1
|
Abdel-Megeed RM, Abdel-Hamid AHZ, Kadry MO. Titanium nanostructure mitigating doxorubicin-induced testicular toxicity in rats via regulating major autophagy signaling pathways. Toxicol Rep 2025; 14:101869. [PMID: 39811821 PMCID: PMC11731616 DOI: 10.1016/j.toxrep.2024.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Doxorubicin (DOX) is a powerful antineoplastic FDA-approved anthracycline-derived antibiotic and is considered as the most suitable intervention for solid tumors and hematological cancers therapy. However, its therapeutic application is highly limited due to acute and chronic renal, hematological and testicular toxicity. Oxidative stress, lipid peroxidation and apoptosis in germ cells as well as low sperm count, motility and disturbing steroidogenesis are the principal machineries of DOX-induced testicular toxicity. Nevertheless, the comprehensive molecular pathways responsible for DOX-induced testicular damage are not yet fully understood. The current study aims to clarify the role of autophagy and apoptotic signaling pathways in testicular toxicity induced by DOX in the rat model. The study also investigates the potential role of both titanium dioxide nanoparticles (TiO2NP) loaded with DOX and Lactoferrin in combination with DOX in mitigating testicular toxicity induced by DOX the standard antitumor drug. In the present study, male Wister albino rats were intoxicated with a total cumulative dose of DOX (18 mg/kg) via intra-peritoneal injection and served as positive control group. The other two groups administered either TiO2NP-DOX or lactoferrin-DOX. Furthermore, biochemical and molecular analyses were then performed. DOX intoxication induced testicular toxicity, revealing mineral imbalance as indicated by an increase in both calcium and magnesium concentrations. Administration of either TiO2NP-DOX or lactoferrin-DOX resulted in a significant modulation of disrupted mineral concentrations, with TiO2NP-DOX showing superiority in modulating both magnesium and calcium concentrations. Acid Phosphatase level significantly increased upon DOX-induced testicular damage. Molecular analysis of EGFR and K-RAS gene expression showed significant overexpression, while p53 and JAK-2 gene expression was significantly reduced post-DOX intoxication. Protein expression of both AKT and PI3K significantly increased upon DOX administration. Results showed a remarkable modulation of all disrupted gene and protein expressions upon treatment with TiO2NP-DOX or Lactoferrin-DOX with the superiority of TiO2NP-DOX in modulating these parameters. In conclusion, TiO2NP-DOX could be a promising drug delivery system to improve bioavailability and drug release, as well as reducing DOX's adverse effects particularly on testicular function.
Collapse
Affiliation(s)
- Rehab M. Abdel-Megeed
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Abdel-Hamid Z. Abdel-Hamid
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Mai O. Kadry
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt
| |
Collapse
|
2
|
Chen J, Huang Z, Chen Y, Tian H, Chai P, Shen Y, Yao Y, Xu S, Ge S, Jia R. Lactate and lactylation in cancer. Signal Transduct Target Ther 2025; 10:38. [PMID: 39934144 DOI: 10.1038/s41392-024-02082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 02/13/2025] Open
Abstract
Accumulated evidence has implicated the diverse and substantial influence of lactate on cellular differentiation and fate regulation in physiological and pathological settings, particularly in intricate conditions such as cancer. Specifically, lactate has been demonstrated to be pivotal in molding the tumor microenvironment (TME) through its effects on different cell populations. Within tumor cells, lactate impacts cell signaling pathways, augments the lactate shuttle process, boosts resistance to oxidative stress, and contributes to lactylation. In various cellular populations, the interplay between lactate and immune cells governs processes such as cell differentiation, immune response, immune surveillance, and treatment effectiveness. Furthermore, communication between lactate and stromal/endothelial cells supports basal membrane (BM) remodeling, epithelial-mesenchymal transitions (EMT), metabolic reprogramming, angiogenesis, and drug resistance. Focusing on lactate production and transport, specifically through lactate dehydrogenase (LDH) and monocarboxylate transporters (MCT), has shown promise in the treatment of cancer. Inhibitors targeting LDH and MCT act as both tumor suppressors and enhancers of immunotherapy, leading to a synergistic therapeutic effect when combined with immunotherapy. The review underscores the importance of lactate in tumor progression and provides valuable perspectives on potential therapeutic approaches that target the vulnerability of lactate metabolism, highlighting the Heel of Achilles for cancer treatment.
