1
|
Shiga Y, Rangel Olguin AG, El Hajji S, Belforte N, Quintero H, Dotigny F, Alarcon-Martinez L, Krishnaswamy A, Di Polo A. Endoplasmic reticulum stress-related deficits in calcium clearance promote neuronal dysfunction that is prevented by SERCA2 gene augmentation. Cell Rep Med 2024; 5:101839. [PMID: 39615485 DOI: 10.1016/j.xcrm.2024.101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Disruption of calcium (Ca2+) homeostasis in neurons is a hallmark of neurodegenerative diseases. Here, we investigate the mechanisms leading to Ca2+ dysregulation and ask whether altered Ca2+ dynamics impinge on neuronal stress and circuit dysfunction. Using two-photon microscopy, we show that ocular hypertension, a major risk factor in glaucoma, and optic nerve crush injury disrupt the capacity of retinal neurons to clear cytosolic Ca2+ leading to impaired light-evoked responses. Gene- and protein expression analysis reveal the loss of the sarco-endoplasmic reticulum (ER) Ca2+-ATPase2 pump (SERCA2/ATP2A2) in injured retinal neurons from mice and patients with primary open-angle glaucoma. Pharmacological activation or neuron-specific gene delivery of SERCA2 is sufficient to rescue single-cell Ca2+ dynamics and promote robust survival of damaged neurons. Furthermore, SERCA2 gene supplementation reduces ER stress, reestablishes circuit balance, and restores visual behaviors. Our findings reveal that enhancing the Ca2+ clearance capacity of vulnerable neurons alleviates organelle stress and promotes neurorecovery.
Collapse
Affiliation(s)
- Yukihiro Shiga
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | | | - Sana El Hajji
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Nicolas Belforte
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Heberto Quintero
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Florence Dotigny
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Luis Alarcon-Martinez
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Arjun Krishnaswamy
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada.
| |
Collapse
|
2
|
Avilés EC, Wang SK, Patel S, Shi S, Lin L, Kefalov VJ, Goodrich LV, Cepko CL, Xue Y. High temporal frequency light response in mouse retina requires FAT3 signaling in bipolar cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565326. [PMID: 37961274 PMCID: PMC10635074 DOI: 10.1101/2023.11.02.565326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Vision is initiated by the reception of light by photoreceptors and subsequent processing via downstream retinal neurons. Proper cellular organization depends on the multi-functional tissue polarity protein FAT3, which is required for amacrine cell connectivity and retinal lamination. Here we investigated the retinal function of Fat3 mutant mice and found decreases in physiological and perceptual responses to high frequency flashes. These defects did not correlate with abnormal amacrine cell wiring, pointing instead to a role in bipolar cell subtypes that also express FAT3. The role of FAT3 in the response to high temporal frequency flashes depends upon its ability to transduce an intracellular signal. Mechanistically, FAT3 binds to the synaptic protein PTPσ, intracellularly, and is required to localize GRIK1 to OFF-cone bipolar cell synapses with cone photoreceptors. These findings expand the repertoire of FAT3's functions and reveal its importance in bipolar cells for high frequency light response.
Collapse
Affiliation(s)
- Evelyn C. Avilés
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Sean K. Wang
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, MA 02115
| | - Sarina Patel
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Shuxiang Shi
- Lingang Laboratory, Shanghai, China, 200031
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China, 201210
| | - Lucas Lin
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA 02115
| | - Vladimir J. Kefalov
- Gavin Herbert Eye Institute & Center for Translational Vision Research, University of California, Irvine, CA 92697
| | - Lisa V. Goodrich
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Constance L. Cepko
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, MA 02115
| | - Yunlu Xue
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA 02115
- Lingang Laboratory, Shanghai, China, 200031
- Lead contact
| |
Collapse
|
3
|
Wang R, Li T, Diao S, Chen C. Inhibition of the proteoglycan receptor PTPσ promotes functional recovery on a rodent model of preterm hypoxic-ischemic brain injury. Exp Neurol 2023; 370:114564. [PMID: 37806512 DOI: 10.1016/j.expneurol.2023.114564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Preterm white matter injury (WMI) is the most common brain injury in preterm infants and is associated with long-term adverse neurodevelopmental outcomes. Protein tyrosine phosphatase sigma (PTPσ) was discovered as chondroitin sulfate proteoglycan (CSPG) receptor that played roles in inhibiting myelin regeneration in spinal injury, experimental autoimmune encephalomyelitis, and stroke models. However, the role of PTPσ in perinatal WMI is not well understood. AIMS This study examines the effect of PTPσ inhibition on neurodevelopmental outcomes, myelination, and neuroinflammation in a mouse model of preterm WMI. MATERIALS AND METHODS Modified Rice-Vannucci model was performed on postnatal day 3 (P3) C57BL/6 mice. Intracellular Sigma Peptide (ISP) or vehicle was administrated subcutaneously one hour after injury for an additional 14 consecutive days. A battery of behavioral tests was performed to evaluate the short- and long-term effects of ISP on neurobehavioral deficit. Real time qPCR, western blot, immunofluorescence, and transmission electron microscopy were performed to assess white matter development. qPCR and flow cytometry were performed to evaluate neuroinflammation and microglia/macrophage phenotype. RESULTS The expression of PTPσ was increased after preterm WMI. ISP improved short-term neurological outcomes and ameliorated long-term motor and cognitive function of mice after preterm WMI. ISP promoted oligodendrocyte differentiation, maturation, myelination, and improved microstructure of myelin after preterm WMI. Furthermore, ISP administration fostered a beneficial inflammatory response in the acute phase after preterm WMI, inhibited the infiltration of peripheral macrophages, and promoted anti-inflammatory phenotype of microglia/macrophages. CONCLUSION PTPσ inhibition can ameliorate neurofunctional deficit, promote white matter development, modulate neuroinflammation and microglia/macrophage phenotype after preterm WMI. Thus, ISP administration may be a potential therapeutic strategy to improve neurodevelopmental outcomes of perinatal WMI.
Collapse
Affiliation(s)
- Ran Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China; Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tiantian Li
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Sihao Diao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, China.
| |
Collapse
|
4
|
Almeida F, Marques S, Santos A, Prins C, Cardoso F, Heringer L, Mendonça H, Martinez A. Molecular approaches for spinal cord injury treatment. Neural Regen Res 2023; 18:23-30. [PMID: 35799504 PMCID: PMC9241396 DOI: 10.4103/1673-5374.344830] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Injuries to the spinal cord result in permanent disabilities that limit daily life activities. The main reasons for these poor outcomes are the limited regenerative capacity of central neurons and the inhibitory milieu that is established upon traumatic injuries. Despite decades of research, there is still no efficient treatment for spinal cord injury. Many strategies are tested in preclinical studies that focus on ameliorating the functional outcomes after spinal cord injury. Among these, molecular compounds are currently being used for neurological recovery, with promising results. These molecules target the axon collapsed growth cone, the inhibitory microenvironment, the survival of neurons and glial cells, and the re-establishment of lost connections. In this review we focused on molecules that are being used, either in preclinical or clinical studies, to treat spinal cord injuries, such as drugs, growth and neurotrophic factors, enzymes, and purines. The mechanisms of action of these molecules are discussed, considering traumatic spinal cord injury in rodents and humans.
Collapse
|
5
|
Berillo O, Huo KG, Richer C, Fraulob-Aquino JC, Briet M, Lipman ML, Sinnett D, Paradis P, Schiffrin EL. Distinct transcriptomic profile of small arteries of hypertensive patients with chronic kidney disease identified miR-338-3p targeting GPX3 and PTPRS. J Hypertens 2022; 40:1394-1405. [PMID: 35703228 DOI: 10.1097/hjh.0000000000003160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Hypertension is associated with vascular injury, which contributes to end-organ damage. MicroRNAs regulating mRNAs have been shown to play a role in vascular injury in hypertensive mice. We aimed to identify differentially expressed microRNAs and their mRNA targets in small arteries of hypertensive patients with/without chronic kidney disease (CKD) to shed light on the pathophysiological molecular mechanisms of vascular remodeling. METHODS AND RESULTS Normotensive individuals and hypertensive patients with/without CKD were recruited ( n = 15-16 per group). Differentially expressed microRNAs and mRNAs were identified uniquely associated with hypertension (microRNAs: 10, mRNAs: 68) or CKD (microRNAs: 68, mRNAs: 395), and in both groups (microRNAs: 2, mRNAs: 32) with a P less than 0.05 and a fold change less than or greater than 1.3 in subcutaneous small arteries ( n = 14-15). One of the top three differentially expressed microRNAs, miR-338-3p that was down-regulated in CKD, presented the best correlation between RNA sequencing and reverse transcription-quantitative PCR (RT-qPCR, R2 = 0.328, P < 0.001). Profiling of human aortic vascular cells showed that miR-338-3p was mostly expressed in endothelial cells. Two of the selected top nine up-regulated miR-338-3p predicted targets, glutathione peroxidase 3 ( GPX3 ) and protein tyrosine phosphatase receptor type S ( PTPRS ), were validated with mimics by RT-qPCR in human aortic endothelial cells ( P < 0.05) and by a luciferase assay in HEK293T cells ( P < 0.05). CONCLUSION A distinct transcriptomic profile was observed in gluteal subcutaneous small arteries of hypertensive patients with CKD. Down-regulated miR-338-3p could contribute to GPX3 and PTPRS up-regulation via the canonical microRNA targeting machinery in hypertensive patients with CKD. http://links.lww.com/HJH/C27.
