1
|
Kanjanasirirat P, Saengsawang W, Ketsawatsomkron P, Asavapanumas N, Borwornpinyo S, Soodvilai S, Hongeng S, Charoensutthivarakul S. GDNF and cAMP significantly enhance in vitro blood-brain barrier integrity in a humanized tricellular transwell model. Heliyon 2024; 10:e39343. [PMID: 39492921 PMCID: PMC11530796 DOI: 10.1016/j.heliyon.2024.e39343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Blood-brain barrier (BBB) is a crucial membrane safeguarding neural tissue by controlling the molecular exchange between blood and the brain. However, assessing BBB permeability presents challenges for central nervous system (CNS) drug development. In vitro studies of BBB-permeable agents before animal testing are essential to mitigate failures. Improved in vitro models are needed to mimic physiologically relevant BBB integrity. Here, we established an in vitro human-derived triculture BBB model, coculturing hCMEC/D3 with primary astrocytes and pericytes in a transwell format. This study found that the triculture BBB model exhibited significantly higher paracellular tightness (TEER 147.6 ± 6.5 Ω × cm2) than its monoculture counterpart (106.3 ± 1.0 Ω × cm2). Additionally, BBB permeability in the triculture model was significantly lower. While GDNF and cAMP have been shown to promote BBB integrity in monoculture models, their effect in our model was previously unreported. Our study demonstrates that both GDNF and cAMP increased TEER values (around 200 Ω × cm2 for each; 237.6 ± 17.7 Ω × cm2 for co-treatment) compared to untreated control, and decreased BBB permeability, mediated by increased claudin-5 expression. In summary, this humanized triculture BBB model, enhanced by GDNF and cAMP, offers an alternative for exploring in vitro drug penetration into the human brain.
Collapse
Affiliation(s)
- Phongthon Kanjanasirirat
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Witchuda Saengsawang
- Department of Basic Biomedical Sciences, Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Pimonrat Ketsawatsomkron
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, 10540, Thailand
| | - Nithi Asavapanumas
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, 10540, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Sunhapas Soodvilai
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sitthivut Charoensutthivarakul
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
2
|
Ahmed HS. The Multifaceted Role of L-Type Amino Acid Transporter 1 at the Blood-Brain Barrier: Structural Implications and Therapeutic Potential. Mol Neurobiol 2024:10.1007/s12035-024-04506-9. [PMID: 39325101 DOI: 10.1007/s12035-024-04506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
L-type amino acid transporter 1 (LAT1) is integral to the transport of large neutral amino acids across the blood-brain barrier (BBB), playing a crucial role in brain homeostasis and the delivery of therapeutic agents. This review explores the multifaceted role of LAT1 in neurological disorders, including its structural and functional aspects at the BBB. Studies using advanced BBB models, such as induced pluripotent stem cell (iPSC)-derived systems and quantitative proteomic analyses, have demonstrated LAT1's significant impact on drug permeability and transport efficiency. In Alzheimer's disease, LAT1-mediated delivery of anti-inflammatory and neuroprotective agents shows promise in overcoming BBB limitations. In Parkinson's disease, LAT1's role in transporting L-DOPA and other therapeutic agents highlights its potential in enhancing treatment efficacy. In phenylketonuria, studies have revealed polymorphisms and genetic variations of LAT1, which could be correlated to disease severity. Prodrugs of valproic acid, pregabalin, and gabapentin help use LAT1-mediated transport to increase the therapeutic activity and bioavailability of the prodrug in the brain. LAT1 has also been studied in neurodevelopment disorders like autism spectrum disorders and Rett syndrome, along with neuropsychiatric implications in depression. Its implications in neuro-oncology, especially in transporting therapeutic agents into cancer cells, show immense future potential. Phenotypes of LAT1 have also shown variations in the general population affecting their ability to respond to painkillers and anti-inflammatory drugs. Furthermore, LAT1-targeted approaches, such as functionalized nanoparticles and prodrugs, show promise in overcoming chemoresistance and enhancing drug delivery to the brain. The ongoing exploration of LAT1's structural characteristics and therapeutic applications reiterates its critical role in advancing treatments for neurological disorders.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
3
|
Cohen J, Mathew A, Dourvetakis KD, Sanchez-Guerrero E, Pangeni RP, Gurusamy N, Aenlle KK, Ravindran G, Twahir A, Isler D, Sosa-Garcia SR, Llizo A, Bested AC, Theoharides TC, Klimas NG, Kempuraj D. Recent Research Trends in Neuroinflammatory and Neurodegenerative Disorders. Cells 2024; 13:511. [PMID: 38534355 DOI: 10.3390/cells13060511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Neuroinflammatory and neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI) and Amyotrophic lateral sclerosis (ALS) are chronic major health disorders. The exact mechanism of the neuroimmune dysfunctions of these disease pathogeneses is currently not clearly understood. These disorders show dysregulated neuroimmune and inflammatory responses, including activation of neurons, glial cells, and neurovascular unit damage associated with excessive release of proinflammatory cytokines, chemokines, neurotoxic mediators, and infiltration of peripheral immune cells into the brain, as well as entry of inflammatory mediators through damaged neurovascular endothelial cells, blood-brain barrier and tight junction proteins. Activation of glial cells and immune cells leads to the release of many inflammatory and neurotoxic molecules that cause neuroinflammation and neurodegeneration. Gulf War Illness (GWI) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are chronic disorders that are also associated with neuroimmune dysfunctions. Currently, there are no effective disease-modifying therapeutic options available for these diseases. Human induced pluripotent stem cell (iPSC)-derived neurons, astrocytes, microglia, endothelial cells and pericytes are currently used for many disease models for drug discovery. This review highlights certain recent trends in neuroinflammatory responses and iPSC-derived brain cell applications in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Jessica Cohen
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Annette Mathew
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Kirk D Dourvetakis
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Estella Sanchez-Guerrero
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Rajendra P Pangeni
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Geeta Ravindran
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Dylan Isler
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Sara Rukmini Sosa-Garcia
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Axel Llizo
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Alison C Bested
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| |
Collapse
|
4
|
Tincu (Iurciuc) CE, Andrițoiu CV, Popa M, Ochiuz L. Recent Advancements and Strategies for Overcoming the Blood-Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers (Basel) 2023; 15:3969. [PMID: 37836018 PMCID: PMC10575401 DOI: 10.3390/polym15193969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant tumor, and the most prevalent primary malignant tumor affecting the brain and central nervous system. Recent research indicates that the genetic profile of GBM makes it resistant to drugs and radiation. However, the main obstacle in treating GBM is transporting drugs through the blood-brain barrier (BBB). Albumin is a versatile biomaterial for the synthesis of nanoparticles. The efficiency of albumin-based delivery systems is determined by their ability to improve tumor targeting and accumulation. In this review, we will discuss the prevalence of human glioblastoma and the currently adopted treatment, as well as the structure and some essential functions of the BBB, to transport drugs through this barrier. We will also mention some aspects related to the blood-tumor brain barrier (BTBB) that lead to poor treatment efficacy. The properties and structure of serum albumin were highlighted, such as its role in targeting brain tumors, as well as the progress made until now regarding the techniques for obtaining albumin nanoparticles and their functionalization, in order to overcome the BBB and treat cancer, especially human glioblastoma. The albumin drug delivery nanosystems mentioned in this paper have improved properties and can overcome the BBB to target brain tumors.