Collapse
Affiliation(s)
- Jie Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ziyue Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ya Chen
- Department of Radiology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Yongning Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| |
Collapse
|
3
|
Boix-Montesinos P, Medel M, Malfanti A, Đorđević S, Masiá E, Charbonnier D, Carrascosa-Marco P, Armiñán A, Vicent MJ. Rational design of a poly-L-glutamic acid-based combination conjugate for hormone-responsive breast cancer treatment. J Control Release 2024; 375:193-208. [PMID: 39242032 DOI: 10.1016/j.jconrel.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Breast cancer represents the most prevalent tumor type worldwide, with hormone-responsive breast cancer the most common subtype. Despite the effectiveness of endocrine therapy, advanced disease forms represent an unmet clinical need. While drug combination therapies remain promising, differences in pharmacokinetic profiles result in suboptimal ratios of free drugs reaching tumors. We identified a synergistic combination of bisdemethoxycurcumin and exemestane through drug screening and rationally designed star-shaped poly-L-glutamic acid-based combination conjugates carrying these drugs conjugated through pH-responsive linkers for hormone-responsive breast cancer treatment. We synthesized/characterized single and combination conjugates with synergistic drug ratios/loadings. Physicochemical characterization/drug release kinetics studies suggested that lower drug loading prompted a less compact conjugate conformation that supported optimal release. Screening in monolayer and spheroid breast cancer cell cultures revealed that combination conjugates possessed enhanced cytotoxicity/synergism compared to physical mixtures of single-drug conjugates/free drugs; moreover, a combination conjugate with the lowest drug loading outperformed remaining conjugates. This candidate inhibited proliferation-associated signaling, reduced inflammatory chemokine/exosome levels, and promoted autophagy in spheroids; furthermore, it outperformed a physical mixture of single-drug conjugates/free drugs regarding cytotoxicity in patient-derived breast cancer organoids. Our findings highlight the importance of rational design and advanced in vitro models for the selection of polypeptide-based combination conjugates.
Collapse
Affiliation(s)
- Paz Boix-Montesinos
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - María Medel
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain
| | - Alessio Malfanti
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Snežana Đorđević
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain
| | - Esther Masiá
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - David Charbonnier
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), IISCIII and CIEMAT, Madrid, Spain
| | - Paula Carrascosa-Marco
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Ana Armiñán
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain.
| | - María J Vicent
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
4
|
Radwan AM, Abosharaf HA, Sharaky M, Abdelmonem R, Effat H. Functional combination of resveratrol and tamoxifen to overcome tamoxifen-resistance in breast cancer cells. Arch Pharm (Weinheim) 2024; 357:e2400261. [PMID: 38943449 DOI: 10.1002/ardp.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024]
Abstract
Researchers are encountering challenges in addressing the issue of cancer cells becoming unresponsive to various chemotherapy treatments due to drug resistance. This study was designed to study the influence of antioxidant resveratrol (RSV) to sensitize resistant breast cancer (BC) cells toward tamoxifen (TAM). The cytotoxic effects of RSV and TAM against TAM-resistant LCC2 cells and their parental michigan cancer foundation-7 BC cells were determined by sulphorhodamine B assay. Further, the expression levels of multidrug resistance (MDR) genes including ABCB1, ABCC2, ABCG2, and MRP1 using quantitative polymerase chain reaction, apoptosis induction, and reactive oxygen species (ROS) content using flow cytometry were evaluated in either LCC2 cells treated with RSV, TAM, or their combination. The obtained results showed that resistant cells have a magnificent level of MDR genes. This elevated expression dramatically lowered upon receiving the combined therapy of RSV and TAM. Additionally, our work assessed the possible role of RSV in modulating the expression of MDR genes by controlling the expression of certain microRNAs (miRNAs) that target ATP-binding cassette (ABC) transporters. According to the obtained data, the TAM and RSV combination increased the expression of tumor inhibitor miRNAs such miR-10b-3p, miR-195-3p, and miR-223-3p, which made LCC2 cells more sensitive to TAM. Furthermore, this combination showed an elevation in apoptotic levels and total ROS content. The combination between RSV and TAM could be a functional therapy in the fight against TAM-resistant BC cells via modulating miRNA and ABC transporters.