Collapse
Affiliation(s)
- Olga Berillo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Ku-Geng Huo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Chantal Richer
- Division of Hematology-Oncology, Research Center, CHU Ste-Justine
| | | | - Marie Briet
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
- INSERM U1083, CNRS UMR 6214, Centre Hospitalo-Universitaire d'Angers, Université d'Angers, Angers, France
| | - Mark L Lipman
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University
| | - Daniel Sinnett
- Division of Hematology-Oncology, Research Center, CHU Ste-Justine
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University
| |
Collapse
|
6
|
Zhang Q, Li Y, Zhuo Y. Synaptic or Non-synaptic? Different Intercellular Interactions with Retinal Ganglion Cells in Optic Nerve Regeneration. Mol Neurobiol 2022; 59:3052-3072. [PMID: 35266115 PMCID: PMC9016027 DOI: 10.1007/s12035-022-02781-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/24/2022] [Indexed: 12/31/2022]
Abstract
Axons of adult neurons in the mammalian central nervous system generally fail to regenerate by themselves, and few if any therapeutic options exist to reverse this situation. Due to a weak intrinsic potential for axon growth and the presence of strong extrinsic inhibitors, retinal ganglion cells (RGCs) cannot regenerate their axons spontaneously after optic nerve injury and eventually undergo apoptosis, resulting in permanent visual dysfunction. Regarding the extracellular environment, research to date has generally focused on glial cells and inflammatory cells, while few studies have discussed the potentially significant role of interneurons that make direct connections with RGCs as part of the complex retinal circuitry. In this study, we provide a novel angle to summarize these extracellular influences following optic nerve injury as "intercellular interactions" with RGCs and classify these interactions as synaptic and non-synaptic. By discussing current knowledge of non-synaptic (glial cells and inflammatory cells) and synaptic (mostly amacrine cells and bipolar cells) interactions, we hope to accentuate the previously neglected but significant effects of pre-synaptic interneurons and bring unique insights into future pursuit of optic nerve regeneration and visual function recovery.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Blake MR, Gardner RT, Jin H, Staffenson MA, Rueb NJ, Barrios AM, Dudley GB, Cohen MS, Habecker BA. Small Molecules Targeting PTPσ-Trk Interactions Promote Sympathetic Nerve Regeneration. ACS Chem Neurosci 2022; 13:688-699. [PMID: 35156811 PMCID: PMC9112862 DOI: 10.1021/acschemneuro.1c00854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) prevent sympathetic nerve regeneration in the heart after myocardial infarction and prevent central nerve regrowth after traumatic brain injury and spinal cord injury. Currently, there are no small-molecule therapeutics to promote nerve regeneration through CSPG-containing scars. CSPGs bind to monomers of receptor protein tyrosine phosphatase sigma (PTPσ) on the surface of neurons, enhancing the ability of PTPσ to bind and dephosphorylate tropomyosin receptor kinases (Trks), inhibiting their activity and preventing axon outgrowth. Targeting PTPσ-Trk interactions is thus a potential therapeutic target. Here, we describe the development and synthesis of small molecules (HJ-01 and HJ-02) that disrupt PTPσ interactions with Trks, enhance Trk signaling, and promote sympathetic nerve regeneration over CSPGs.
Collapse
Affiliation(s)
- Matthew R. Blake
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
- Graduate Program in Biomedical Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ryan T. Gardner
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Haihong Jin
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Melanie A. Staffenson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nicole J. Rueb
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112, USA
| | - Amy M. Barrios
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112, USA
| | - Gregory B. Dudley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Michael S. Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Beth A. Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
8
|
Cornejo F, Cortés BI, Findlay GM, Cancino GI. LAR Receptor Tyrosine Phosphatase Family in Healthy and Diseased Brain. Front Cell Dev Biol 2021; 9:659951. [PMID: 34966732 PMCID: PMC8711739 DOI: 10.3389/fcell.2021.659951] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Protein phosphatases are major regulators of signal transduction and they are involved in key cellular mechanisms such as proliferation, differentiation, and cell survival. Here we focus on one class of protein phosphatases, the type IIA Receptor-type Protein Tyrosine Phosphatases (RPTPs), or LAR-RPTP subfamily. In the last decade, LAR-RPTPs have been demonstrated to have great importance in neurobiology, from neurodevelopment to brain disorders. In vertebrates, the LAR-RPTP subfamily is composed of three members: PTPRF (LAR), PTPRD (PTPδ) and PTPRS (PTPσ), and all participate in several brain functions. In this review we describe the structure and proteolytic processing of the LAR-RPTP subfamily, their alternative splicing and enzymatic regulation. Also, we review the role of the LAR-RPTP subfamily in neural function such as dendrite and axon growth and guidance, synapse formation and differentiation, their participation in synaptic activity, and in brain development, discussing controversial findings and commenting on the most recent studies in the field. Finally, we discuss the clinical outcomes of LAR-RPTP mutations, which are associated with several brain disorders.
Collapse
Affiliation(s)
- Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Bastián I Cortés
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Greg M Findlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gonzalo I Cancino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
9
|
Roy A, Pathak Z, Kumar H. Strategies to neutralize RhoA/ROCK pathway after spinal cord injury. Exp Neurol 2021; 343:113794. [PMID: 34166685 DOI: 10.1016/j.expneurol.2021.113794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 01/22/2023]
Abstract
Regeneration is bungled following CNS injuries, including spinal cord injury (SCI). Inherent decay of permissive conditions restricts the regrowth of the mature CNS after an injury. Hypertrophic scarring, insignificant intrinsic axon-growth activity, and axon-growth inhibitory molecules such as myelin inhibitors and scar inhibitors constitute a significant hindrance to spinal cord repair. Besides these molecules, a combined absence of various mechanisms responsible for axonal regeneration is the main reason behind the dereliction of the adult CNS to regenerate. The neutralization of specific inhibitors/proteins by stymieing antibodies or encouraging enzymatic degradation results in improved axon regeneration. Previous efforts to induce regeneration after SCI have stimulated axonal development in or near lesion sites, but not beyond them. Several pathways are responsible for the axonal growth obstruction after a CNS injury, including SCI. Herein, we summarize the axonal, glial, and intrinsic factor which impedes the regeneration. We have also discussed the methods to stabilize microtubules and through this to maintain the proper cytoskeletal dynamics of growth cone as disorganized microtubules lead to the failure of axonal regeneration. Moreover, we primarily focus on diverse inhibitors of axonal growth and molecular approaches to counteract them and their downstream intracellular signaling through the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Zarna Pathak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
10
|
Belin S, Nawabi H. CNS Disease and Regeneration: When Growing Is Not Enough. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
11
|
Brahimi F, Galan A, Jmaeff S, Barcelona PF, De Jay N, Dejgaard K, Young JC, Kleinman CL, Thomas DY, Saragovi HU. Alternative Splicing of a Receptor Intracellular Domain Yields Different Ectodomain Conformations, Enabling Isoform-Selective Functional Ligands. iScience 2020; 23:101447. [PMID: 32829283 PMCID: PMC7452315 DOI: 10.1016/j.isci.2020.101447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/13/2020] [Accepted: 08/06/2020] [Indexed: 01/04/2023] Open
Abstract
Events at a receptor ectodomain affect the intracellular domain conformation, activating signal transduction (out-to-in conformational effects). We investigated the reverse direction (in-to-out) where the intracellular domain may impact on ectodomain conformation. The primary sequences of naturally occurring TrkC receptor isoforms (TrkC-FL and TrkC.T1) only differ at the intracellular domain. However, owing to their differential association with Protein Disulfide Isomerase the isoforms have different disulfide bonding and conformations at the ectodomain. Conformations were exploited to develop artificial ligands, mAbs, and small molecules, with isoform-specific binding and biased activation. Consistent, the physiological ligands NT-3 and PTP-sigma bind both isoforms, but NT-3 activates all signaling pathways, whereas PTP-sigma activates biased signals. Our data support an "in-to-out" model controlling receptor ectodomain conformation, a strategy that enables heterogeneity in receptors, ligands, and bioactivity. These concepts may be extended to the many wild-type or oncogenic receptors with known isoforms.
Collapse
Affiliation(s)
- Fouad Brahimi
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
| | - Alba Galan
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
| | - Sean Jmaeff
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
- Department of Pharmacology, McGill University, Montreal, QC, Canada
| | - Pablo F. Barcelona
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
| | - Nicolas De Jay
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Kurt Dejgaard
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Jason C. Young
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Claudia L. Kleinman
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - David Y. Thomas
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - H. Uri Saragovi
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
- Department of Pharmacology, McGill University, Montreal, QC, Canada
- Department of Ophthalmology and Visual Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Sami A, Selzer ME, Li S. Advances in the Signaling Pathways Downstream of Glial-Scar Axon Growth Inhibitors. Front Cell Neurosci 2020; 14:174. [PMID: 32714150 PMCID: PMC7346763 DOI: 10.3389/fncel.2020.00174] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Axon growth inhibitors generated by reactive glial scars play an important role in failure of axon regeneration after CNS injury in mature mammals. Among the inhibitory factors, chondroitin sulfate proteoglycans (CSPGs) are potent suppressors of axon regeneration and are important molecular targets for designing effective therapies for traumatic brain injury or spinal cord injury (SCI). CSPGs bind with high affinity to several transmembrane receptors, including two members of the leukocyte common antigen related (LAR) subfamily of receptor protein tyrosine phosphatases (RPTPs). Recent studies demonstrate that multiple intracellular signaling pathways downstream of these two RPTPs mediate the growth-inhibitory actions of CSPGs. A better understanding of these signaling pathways may facilitate development of new and effective therapies for CNS disorders characterized by axonal disconnections. This review will focus on recent advances in the downstream signaling pathways of scar-mediated inhibition and their potential as the molecular targets for CNS repair.