Collapse
Affiliation(s)
- Camelia-Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Apitherapy Medical Center, Balanesti, Nr. 336-337, 217036 Gorj, Romania;
- Specialization of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad, Liviu Rebreanu Street, 86, 310045 Arad, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| |
Collapse
|
5
|
Baringer SL, Lukacher AS, Palsa K, Kim H, Lippmann ES, Spiegelman VS, Simpson IA, Connor JR. Amyloid-β exposed astrocytes induce iron transport from endothelial cells at the blood-brain barrier by altering the ratio of apo- and holo-transferrin. J Neurochem 2023; 167:248-261. [PMID: 37667496 PMCID: PMC10592116 DOI: 10.1111/jnc.15954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/30/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Excessive brain iron accumulation is observed early in the onset of Alzheimer's disease, notably prior to widespread proteinopathy. These findings suggest that increases in brain iron levels are due to a dysregulation of the iron transport mechanism at the blood-brain barrier. Astrocytes release signals (apo- and holo-transferrin) that communicate brain iron needs to endothelial cells in order to modulate iron transport. Here we use iPSC-derived astrocytes and endothelial cells to investigate how early-disease levels of amyloid-β disrupt iron transport signals secreted by astrocytes to stimulate iron transport from endothelial cells. We demonstrate that conditioned media from astrocytes treated with amyloid-β stimulates iron transport from endothelial cells and induces changes in iron transport pathway proteins. The mechanism underlying this response begins with increased iron uptake and mitochondrial activity by the astrocytes, which in turn increases levels of apo-transferrin in the amyloid-β conditioned astrocyte media leading to increased iron transport from endothelial cells. These novel findings offer a potential explanation for the initiation of excessive iron accumulation in early stages of Alzheimer's disease. What's more, these data provide the first example of how the mechanism of iron transport regulation by apo- and holo-transferrin becomes misappropriated in disease that can lead to iron accumulation. The clinical benefit from understanding early dysregulation in brain iron transport in AD cannot be understated. If therapeutics can target this early process, they could possibly prevent the detrimental cascade that occurs with excessive iron accumulation.
Collapse
Affiliation(s)
- Stephanie L. Baringer
- Department of Neurosurgery, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
| | - Avraham S. Lukacher
- Department of Neurosurgery, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
| | - Kondaiah Palsa
- Department of Neurosurgery, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, USA, 37235
| | - Ethan S. Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, USA, 37235
| | - Vladimir S. Spiegelman
- Department of Pediatrics, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
| | - Ian A. Simpson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
| | - James R. Connor
- Department of Neurosurgery, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
| |
Collapse
|
6
|
Brandl S, Reindl M. Blood-Brain Barrier Breakdown in Neuroinflammation: Current In Vitro Models. Int J Mol Sci 2023; 24:12699. [PMID: 37628879 PMCID: PMC10454051 DOI: 10.3390/ijms241612699] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The blood-brain barrier, which is formed by tightly interconnected microvascular endothelial cells, separates the brain from the peripheral circulation. Together with other central nervous system-resident cell types, including pericytes and astrocytes, the blood-brain barrier forms the neurovascular unit. Upon neuroinflammation, this barrier becomes leaky, allowing molecules and cells to enter the brain and to potentially harm the tissue of the central nervous system. Despite the significance of animal models in research, they may not always adequately reflect human pathophysiology. Therefore, human models are needed. This review will provide an overview of the blood-brain barrier in terms of both health and disease. It will describe all key elements of the in vitro models and will explore how different compositions can be utilized to effectively model a variety of neuroinflammatory conditions. Furthermore, it will explore the existing types of models that are used in basic research to study the respective pathologies thus far.
Collapse
Affiliation(s)
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
7
|
Yau A, Jogdand A, Chen Y. Blood-brain-barrier modeling with tissue chips for research applications in space and on Earth. FRONTIERS IN SPACE TECHNOLOGIES 2023; 4:1176943. [PMID: 38915909 PMCID: PMC11195916 DOI: 10.3389/frspt.2023.1176943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Tissue chip technology has revolutionized biomedical applications and the medical science field for the past few decades. Currently, tissue chips are one of the most powerful research tools aiding in in vitro work to accurately predict the outcome of studies when compared to monolayer two-dimensional (2D) cell cultures. While 2D cell cultures held prominence for a long time, their lack of biomimicry has resulted in a transition to 3D cell cultures, including tissue chips technology, to overcome the discrepancies often seen in in vitro studies. Due to their wide range of applications, different organ systems have been studied over the years, one of which is the blood brain barrier (BBB) which is discussed in this review. The BBB is an incredible protective unit of the body, keeping out pathogens from entering the brain through vasculature. However, there are some microbes and certain diseases that disrupt the function of this barrier which can lead to detrimental outcomes. Over the past few years, various designs of the BBB have been proposed and modeled to study drug delivery and disease modeling on Earth. More recently, researchers have started to utilize tissue chips in space to study the effects of microgravity on human health. BBB tissue chips in space can be a tool to understand function mechanisms and therapeutics. This review addresses the limitations of monolayer cell culture which could be overcome with utilizing tissue chips technology. Current BBB models on Earth and how they are fabricated as well as what influences the BBB cell culture in tissue chips are discussed. Then, this article reviews how application of these technologies together with incorporating biosensors in space would be beneficial to help in predicting a more accurate physiological response in specific tissue or organ chips. Finally, the current platforms used in space and some solutions to overcome some shortcomings for future BBB tissue chip research are also discussed.
Collapse
Affiliation(s)
| | | | - Yupeng Chen
- Nanomedicine Lab, Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
8
|
Alves ADH, Nucci MP, Ennes do Valle NM, Missina JM, Mamani JB, Rego GNA, Dias OFM, Garrigós MM, de Oliveira FA, Gamarra LF. Current overview of induced pluripotent stem cell-based blood-brain barrier-on-a-chip. World J Stem Cells 2023; 15:632-653. [PMID: 37424947 PMCID: PMC10324508 DOI: 10.4252/wjsc.v15.i6.632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) show great ability to differentiate into any tissue, making them attractive candidates for pathophysiological investigations. The rise of organ-on-a-chip technology in the past century has introduced a novel way to make in vitro cell cultures that more closely resemble their in vivo environments, both structural and functionally. The literature still lacks consensus on the best conditions to mimic the blood-brain barrier (BBB) for drug screening and other personalized therapies. The development of models based on BBB-on-a-chip using iPSCs is promising and is a potential alternative to the use of animals in research.
AIM To analyze the literature for BBB models on-a-chip involving iPSCs, describe the microdevices, the BBB in vitro construction, and applications.
METHODS We searched for original articles indexed in PubMed and Scopus that used iPSCs to mimic the BBB and its microenvironment in microfluidic devices. Thirty articles were identified, wherein only 14 articles were finally selected according to the inclusion and exclusion criteria. Data compiled from the selected articles were organized into four topics: (1) Microfluidic devices design and fabrication; (2) characteristics of the iPSCs used in the BBB model and their differentiation conditions; (3) BBB-on-a-chip reconstruction process; and (4) applications of BBB microfluidic three-dimensional models using iPSCs.
RESULTS This study showed that BBB models with iPSCs in microdevices are quite novel in scientific research. Important technological advances in this area regarding the use of commercial BBB-on-a-chip were identified in the most recent articles by different research groups. Conventional polydimethylsiloxane was the most used material to fabricate in-house chips (57%), whereas few studies (14.3%) adopted polymethylmethacrylate. Half the models were constructed using a porous membrane made of diverse materials to separate the channels. iPSC sources were divergent among the studies, but the main line used was IMR90-C4 from human fetal lung fibroblast (41.2%). The cells were differentiated through diverse and complex processes either to endothelial or neural cells, wherein only one study promoted differentiation inside the chip. The construction process of the BBB-on-a-chip involved previous coating mostly with fibronectin/collagen IV (39.3%), followed by cell seeding in single cultures (36%) or co-cultures (64%) under controlled conditions, aimed at developing an in vitro BBB that mimics the human BBB for future applications.
CONCLUSION This review evidenced technological advances in the construction of BBB models using iPSCs. Nonetheless, a definitive BBB-on-a-chip has not yet been achieved, hindering the applicability of the models.