Collapse
Affiliation(s)
- Aliaa M Radwan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hamed A Abosharaf
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science & Technology, 6th October City, Egypt
| | - Heba Effat
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Zhu C, Liu Y, Ji X, Si Y, Tao X, Zhang X, Yin L. Enhanced Antitumor Efficacy of Cytarabine and Idarubicin in Acute Myeloid Leukemia Using Liposomal Formulation: In Vitro and In Vivo Studies. Pharmaceutics 2024; 16:1220. [PMID: 39339256 PMCID: PMC11434936 DOI: 10.3390/pharmaceutics16091220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Acute myeloid leukemia (AML) is the most common type of acute leukemia among adults with the recommend therapy of combination of cytarabine and idarubicin in the induction phase. The uncoordinated pharmacokinetics prevent adequate control of drug ratio following systemic administration. Therefore, the dual-loaded liposomes containing cytarabine and idarubicin for synergistic effects were proposed and investigated. Methods: The molar ratio of cytarabine and idarubicin for synergistic effects was investigated. The dual-loaded liposomes were prepared and characterized by particle size, zeta potential, encapsulation efficiency, cryo-Transmission electron microscopy (cryo-TEM), and in vitro stability. The in vitro cytotoxicity and cell uptake of liposomes were determined within CCRF-CEM cells. The PK experiments was carried out in male SD rats. The in vivo antitumor effect was carried out within CD-1 nude female mice. The antitumor mechanism of liposomes was investigated. Results: The synergistic molar ratios were found to be in the range of 20:1~40:1. The size distribution of the dual-loaded liposomes was approximately 100 nm with PDI ≤ 0.1, a zeta potential of approximately -30 mV, an entrapment efficiency of cytarabine and idarubicin of >95% with spherical structure and uniform distribution, and in vitro stability for 21 d. The drugs in the liposomes can be quickly uptaken by the leukemia cells. The PK experiments showed that the molar ratio of cytarabine to idarubicin in plasma was maintained at 30:1 within 4 h. The efficacy of liposomes was significantly enhanced. Conclusions: The dual-loaded liposomes containing cytarabine and idarubicin showed enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Chunxia Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutics, Nanjing Chia-Tai Tianqing Pharmaceutical Co., Ltd., Nanjing 210046, China
| | - Yang Liu
- Department of Pharmaceutics, Nanjing Chia-Tai Tianqing Pharmaceutical Co., Ltd., Nanjing 210046, China
| | - Xiaojun Ji
- Department of Pharmaceutics, Nanjing Chia-Tai Tianqing Pharmaceutical Co., Ltd., Nanjing 210046, China
| | - Yaxuan Si
- Department of Pharmaceutics, Nanjing Chia-Tai Tianqing Pharmaceutical Co., Ltd., Nanjing 210046, China
| | - Xianhao Tao
- Department of Pharmaceutics, Nanjing Chia-Tai Tianqing Pharmaceutical Co., Ltd., Nanjing 210046, China
| | - Xiaohua Zhang
- Department of Pharmaceutics, Nanjing Chia-Tai Tianqing Pharmaceutical Co., Ltd., Nanjing 210046, China
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Garg P, Pareek S, Kulkarni P, Salgia R, Singhal SS. Nanoengineering Solutions for Cancer Therapy: Bridging the Gap between Clinical Practice and Translational Research. J Clin Med 2024; 13:3466. [PMID: 38929995 PMCID: PMC11204592 DOI: 10.3390/jcm13123466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Nanoengineering has emerged as a progressive method in cancer treatment, offering precise and targeted delivery of therapeutic agents while concurrently reducing overall toxicity. This scholarly article delves into the innovative strategies and advancements in nanoengineering that bridge the gap between clinical practice and research in the field of cancer treatment. Various nanoengineered platforms such as nanoparticles, liposomes, and dendrimers are scrutinized for their capacity to encapsulate drugs, augment drug efficacy, and enhance pharmacokinetics. Moreover, the article investigates research breakthroughs that drive the progression and enhancement of nanoengineered remedies, encompassing the identification of biomarkers, establishment of preclinical models, and advancement of biomaterials, all of which are imperative for translating laboratory findings into practical medical interventions. Furthermore, the integration of nanotechnology with imaging modalities, which amplify cancer detection, treatment monitoring, and response assessment, is thoroughly examined. Finally, the obstacles and prospective directions in nanoengineering, including regulatory challenges and issues related to scalability, are examined. This underscores the significance of fostering collaboration among various entities in order to efficiently translate nanoengineered interventions into enhanced cancer therapies and patient management.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Siddhika Pareek
