated that endogenous changes in GABAergic neurotransmission occur in association with lactation. This study investigated the effects of GABA(A) receptor agonist, chlordiazepoxide (CDP), a benzodiazepine (BDZ), on maternal behaviors including aggression, and identified brain regions with altered activity in association with treatment. Another aim of the study was to determine whether CDP injections could prevent decreases in maternal aggression that occur with pup separation. Intraperitoneal injections of 1 mg/kg of CDP significantly increased maternal defense without affecting other maternal behaviors, although a trend towards elevated nursing was noted. CDP significantly reduced c-Fos in lateral septum (LS) and caudal periaqueductal gray (cPAG) in behaviorally-experienced mice relative to vehicle-injected controls. In behaviorally-naïve subjects, CDP also decreased c-Fos in LS, but in cPAG this decrease was just above significance (p=0.051). CDP was not sufficient to "rescue" maternal aggression when pup stimulus was removed. Overall, these studies provide further insights into the role for GABA in maternal behaviors, including aggression, and how and where BDZs may act to modulate behavior.
Collapse
Affiliation(s)
- Grace Lee
- University of Wisconsin, Zoology Department, 1117 West Johnson Street, Madison, WI 5370, USA
- *Corresponding Author: Grace Lee, Address: 1117 W. Johnson St., University of Wisconsin, Madison, WI 53706, , Telephone: (608) 265-4155, Fax: (608) 262-9083
| | - Stephen C. Gammie
- University of Wisconsin, Zoology Department, 1117 West Johnson Street, Madison, WI 5370, USA
- University of Wisconsin, Neuroscience Training Program, 1117 West Johnson Street, Madison, WI 5370, USA
| |
Collapse
|
26
|
Serra M, Mostallino MC, Talani G, Pisu MG, Carta M, Mura ML, Floris I, Maciocco E, Sanna E, Biggio G. Social isolation-induced increase in alpha and delta subunit gene expression is associated with a greater efficacy of ethanol on steroidogenesis and GABA receptor function. J Neurochem 2006; 98:122-33. [PMID: 16805802 DOI: 10.1111/j.1471-4159.2006.03850.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previously we have demonstrated that social isolation of rats reduces both the cerebrocortical and plasma concentrations of 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG), and potentiates the positive effects of acute ethanol administration on the concentrations of this neurosteroid. We now show that the ethanol-induced increase in 3alpha,5alpha-TH PROG is more pronounced in the brain than in the plasma of isolated rats. The ability of ethanol to inhibit isoniazid-induced convulsions is greater in isolated rats than in group-housed animals and this effect is prevented by treatment with finasteride. Social isolation modified the effects of ethanol on the amounts of steroidogenic regulatory protein mRNA and protein in the brain. Moreover, ethanol increased the amplitude of GABA(A) receptor-mediated miniature inhibitory postsynaptic currents recorded from CA1 pyramidal neurones with greater potency in hippocampal slices prepared from socially isolated rats than in those from group-housed rats, an effect inhibited by finasteride. The amounts of the alpha(4) and delta subunits of the GABA(A) receptor in the hippocampus were increased in isolated rats as were GABA(A) receptor-mediated tonic inhibitory currents in granule cells of the dentate gyrus. These results suggest that social isolation results in changes in GABA(A) receptor expression in the brain, and in an enhancement of the stimulatory effect of ethanol on brain steroidogenesis, GABA(A) receptor function and associated behaviour.
Collapse
Affiliation(s)
- Mariangela Serra
- Department of Experimental Biology, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Park JB, Skalska S, Stern JE. Characterization of a novel tonic gamma-aminobutyric acidA receptor-mediated inhibition in magnocellular neurosecretory neurons and its modulation by glia. Endocrinology 2006; 147:3746-60. [PMID: 16675519 DOI: 10.1210/en.2006-0218] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In addition to mediating conventional quantal synaptic transmission (also known as phasic inhibition), gamma-aminobutyric acidA (GABAA) receptors have been recently shown to underlie a slower, persistent form of inhibition (tonic inhibition). Using patch-clamp electrophysiology and immunohistochemistry, we addressed here whether a GABAA receptor-mediated tonic inhibition is present in supraoptic nucleus (SON) neurosecretory neurons; identified key modulatory mechanisms, including the role of glia; and determined its functional role in controlling SON neuronal excitability. Besides blocking GABAA-mediated inhibitory postsynaptic currents, the GABAA receptor blockers bicuculline and picrotoxin caused an outward shift in the holding current (I(tonic)), both in oxytocin and vasopressin neurons. Conversely, the high-affinity antagonist gabazine selectively blocked inhibitory postsynaptic currents. Under basal conditions, I(tonic) was independent on the degree of synaptic activity but was strongly modulated by the activity GABA transporters (GATs), mostly the GAT3 isoform, found here to be localized in SON glial cells/processes. Extracellular activation of GABAergic afferents evoked a small gabazine-insensitive, bicuculline-sensitive current, which was enhanced by GAT blockade. These results suggest that I(tonic) may be activated by spillover of GABA during conditions of strong and/or synchronous synaptic activity. Blockade of I(tonic) increased input resistance, induced membrane depolarization and firing activity, and enhanced the input-output function of SON neurons. In summary, our results indicate that GABAA receptors, possibly of different molecular configuration and subcellular distribution, mediate synaptic and tonic inhibition in SON neurons. The latter inhibitory modality plays a major role in modulating SON neuronal excitability, and its efficacy is modulated by the activity of glial GATs.