Collapse
Affiliation(s)
- Armin Sami
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Rodriguez L, Joly S, Mdzomba JB, Pernet V. Tau Gene Deletion does not Influence Axonal Regeneration and Retinal Neuron Survival in the Injured Mouse Visual System. Int J Mol Sci 2020; 21:E4100. [PMID: 32521826 PMCID: PMC7312378 DOI: 10.3390/ijms21114100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/17/2022] Open
Abstract
In the present study, we hypothesized that the microtubule-associated protein Tau may influence retinal neuron survival and axonal regeneration after optic nerve injury. To test this hypothesis, the density of retinal ganglion cells was evaluated by immunostaining retinal flat-mounts for RNA-binding protein with multiple splicing (RBPMS) two weeks after optic nerve micro-crush lesion in Tau-deprived (Tau knock-out (KO)) and wild-type (WT) mice. Axon growth was determined on longitudinal sections of optic nerves after anterograde tracing. Our results showed that the number of surviving retinal ganglion cells and growing axons did not significantly vary between WT and Tau KO animals. Moreover, sustained activation of the neuronal growth program with ciliary neurotrophic factor (CNTF) resulted in a similar increase in surviving neurons and in growing axons in WT and Tau KO mice. Taken together, our data suggest that Tau does not influence axonal regeneration or neuronal survival.
Collapse
Affiliation(s)
| | | | | | - Vincent Pernet
- CUO-Recherche, Département d’ophtalmologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec-Université Laval, Quebec, QC G1V 0A6, Canada; (L.R.); (S.J.); (J.B.M.)
| |
Collapse
|
14
|
Yang T, Dai Y, Chen G, Cui S. Dissecting the Dual Role of the Glial Scar and Scar-Forming Astrocytes in Spinal Cord Injury. Front Cell Neurosci 2020; 14:78. [PMID: 32317938 PMCID: PMC7147295 DOI: 10.3389/fncel.2020.00078] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Recovery from spinal cord injury (SCI) remains an unsolved problem. As a major component of the SCI lesion, the glial scar is primarily composed of scar-forming astrocytes and plays a crucial role in spinal cord regeneration. In recent years, it has become increasingly accepted that the glial scar plays a dual role in SCI recovery. However, the underlying mechanisms of this dual role are complex and need further clarification. This dual role also makes it difficult to manipulate the glial scar for therapeutic purposes. Here, we briefly discuss glial scar formation and some representative components associated with scar-forming astrocytes. Then, we analyze the dual role of the glial scar in a dynamic perspective with special attention to scar-forming astrocytes to explore the underlying mechanisms of this dual role. Finally, taking the dual role of the glial scar into account, we provide several pieces of advice on novel therapeutic strategies targeting the glial scar and scar-forming astrocytes.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.,Medical School of Nantong University, Nantong, China
| | - YuJuan Dai
- Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - ShuSen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Rodemer W, Zhang G, Sinitsa I, Hu J, Jin LQ, Li S, Selzer ME. PTPσ Knockdown in Lampreys Impairs Reticulospinal Axon Regeneration and Neuronal Survival After Spinal Cord Injury. Front Cell Neurosci 2020; 14:61. [PMID: 32265663 PMCID: PMC7096546 DOI: 10.3389/fncel.2020.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/02/2020] [Indexed: 01/10/2023] Open
Abstract
Traumatic spinal cord injury (SCI) results in persistent functional deficits due to the lack of axon regeneration within the mammalian CNS. After SCI, chondroitin sulfate proteoglycans (CSPGs) inhibit axon regrowth via putative interactions with the LAR-family protein tyrosine phosphatases, PTPσ and LAR, localized on the injured axon tips. Unlike mammals, the sea lamprey, Petromyzon marinus, robustly recovers locomotion after complete spinal cord transection (TX). Behavioral recovery is accompanied by heterogeneous yet predictable anatomical regeneration of the lamprey's reticulospinal (RS) system. The identified RS neurons can be categorized as "good" or "bad" regenerators based on the likelihood that their axons will regenerate. Those neurons that fail to regenerate their axons undergo a delayed form of caspase-mediated cell death. Previously, this lab reported that lamprey PTPσ mRNA is selectively expressed in "bad regenerator" RS neurons, preceding SCI-induced caspase activation. Consequently, we hypothesized that PTPσ deletion would reduce retrograde cell death and promote axon regeneration. Using antisense morpholino oligomers (MOs), we knocked down PTPσ expression after TX and assessed the effects on axon regeneration, caspase activation, intracellular signaling, and behavioral recovery. Unexpectedly, PTPσ knockdown significantly impaired RS axon regeneration at 10 weeks post-TX, primarily due to reduced long-term neuron survival. Interestingly, cell loss was not preceded by an increase in caspase or p53 activation. Behavioral recovery was largely unaffected, although PTPσ knockdowns showed mild deficits in the recovery of swimming distance and latency to immobility during open field swim assays. Although the mechanism underlying the cell death following TX and PTPσ knockdown remains unknown, this study suggests that PTPσ is not a net negative regulator of long tract axon regeneration in lampreys.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Guixin Zhang
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Isabelle Sinitsa
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Li-qing Jin
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Tran AP, Warren PM, Silver J. Regulation of autophagy by inhibitory CSPG interactions with receptor PTPσ and its impact on plasticity and regeneration after spinal cord injury. Exp Neurol 2020; 328:113276. [PMID: 32145250 DOI: 10.1016/j.expneurol.2020.113276] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs), extracellular matrix molecules that increase dramatically following a variety of CNS injuries or diseases, have long been known for their potent capacity to curtail cell migrations as well as axon regeneration and sprouting. The inhibition can be conferred through binding to their major cognate receptor, Protein Tyrosine Phosphatase Sigma (PTPσ). However, the precise mechanisms downstream of receptor binding that mediate growth inhibition have remained elusive. Recently, CSPGs/PTPσ interactions were found to regulate autophagic flux at the axon growth cone by dampening the autophagosome-lysosomal fusion step. Because of the intense interest in autophagic phenomena in the regulation of a wide variety of critical cellular functions, we summarize here what is currently known about dysregulation of autophagy following spinal cord injury, and highlight this critical new mechanism underlying axon regeneration failure. Furthermore, we review how CSPGs/PTPσ interactions influence plasticity through autophagic regulation and how PTPσ serves as a switch to execute either axon outgrowth or synaptogenesis. This has exciting implications for the role CSPGs play not only in axon regeneration failure after spinal cord injury, but also in neurodegenerative diseases where, again, inhibitory CSPGs are upregulated.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Seattle Children's Hospital Research Institute, Integrative Center for Brain Research, Seattle, Washington, USA
| | - Philippa Mary Warren
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Guy's Campus, London Bridge, London, UK
| | - Jerry Silver
- Case Western Reserve University, School of Medicine, Department of Neurosciences, Cleveland, OH, USA.
| |
Collapse
|
17
|
Niknam P, Raoufy MR, Fathollahi Y, Javan M. Modulating proteoglycan receptor PTPσ using intracellular sigma peptide improves remyelination and functional recovery in mice with demyelinated optic chiasm. Mol Cell Neurosci 2019; 99:103391. [DOI: 10.1016/j.mcn.2019.103391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022] Open
|
18
|
Bomkamp C, Padmanabhan N, Karimi B, Ge Y, Chao JT, Loewen CJR, Siddiqui TJ, Craig AM. Mechanisms of PTPσ-Mediated Presynaptic Differentiation. Front Synaptic Neurosci 2019; 11:17. [PMID: 31191292 PMCID: PMC6540616 DOI: 10.3389/fnsyn.2019.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Abstract
Formation of synapses between neurons depends in part on binding between axonal and dendritic cell surface synaptic organizing proteins, which recruit components of the developing presynaptic and postsynaptic specializations. One of these presynaptic organizing molecules is protein tyrosine phosphatase σ (PTPσ). Although the protein domains involved in adhesion between PTPσ and its postsynaptic binding partners are known, the mechanisms by which it signals into the presynaptic neuron to recruit synaptic vesicles and other necessary components for regulated transmitter release are not well understood. One attractive candidate to mediate this function is liprin-α, a scaffolding protein with well-established roles at the synapse. We systematically mutated residues of the PTPσ intracellular region (ICR) and used the yeast dihydrofolate reductase (DHFR) protein complementation assay to screen for disrupted interactions between these mutant forms of PTPσ and its various binding partners. Using a molecular replacement strategy, we show that disrupting the interaction between PTPσ and liprin-α, but not between PTPσ and itself or another binding partner, caskin, abolishes presynaptic differentiation. Furthermore, phosphatase activity of PTPσ and binding to extracellular heparan sulfate (HS) proteoglycans are dispensable for presynaptic induction. Previous reports have suggested that binding between PTPσ and liprin-α is mediated by the PTPσ membrane-distal phosphatase-like domain. However, we provide evidence here that both of the PTPσ phosphatase-like domains mediate binding to liprin-α and are required for PTPσ-mediated presynaptic differentiation. These findings further our understanding of the mechanistic basis by which PTPσ acts as a presynaptic organizer.