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Wang C, Pan J, Chen S, Qiu L, Hu H, Ji L, Wang J, Liu W, Ni X. Polyvinylpyrrolidone Assisted One-Pot Synthesis of Size-Tunable Cocktail Nanodrug for Multifunctional Combat of Cancer. Int J Nanomedicine 2024; 19:4339-4356. [PMID: 38774026 PMCID: PMC11107942 DOI: 10.2147/ijn.s459428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Background The in vivo barriers and multidrug resistance (MDR) are well recognized as great challenges for the fulfillment of antitumor effects of current drugs, which calls for the development of novel therapeutic agents and innovative drug delivery strategies. Nanodrug (ND) combining multiple drugs with distinct modes of action holes the potential to circumvent these challenges, while the introduction of photothermal therapy (PTT) can give further significantly enhanced efficacy in cancer therapy. However, facile preparation of ND which contains dual drugs and photothermal capability with effective cancer treatment ability has rarely been reported. Methods In this study, we selected curcumin (Cur) and doxorubicin (Dox) as two model drugs for the creation of a cocktail ND (Cur-Dox ND). We utilized polyvinylpyrrolidone (PVP) as a stabilizer and regulator to prepare Cur-Dox ND in a straightforward one-pot method. Results The size of the resulting Cur-Dox ND can be easily adjusted by tuning the charged ratios. It was noted that both loaded drugs in Cur-Dox ND can realize their functions in the same target cell. Especially, the P-glycoprotein inhibition effect of Cur can synergistically cooperate with Dox, leading to enhanced inhibition of 4T1 cancer cells. Furthermore, Cur-Dox ND exhibited pH-responsive dissociation of loaded drugs and a robust photothermal translation capacity to realize multifunctional combat of cancer for photothermal enhanced anticancer performance. We further demonstrated that this effect can also be realized in 3D multicellular model, which possibly attributed to its superior drug penetration as well as photothermal-enhanced cellular uptake and drug release. Conclusion In summary, Cur-Dox ND might be a promising ND for better cancer therapy.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Jiaoyang Pan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Shaoqing Chen
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Li Ji
- Department of Otorhinolaryngology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Wenjia Liu
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Xinye Ni
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
8
|
Abdel-Megeed RM, Abdel-Hamid AHZ, Kadry MO. Titanium dioxide nanostructure-loaded Adriamycin surmounts resistance in breast cancer therapy: ABCA/P53/C-myc crosstalk. Future Sci OA 2024; 10:FSO979. [PMID: 38827789 PMCID: PMC11140649 DOI: 10.2144/fsoa-2023-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/05/2024] Open
Abstract
Aim: To clarify the alternation of gene expression responsible for resistance of Adriamycin (ADR) in rats, in addition to investigation of a novel promising drug-delivery system using titanium dioxide nanoparticles loaded with ADR (TiO2-ADR). Method: Breast cancer was induced in female Sprague-Dawley rats, followed by treatment with ADR (5 mg/kg) or TiO2-ADR (2 mg/kg) for 1 month. Results: Significant improvements in both zinc and calcium levels were observed with TiO2-ADR treatment. Gene expression of ATP-binding cassette transporter membrane proteins (ABCA1 & ABCG1), P53 and Jak-2 showed a significant reduction and overexpression of the C-myc in breast cancer-induced rats. TiO2-ADR demonstrated a notable ability to upregulate these genes. Conclusion: TiO2-ADR could be a promising drug-delivery system for breast cancer therapy.