Collapse
Affiliation(s)
| | - Mariana Penteado Nucci
- Hospital Israelita Albert Einstein, São Paulo 05529-060, São Paulo, Brazil
- Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Qu W, Canoll P, Hargus G. Molecular Insights into Cell Type-specific Roles in Alzheimer's Disease: Human Induced Pluripotent Stem Cell-based Disease Modelling. Neuroscience 2023; 518:10-26. [PMID: 35569647 PMCID: PMC9974106 DOI: 10.1016/j.neuroscience.2022.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia resulting in widespread degeneration of the central nervous system with severe cognitive impairment. Despite the devastating toll of AD, the incomplete understanding of the complex molecular mechanisms hinders the expeditious development of effective cures. Emerging evidence from animal studies has shown that different brain cell types play distinct roles in the pathogenesis of AD. Glutamatergic neurons are preferentially affected in AD and pronounced gliosis contributes to the progression of AD in both a cell-autonomous and a non-cell-autonomous manner. Much has been discovered through genetically modified animal models, yet frequently failed translational attempts to clinical applications call for better disease models. Emerging evidence supports the significance of human-induced pluripotent stem cell (iPSC) derived brain cells in modeling disease development and progression, opening new avenues for the discovery of molecular mechanisms. This review summarizes the function of different cell types in the pathogenesis of AD, such as neurons, microglia, and astrocytes, and recognizes the potential of utilizing the rapidly growing iPSC technology in modeling AD.
Collapse
Affiliation(s)
- Wenhui Qu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States.
| |
Collapse
|
10
|
Granata A. Functional genomics in stroke: current and future applications of iPSCs and gene editing to dissect the function of risk variants. BMC Cardiovasc Disord 2023; 23:223. [PMID: 37120540 PMCID: PMC10148993 DOI: 10.1186/s12872-023-03227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/04/2023] [Indexed: 05/01/2023] Open
Abstract
Stroke is an important disease with unmet clinical need. To uncover novel paths for treatment, it is of critical importance to develop relevant laboratory models that may help to shed light on the pathophysiological mechanisms of stroke. Induced pluripotent stem cells (iPSCs) technology has enormous potential to advance our knowledge into stroke by creating novel human models for research and therapeutic testing. iPSCs models generated from patients with specific stroke types and specific genetic predisposition in combination with other state of art technologies including genome editing, multi-omics, 3D system, libraries screening, offer the opportunity to investigate disease-related pathways and identify potential novel therapeutic targets that can then be tested in these models. Thus, iPSCs offer an unprecedented opportunity to make rapid progress in the field of stroke and vascular dementia research leading to clinical translation. This review paper summarizes some of the key areas in which patient-derived iPSCs technology has been applied to disease modelling and discusses the ongoing challenges and the future directions for the application of this technology in the field of stroke research.
Collapse
Affiliation(s)
- Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0BB, UK.
| |
Collapse
|
11
|
Hall V, Bendtsen KMS. Getting closer to modeling the gut-brain axis using induced pluripotent stem cells. Front Cell Dev Biol 2023; 11:1146062. [PMID: 37065853 PMCID: PMC10102862 DOI: 10.3389/fcell.2023.1146062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
The gut microbiome (GM), the gut barrier, and the blood-brain barrier (BBB) are key elements of the gut-brain axis (GBA). The advances in organ-on-a-chip and induced pluripotent stem cell (iPSCs) technology might enable more physiological gut-brain-axis-on-a-chip models. The ability to mimic complex physiological functions of the GBA is needed in basic mechanistic research as well as disease research of psychiatric, neurodevelopmental, functional, and neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. These brain disorders have been associated with GM dysbiosis, which may affect the brain via the GBA. Although animal models have paved the way for the breakthroughs and progression in the understanding of the GBA, the fundamental questions of exactly when, how, and why still remain unanswered. The research of the complex GBA have relied on equally complex animal models, but today's ethical knowledge and responsibilities demand interdisciplinary development of non-animal models to study such systems. In this review we briefly describe the gut barrier and BBB, provide an overview of current cell models, and discuss the use of iPSCs in these GBA elements. We highlight the perspectives of producing GBA chips using iPSCs and the challenges that remain in the field.
Collapse
Affiliation(s)
| | - Katja Maria Sahlgren Bendtsen
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. The choroid plexus: a missing link in our understanding of brain development and function. Physiol Rev 2023; 103:919-956. [PMID: 36173801 PMCID: PMC9678431 DOI: 10.1152/physrev.00060.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Neuroscience, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | | | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
13
|
Di Scala C, Armstrong N, Chahinian H, Chabrière E, Fantini J, Yahi N. AmyP53, a Therapeutic Peptide Candidate for the Treatment of Alzheimer’s and Parkinson’s Disease: Safety, Stability, Pharmacokinetics Parameters and Nose-to Brain Delivery. Int J Mol Sci 2022; 23:ijms232113383. [PMID: 36362170 PMCID: PMC9654333 DOI: 10.3390/ijms232113383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Neurodegenerative disorders are a major public health issue. Despite decades of research efforts, we are still seeking an efficient cure for these pathologies. The initial paradigm of large aggregates of amyloid proteins (amyloid plaques, Lewis bodies) as the root cause of Alzheimer’s and Parkinson’s diseases has been mostly dismissed. Instead, membrane-bound oligomers forming Ca2+-permeable amyloid pores are now considered appropriate targets for these diseases. Over the last 20 years, our group deciphered the molecular mechanisms of amyloid pore formation, which appeared to involve a common pathway for all amyloid proteins, including Aβ (Alzheimer) and α-synuclein (Parkinson). We then designed a short peptide (AmyP53), which prevents amyloid pore formation by targeting gangliosides, the plasma membrane receptors of amyloid proteins. Herein, we show that aqueous solutions of AmyP53 are remarkably stable upon storage at temperatures up to 45 °C for several months. AmyP53 appeared to be more stable in whole blood than in plasma. Pharmacokinetics studies in rats demonstrated that the peptide can rapidly and safely reach the brain after intranasal administration. The data suggest both the direct transport of AmyP53 via the olfactory bulb (and/or the trigeminal nerve) and an indirect transport via the circulation and the blood–brain barrier. In vitro experiments confirmed that AmyP53 is as active as cargo peptides in crossing the blood–brain barrier, consistent with its amino acid sequence specificities and physicochemical properties. Overall, these data open a route for the use of a nasal spray formulation of AmyP53 for the prevention and/or treatment of Alzheimer’s and Parkinson’s diseases in future clinical trials in humans.
Collapse
Affiliation(s)
- Coralie Di Scala
- Neuroscience Center—HiLIFE, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Nicholas Armstrong
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| | - Nouara Yahi
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
- Correspondence:
| |
Collapse
|
14
|
Matthiesen I, Nasiri R, Tamashiro Orrego A, Winkler TE, Herland A. Metabolic Assessment of Human Induced Pluripotent Stem Cells-Derived Astrocytes and Fetal Primary Astrocytes: Lactate and Glucose Turnover. BIOSENSORS 2022; 12:839. [PMID: 36290976 PMCID: PMC9599592 DOI: 10.3390/bios12100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Astrocytes represent one of the main cell types in the brain and play a crucial role in brain functions, including supplying the energy demand for neurons. Moreover, they are important regulators of metabolite levels. Glucose uptake and lactate production are some of the main observable metabolic actions of astrocytes. To gain insight into these processes, it is essential to establish scalable and functional sources for in vitro studies of astrocytes. In this study, we compared the metabolic turnover of glucose and lactate in astrocytes derived from human induced pluripotent stem cell (hiPSC)-derived Astrocytes (hiAstrocytes) as a scalable astrocyte source to human fetal astrocytes (HFAs). Using a user-friendly, commercial flow-based biosensor, we could verify that hiAstrocytes are as glycogenic as their fetal counterparts, but their normalized metabolic turnover is lower. Specifically, under identical culture conditions in a defined media, HFAs have 2.3 times higher levels of lactate production compared to hiAstrocytes. In terms of glucose, HFAs have 2.1 times higher consumption levels than hiAstrocytes at 24 h. Still, as we describe their glycogenic phenotype, our study demonstrates the use of hiAstrocytes and flow-based biosensors for metabolic studies of astrocyte function.