Collapse
Affiliation(s)
- Claire Bomkamp
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Nirmala Padmanabhan
- Health Sciences Centre, Kleysen Institute for Advanced Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Benyamin Karimi
- Health Sciences Centre, Kleysen Institute for Advanced Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Yuan Ge
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Jesse T Chao
- Department of Cellular and Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J R Loewen
- Department of Cellular and Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Tabrez J Siddiqui
- Health Sciences Centre, Kleysen Institute for Advanced Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Gupta R, Saha P, Sen T, Sen N. An augmentation in histone dimethylation at lysine nine residues elicits vision impairment following traumatic brain injury. Free Radic Biol Med 2019; 134:630-643. [PMID: 30790655 PMCID: PMC6588499 DOI: 10.1016/j.freeradbiomed.2019.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/16/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022]
Abstract
Traumatic Brain Injury (TBI) affects more than 1.7 million Americans each year and about 30% of TBI-patients having visual impairments. The loss of retinal ganglion cells (RGC) in the retina and axonal degeneration in the optic nerve have been attributed to vision impairment following TBI; however, the molecular mechanism has not been elucidated. Here we have shown that an increase in histone di-methylation at lysine 9 residue (H3K9Me2), synthesized by the catalytic activity of a histone methyltransferase, G9a is responsible for RGC loss and axonal degeneration in the optic nerve following TBI. To elucidate the molecular mechanism, we found that an increase in H3K9Me2 results in the induction of oxidative stress both in the RGC and optic nerve by decreasing the mRNA level of antioxidants such as Superoxide dismutase (sod) and catalase through impairing the transcriptional activity of Nuclear factor E2-related factor 2 (Nrf2) via direct interaction. The induction of oxidative stress is associated with death in RGC and oligodendrocyte precursor cells (OPCs). The death in OPCs is correlated with a reduction in myelination, and the expression of myelin binding protein (MBP) in association with degeneration of neurofilaments in the optic nerve. This event allied to an impairment of the retrograde transport of axons and loss of nerve fiber layer in the optic nerve following TBI. An administration of G9a inhibitor, UNC0638 attenuates the induction of H3K9Me2 both in RGC and optic nerve and subsequently activates Nrf2 to reduce oxidative stress. This event was concomitant with the rescue in the loss of retinal thickness, attenuation in optic nerve degeneration and improvement in the retrograde transport of axons following TBI.
Collapse
Affiliation(s)
- Rajaneesh Gupta
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, USA
| | - Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, USA
| | - Tanusree Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, USA
| | - Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, USA.
| |
Collapse
|
20
|
Li HJ, Sun ZL, Yang XT, Zhu L, Feng DF. Exploring Optic Nerve Axon Regeneration. Curr Neuropharmacol 2018; 15:861-873. [PMID: 28029073 PMCID: PMC5652030 DOI: 10.2174/1570159x14666161227150250] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/14/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
Background: Traumatic optic nerve injury is a leading cause of irreversible blindness across the world and causes progressive visual impairment attributed to the dysfunction and death of retinal ganglion cells (RGCs). To date, neither pharmacological nor surgical interventions are sufficient to halt or reverse the progress of visual loss. Axon regeneration is critical for functional recovery of vision following optic nerve injury. After optic nerve injury, RGC axons usually fail to regrow and die, leading to the death of the RGCs and subsequently inducing the functional loss of vision. However, the detailed molecular mechanisms underlying axon regeneration after optic nerve injury remain poorly understood. Methods: Research content related to the detailed molecular mechanisms underlying axon regeneration after optic nerve injury have been reviewed. Results: The present review provides an overview of regarding potential strategies for axonal regeneration of RGCs and optic nerve repair, focusing on the role of cytokines and their downstream signaling pathways involved in intrinsic growth program and the inhibitory environment together with axon guidance cues for correct axon guidance. A more complete understanding of the factors limiting axonal regeneration will provide a rational basis, which contributes to develop improved treatments for optic nerve regeneration. These findings are encouraging and open the possibility that clinically meaningful regeneration may become achievable in the future. Conclusion: Combination of treatments towards overcoming growth-inhibitory molecules and enhancing intrinsic growth capacity combined with correct guidance using axon guidance cues is crucial for developing promising therapies to promote axon regeneration and functional recovery after ON injury.
Collapse
Affiliation(s)
- Hong-Jiang Li
- Department of Neurosurgery, No.9 People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201999, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, No.9 People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201999, China
| | - Xi-Tao Yang
- Department of Neurosurgery, No.9 People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201999, China
| | - Liang Zhu
- Department of Neurosurgery, No.9 People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201999, China
| | - Dong-Fu Feng
- Department of Neurosurgery, No.9 People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201999, China
| |
Collapse
|
21
|
Ohtake Y, Saito A, Li S. Diverse functions of protein tyrosine phosphatase σ in the nervous and immune systems. Exp Neurol 2018; 302:196-204. [PMID: 29374568 PMCID: PMC6275553 DOI: 10.1016/j.expneurol.2018.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Tyrosine phosphorylation is a common means of regulating protein functions and signal transduction in multiple cells. Protein tyrosine phosphatases (PTPs) are a large family of signaling enzymes that remove phosphate groups from tyrosine residues of target proteins and change their functions. Among them, receptor-type PTPs (RPTPs) exhibit a distinct spatial pattern of expression and play essential roles in regulating neurite outgrowth, axon guidance, and synaptic organization in developmental nervous system. Some RPTPs function as essential receptors for chondroitin sulfate proteoglycans that inhibit axon regeneration following CNS injury. Interestingly, certain RPTPs are also important to regulate functions of immune cells and development of autoimmune diseases. PTPσ, a RPTP in the LAR subfamily, is expressed in various immune cells and regulates their differentiation, production of various cytokines and immune responses. In this review, we highlight the physiological and pathological significance of PTPσ and related molecules in both nervous and immune systems.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Atsushi Saito
- Department of Stress Protein Processing, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
22
|
Sphingosine 1-Phosphate Receptor 1 Modulates CNTF-Induced Axonal Growth and Neuroprotection in the Mouse Visual System. Neural Plast 2017; 2017:6818970. [PMID: 29234527 PMCID: PMC5694992 DOI: 10.1155/2017/6818970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/01/2017] [Indexed: 12/03/2022] Open
Abstract
The lack of axonal regeneration and neuronal cell death causes permanent neurological deficits in the injured CNS. Using the classical CNS injury model of optic nerve crush in mice, ciliary neurotrophic factor (CNTF) was found to stimulate retinal ganglion cell (RGC) survival and axonal growth, but in an incomplete fashion. The elucidation of molecular mechanisms impairing CNTF-induced axonal regeneration is paramount to promote visual recovery. In the present study, we sought to evaluate the contribution of sphingosine 1-phosphate receptor 1 (S1PR1) to the neuroprotective and regenerative effects of CNTF. The transduction of retinal cells with adeno-associated viruses (AAV) allowed to activate CNTF/signal transducer and activator of transcription 3 (Stat3) signaling and to modulate S1PR1 expression in RGCs. Our results showed that CNTF/Stat3 prevented injury-induced S1PR1 downregulation. Silencing S1PR1 in RGCs significantly enhanced CNTF-induced axonal growth in the injured optic nerve. In contrast, RGC survival was markedly decreased when S1PR1 was repressed with viral vectors. The level of phosphorylated Stat3 (P-Stat3), an intracellular mediator of CNTF, did not fluctuate after S1PR1 inhibition and CNTF stimulation. Collectively, these results suggest that S1PR1 acts as a major regulator of retinal neuron survival and restricts the RGC growth response induced by CNTF.
Collapse
|
23
|
Wu CL, Hardy S, Aubry I, Landry M, Haggarty A, Saragovi HU, Tremblay ML. Identification of function-regulating antibodies targeting the receptor protein tyrosine phosphatase sigma ectodomain. PLoS One 2017; 12:e0178489. [PMID: 28558026 PMCID: PMC5449173 DOI: 10.1371/journal.pone.0178489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/13/2017] [Indexed: 11/18/2022] Open
Abstract
Receptor tyrosine phosphatase sigma (RPTPσ) plays an important role in the regulation of axonal outgrowth and neural regeneration. Recent studies have identified two RPTPσ ligands, chondroitin sulfate proteoglycans (CSPGs) and heparan sulfate proteoglycans (HSPG), which can modulate RPTPσ activity by affecting its dimerization status. Here, we developed a split luciferase assay to monitor RPTPσ dimerization in living cells. Using this system, we demonstrate that heparin, an analog of heparan sulfate, induced the dimerization of RPTPσ, whereas chondroitin sulfate increased RPTPσ activity by inhibiting RPTPσ dimerization. Also, we generated several novel RPTPσ IgG monoclonal antibodies, to identify one that modulates its activity by inducing/stabilizing dimerization in living cells. Lastly, we demonstrate that this antibody promotes neurite outgrowth in SH-SY5Y cells. In summary, we demonstrated that the split luciferase RPTPσ activity assay is a novel high-throughput approach for discovering novel RPTPσ modulators that can promote axonal outgrowth and neural regeneration.