Collapse
Affiliation(s)
- Rehab M Abdel-Megeed
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Abdel-Hamid Z Abdel-Hamid
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Mai O Kadry
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
9
|
Kadry MO, Abdel Hamid AHZ, Abdel-Megeed RM. Collaboration of Hprt/K-RAS/c-Myc mutation in the oncogenesis of T-lymphocytic leukemia: a comparative study. Future Sci OA 2024; 10:FSO934. [PMID: 38827790 PMCID: PMC11140650 DOI: 10.2144/fsoa-2023-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2023] [Accepted: 11/01/2023] [Indexed: 06/05/2024] Open
Abstract
Aim: Leukemia is a malignant clonal illness stem from the mutations of hematopoietic cells. Acute lymphoblastic leukemia is one of the utmost prevalent kinds of leukemia, is brought on by atypical lymphoid progenitor cell division in the bone marrow. Materials & methods: A comparative study between, titanium Nanoparticle-loaded doxorubicin or cisplatin and lactoferrin-loaded doxorubicin or cisplatin, on 7,12-dimethylbenz[a]-anthracene (DMBA)-induced leukemia was investigated and confirming the hypothesis that messenger RNA of Hprt/K-RAS/c-Myc/SAT-2/P53/JAK-2 is a forthcoming signaling pathways in leukemia. Results: A significant alteration in Hprt, K-RAS, C-Myc, P53, JAK-2 and SAT-2 genes was observed post DMBA intoxication the aforementioned Nanodrugs modulated these signaling pathways. Conclusion: The carrier-loaded drugs triggered cytotoxicity of cancer cells via enhancing drug efficacy and bio-availability.
Collapse
Affiliation(s)
- Mai O Kadry
- National Research Center, Therapeutic Chemistry Deparment, Al Bhoouth Street, Egypt
| | | | - Rehab M Abdel-Megeed
- National Research Center, Therapeutic Chemistry Deparment, Al Bhoouth Street, Egypt
| |
Collapse
|
10
|
Ximenes LF, Pinheiro HN, Filho JVDA, André WPP, Abreu FOMDS, Cardial MRL, Castelo-Branco DDSCM, Melo ACFL, Lopes FFDS, de Morais SM, de Oliveira LMB, Bevilaqua CML. Effect of the Combination of Synthetic Anthelmintics with Carvacryl Acetate in Emulsions with and without a Sodium Alginate Matrix on Haemonchus contortus. Animals (Basel) 2024; 14:1007. [PMID: 38612246 PMCID: PMC11011019 DOI: 10.3390/ani14071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024] Open
Abstract
The present study aimed to evaluate the effect of nanoemulsions using combined synthetic anthelmintics, thiabendazole (TBZ), levamisole (LEV), and ivermectin (IVM), with carvacryl acetate (CA) against Haemonchus contortus, and also tested the presence and absence of alginate (ALG). The anthelmintic effect of the CA/TBZ nanoemulsion was evaluated in the egg hatch test (EHT). The effects of CA/IVM and CA/LEV nanoemulsions were evaluated in the larval development test (LDT). The emulsions CA/TBZ/ALG and CA/TBZ showed a multimodal profile, with most particles on the nanometric scale. The encapsulation efficiency in CA/TBZ/ALG was 80.25%, and that in CA/LEV/ALG was 89.73%. In the EHT, CA/TBZ and CA/TBZ/ALG showed mean combination indices (CIs) of 0.55 and 0.36, respectively, demonstrating synergism in both. In LDT, CA/IVM had an average CI of 0.75, and CA/LEV and CA/LEV/ALG showed CI values of 0.4 and 0.93, respectively. It was concluded that CA/TBZ showed a synergistic interaction, and CA/TBZ/ALG showed an enhanced effect. In addition, the matrix brought stability to the product, encouraging its improvement to obtain higher efficacy.
Collapse
Affiliation(s)
- Livia Furtado Ximenes
- Laboratório de Doenças Parasitárias, Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (L.F.X.); (J.V.d.A.F.); (W.P.P.A.); (L.M.B.d.O.)
| | - Henety Nascimento Pinheiro
- Laboratório de Química Analítica e Ambiental, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (H.N.P.); (F.O.M.d.S.A.); (M.R.L.C.)
| | - José Vilemar de Araújo Filho
- Laboratório de Doenças Parasitárias, Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (L.F.X.); (J.V.d.A.F.); (W.P.P.A.); (L.M.B.d.O.)
| | - Weibson Paz Pinheiro André
- Laboratório de Doenças Parasitárias, Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (L.F.X.); (J.V.d.A.F.); (W.P.P.A.); (L.M.B.d.O.)
| | - Flávia Oliveira Monteiro da Silva Abreu
- Laboratório de Química Analítica e Ambiental, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (H.N.P.); (F.O.M.d.S.A.); (M.R.L.C.)