Collapse
Affiliation(s)
- Isabelle Matthiesen
- Division of Micro and Nanosystems, Department of Intelligent Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Rohollah Nasiri
- Division of Micro and Nanosystems, Department of Intelligent Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177 Solna, Sweden
| | - Alessandra Tamashiro Orrego
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Thomas E. Winkler
- Division of Micro and Nanosystems, Department of Intelligent Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Institute of Microtechnology & Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Anna Herland
- Division of Micro and Nanosystems, Department of Intelligent Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177 Solna, Sweden
| |
Collapse
|
15
|
Singh AV, Chandrasekar V, Laux P, Luch A, Dakua SP, Zamboni P, Shelar A, Yang Y, Pandit V, Tisato V, Gemmati D. Micropatterned Neurovascular Interface to Mimic the Blood–Brain Barrier’s Neurophysiology and Micromechanical Function: A BBB-on-CHIP Model. Cells 2022; 11:cells11182801. [PMID: 36139383 PMCID: PMC9497163 DOI: 10.3390/cells11182801] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 12/25/2022] Open
Abstract
A hybrid blood–brain barrier (BBB)-on-chip cell culture device is proposed in this study by integrating microcontact printing and perfusion co-culture to facilitate the study of BBB function under high biological fidelity. This is achieved by crosslinking brain extracellular matrix (ECM) proteins to the transwell membrane at the luminal surface and adapting inlet–outlet perfusion on the porous transwell wall. While investigating the anatomical hallmarks of the BBB, tight junction proteins revealed tortuous zonula occludens (ZO-1), and claudin expressions with increased interdigitation in the presence of astrocytes were recorded. Enhanced adherent junctions were also observed. This junctional phenotype reflects in-vivo-like features related to the jamming of cell borders to prevent paracellular transport. Biochemical regulation of BBB function by astrocytes was noted by the transient intracellular calcium effluxes induced into endothelial cells. Geometry-force control of astrocyte–endothelial cell interactions was studied utilizing traction force microscopy (TFM) with fluorescent beads incorporated into a micropatterned polyacrylamide gel (PAG). We observed the directionality and enhanced magnitude in the traction forces in the presence of astrocytes. In the future, we envisage studying transendothelial electrical resistance (TEER) and the effect of chemomechanical stimulations on drug/ligand permeability and transport. The BBB-on-chip model presented in this proposal should serve as an in vitro surrogate to recapitulate the complexities of the native BBB cellular milieus.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
- Correspondence: (A.V.S.); (S.P.D.)
| | | | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Sarada Prasad Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
- Correspondence: (A.V.S.); (S.P.D.)
| | - Paolo Zamboni
- Department of Vascular Surgery, University of Ferrara, 44121 Ferrara, Italy
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Yin Yang
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Doha 24404, Qatar
| | - Vaibhav Pandit
- Dynex Technologies, 14340 Sullyfield Circle, Chantilly, VA 20151, USA
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
16
|
Choi NY, Lee MY, Jeong S. Recent Advances in 3D-Cultured Brain Tissue Models Derived from Human iPSCs. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Advances in Hydrogel-Based Microfluidic Blood–Brain-Barrier Models in Oncology Research. Pharmaceutics 2022; 14:pharmaceutics14050993. [PMID: 35631579 PMCID: PMC9144371 DOI: 10.3390/pharmaceutics14050993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/10/2022] Open
Abstract
The intrinsic architecture and complexity of the brain restricts the capacity of therapeutic molecules to reach their potential targets, thereby limiting therapeutic possibilities concerning neurological ailments and brain malignancy. As conventional models fail to recapitulate the complexity of the brain, progress in the field of microfluidics has facilitated the development of advanced in vitro platforms that could imitate the in vivo microenvironments and pathological features of the blood–brain barrier (BBB). It is highly desirous that developed in vitro BBB-on-chip models serve as a platform to investigate cancer metastasis of the brain along with the possibility of efficiently screening chemotherapeutic agents against brain malignancies. In order to improve the proficiency of BBB-on-chip models, hydrogels have been widely explored due to their unique physical and chemical properties, which mimic the three-dimensional (3D) micro architecture of tissues. Hydrogel-based BBB-on-chip models serves as a stage which is conducive for cell growth and allows the exchange of gases and nutrients and the removal of metabolic wastes between cells and the cell/extra cellular matrix (ECM) interface. Here, we present recent advancements in BBB-on-chip models targeting brain malignancies and examine the utility of hydrogel-based BBB models that could further strengthen the future application of microfluidic devices in oncology research.
Collapse
|
18
|
Hernando S, Nikolakopoulou P, Voulgaris D, Hernandez RM, Igartua M, Herland A. Dual effect of TAT functionalized DHAH lipid nanoparticles with neurotrophic factors in human BBB and microglia cultures. Fluids Barriers CNS 2022; 19:22. [PMID: 35300705 PMCID: PMC8928663 DOI: 10.1186/s12987-022-00315-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Background Neurodegenerative diseases (NDs) are an accelerating global health problem. Nevertheless, the stronghold of the brain- the blood–brain barrier (BBB) prevents drug penetrance and dwindles effective treatments. Therefore, it is crucial to identify Trojan horse-like drug carriers that can effectively cross the blood–brain barrier and reach the brain tissue. We have previously developed polyunsaturated fatty acids (PUFA)-based nanostructured lipid carriers (NLC), namely DHAH-NLC. These carriers are modulated with BBB-permeating compounds such as chitosan (CS) and trans-activating transcriptional activator (TAT) from HIV-1 that can entrap neurotrophic factors (NTF) serving as nanocarriers for NDs treatment. Moreover, microglia are suggested as a key causative factor of the undergoing neuroinflammation of NDs. In this work, we used in vitro models to investigate whether DHAH-NLCs can enter the brain via the BBB and investigate the therapeutic effect of NTF-containing DHAH-NLC and DHAH-NLC itself on lipopolysaccharide-challenged microglia. Methods We employed human induced pluripotent stem cell-derived brain microvascular endothelial cells (BMECs) to capitalize on the in vivo-like TEER of this BBB model and quantitatively assessed the permeability of DHAH-NLCs. We also used the HMC3 microglia cell line to assess the therapeutic effect of NTF-containing DHAH-NLC upon LPS challenge. Results TAT-functionalized DHAH-NLCs successfully crossed the in vitro BBB model, which exhibited high transendothelial electrical resistance (TEER) values (≈3000 Ω*cm2). Specifically, the TAT-functionalized DHAH-NLCs showed a permeability of up to 0.4% of the dose. Furthermore, using human microglia (HMC3), we demonstrate that DHAH-NLCs successfully counteracted the inflammatory response in our cultures after LPS challenge. Moreover, the encapsulation of glial cell-derived neurotrophic factor (GNDF)-containing DHAH-NLCs (DHAH-NLC-GNDF) activated the Nrf2/HO-1 pathway, suggesting the triggering of the endogenous anti-oxidative system present in microglia. Conclusions Overall, this work shows that the TAT-functionalized DHAH-NLCs can cross the BBB, modulate immune responses, and serve as cargo carriers for growth factors; thus, constituting an attractive and promising novel drug delivery approach for the transport of therapeutics through the BBB into the brain. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00315-1.