Collapse
Affiliation(s)
- Chia-Lun Wu
- Rosalind and Morris Goodman Cancer Research Centre, Montréal, Canada.,Department of Experimental Medicine, McGill University, Montréal, Canada
| | - Serge Hardy
- Rosalind and Morris Goodman Cancer Research Centre, Montréal, Canada
| | - Isabelle Aubry
- Rosalind and Morris Goodman Cancer Research Centre, Montréal, Canada
| | - Melissa Landry
- Rosalind and Morris Goodman Cancer Research Centre, Montréal, Canada
| | - Allison Haggarty
- Rosalind and Morris Goodman Cancer Research Centre, Montréal, Canada
| | - Horacio Uri Saragovi
- Departments of Oncology, Pharmacology & Therapeutics, McGill University, Montréal, Canada
| | - Michel L Tremblay
- Rosalind and Morris Goodman Cancer Research Centre, Montréal, Canada.,Department of Experimental Medicine, McGill University, Montréal, Canada
| |
Collapse
|
24
|
Ohtake Y, Wong D, Abdul-Muneer PM, Selzer ME, Li S. Two PTP receptors mediate CSPG inhibition by convergent and divergent signaling pathways in neurons. Sci Rep 2016; 6:37152. [PMID: 27849007 PMCID: PMC5111048 DOI: 10.1038/srep37152] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 01/29/2023] Open
Abstract
Receptor protein tyrosine phosphatase σ (PTPσ) and its subfamily member LAR act as transmembrane receptors that mediate growth inhibition of chondroitin sulfate proteoglycans (CSPGs). Inhibition of either receptor increases axon growth into and beyond scar tissues after CNS injury. However, it is unclear why neurons express two similar CSPG receptors, nor whether they use the same or different intracellular pathways. We have now studied the signaling pathways of these two receptors using N2A cells and primary neurons derived from knockout mice. We demonstrate that both receptors share certain signaling pathways (RhoA, Akt and Erk), but also use distinct signals to mediate CSPG actions. Activation of PTPσ by CSPGs selectively inactivated CRMP2, APC, S6 kinase and CREB. By contrast LAR activation inactivated PKCζ, cofilin and LKB1. For the first time, we propose a model of the signaling pathways downstream of these two CSPG receptors. We also demonstrate that deleting both receptors exhibits additive enhancement of axon growth in adult neuronal cultures in vitro. Our findings elucidate the novel downstream pathways of CSPGs and suggest potential synergy of blocking their two PTP receptors.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Daniella Wong
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - P. M. Abdul-Muneer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
25
|
Joly S, Pernet V. Sphingosine 1-phosphate receptor 1 is required for retinal ganglion cell survival after optic nerve trauma. J Neurochem 2016; 138:571-86. [PMID: 27309795 DOI: 10.1111/jnc.13701] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/11/2016] [Accepted: 06/12/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Sandrine Joly
- CUO-Recherche; Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine; Université Laval; Quebec City Quebec Canada
| | - Vincent Pernet
- CUO-Recherche; Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine; Université Laval; Quebec City Quebec Canada
| |
Collapse
|
26
|
Huang Z, Gao Y, Sun Y, Zhang C, Yin Y, Shimoda Y, Watanabe K, Liu Y. NB-3 signaling mediates the cross-talk between post-traumatic spinal axons and scar-forming cells. EMBO J 2016; 35:1745-65. [PMID: 27192985 DOI: 10.15252/embj.201593460] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/12/2016] [Indexed: 11/09/2022] Open
Abstract
Little is known about the molecules mediating the cross-talk between post-traumatic axons and scar-forming cells after spinal cord injury. We found that a sustained NB-3 induction was simultaneously present in the terminations of post-traumatic corticospinal axons and scar-forming cells at the spinal lesion site, where they were in direct contact when axons tried to penetrate the glial scar. The regrowth of corticospinal axons was enhanced in vivo with NB-3 deficiency or interruption of NB-3 trans-homophilic interactions. Biochemical, in vitro and in vivo evidence demonstrated that NB-3 homophilically interacted in trans to initiate a growth inhibitory signal transduction from scar-forming cells to neurons by modulating mTOR activity via CHL1 and PTPσ. NB-3 deficiency promoted BMS scores, electrophysiological transmission, and synapse reformation between regenerative axons and neurons. Our findings demonstrate that NB-3 trans-homophilic interactions mediate the cross-talk between post-traumatic axons and scar-forming cells and impair the intrinsic growth ability of injured axons.
Collapse
Affiliation(s)
- Zhenhui Huang
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| | - Yarong Gao
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| | - Yuhui Sun
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| | - Chao Zhang
- The Medical School of Lanzhou University, Lanzhou, China
| | - Yue Yin
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| | - Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | | | - Yaobo Liu
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| |
Collapse
|
27
|
Alizadeh A, Karimi-Abdolrezaee S. Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury. J Physiol 2016; 594:3539-52. [PMID: 26857216 DOI: 10.1113/jp270895] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/26/2015] [Indexed: 01/29/2023] Open
Abstract
Myelin is a proteolipid sheath enwrapping axons in the nervous system that facilitates signal transduction along the axons. In the central nervous system (CNS), oligodendrocytes are specialized glial cells responsible for myelin formation and maintenance. Following spinal cord injury (SCI), oligodendroglia cell death and myelin damage (demyelination) cause chronic axonal damage and irreparable loss of sensory and motor functions. Accumulating evidence shows that replacement of damaged oligodendrocytes and renewal of myelin (remyelination) are promising approaches to prevent axonal degeneration and restore function following SCI. Neural precursor cells (NPCs) and oligodendrocyte progenitor cells (OPCs) are two main resident cell populations in the spinal cord with innate capacities to foster endogenous oligodendrocyte replacement and remyelination. However, due to the hostile microenvironment of SCI, the regenerative capacity of these endogenous precursor cells is conspicuously restricted. Activated resident glia, along with infiltrating immune cells, are among the key modulators of secondary injury mechanisms that create a milieu impermissible to oligodendrocyte differentiation and remyelination. Recent studies have uncovered inhibitory roles for astrocyte-associated molecules such as matrix chondroitin sulfate proteoglycans (CSPGs), and a plethora of pro-inflammatory cytokines and neurotoxic factors produced by activated microglia/macrophages. The quality of axonal remyelination is additionally challenged by dysregulation of the supportive growth factors required for maturation of new oligodendrocytes and axo-oligodendrocyte signalling. Careful understanding of factors that modulate the activity of endogenous precursor cells in the injury microenvironment is a key step in developing efficient repair strategies for remyelination and functional recovery following SCI.
Collapse
Affiliation(s)
- Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
28
|
Masu M. Proteoglycans and axon guidance: a new relationship between old partners. J Neurochem 2016; 139 Suppl 2:58-75. [PMID: 26709493 DOI: 10.1111/jnc.13508] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 01/12/2023]
Abstract
Neural circuits are formed with great precision during development. Accumulated evidence over the past three decades has demonstrated that growing axons are navigated toward their targets by the combined actions of attractants and repellents together with their receptors. It has long been known that proteoglycans, glycosylated proteins possessing covalently attached glycosaminoglycans, play a critical role in axon guidance; however, the molecular mechanisms by which proteoglycans regulate axon behaviors remain largely unknown. Glycosaminoglycans such as heparan sulfate and chondroitin sulfate are large linear polysaccharides composed of repeating disaccharide units that are highly modified by specific sulfation and epimerization. Recent biochemical and molecular biological studies have identified the enzymes that are involved in the biosynthesis of glycosaminoglycans. Interestingly, many mutants lacking glycosaminoglycan-synthesizing enzymes or proteoglycans in several model organisms show defects in specific nerve tract formation. In parallel, detailed biochemical studies have identified the molecular interactions between axon guidance molecules and glycosaminoglycans that have specific modification in their sugar chains. This review summarizes the structure and function of axon guidance molecules and glycosaminoglycans, and then tries to combine the knowledge from these studies to understand the role of proteoglycans from a new vantage point. Deciphering the sugar code is important for understanding the complicated nature of proteoglycans in axon guidance. Neural circuits are formed by the combined actions of axon guidance molecules. Proteoglycans play critical roles in regulating axon guidance through the interaction between signaling molecules and glycosaminoglycan chains attached to the core protein. This paper summarizes the structure and functions of axon guidance molecules and glycosaminoglycans and reviews the molecular mechanisms by which proteoglycans regulate axon guidance from a new vantage point. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Masayuki Masu
- Department of Molecular Neurobiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
29
|
van Niekerk EA, Tuszynski MH, Lu P, Dulin JN. Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury. Mol Cell Proteomics 2015; 15:394-408. [PMID: 26695766 DOI: 10.1074/mcp.r115.053751] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 12/28/2022] Open
Abstract
Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system.
Collapse
Affiliation(s)
- Erna A van Niekerk
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093;
| | - Mark H Tuszynski
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Paul Lu
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Jennifer N Dulin
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
30
|
Lee HS, Ku B, Park TH, Park H, Choi JK, Chang KT, Kim CH, Ryu SE, Kim SJ. Identification of novel protein tyrosine phosphatase sigma inhibitors promoting neurite extension. Bioorg Med Chem Lett 2015; 26:87-93. [PMID: 26602279 DOI: 10.1016/j.bmcl.2015.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/26/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
Protein tyrosine phosphatase sigma (PTPσ) is a potential target for the therapeutic treatment of neurological deficits associated with impaired neuronal recovery, as this protein is the receptor for chondroitin sulfate proteoglycan (CSPG), which is known to inhibit neuronal regeneration. Through a high-throughput screening approach started from 6400 representative compounds in the Korea Chemical Bank chemical library, we identified 11 novel PTPσ inhibitors that can be classified as flavonoid derivatives or analogs, with IC50 values ranging from 0.5 to 17.5μM. Biochemical assays and structure-based active site-docking simulation indicate that our inhibitors are accommodated at the catalytic active site of PTPσ as surrogates for the phosphotyrosine group. Treatments of these compounds on PC-12 neuronal cells led to the recovery of neurite extension attenuated by CSPG treatment, demonstrating their potential as antineurodegenerative agents.