Collapse
Affiliation(s)
- Jin Bong Park
- Department of Psychiatry, University of Cincinnati, GRI-A Room 241, 2170 East Galbraith Road, Cincinnati, Ohio 45237, USA
| | | | | |
Collapse
|
28
|
Neumann ID, Torner L, Toschi N, Veenema AH. Oxytocin actions within the supraoptic and paraventricular nuclei: differential effects on peripheral and intranuclear vasopressin release. Am J Physiol Regul Integr Comp Physiol 2006; 291:R29-36. [PMID: 16424083 DOI: 10.1152/ajpregu.00763.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In response to forced swimming (FS), AVP is released somato-dendritically within the supraoptic nucleus (SON) and paraventricular nucleus (PVN), but not from neurohypophyseal terminals into blood. Together with AVP, oxytocin (OXT) is released within the SON and PVN. Here, we studied the role of intra-SON and intra-PVN OXT in the regulation of local AVP release and into the blood in male rats. Within the SON, bilateral retrodialysis of an OXT receptor antagonist (OXT-A) increased local AVP release in response to FS [60 s, 21°C, vehicle twofold, not significant (ns); OXT-A: 15-fold increase, P < 0.05] without significantly affecting basal AVP release. In addition, local OXT-A elevated plasma AVP secretion under basal conditions (twofold increase, P < 0.05) without further elevation after FS. Within the PVN, exposure to FS elevated local AVP release, reaching significance only in the OXT-A group (vehicle: 1.4-fold, ns; OXT-A: 1.6-fold increase, P = 0.050). Bilateral OXT-A into the PVN did not affect peripheral AVP secretion either under basal or stress conditions. Basal ACTH concentrations tended to be elevated by local OXT-A within the PVN (1.7-fold increase, P = 0.076). In contrast, the swim-induced ACTH secretion was attenuated after retrodialysis of OXT-A within both the SON (at 5 min) and PVN (at 15 min) ( P < 0.05 both) compared with vehicle. The results demonstrate a receptor-mediated effect of OXT within the SON and PVN on local and neurohypophyseal AVP release, which depends upon the activity conditions. Further, while exerting an inhibitory effect on hypothalamo-pituitary-adrenal axis activity under basal conditions, hypothalamic OXT is essential for an adequate acute ACTH response.
Collapse
Affiliation(s)
- Inga D Neumann
- Institute of Zoology, Department of Behavioural Neuroendocrinology, University of Regensburg, Resenburg, Germany.
| | | | | | | |
Collapse
|
29
|
Perán M, Hooper H, Boulaiz H, Marchal JA, Aránega A, Salas R. The M3/M4 cytoplasmic loop of the α1 subunit restricts GABAARs lateral mobility: A study using fluorescence recovery after photobleaching. ACTA ACUST UNITED AC 2006; 63:747-57. [PMID: 17029290 DOI: 10.1002/cm.20156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A crucial problem in neurobiology is how neurons are able to maintain neurotransmitter receptors at specific membrane domains. The large structural heterogeneity of gamma aminobutyric acid receptors (GABAARs) led to the hypothesis that there could be a link between GABAAR gene diversity and the targeting properties of the receptor complex. Previous studies using Fluorescence Recovery After Photobleaching (FRAP) have shown a restricted mobility in GABAARs containing the alpha1 subunit. The M3/M4 cytoplasmic loop is the region of the alpha1 subunit with the lowest sequence homology to other subunits. Therefore, we asked whether the M3/M4 loop is involved in cytoskeletal anchoring and GABAAR clustering. A series of alpha1 chimeric subunits was constructed: alpha1CH (control subunit), alpha1CD (Cytoplasmic loop deleted), alpha1CD2, and alpha1CD3 (alpha1 with the M3/M4 loop from the alpha2 and alpha3 subunits, respectively). Our results using FRAP indicate an involvement of the M3/M4 cytoplasmic loop of the alpha1 subunit in controlling receptor lateral mobility. On the other hand, inmunocytochemical approaches showed that this domain is not involved in subunit targeting to the cell surface, subunit-subunit assembly, or receptor aggregation.
Collapse
Affiliation(s)
- Macarena Perán
- Department of Anatomy and Human Embryology, Faculty of Medicine, University of Granada, Granada, Spain.
| | | | | | | | | | | |
Collapse
|
30
|
Lipschitz DL, Crowley WR, Armstrong WE, Bealer SL. Neurochemical bases of plasticity in the magnocellular oxytocin system during gestation. Exp Neurol 2005; 196:210-23. [PMID: 16157332 DOI: 10.1016/j.expneurol.2005.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 07/14/2005] [Accepted: 08/06/2005] [Indexed: 11/22/2022]
Abstract
The central and systemic release of oxytocin (OT) has been well documented during parturition and lactation. In preparation for the demands of these events, the magnocellular hypothalamic neurons of the central OT system undergo a variety of biochemical, molecular, electrophysiological, and anatomical adaptations during gestation. However, the mechanisms responsible for these changes have not been well established. A number of neurochemical mediators have been implicated in contributing to the plasticity in the OT magnocellular system during gestation, including ovarian hormones, as well as central neurotransmitters, such as glutamate, gamma-amino butyric acid (GABA), and central neurosteroids, e.g., allopregnanolone. In addition, several lines of evidence suggest that central OT release and subsequent OT receptor stimulation may contribute to adaptations of the OT system during gestation, and may be necessary for its subsequent functioning during lactation. Here, we review evidence for involvement of the neurochemical systems implicated in contributing to adaptations that occur in the OT system during the course of gestation.
Collapse
Affiliation(s)
- D L Lipschitz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, 30 South 2000 East, Rm 201, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|