Collapse
Affiliation(s)
- Sara Hernando
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES), Karolinska Institutet and KTH Royal Institute of Technology, 171 77, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.,NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029, Madrid, Spain.,Bioaraba, NanoBioCel Research Group, 01006, Vitoria-Gasteiz, Spain
| | - Polyxeni Nikolakopoulou
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES), Karolinska Institutet and KTH Royal Institute of Technology, 171 77, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Dimitrios Voulgaris
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES), Karolinska Institutet and KTH Royal Institute of Technology, 171 77, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.,Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden.,Division of Micro and Nanosystems, KTH Royal Institute of Technology, 171 77, Stockholm, Sweden
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029, Madrid, Spain.,Bioaraba, NanoBioCel Research Group, 01006, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain. .,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029, Madrid, Spain. .,Bioaraba, NanoBioCel Research Group, 01006, Vitoria-Gasteiz, Spain.
| | - Anna Herland
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES), Karolinska Institutet and KTH Royal Institute of Technology, 171 77, Stockholm, Sweden. .,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden. .,Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
19
|
Piantino M, Louis F, Shigemoto-Mogami Y, Kitamura K, Sato K, Yamaguchi T, Kawabata K, Yamamoto S, Iwasaki S, Hirabayashi H, Matsusaki M. Brain microvascular endothelial cells derived from human induced pluripotent stem cells as in vitro model for assessing blood-brain barrier transferrin receptor-mediated transcytosis. Mater Today Bio 2022; 14:100232. [PMID: 35308041 PMCID: PMC8927846 DOI: 10.1016/j.mtbio.2022.100232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB), a selective barrier formed by brain microvascular endothelial cells (BMEC), represents a major challenge for the efficient accumulation of pharmaceutical drugs into the brain. The receptor-mediated transcytosis (RMT) has recently gained increasing interest for pharmaceutical industry as it shows a great potential to shuttle large-sized therapeutic cargos across the BBB. Confirming the presence of the RMT pathway by BMEC is therefore important for the screening of peptides or antibody libraries that bind RMT receptors. Herein, a comparative study was performed between a human cell line of BMEC (HBEC) and human induced pluripotent stem cells-derived BMEC-like cells (hiPS-BMEC). The significantly higher gene and protein expressions of transporters and tight junction proteins, excepting CD31 and VE-cadherin were exhibited by hiPS-BMEC than by HBEC, suggesting more biomimetic BBB features of hiPS-BMEC. The presence and functionality of transferrin receptor (TfR), known to use RMT pathway, were confirmed using hiPS-BMEC by competitive binding assays and confocal microscopy observations. Finally, cysteine-modified T7 and cysteine modified-Tfr-T12 peptides, previously reported to be ligands of TfR, were compared regarding their permeability using hiPS-BMEC. The hiPS-BMEC could be useful for the identification of therapeutics that can be transported across the BBB using RMT pathway.
Collapse
Affiliation(s)
- Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yukari Shigemoto-Mogami
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Kimiko Kitamura
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Kaoru Sato
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Tomoko Yamaguchi
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Syunsuke Yamamoto
- Drug Metabolism & Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Shinji Iwasaki
- Drug Metabolism & Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Hideki Hirabayashi
- Drug Metabolism & Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
20
|
Dias IH, Taiwo R, Ma D. The blood-brain barrier models to study apolipoprotein E genotypes in Alzheimer's disease. Neural Regen Res 2022; 17:1973-1974. [PMID: 35142681 PMCID: PMC8848626 DOI: 10.4103/1673-5374.331538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Irundika Hk Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Rachelle Taiwo
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Dan Ma
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| |
Collapse
|
21
|
Maurissen TL, Pavlou G, Bichsel C, Villaseñor R, Kamm RD, Ragelle H. Microphysiological Neurovascular Barriers to Model the Inner Retinal Microvasculature. J Pers Med 2022; 12:jpm12020148. [PMID: 35207637 PMCID: PMC8876566 DOI: 10.3390/jpm12020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Blood-neural barriers regulate nutrient supply to neuronal tissues and prevent neurotoxicity. In particular, the inner blood-retinal barrier (iBRB) and blood–brain barrier (BBB) share common origins in development, and similar morphology and function in adult tissue, while barrier breakdown and leakage of neurotoxic molecules can be accompanied by neurodegeneration. Therefore, pre-clinical research requires human in vitro models that elucidate pathophysiological mechanisms and support drug discovery, to add to animal in vivo modeling that poorly predict patient responses. Advanced cellular models such as microphysiological systems (MPS) recapitulate tissue organization and function in many organ-specific contexts, providing physiological relevance, potential for customization to different population groups, and scalability for drug screening purposes. While human-based MPS have been developed for tissues such as lung, gut, brain and tumors, few comprehensive models exist for ocular tissues and iBRB modeling. Recent BBB in vitro models using human cells of the neurovascular unit (NVU) showed physiological morphology and permeability values, and reproduced brain neurological disorder phenotypes that could be applicable to modeling the iBRB. Here, we describe similarities between iBRB and BBB properties, compare existing neurovascular barrier models, propose leverage of MPS-based strategies to develop new iBRB models, and explore potentials to personalize cellular inputs and improve pre-clinical testing.
Collapse
Affiliation(s)
- Thomas L. Maurissen
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
| | - Georgios Pavlou
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., MIT Building, Room NE47-321, Cambridge, MA 02139, USA;
| | - Colette Bichsel
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
- Roche Pharma Research and Early Development, Institute for Translational Bioengineering, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Roberto Villaseñor
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., MIT Building, Room NE47-321, Cambridge, MA 02139, USA;
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., MIT Building, Room NE47-321, Cambridge, MA 02139, USA
- Correspondence: (R.D.K.); (H.R.)
| | - Héloïse Ragelle
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
- Correspondence: (R.D.K.); (H.R.)
| |
Collapse
|
22
|
Choi J, Mathew S, Oerter S, Appelt-Menzel A, Hansmann J, Schmitz T. Online Measurement System for Dynamic Flow Bioreactors to Study Barrier Integrity of hiPSC-Based Blood-Brain Barrier In Vitro Models. Bioengineering (Basel) 2022; 9:bioengineering9010039. [PMID: 35049748 PMCID: PMC8773345 DOI: 10.3390/bioengineering9010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
Electrochemical impedance spectroscopy (EIS) is a noninvasive, reliable, and efficient method to analyze the barrier integrity of in vitro tissue models. This well-established tool is used most widely to quantify the transendothelial/epithelial resistance (TEER) of Transwell-based models cultured under static conditions. However, dynamic culture in bioreactors can achieve advanced cell culture conditions that mimic a more tissue-specific environment and stimulation. This requires the development of culture systems that also allow for the assessment of barrier integrity under dynamic conditions. Here, we present a bioreactor system that is capable of the automated, continuous, and non-invasive online monitoring of cellular barrier integrity during dynamic culture. Polydimethylsiloxane (PDMS) casting and 3D printing were used for the fabrication of the bioreactors. Additionally, attachable electrodes based on titanium nitride (TiN)-coated steel tubes were developed to perform EIS measurements. In order to test the monitored bioreactor system, blood–brain barrier (BBB) in vitro models derived from human-induced pluripotent stem cells (hiPSC) were cultured for up to 7 days. We applied equivalent electrical circuit fitting to quantify the electrical parameters of the cell layer and observed that TEER gradually decreased over time from 2513 Ω·cm2 to 285 Ω·cm2, as also specified in the static control culture. Our versatile system offers the possibility to be used for various dynamic tissue cultures that require a non-invasive monitoring system for barrier integrity.
Collapse
Affiliation(s)
- Jihyoung Choi
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (S.M.); (J.H.); (T.S.)
- Correspondence: (J.C.); (A.A.-M.)
| | - Sanjana Mathew
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (S.M.); (J.H.); (T.S.)
| | - Sabrina Oerter
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research, Röntgenring 11, 97070 Würzburg, Germany;
| | - Antje Appelt-Menzel
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (S.M.); (J.H.); (T.S.)
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research, Röntgenring 11, 97070 Würzburg, Germany;
- Correspondence: (J.C.); (A.A.-M.)
| | - Jan Hansmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (S.M.); (J.H.); (T.S.)
- Faculty of Electronics, University of Applied Science Würzburg-Schweinfurt, Ignaz-Schön-Straße 11, 97421 Schweinfurt, Germany
| | - Tobias Schmitz
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (S.M.); (J.H.); (T.S.)
| |
Collapse
|
23
|
In vitro blood brain barrier models: An overview. J Control Release 2022; 343:13-30. [PMID: 35026351 DOI: 10.1016/j.jconrel.2022.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/22/2022]
Abstract
Understanding the composition and function of the blood brain barrier (BBB) enables the development of novel, innovative techniques for administering central nervous system (CNS) medications and technologies for improving the existing models. Scientific and methodological interest in the pathology of the BBB resulted in the formation of numerous in vitro BBB models. Once successfully studied and modelled, it would be a valuable tool for elucidating the mechanism of action of the CNS disorders prior to their manifestation and the pathogenic factors. Understanding the rationale behind the selection of the models as well as their working may enable the development of state-of-the-art drugs for treating and managing neurological diseases. Hence, to have realistic simulation of the BBB and test its drug permeability the microfluidics-based BBB-on-Chip model has been developed. To summarise, we aim to evaluate the advanced, newly developed and frequently used in vitro BBB models, thereby providing a brief overview of the components essential for in vitro BBB formation, the methods of chip fabrication and cell culturing, its applications and the recent advances in this technological field. This will be critical for developing CNS treatments with improved BBB penetrability and pharmacokinetic properties.