Collapse
Affiliation(s)
- Hye Seon Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Department of Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Bonsu Ku
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Tae Hyun Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| | - Joong-Kwon Choi
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Seung Jun Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea.
| |
Collapse
|
31
|
Oohashi T, Edamatsu M, Bekku Y, Carulli D. The hyaluronan and proteoglycan link proteins: Organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity. Exp Neurol 2015; 274:134-44. [PMID: 26387938 DOI: 10.1016/j.expneurol.2015.09.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 02/06/2023]
Abstract
The hyaluronan and proteoglycanbinding link protein (Hapln) is a key molecule in the formation and control of hyaluronan-based condensed perineuronal matrix in the adult brain. This review summarizes the recent advances in understanding the role of Haplns in the formation and control of two distinct types of perineuronal matrices, one for "classical" PNN and the other for the specialized extracellular matrix (ECM) at the node of Ranvier in the central nervous system (CNS). We introduce the structural components of each ECM organization including the basic concept of supramolecular structure named "HLT model". We furthermore summarize the developmental and physiological role of perineuronal ECMs from the studies of Haplns and related molecules. Finally, we also discuss the potential mechanism modulating PNNs in the adult CNS. This layer of organized matrices may exert a direct effect via core protein or sugar moiety from the structure or by acting as a binding site for biologically active molecules, which are important for neuronal plasticity and saltatory conduction.
Collapse
Affiliation(s)
- Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Midori Edamatsu
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yoko Bekku
- NYU Neuroscience Institute, New York University Langone Medical Center, 522 First Avenue, New York, NY 10016, USA
| | - Daniela Carulli
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), Neuroscience Institute Cavalieri-Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| |
Collapse
|
32
|
Lebrun-Julien F, Suter U. Combined HDAC1 and HDAC2 Depletion Promotes Retinal Ganglion Cell Survival After Injury Through Reduction of p53 Target Gene Expression. ASN Neuro 2015; 7:7/3/1759091415593066. [PMID: 26129908 PMCID: PMC4720215 DOI: 10.1177/1759091415593066] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histones deacetylases (HDACs), besides their function as epigenetic regulators, deacetylate and critically regulate the activity of nonhistone targets. In particular, HDACs control partially the proapoptotic activity of p53 by balancing its acetylation state. HDAC inhibitors have revealed neuroprotective properties in different models, but the exact mechanisms of action remain poorly understood. We have generated a conditional knockout mouse model targeting retinal ganglion cells (RGCs) to investigate specifically the functional role of HDAC1 and HDAC2 in an acute model of optic nerve injury. Our results demonstrate that combined HDAC1 and HDAC2 ablation promotes survival of axotomized RGCs. Based on global gene expression analyses, we identified the p53-PUMA apoptosis-inducing axis to be strongly activated in axotomized mouse RGCs. Specific HDAC1/2 ablation inhibited this apoptotic pathway by impairing the crucial acetylation status of p53 and reducing PUMA expression, thereby contributing to the ensuing enhanced neuroprotection due to HDAC1/2 depletion. HDAC1/2 inhibition and the affected downstream signaling components emerge as specific targets for developing therapeutic strategies in neuroprotection.
Collapse
Affiliation(s)
- Frédéric Lebrun-Julien
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zürich, CH, Switzerland
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zürich, CH, Switzerland
| |
Collapse
|
33
|
Abstract
Three theories of regeneration dominate neuroscience today, all purporting to explain why the adult central nervous system (CNS) cannot regenerate. One theory proposes that Nogo, a molecule expressed by myelin, prevents axonal growth. The second theory emphasizes the role of glial scars. The third theory proposes that chondroitin sulfate proteoglycans (CSPGs) prevent axon growth. Blockade of Nogo, CSPG, and their receptors indeed can stop axon growth in vitro and improve functional recovery in animal spinal cord injury (SCI) models. These therapies also increase sprouting of surviving axons and plasticity. However, many investigators have reported regenerating spinal tracts without eliminating Nogo, glial scar, or CSPG. For example, many motor and sensory axons grow spontaneously in contused spinal cords, crossing gliotic tissue and white matter surrounding the injury site. Sensory axons grow long distances in injured dorsal columns after peripheral nerve lesions. Cell transplants and treatments that increase cAMP and neurotrophins stimulate motor and sensory axons to cross glial scars and to grow long distances in white matter. Genetic studies deleting all members of the Nogo family and even the Nogo receptor do not always improve regeneration in mice. A recent study reported that suppressing the phosphatase and tensin homolog (PTEN) gene promotes prolific corticospinal tract regeneration. These findings cannot be explained by the current theories proposing that Nogo and glial scars prevent regeneration. Spinal axons clearly can and will grow through glial scars and Nogo-expressing tissue under some circumstances. The observation that deleting PTEN allows corticospinal tract regeneration indicates that the PTEN/AKT/mTOR pathway regulates axonal growth. Finally, many other factors stimulate spinal axonal growth, including conditioning lesions, cAMP, glycogen synthetase kinase inhibition, and neurotrophins. To explain these disparate regenerative phenomena, I propose that the spinal cord has evolved regenerative mechanisms that are normally suppressed by multiple extrinsic and intrinsic factors but can be activated by injury, mediated by the PTEN/AKT/mTOR, cAMP, and GSK3b pathways, to stimulate neural growth and proliferation.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
34
|
Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature 2014; 518:404-8. [PMID: 25470046 PMCID: PMC4336236 DOI: 10.1038/nature13974] [Citation(s) in RCA: 343] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/16/2014] [Indexed: 11/09/2022]
Abstract
Contusive spinal cord injury (SCI) leads to a variety of disabilities due to limited neuronal regeneration and functional plasticity. It is well established that an upregulation of glial derived chondroitin sulfate proteoglycans (CSPGs) within the glial scar and perineuronal net (PNN) creates a barrier to axonal regrowth and sprouting1–5. Protein Tyrosine Phosphatase σ (PTPσ), along with its sister phosphatase Leukocyte common Antigen-Related (LAR), and the Nogo Receptors 1 and 3 (NgR) have recently been identified as receptors for the inhibitory glycosylated side chains of CSPGs6–8. We found that PTPσ plays a critical role in converting growth cones into a dystrophic state by tightly stabilizing them within CSPG-rich substrates. We generated a membrane-permeable peptide mimetic of the PTPσ wedge domain that binds to PTPσ and relieves CSPG-mediated inhibition. Systemic delivery of this peptide over weeks restored substantial serotonergic innervation to the spinal cord below the level of injury and facilitated functional recovery of both locomotor and urinary systems. Our results add a new layer of understanding to the critical role of PTPσ in mediating the growth-inhibited state of neurons due to CSPGs within the injured adult spinal cord.
Collapse
|
35
|
Stoker AW. RPTPs in axons, synapses and neurology. Semin Cell Dev Biol 2014; 37:90-7. [PMID: 25234542 DOI: 10.1016/j.semcdb.2014.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
Abstract
Receptor-like protein tyrosine phosphatases represent a large protein family related to cell adhesion molecules, with diverse roles throughout neural development in vertebrates and invertebrates. This review focuses on their roles in axon growth, guidance and repair, as well as more recent findings demonstrating their key roles in pre-synaptic and post-synaptic maturation and function. These enzymes have been linked to memory and neuropsychiatric defects in loss-of-function rodent models, highlighting their potential as future drug targets.
Collapse
Affiliation(s)
- Andrew W Stoker
- Institute of Child Health, University College London, United Kingdom.
| |
Collapse
|
36
|
Ohtake Y, Li S. Molecular mechanisms of scar-sourced axon growth inhibitors. Brain Res 2014; 1619:22-35. [PMID: 25192646 DOI: 10.1016/j.brainres.2014.08.064] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/21/2014] [Indexed: 12/29/2022]
Abstract
Astrogliosis is a defense response of the CNS to minimize primary damage and to repair injured tissues, but it ultimately generates harmful effects by upregulating inhibitory molecules to suppress neuronal elongation and forming potent barriers to axon regeneration. Chondroitin sulfate proteoglycans (CSPGs) are highly expressed by reactive scars and are potent contributors to the non-permissive environment in mature CNS. Surmounting strong inhibition by CSPG-rich scar is an important therapeutic goal for achieving functional recovery after CNS injuries. Currently, enzymatic digestion of CSPGs with locally applied chondroitinase ABC is the main in vivo approach to overcome scar inhibition, but several disadvantages may prevent using this bacterial enzyme as a therapeutic option for patients. A better understanding of molecular mechanisms underlying CSPG function may facilitate development of new effective therapies to overcome scar-mediated inhibition. Previous studies support that CSPGs act by non-specifically hindering the binding of matrix molecules to their cell surface receptors through steric interactions, but two members of the leukocyte common antigen related (LAR) phosphatase subfamily, protein tyrosine phosphatase σ and LAR, are functional receptors that bind CSPGs with high affinity and mediate CSPG inhibition. CSPGs may also act by binding two receptors for myelin-associated growth inhibitors, Nogo receptors 1 and 3. Thus, CSPGs inhibit axon growth through multiple mechanisms, making them especially potent and difficult therapeutic targets. Identification of CSPG receptors is not only important for understanding the scar-mediated growth suppression, but also for developing novel and selective therapies to promote axon sprouting and/or regeneration after CNS injuries. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, 3500N. Broad Street, Philadelphia 19140, PA, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, 3500N. Broad Street, Philadelphia 19140, PA, USA.
| |
Collapse
|
37
|
Pernet V, Schwab ME. Lost in the jungle: new hurdles for optic nerve axon regeneration. Trends Neurosci 2014; 37:381-7. [PMID: 24874558 DOI: 10.1016/j.tins.2014.05.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
Abstract
The poor regenerative capacity of injured central nervous system (CNS) axons leads to permanent neurological deficits after brain, spinal cord, or optic nerve lesions. In the optic nerve, recent studies showed that stimulation of the cytokine or mammalian target of rapamycin (mTOR) signaling pathways potently enhances sprouting and regeneration of injured retinal ganglion cell axons in adult mice, but does not allow the majority of axons to reach their main cerebral targets. New analyses have revealed axon navigation defects in the optic nerve and at the optic chiasm under conditions of strong growth stimulation. We propose that a balanced growth stimulatory treatment will have to be combined with guidance factors and suppression of local growth inhibitory factors to obtain the full regeneration of long CNS axonal tracts.