| | - Mayrla Rocha Lima Cardial
- Laboratório de Química Analítica e Ambiental, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (H.N.P.); (F.O.M.d.S.A.); (M.R.L.C.)
| | | | - Ana Carolina Fonseca Lindoso Melo
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza 60714-903, Ceará, Brazil; (D.d.S.C.M.C.-B.); (A.C.F.L.M.)
| | - Francisco Flávio da Silva Lopes
- Laboratório de Química de Produtos Naturais, Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (F.F.d.S.L.); (S.M.d.M.)
| | - Selene Maia de Morais
- Laboratório de Química de Produtos Naturais, Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (F.F.d.S.L.); (S.M.d.M.)
| | - Lorena Mayana Beserra de Oliveira
- Laboratório de Doenças Parasitárias, Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (L.F.X.); (J.V.d.A.F.); (W.P.P.A.); (L.M.B.d.O.)
| | - Claudia Maria Leal Bevilaqua
- Laboratório de Doenças Parasitárias, Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (L.F.X.); (J.V.d.A.F.); (W.P.P.A.); (L.M.B.d.O.)
| |
Collapse
|
11
|
Avalos-Padilla Y, Fernàndez-Busquets X. Nanotherapeutics against malaria: A decade of advancements in experimental models. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1943. [PMID: 38426407 DOI: 10.1002/wnan.1943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/27/2023] [Revised: 11/01/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Malaria, caused by different species of protists of the genus Plasmodium, remains among the most common causes of death due to parasitic diseases worldwide, mainly for children aged under 5. One of the main obstacles to malaria eradication is the speed with which the pathogen evolves resistance to the drug schemes developed against it. For this reason, it remains urgent to find innovative therapeutic strategies offering sufficient specificity against the parasite to minimize resistance evolution and drug side effects. In this context, nanotechnology-based approaches are now being explored for their use as antimalarial drug delivery platforms due to the wide range of advantages and tuneable properties that they offer. However, major challenges remain to be addressed to provide a cost-efficient and targeted therapeutic strategy contributing to malaria eradication. The present work contains a systematic review of nanotechnology-based antimalarial drug delivery systems generated during the last 10 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Kadhum WR, Majeed AA, Saleh RO, Ali E, Alhajlah S, Alwaily ER, Mustafa YF, Ghildiyal P, Alawadi A, Alsalamy A. Overcoming drug resistance with specific nano scales to targeted therapy: Focused on metastatic cancers. Pathol Res Pract 2024; 255:155137. [PMID: 38324962 DOI: 10.1016/j.prp.2024.155137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/22/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Metastatic cancer, which accounts for the majority of cancer fatalities, is a difficult illness to treat. Currently used cancer treatments include radiation therapy, chemotherapy, surgery, and targeted treatment (immune, gene, and hormonal). The disadvantages of these treatments include a high risk of tumor recurrence and surgical complications that may result in permanent deformities. On the other hand, most chemotherapy drugs are small molecules, which usually have unfavorable side effects, low absorption, poor selectivity, and multi-drug resistance. Anticancer drugs can be delivered precisely to the cancer spot by encapsulating them to reduce side effects. Stimuli-responsive nanocarriers can be used for drug release at cancer sites and provide target-specific delivery. As previously stated, metastasis is the primary cause of cancer-related mortality. We have evaluated the usage of nano-medications in the treatment of some metastatic tumors.
Collapse
Affiliation(s)
- Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq; Advanced research center, Kut University College, Kut 52001, Wasit, Iraq.