Collapse
|
24
|
Spampinato SF, Takeshita Y, Obermeier B. An In Vitro Model of the Blood-Brain Barrier to Study Alzheimer's Disease: The Role of β-Amyloid and Its Influence on PBMC Infiltration. Methods Mol Biol 2022; 2492:333-352. [PMID: 35733055 DOI: 10.1007/978-1-0716-2289-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The blood-brain barrier (BBB) is a highly specialized structure, constituted by endothelial cells that together with astrocytes and pericytes provide a functional interface between the central nervous system and the periphery. Several pathological conditions may affect its functions, and lately BBB involvement in the pathogenesis of Alzheimer's disease has been demonstrated. Both endothelial cells and astrocytes can be differentially affected during the course of the disease. In vitro BBB models present a powerful tool in evaluating the effects that β-amyloid (Aβ), or other pathogenic stimuli, play on the BBB at cellular level. In vitro BBB models derived from human cell sources are rare and not easily implemented. We generated two conditionally immortalized human cell lines, brain microvascular endothelial cells (TY10), and astrocytes (hAST), that, when co-cultured under appropriate conditions, exhibit BBB-like characteristics. This model allowed us to evaluate the transmigration of peripheral blood mononuclear cells (PBMCs) through the in vitro barrier exposed to Aβ and the role played by astrocytes in the modulation of this phenomenon. We describe here the methodology used in our lab to set up our in vitro model of the BBB and to carry out a PBMC transmigration assay.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
- Departement of Scienza e Tecnologia del Farmaco, Universita' di Turin, Turin, Italy.
| | - Yukio Takeshita
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | | |
Collapse
|
25
|
Royse MK, Means AK, Calderon GA, Kinstlinger IS, He Y, Durante MR, Procopio A, Veiseh O, Xu J. A 3D printable perfused hydrogel vascular model to assay ultrasound-induced permeability. Biomater Sci 2022; 10:3158-3173. [DOI: 10.1039/d2bm00223j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an in vitro model to study vascular permeability is vital for clinical applications such as the targeted delivery of therapeutics. This work demonstrates the use of a...
Collapse
|
26
|
Fanizza F, Campanile M, Forloni G, Giordano C, Albani D. Induced pluripotent stem cell-based organ-on-a-chip as personalized drug screening tools: A focus on neurodegenerative disorders. J Tissue Eng 2022; 13:20417314221095339. [PMID: 35570845 PMCID: PMC9092580 DOI: 10.1177/20417314221095339] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/04/2022] [Indexed: 01/15/2023] Open
Abstract
The Organ-on-a-Chip (OoC) technology shows great potential to revolutionize the drugs development pipeline by mimicking the physiological environment and functions of human organs. The translational value of OoC is further enhanced when combined with patient-specific induced pluripotent stem cells (iPSCs) to develop more realistic disease models, paving the way for the development of a new generation of patient-on-a-chip devices. iPSCs differentiation capacity leads to invaluable improvements in personalized medicine. Moreover, the connection of single-OoC into multi-OoC or body-on-a-chip allows to investigate drug pharmacodynamic and pharmacokinetics through the study of multi-organs cross-talks. The need of a breakthrough thanks to this technology is particularly relevant within the field of neurodegenerative diseases, where the number of patients is increasing and the successful rate in drug discovery is worryingly low. In this review we discuss current iPSC-based OoC as drug screening models and their implication in development of new therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Francesca Fanizza
- Department of Chemistry, Materials and
Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Marzia Campanile
- Department of Chemistry, Materials and
Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di
Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and
Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di
Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
27
|
Abstract
Traditional in vitro models can replicate many essential features of drug transport/permeability across the blood-brain barrier (BBB) but are not entirely projecting in vivo central nervous system (CNS) uptake. Species differences fail to translate experimental therapeutics from the research laboratory to the clinic. Improved in vitro modeling of human BBB is vital for both CNS drug discovery and delivery. High-end human BBB models fabricated by microfluidic technologies offer some solutions to this problem. BBB's complex physiological microenvironment has been established by increasing device complexity in terms of multiple cells, dynamic conditions, and 3D designs. It is now possible to predict the therapeutic effects of a candidate drug and identify new druggable targets by studying multicellular interactions using the advanced in vitro BBB models. This chapter reviews the current as well as an ideal in vitro model of the BBB.
Collapse
Affiliation(s)
- Snehal Raut
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Aditya Bhalerao
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA.
| |
Collapse
|
28
|
Lanciotti A, Brignone MS, Macioce P, Visentin S, Ambrosini E. Human iPSC-Derived Astrocytes: A Powerful Tool to Study Primary Astrocyte Dysfunction in the Pathogenesis of Rare Leukodystrophies. Int J Mol Sci 2021; 23:ijms23010274. [PMID: 35008700 PMCID: PMC8745131 DOI: 10.3390/ijms23010274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are very versatile cells, endowed with multitasking capacities to ensure brain homeostasis maintenance from brain development to adult life. It has become increasingly evident that astrocytes play a central role in many central nervous system pathologies, not only as regulators of defensive responses against brain insults but also as primary culprits of the disease onset and progression. This is particularly evident in some rare leukodystrophies (LDs) where white matter/myelin deterioration is due to primary astrocyte dysfunctions. Understanding the molecular defects causing these LDs may help clarify astrocyte contribution to myelin formation/maintenance and favor the identification of possible therapeutic targets for LDs and other CNS demyelinating diseases. To date, the pathogenic mechanisms of these LDs are poorly known due to the rarity of the pathological tissue and the failure of the animal models to fully recapitulate the human diseases. Thus, the development of human induced pluripotent stem cells (hiPSC) from patient fibroblasts and their differentiation into astrocytes is a promising approach to overcome these issues. In this review, we discuss the primary role of astrocytes in LD pathogenesis, the experimental models currently available and the advantages, future evolutions, perspectives, and limitations of hiPSC to study pathologies implying astrocyte dysfunctions.
Collapse
Affiliation(s)
- Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Maria Stefania Brignone
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Pompeo Macioce
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Sergio Visentin
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
- Correspondence: ; Tel.: +39-064-990-2037
| |
Collapse
|
29
|
Lynch MJ, Gobbo OL. Advances in Non-Animal Testing Approaches towards Accelerated Clinical Translation of Novel Nanotheranostic Therapeutics for Central Nervous System Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2632. [PMID: 34685073 PMCID: PMC8538557 DOI: 10.3390/nano11102632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Nanotheranostics constitute a novel drug delivery system approach to improving systemic, brain-targeted delivery of diagnostic imaging agents and pharmacological moieties in one rational carrier platform. While there have been notable successes in this field, currently, the clinical translation of such delivery systems for the treatment of neurological disorders has been limited by the inadequacy of correlating in vitro and in vivo data on blood-brain barrier (BBB) permeation and biocompatibility of nanomaterials. This review aims to identify the most contemporary non-invasive approaches for BBB crossing using nanotheranostics as a novel drug delivery strategy and current non-animal-based models for assessing the safety and efficiency of such formulations. This review will also address current and future directions of select in vitro models for reducing the cumbersome and laborious mandate for testing exclusively in animals. It is hoped these non-animal-based modelling approaches will facilitate researchers in optimising promising multifunctional nanocarriers with a view to accelerating clinical testing and authorisation applications. By rational design and appropriate selection of characterised and validated models, ranging from monolayer cell cultures to organ-on-chip microfluidics, promising nanotheranostic particles with modular and rational design can be screened in high-throughput models with robust predictive power. Thus, this article serves to highlight abbreviated research and development possibilities with clinical translational relevance for developing novel nanomaterial-based neuropharmaceuticals for therapy in CNS disorders. By generating predictive data for prospective nanomedicines using validated in vitro models for supporting clinical applications in lieu of requiring extensive use of in vivo animal models that have notable limitations, it is hoped that there will be a burgeoning in the nanotherapy of CNS disorders by virtue of accelerated lead identification through screening, optimisation through rational design for brain-targeted delivery across the BBB and clinical testing and approval using fewer animals. Additionally, by using models with tissue of human origin, reproducible therapeutically relevant nanomedicine delivery and individualised therapy can be realised.