Collapse
Affiliation(s)
- Vincent Pernet
- Brain Research Institute, University of Zürich, and Department of Health Sciences and Technology, ETH Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | - Martin E Schwab
- Brain Research Institute, University of Zürich, and Department of Health Sciences and Technology, ETH Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
38
|
Silver DJ, Silver J. Contributions of chondroitin sulfate proteoglycans to neurodevelopment, injury, and cancer. Curr Opin Neurobiol 2014; 27:171-8. [PMID: 24762654 DOI: 10.1016/j.conb.2014.03.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 01/09/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are a diverse family of extracellular matrix (ECM) molecules that make significant contributions to the patterning and routing of migrating neural cells and extending axons. Three distinct modes of migration mediation result from the relative abundance and positioning of expressed CSPGs, the profile of CSPG receptors expressed by the motile cell types, and the overall way in which the CSPGs integrate into and stabilize the neural ECM. Here we discuss recent findings that help to clarify the molecular mechanisms that underlie these distinct migration-regulating properties as they pertain to neural development, CNS injury, and gliomagenesis.
Collapse
Affiliation(s)
- Daniel J Silver
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, United States
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, 2109 Adelbert Road Rm E-658, Cleveland, OH 44106, United States.
| |
Collapse
|
39
|
CLAC-P/collagen type XXV is required for the intramuscular innervation of motoneurons during neuromuscular development. J Neurosci 2014; 34:1370-9. [PMID: 24453327 DOI: 10.1523/jneurosci.2440-13.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Formation of proper neuromuscular connections is a process coordinated by both motoneuron-intrinsic and target-dependent programs. Under these programs, motoneurons innervate target muscles, escape programmed cell death during fetal development, and form neuromuscular junctions (NMJ). Although a number of studies have revealed molecules involved in axon guidance to target muscles and NMJ formation, little is known about the molecular mechanisms linking intramuscular innervation and target-derived trophic factor-dependent prevention of motoneuron apoptosis. Here we studied the physiological function of CLAC-P/collagen XXV, a transmembrane-type collagen originally identified as a component of senile plaque amyloid of Alzheimer's disease brains, by means of generating Col25a1-deficient (KO) mice. Col25a1 KO mice died immediately after birth of respiratory failure. In Col25a1 KO mice, motor axons projected properly toward the target muscles but failed to elongate and branch within the muscle, followed by degeneration of axons. Failure of muscular innervation in Col25a1 KO mice led to excessive apoptosis during development, resulting in almost complete and exclusive loss of spinal motoneurons and immaturity in skeletal muscle development. Bax deletion in Col25a1 KO mice rescued motoneurons from apoptosis, although motor axons remained halted around the muscle entry site. Furthermore, these motoneurons were positive for phosphorylated c-Jun, an indicator of insufficient supply of target-derived survival signals. Together, these observations indicate that CLAC-P/collagen XXV is a novel essential factor that regulates the initial phase of intramuscular motor innervation, which is required for subsequent target-dependent motoneuron survival and NMJ formation during development.
Collapse
|
40
|
Shen Y. Traffic lights for axon growth: proteoglycans and their neuronal receptors. Neural Regen Res 2014; 9:356-61. [PMID: 25206823 PMCID: PMC4146200 DOI: 10.4103/1673-5374.128236] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2014] [Indexed: 01/19/2023] Open
Abstract
Axon growth is a central event in the development and post-injury plasticity of the nervous system. Growing axons encounter a wide variety of environmental instructions. Much like traffic lights in controlling the migrating axons, chondroitin sulfate proteoglycans (CSPGs) and heparan sulfate proteoglycans (HSPGs) often lead to "stop" and "go" growth responses in the axons, respectively. Recently, the LAR family and NgR family molecules were identified as neuronal receptors for CSPGs and HSPGs. These discoveries provided molecular tools for further study of mechanisms underlying axon growth regulation. More importantly, the identification of these proteoglycan receptors offered potential therapeutic targets for promoting post-injury axon regeneration.
Collapse
Affiliation(s)
- Yingjie Shen
- Department of Neuroscience and Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, 460 w 12 Ave, Columbus, OH 43210, USA
| |
Collapse
|
41
|
Awakening the stalled axon - surprises in CSPG gradients. Exp Neurol 2014; 254:12-7. [PMID: 24424282 DOI: 10.1016/j.expneurol.2013.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/23/2013] [Accepted: 12/25/2013] [Indexed: 01/11/2023]
Abstract
The remarkably poor regeneration of axons seen after injury of the brain and spinal cord can result in permanent loss of neural function. This failure of meaningful regeneration has been attributed to both a low intrinsic growth potential of CNS neurons and extrinsic factors that actively block axon growth in the adult CNS. Injury exacerbates this situation by increasing the expression of and exposure to proteins that actively block axonal growth in the CNS. Much experimental efforts have been aimed at overcoming the extrinsic growth inhibitory environment of the injured brain and spinal cord. A recent publication in Experimental Neurology from Kuboyama and colleagues shows that activation of protein kinase A signaling is responsible for the stalling of axon growth in gradients of CNS inhibitory molecules. This observation is unexpected given the role of cAMP signaling in supporting intrinsic growth mechanisms, emphasizing the need to consider spatial and temporal aspects of intracellular signaling in future strategies for neural repair.
Collapse
|
42
|
Functional regeneration beyond the glial scar. Exp Neurol 2014; 253:197-207. [PMID: 24424280 DOI: 10.1016/j.expneurol.2013.12.024] [Citation(s) in RCA: 486] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/18/2013] [Accepted: 12/24/2013] [Indexed: 12/14/2022]
Abstract
Astrocytes react to CNS injury by building a dense wall of filamentous processes around the lesion. Stromal cells quickly take up residence in the lesion core and synthesize connective tissue elements that contribute to fibrosis. Oligodendrocyte precursor cells proliferate within the lesion and entrap dystrophic axon tips. Here we review evidence that this aggregate scar acts as the major barrier to regeneration of axons after injury. We also consider several exciting new interventions that allow axons to regenerate beyond the glial scar, and discuss the implications of this work for the future of regeneration biology.
Collapse
|
43
|
Protein tyrosine phosphatase σ targets apical junction complex proteins in the intestine and regulates epithelial permeability. Proc Natl Acad Sci U S A 2014; 111:693-8. [PMID: 24385580 DOI: 10.1073/pnas.1315017111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine phosphatase (PTP)σ (PTPRS) was shown previously to be associated with susceptibility to inflammatory bowel disease (IBD). PTPσ(-/-) mice exhibit an IBD-like phenotype in the intestine and show increased susceptibility to acute models of murine colitis. However, the function of PTPσ in the intestine is uncharacterized. Here, we show an intestinal epithelial barrier defect in the PTPσ(-/-) mouse, demonstrated by a decrease in transepithelial resistance and a leaky intestinal epithelium that was determined by in vivo tracer analysis. Increased tyrosine phosphorylation was observed at the plasma membrane of epithelial cells lining the crypts of the small bowel and colon of the PTPσ(-/-) mouse, suggesting the presence of PTPσ substrates in these regions. Using mass spectrometry, we identified several putative PTPσ intestinal substrates that were hyper-tyrosine-phosphorylated in the PTPσ(-/-) mice relative to wild type. Among these were proteins that form or regulate the apical junction complex, including ezrin. We show that ezrin binds to and is dephosphorylated by PTPσ in vitro, suggesting it is a direct PTPσ substrate, and identified ezrin-Y353/Y145 as important sites targeted by PTPσ. Moreover, subcellular localization of the ezrin phosphomimetic Y353E or Y145 mutants were disrupted in colonic Caco-2 cells, similar to ezrin mislocalization in the colon of PTPσ(-/-) mice following induction of colitis. Our results suggest that PTPσ is a positive regulator of intestinal epithelial barrier, which mediates its effects by modulating epithelial cell adhesion through targeting of apical junction complex-associated proteins (including ezrin), a process impaired in IBD.
Collapse
|
44
|
Discovery of novel protein tyrosine phosphatase sigma inhibitors through the virtual screening with modified scoring function. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0713-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
45
|
Integrating virtual and biochemical screening for protein tyrosine phosphatase inhibitor discovery. Methods 2013; 65:219-28. [PMID: 23969317 DOI: 10.1016/j.ymeth.2013.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/09/2013] [Accepted: 08/13/2013] [Indexed: 12/14/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) represent an important class of enzymes that mediate signal transduction and control diverse aspects of cell behavior. The importance of their activity is exemplified by their significant contribution to disease etiology with over half of all human PTP genes implicated in at least one disease. Small molecule inhibitors targeting individual PTPs are important biological tools, and are needed to fully characterize the function of these enzymes. Moreover, potent and selective PTP inhibitors hold the promise to transform the treatment of many diseases. While numerous methods exist to develop PTP-directed small molecules, we have found that complimentary use of both virtual (in silico) and biochemical (in vitro) screening approaches expedite compound identification and drug development. Here, we summarize methods pertinent to our work and others. Focusing on specific challenges and successes we have experienced, we discuss the considerable caution that must be taken to avoid enrichment of inhibitors that function by non-selective oxidation. We also discuss the utility of using "open" PTP structures to identify active-site directed compounds, a rather unconventional choice for virtual screening. When integrated closely, virtual and biochemical screening can be used in a productive workflow to identify small molecules targeting PTPs.