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Eyhab Ali
- Pharmacy Department, Al-Zahraa University for Women, Karbala, Iraq
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
13
|
El-Tanani M, Nsairat H, Aljabali AA, Matalka II, Alkilany AM, Tambuwala MM. Dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer. Expert Opin Drug Deliv 2024; 21:309-324. [PMID: 38284386 DOI: 10.1080/17425247.2024.2311812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2023] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
INTRODUCTION The resistance to chemotherapy is a significant hurdle in breast cancer treatment, prompting the exploration of innovative strategies. This review discusses the potential of dual-loaded liposomal carriers to combat chemoresistance and improve outcomes for breast cancer patients. AREAS COVERED This review discusses breast cancer chemotherapy resistance and dual-loaded liposomal carriers. Drug efflux pumps, DNA repair pathways, and signaling alterations are discussed as chemoresistance mechanisms. Liposomes can encapsulate several medicines and cargo kinds, according to the review. It examines how these carriers improve medication delivery, cancer cell targeting, and tumor microenvironment regulation. Also examined are dual-loaded liposomal carrier improvement challenges and techniques. EXPERT OPINION The use of dual-loaded liposomal carriers represents a promising and innovative strategy in the battle against chemotherapy resistance in breast cancer. This article has explored the various mechanisms of chemoresistance in breast cancer, emphasizing the potential of dual-loaded liposomal carriers to overcome these challenges. These carriers offer versatility, enabling the encapsulation and precise targeting of multiple drugs with different modes of action, a crucial advantage when dealing with the complexity of breast cancer treatment.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Pharmacy, Yarmouk University, Irbid, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Department of Pathology and Microbiology, Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | | |
Collapse
|
14
|
Yadav G, Srinivasan G, Jain A. Cervical cancer: Novel treatment strategies offer renewed optimism. Pathol Res Pract 2024; 254:155136. [PMID: 38271784 DOI: 10.1016/j.prp.2024.155136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Cervical cancer poses a significant global public health issue, primarily affecting women, and stands as one of the four most prevalent cancers affecting woman globally, which includes breast cancer, colorectal cancer, lung cancer and cervical cancer. Almost every instance of cervical cancer is associated with infections caused by the human papillomavirus (HPV). Prevention of this disease hinges on screening and immunization of the patients, yet disparities in cervical cancer occurrence exist between developed and developing nations. Multiple factors contribute to cervical cancer, including sexually transmitted diseases (STDs), reproductive and hormonal influences, genetics, and host-related factors. Preventive programs, lifestyle improvements, smoking cessation, and prompt precancerous lesion treatment can reduce the occurrence of cervical cancer. The persistency and recurrence of the cases are inherited even after the innovative treatments available for cervical cancer. For patient's ineligible for curative surgery or radiotherapy, palliative chemotherapy remains the standard treatment. Novel treatment strategies are emerging to combat the limited effectiveness of chemotherapy. Nanocarriers offer the promise of concurrent chemotherapeutic drug delivery as a beacon of hope in cervical cancer research. The primary aim of this review study is to contribute to a thorough understanding of cervical cancer, fostering awareness and informed decision-making and exploring novel treatment methods such as nanocarriers for the treatment of cervical cancer. This manuscript delves into cutting-edge approaches, exploring the potential of nanocarriers and other innovative treatments. Our study underscores the critical need for global awareness, early intervention, and enhanced treatment options. Novel strategies, such as nanocarriers, offer renewed optimism in the battle against cervical cancer. This research provides compelling evidence for the investigation of these novel therapeutic approaches within the medical field. Cervical cancer remains a formidable adversary, but with ongoing advancements and unwavering commitment, we move closer to a future where it is a preventable and treatable disease, even in the most underserved regions.
Collapse
Affiliation(s)
- Gangotri Yadav
- Vivekanand Education Society college of Pharmacy, Chembur, Maharashtra 400074, India; Principal, Shri D. D. Vispute college of Pharmacy and Research Centre, New Panvel, Maharashtra 410221, India.