Collapse
Affiliation(s)
- Mark J. Lynch
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Oliviero L. Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
30
|
Neumaier F, Zlatopolskiy BD, Neumaier B. Drug Penetration into the Central Nervous System: Pharmacokinetic Concepts and In Vitro Model Systems. Pharmaceutics 2021; 13:1542. [PMID: 34683835 PMCID: PMC8538549 DOI: 10.3390/pharmaceutics13101542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Delivery of most drugs into the central nervous system (CNS) is restricted by the blood-brain barrier (BBB), which remains a significant bottleneck for development of novel CNS-targeted therapeutics or molecular tracers for neuroimaging. Consistent failure to reliably predict drug efficiency based on single measures for the rate or extent of brain penetration has led to the emergence of a more holistic framework that integrates data from various in vivo, in situ and in vitro assays to obtain a comprehensive description of drug delivery to and distribution within the brain. Coupled with ongoing development of suitable in vitro BBB models, this integrated approach promises to reduce the incidence of costly late-stage failures in CNS drug development, and could help to overcome some of the technical, economic and ethical issues associated with in vivo studies in animal models. Here, we provide an overview of BBB structure and function in vivo, and a summary of the pharmacokinetic parameters that can be used to determine and predict the rate and extent of drug penetration into the brain. We also review different in vitro models with regard to their inherent shortcomings and potential usefulness for development of fast-acting drugs or neurotracers labeled with short-lived radionuclides. In this regard, a special focus has been set on those systems that are sufficiently well established to be used in laboratories without significant bioengineering expertise.
Collapse
Affiliation(s)
- Felix Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Boris D. Zlatopolskiy
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| |
Collapse
|
31
|
Hanafy AS, Dietrich D, Fricker G, Lamprecht A. Blood-brain barrier models: Rationale for selection. Adv Drug Deliv Rev 2021; 176:113859. [PMID: 34246710 DOI: 10.1016/j.addr.2021.113859] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023]
Abstract
Brain delivery is a broad research area, the outcomes of which are far hindered by the limited permeability of the blood-brain barrier (BBB). Over the last century, research has been revealing the BBB complexity and the crosstalk between its cellular and molecular components. Pathologically, BBB alterations may precede as well as be concomitant or lead to brain diseases. To simulate the BBB and investigate options for drug delivery, several in vitro, in vivo, ex vivo, in situ and in silico models are used. Hundreds of drug delivery vehicles successfully pass preclinical trials but fail in clinical settings. Inadequate selection of BBB models is believed to remarkably impact the data reliability leading to unsatisfactory results in clinical trials. In this review, we suggest a rationale for BBB model selection with respect to the addressed research question and downstream applications. The essential considerations of an optimal BBB model are discussed.
Collapse
Affiliation(s)
- Amira Sayed Hanafy
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany.
| |
Collapse
|
32
|
Matthiesen I, Voulgaris D, Nikolakopoulou P, Winkler TE, Herland A. Continuous Monitoring Reveals Protective Effects of N-Acetylcysteine Amide on an Isogenic Microphysiological Model of the Neurovascular Unit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101785. [PMID: 34174140 DOI: 10.1002/smll.202101785] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Indexed: 05/20/2023]
Abstract
Microphysiological systems mimic the in vivo cellular ensemble and microenvironment with the goal of providing more human-like models for biopharmaceutical research. In this study, the first such model of the blood-brain barrier (BBB-on-chip) featuring both isogenic human induced pluripotent stem cell (hiPSC)-derived cells and continuous barrier integrity monitoring with <2 min temporal resolution is reported. Its capabilities are showcased in the first microphysiological study of nitrosative stress and antioxidant prophylaxis. Relying on off-stoichiometry thiol-ene-epoxy (OSTE+) for fabrication greatly facilitates assembly and sensor integration compared to the prevalent polydimethylsiloxane devices. The integrated cell-substrate endothelial resistance monitoring allows for capturing the formation and breakdown of the BBB model, which consists of cocultured hiPSC-derived endothelial-like and astrocyte-like cells. Clear cellular disruption is observed when exposing the BBB-on-chip to the nitrosative stressor linsidomine, and the barrier permeability and barrier-protective effects of the antioxidant N-acetylcysteine amide are reported. Using metabolomic network analysis reveals further drug-induced changes consistent with prior literature regarding, e.g., cysteine and glutathione involvement. A model like this opens new possibilities for drug screening studies and personalized medicine, relying solely on isogenic human-derived cells and providing high-resolution temporal readouts that can help in pharmacodynamic studies.
Collapse
Affiliation(s)
- Isabelle Matthiesen
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Dimitrios Voulgaris
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
| | - Polyxeni Nikolakopoulou
- AIMES, Center for Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
| | - Thomas E Winkler
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Anna Herland
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
| |
Collapse
|
33
|
Abstract
The blood-brain barrier (BBB) is one of the most selective endothelial barriers. An understanding of its cellular, morphological, and biological properties in health and disease is necessary to develop therapeutics that can be transported from blood to brain. In vivo models have provided some insight into these features and transport mechanisms adopted at the brain, yet they have failed as a robust platform for the translation of results into clinical outcomes. In this article, we provide a general overview of major BBB features and describe various models that have been designed to replicate this barrier and neurological pathologies linked with the BBB. We propose several key parameters and design characteristics that can be employed to engineer physiologically relevant models of the blood-brain interface and highlight the need for a consensus in the measurement of fundamental properties of this barrier.