Collapse
|
46
|
Liu H, Xu H, Yu T, Yao J, Zhao C, Yin ZQ. Expression of perineuronal nets, parvalbumin and protein tyrosine phosphatase σ in the rat visual cortex during development and after BFD. Curr Eye Res 2013; 38:1083-94. [PMID: 23718120 DOI: 10.3109/02713683.2013.803287] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
UNLABELLED Abstract Purpose of the Study: Protein tyrosine phosphatase σ (PTPσ) acts as a neuronal receptor for chondroitin sulfate proteoglycans (CSPGs). CSPGs have inhibitory effects on experience-dependent plasticity and usually form lattice-like cell coatings that surround the parvalbumin (PV) interneurons in the visual cortex (VC). We investigated developmental changes and the effect of binocular form deprivation (BFD) on PTPσ, perineuronal nets (PNNs) and their tempo-spatial relationships with PV neurons in the VC. MATERIALS AND METHODS Double-immunostaining was used to observe the coexpression pattern of PNNs staining by biotinylated wisteria floribunda lectin (WFA) with PV neurons. The expression of PTPσ in the VC of Long Evans rats was detected by real-time quantitative PCR, immunohistochemistry and western blots. The changes in the number of PV/WFA/PTPσ labeled cells in layer IV of the VC and its proportion of PV neurons were examined during development and after BFD. RESULTS The expression of PV neurons wrapped by PNNs was increased, particularly in the first half of the critical period, and the ratio for PV neurons reached the highest level (over 75%) at adulthood, indicating that PNNs may play an important role in the maturation of PV neurons during the critical period. BFD decreased the density of PNNs and the percentage of PV neurons with PNNs. This result suggests that the number of PNNs surrounding PV neurons may be experience-dependent. Meanwhile, the CSPG receptor PTPσ was maintained at its lowest level during the critical period and could be modulated by BFD after the critical period. The percentage of PV/WFA/PTPσ-positive cells in PV population increased during development and reached its highest ratio at adulthood, which could also be reversed by BFD. CONCLUSIONS The changes in the coexpression of PNNs, PV and PTPσ provide valuable insights into the connection between CSPGs and PV neurons.
Collapse
Affiliation(s)
- Hui Liu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
47
|
Hendriks WJAJ, Pulido R. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1673-96. [PMID: 23707412 DOI: 10.1016/j.bbadis.2013.05.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Reversible tyrosine phosphorylation of proteins is a key regulatory mechanism to steer normal development and physiological functioning of multicellular organisms. Phosphotyrosine dephosphorylation is exerted by members of the super-family of protein tyrosine phosphatase (PTP) enzymes and many play such essential roles that a wide variety of hereditary disorders and disease susceptibilities in man are caused by PTP alleles. More than two decades of PTP research has resulted in a collection of PTP genetic variants with corresponding consequences at the molecular, cellular and physiological level. Here we present a comprehensive overview of these PTP gene variants that have been linked to disease states in man. Although the findings have direct bearing for disease diagnostics and for research on disease etiology, more work is necessary to translate this into therapies that alleviate the burden of these hereditary disorders and disease susceptibilities in man.
Collapse
Affiliation(s)
- Wiljan J A J Hendriks
- Department of Cell Biology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | |
Collapse
|
48
|
Pendleton JC, Shamblott MJ, Gary DS, Belegu V, Hurtado A, Malone ML, McDonald JW. Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination through PTPσ. Exp Neurol 2013; 247:113-21. [PMID: 23588220 DOI: 10.1016/j.expneurol.2013.04.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/19/2013] [Accepted: 04/05/2013] [Indexed: 11/30/2022]
Abstract
CNS damage often results in demyelination of spared axons due to oligodendroglial cell death and dysfunction near the injury site. Although new oligodendroglia are generated following CNS injury and disease, the process of remyelination is typically incomplete resulting in long-term functional deficits. Chondroitin sulfate proteoglycans (CSPGs) are upregulated in CNS grey and white matter following injury and disease and are a major component of the inhibitory scar that suppresses axon regeneration. CSPG inhibition of axonal regeneration is mediated, at least in part, by the protein tyrosine phosphatase sigma (PTPσ) receptor. Recent evidence demonstrates that CSPGs inhibit OL process outgrowth, however, the means by which their effects are mediated remains unclear. Here we investigate the role of PTPσ in CSPG inhibition of OL function. We found that the CSPGs, aggrecan, neurocan and NG2 all imposed an inhibitory effect on OL process outgrowth and myelination. These inhibitory effects were reversed by degradation of CSPGs with Chondroitinase ABC prior to OL exposure. RNAi-mediated down-regulation of PTPσ reversed the inhibitory effect of CSPGs on OL process outgrowth and myelination. Likewise, CSPG inhibition of process outgrowth and myelination was significantly reduced in cultures containing PTPσ(-/-) OLs. Finally, inhibition of Rho-associated kinase (ROCK) increased OL process outgrowth and myelination during exposure to CSPGs. These results suggest that in addition to their inhibitory effects on axon regeneration, CSPGs have multiple inhibitory actions on OLs that result in incomplete remyelination following CNS injury. The identification of PTPσ as a receptor for CSPGs, and the participation of ROCK downstream of CSPG exposure, reveal potential therapeutic targets to enhance white matter repair in the damaged CNS.
Collapse
Affiliation(s)
- James C Pendleton
- International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Martin KR, Narang P, Xu Y, Kauffman AL, Petit J, Xu HE, Meurice N, MacKeigan JP. Identification of small molecule inhibitors of PTPσ through an integrative virtual and biochemical approach. PLoS One 2012. [PMID: 23185579 PMCID: PMC3502291 DOI: 10.1371/journal.pone.0050217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PTPσ is a dual-domain receptor type protein tyrosine phosphatase (PTP) with physiologically important functions which render this enzyme an attractive biological target. Specifically, loss of PTPσ has been shown to elicit a number of cellular phenotypes including enhanced nerve regeneration following spinal cord injury (SCI), chemoresistance in cultured cancer cells, and hyperactive autophagy, a process critical to cell survival and the clearance of pathological aggregates in neurodegenerative diseases. Owing to these functions, modulation of PTPσ may provide therapeutic value in a variety of contexts. Furthermore, a small molecule inhibitor would provide utility in discerning the cellular functions and substrates of PTPσ. To develop such molecules, we combined in silico modeling with in vitro phosphatase assays to identify compounds which effectively inhibit the enzymatic activity of PTPσ. Importantly, we observed that PTPσ inhibition was frequently mediated by oxidative species generated by compounds in solution, and we further optimized screening conditions to eliminate this effect. We identified a compound that inhibits PTPσ with an IC50 of 10 µM in a manner that is primarily oxidation-independent. This compound favorably binds the D1 active site of PTPσ in silico, suggesting it functions as a competitive inhibitor. This compound will serve as a scaffold structure for future studies designed to build selectivity for PTPσ over related PTPs.
Collapse
Affiliation(s)
- Katie R. Martin
- Laboratory of Systems Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Pooja Narang
- Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Yong Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Audra L. Kauffman
- Laboratory of Systems Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Joachim Petit
- Mayo Clinic, Scottsdale, Arizona, United States of America
| | - H. Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | | | - Jeffrey P. MacKeigan
- Laboratory of Systems Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- * E-mail:
| |
Collapse
|
50
|
Sharma K, Selzer ME, Li S. Scar-mediated inhibition and CSPG receptors in the CNS. Exp Neurol 2012; 237:370-8. [PMID: 22836147 PMCID: PMC5454774 DOI: 10.1016/j.expneurol.2012.07.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/14/2012] [Indexed: 11/21/2022]
Abstract
Severed axons in adult mammals do not regenerate appreciably after central nervous system (CNS) injury due to developmentally determined reductions in neuron-intrinsic growth capacity and extracellular environment for axon elongation. Chondroitin sulfate proteoglycans (CSPGs), which are generated by reactive scar tissues, are particularly potent contributors to the growth-limiting environment in mature CNS. Thus, surmounting the strong inhibition by CSPG-rich scar is an important therapeutic goal for achieving functional recovery after CNS injuries. As of now, the main in vivo approach to overcoming inhibition by CSPGs is enzymatic digestion with locally applied chondroitinase ABC (ChABC), but several disadvantages may prevent using this bacterial enzyme as a therapeutic option for patients. A better understanding of the molecular mechanisms underlying CSPG action is needed in order to develop more effective therapies to overcome CSPG-mediated inhibition of axon regeneration and/or sprouting. Because of their large size and dense negative charges, CSPGs were thought to act by non-specifically hindering the binding of matrix molecules to their cell surface receptors through steric interactions. Although this may be true, recent studies indicate that two members of the leukocyte common antigen related (LAR) phosphatase subfamily, protein tyrosine phosphatase σ (PTPσ) and LAR, are functional receptors that bind CSPGs with high affinity and mediate CSPG inhibitory effects. CSPGs also may act by binding to two receptors for myelin-associated growth inhibitors, Nogo receptors 1 and 3 (NgR1 and NgR3). If confirmed, it would suggest that CSPGs have multiple mechanisms by which they inhibit axon growth, making them especially potent and difficult therapeutic targets. Identification of CSPG receptors is not only important for understanding the scar-mediated growth suppression, but also for developing novel and selective therapies to promote axon sprouting and/or regeneration after CNS injuries, including spinal cord injury (SCI).
Collapse
Affiliation(s)
- Kartavya Sharma
- Department of Neurology and Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, Texas 75390-8813, USA
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Shuxin Li
- Department of Neurology and Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, Texas 75390-8813, USA
| |
Collapse
|