Collapse
Affiliation(s)
- Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Baptiste Le Roi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ben M Maoz
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
34
|
Singh AV, Chandrasekar V, Janapareddy P, Mathews DE, Laux P, Luch A, Yang Y, Garcia-Canibano B, Balakrishnan S, Abinahed J, Al Ansari A, Dakua SP. Emerging Application of Nanorobotics and Artificial Intelligence To Cross the BBB: Advances in Design, Controlled Maneuvering, and Targeting of the Barriers. ACS Chem Neurosci 2021; 12:1835-1853. [PMID: 34008957 DOI: 10.1021/acschemneuro.1c00087] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The blood-brain barrier (BBB) is a prime focus for clinicians to maintain the homeostatic function in health and deliver the theranostics in brain cancer and number of neurological diseases. The structural hierarchy and in situ biochemical signaling of BBB neurovascular unit have been primary targets to recapitulate into the in vitro modules. The microengineered perfusion systems and development in 3D cellular and organoid culture have given a major thrust to BBB research for neuropharmacology. In this review, we focus on revisiting the nanoparticles based bimolecular engineering to enable them to maneuver, control, target, and deliver the theranostic payloads across cellular BBB as nanorobots or nanobots. Subsequently we provide a brief outline of specific case studies addressing the payload delivery in brain tumor and neurological disorders (e.g., Alzheimer's disease, Parkinson's disease, multiple sclerosis, etc.). In addition, we also address the opportunities and challenges across the nanorobots' development and design. Finally, we address how computationally powered machine learning (ML) tools and artificial intelligence (AI) can be partnered with robotics to predict and design the next generation nanorobots to interact and deliver across the BBB without causing damage, toxicity, or malfunctions. The content of this review could be references to multidisciplinary science to clinicians, roboticists, chemists, and bioengineers involved in cutting-edge pharmaceutical design and BBB research.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | | | - Poonam Janapareddy
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | - Divya Elsa Mathews
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Yin Yang
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), 24404 Doha, Qatar
| | | | | | - Julien Abinahed
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | - Abdulla Al Ansari
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | | |
Collapse
|
35
|
Stępnik K. Biomimetic Chromatographic Studies Combined with the Computational Approach to Investigate the Ability of Triterpenoid Saponins of Plant Origin to Cross the Blood-Brain Barrier. Int J Mol Sci 2021; 22:3573. [PMID: 33808219 PMCID: PMC8037809 DOI: 10.3390/ijms22073573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023] Open
Abstract
Biomimetic (non-cell based in vitro) and computational (in silico) studies are commonly used as screening tests in laboratory practice in the first stages of an experiment on biologically active compounds (potential drugs) and constitute an important step in the research on the drug design process. The main aim of this study was to evaluate the ability of triterpenoid saponins of plant origin to cross the blood-brain barrier (BBB) using both computational methods, including QSAR methodology, and biomimetic chromatographic methods, i.e., High Performance Liquid Chromatography (HPLC) with Immobilized Artificial Membrane (IAM) and cholesterol (CHOL) stationary phases, as well as Bio-partitioning Micellar Chromatography (BMC). The tested compounds were as follows: arjunic acid (Terminalia arjuna), akebia saponin D (Akebia quinata), bacoside A (Bacopa monnieri) and platycodin D (Platycodon grandiflorum). The pharmacokinetic BBB parameters calculated in silico show that three of the four substances, i.e., arjunic acid, akebia saponin D, and bacoside A exhibit similar values of brain/plasma equilibration rate expressed as logPSFubrain (the average logPSFubrain: -5.03), whereas the logPSFubrain value for platycodin D is -9.0. Platycodin D also shows the highest value of the unbound fraction in the brain obtained using the examined compounds (0.98). In these studies, it was found out for the first time that the logarithm of the analyte-micelle association constant (logKMA) calculated based on Foley's equation can describe the passage of substances through the BBB. The most similar logBB values were obtained for hydrophilic platycodin D, applying both biomimetic and computational methods. All of the obtained logBB values and physicochemical parameters of the molecule indicate that platycodin D does not cross the BBB (the average logBB: -1.681), even though the in silico estimated value of the fraction unbound in plasma is relatively high (0.52). As far as it is known, this is the first paper that shows the applicability of biomimetic chromatographic methods in predicting the penetration of triterpenoid saponins through the BBB.
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland
| |
Collapse
|
36
|
Choudhari M, Hejmady S, Narayan Saha R, Damle S, Singhvi G, Alexander A, Kesharwani P, Kumar Dubey S. Evolving new-age strategies to transport therapeutics across the blood-brain-barrier. Int J Pharm 2021; 599:120351. [PMID: 33545286 DOI: 10.1016/j.ijpharm.2021.120351] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 12/25/2022]
Abstract
A basic understanding of the blood-brain barrier (BBB) is essential for the novel advancements in targeting drugs specific to the brain. Neoplasm compromising the internal structure of BBB that results in impaired vasculature is called as blood tumor barrier (BTB). Besides, the BBB serves as a chief hindrance to the passage of a drug into the brain parenchyma. The small and hydrophilic drugs majorly display an absence of desired molecular characteristics required to cross the BBB. Furthermore, all classes of biologics have failed in the clinical trials of brain diseases over the past years since these biologics are large molecules that do not cross the BBB. Also, new strategies have been discovered that use the Trojan horse technology with the re-engineered biologics for BBB transport. Thus, this review delivers information about the different grades of tumors (I-IV) i.e. examples of BBB/BTB heterogenicity along with the different mechanisms for transporting the therapeutics into the brain tumors by crossing BBB. This review also provides insights into the emerging approaches of peptide delivery and the non-invasive and brain-specific molecular Trojan horse targeting technologies. Also, the several challenges in the clinical development of BBB penetrating IgG fusion protein have been discussed.
Collapse
Affiliation(s)
- Manisha Choudhari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Siddhanth Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Ranendra Narayan Saha
- Birla Institute of Technology and Science, Pilani, Dubai Campus, United Arab Emirates
| | - Shantanu Damle
- Colorcon Asia Pvt. Ltd., Verna Industrial Estate, Verna 403722, Goa, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER GUWAHATI), Department of Pharmaceutical Technology (Formulations), Department of Pharmaceuticals, Ministry of Chemical and Fertilizers, Government of India, Sila Village, Nizsundarighopa, Changsari, Kamrup (R), Guwahati, Assam 781101, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India; R&D Healthcare Division Emami Ltd., 13, BT Road, Belgharia, Kolkata 700056, India.
| |
Collapse
|
37
|
Piantino M, Figarol A, Matsusaki M. Three-Dimensional in vitro Models of Healthy and Tumor Brain Microvasculature for Drug and Toxicity Screening. FRONTIERS IN TOXICOLOGY 2021; 3:656254. [PMID: 35295158 PMCID: PMC8915870 DOI: 10.3389/ftox.2021.656254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Tissue vascularization is essential for its oxygenation and the homogenous diffusion of nutrients. Cutting-edge studies are focusing on the vascularization of three-dimensional (3D) in vitro models of human tissues. The reproduction of the brain vasculature is particularly challenging as numerous cell types are involved. Moreover, the blood-brain barrier, which acts as a selective filter between the vascular system and the brain, is a complex structure to replicate. Nevertheless, tremendous advances have been made in recent years, and several works have proposed promising 3D in vitro models of the brain microvasculature. They incorporate cell co-cultures organized in 3D scaffolds, often consisting of components of the native extracellular matrix (ECM), to obtain a micro-environment similar to the in vivo physiological state. These models are particularly useful for studying adverse effects on the healthy brain vasculature. They provide insights into the molecular and cellular events involved in the pathological evolutions of this vasculature, such as those supporting the appearance of brain cancers. Glioblastoma multiform (GBM) is the most common form of brain cancer and one of the most vascularized solid tumors. It is characterized by a high aggressiveness and therapy resistance. Current conventional therapies are unable to prevent the high risk of recurrence of the disease. Most of the new drug candidates fail to pass clinical trials, despite the promising results shown in vitro. The conventional in vitro models are unable to efficiently reproduce the specific features of GBM tumors. Recent studies have indeed suggested a high heterogeneity of the tumor brain vasculature, with the coexistence of intact and leaky regions resulting from the constant remodeling of the ECM by glioma cells. In this review paper, after summarizing the advances in 3D in vitro brain vasculature models, we focus on the latest achievements in vascularized GBM modeling, and the potential applications for both healthy and pathological models as platforms for drug screening and toxicological assays. Particular attention will be paid to discuss the relevance of these models in terms of cell-cell, cell-ECM interactions, vascularization and permeability properties, which are crucial parameters for improving in vitro testing accuracy.
Collapse
Affiliation(s)
- Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Agathe Figarol
- Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Nancy, France
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
- *Correspondence: Michiya Matsusaki
| |
Collapse
|
38
|
Abstract
In recent years, it has been revealed that Parkinson's disease pathology may begin to manifest in the gastrointestinal track at a much earlier time point than in the brain. This paradigm shift has been suggested following evidence in humans that has been reproduced in animal models. Since rodent models cannot recapitulate many of the human disease features, human induced pluripotent stem cells derived from Parkinson's patients have been used to generate brain organoids, greatly contributing to our understanding of the disease pathophysiology. To understand the multifaced aspects of Parkinson's disease, it may be desirable to expand the complexity of these models, to include different brain regions, vasculature, immune cells as well as additional diverse organ-specific organoids such as gut and intestine. Furthermore, the contribution of gut microbiota to disease progression cannot be underestimated. Recent biotechnological advances propose that such combinations may be feasible. Here we discuss how this need can be met and propose that additional brain diseases can benefit from this approach.
Collapse
|
39
|
Karagiannis P, Muotri A, Inoue H. Reprogramming the brain in and out of diseased states. Mol Cell Neurosci 2020; 110:103571. [PMID: 33276121 DOI: 10.1016/j.mcn.2020.103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Alysson Muotri
- Department of Pediatrics and Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, La Jolla, CA 92037, USA
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| |
Collapse
|