| | - Ganga Srinivasan
- Vivekanand Education Society college of Pharmacy, Chembur, Maharashtra 400074, India; Principal, Shri D. D. Vispute college of Pharmacy and Research Centre, New Panvel, Maharashtra 410221, India
| | - Ashish Jain
- Vivekanand Education Society college of Pharmacy, Chembur, Maharashtra 400074, India; Principal, Shri D. D. Vispute college of Pharmacy and Research Centre, New Panvel, Maharashtra 410221, India
| |
Collapse
|
15
|
Zhao X, Zheng C, Wang Y, Hao J, Liu Y. GSH/pH dual responsive chitosan nanoparticles for reprogramming M2 macrophages and overcoming cancer chemoresistance. Biomater Sci 2024; 12:790-797. [PMID: 38179727 DOI: 10.1039/d3bm01741a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2024]
Abstract
The combination of two or more drugs with different mechanisms of action is a promising strategy for circumventing multidrug resistance (MDR). However, the antitumor effect of nanosystems is usually limited due to the simultaneous release of different payloads at a single location rather than at their respective sites of action. Herein, we report a GSH and pH dual responsive nanoplatform encapsulated with doxorubicin (DOX) and resiquimod (R848) (GPNP) for combinatorial chemotherapy against cancer cells with drug resistance. GPNP possesses a core-shell structure wherein the polymer shell detaches in the acidic and sialic acid (SA)-rich environment. This leads to the release of R848 into the tumor microenvironment (TME), thereby reprogramming M2 macrophages into M1 macrophages and exposing the core CS(DOX)-PBA to kill MCF-7/ADR cells. Additionally, the nitric oxide (NO) generated by M1 macrophages can suppress the P-glycoprotein (P-gp) expression to reduce the efflux of chemotherapy drugs, thus playing a combined role in overcoming MDR. In vitro studies have demonstrated the effectiveness of GPNP in reprogramming M2 macrophages and inducing apoptosis in MCF-7/ADR cells, resulting in enhanced antitumor efficacy. This work proposed an effective combination strategy to combat chemoresistance, providing new insights into the development of innovative combinatorial therapies against MDR tumors.
Collapse
Affiliation(s)
- Xinzhi Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Chunxiong Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ying Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jialei Hao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
16
|
Adekiya TA, Moore M, Thomas M, Lake G, Hudson T, Adesina SK. Preparation, Optimization, and In-Vitro Evaluation of Brusatol- and Docetaxel-Loaded Nanoparticles for the Treatment of Prostate Cancer. Pharmaceutics 2024; 16:114. [PMID: 38258124 PMCID: PMC10819281 DOI: 10.3390/pharmaceutics16010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2023] [Revised: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Challenges to docetaxel use in prostate cancer treatment include several resistance mechanisms as well as toxicity. To overcome these challenges and to improve the therapeutic efficacy in heterogeneous prostate cancer, the use of multiple agents that can destroy different subpopulations of the tumor is required. Brusatol, a multitarget inhibitor, has been shown to exhibit potent anticancer activity and play an important role in drug response and chemoresistance. Thus, the combination of brusatol and docetaxel in a nanoparticle platform for the treatment of prostate cancer is expected to produce synergistic effects. In this study, we reported the development of polymeric nanoparticles for the delivery of brusatol and docetaxel in the treatment of prostate cancer. The one-factor-at-a-time method was used to screen for formulation and process variables that impacted particle size. Subsequently, factors that had modifiable effects on particle size were evaluated using a 24 full factorial statistical experimental design followed by the optimization of drug loading. The optimization of blank nanoparticles gave a formulation with a mean size of 169.1 nm ± 4.8 nm, in agreement with the predicted size of 168.333 nm. Transmission electron microscopy showed smooth spherical nanoparticles. The drug release profile showed that the encapsulated drugs were released over 24 h. Combination index data showed a synergistic interaction between the drugs. Cell cycle analysis and the evaluation of caspase activity showed differences in PC-3 and LNCaP prostate cancer cell responses to the agents. Additionally, immunoblots showed differences in survivin expression in LNCaP cells after treatment with the different agents and formulations for 24 h and 72 h. Therefore, the nanoparticles are potentially suitable for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Tayo Alex Adekiya
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
| | - Madison Moore
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Michael Thomas
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Gabriel Lake
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
| | - Tamaro Hudson
- Cancer Center, Howard University, Washington, DC 20059, USA
| | - Simeon K. Adesina
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
| |
Collapse
|
17
|
Fonseca M, Jarak I, Victor F, Domingues C, Veiga F, Figueiras A. Polymersomes as the Next Attractive Generation of Drug Delivery Systems: Definition, Synthesis and Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:319. [PMID: 38255485 PMCID: PMC10817611 DOI: 10.3390/ma17020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024]
Abstract
Polymersomes are artificial nanoparticles formed by the self-assembly process of amphiphilic block copolymers composed of hydrophobic and hydrophilic blocks. They can encapsulate hydrophilic molecules in the aqueous core and hydrophobic molecules within the membrane. The composition of block copolymers can be tuned, enabling control of characteristics and properties of formed polymersomes and, thus, their application in areas such as drug delivery, diagnostics, or bioimaging. The preparation methods of polymersomes can also impact their characteristics and the preservation of the encapsulated drugs. Many methods have been described, including direct hydration, thin film hydration, electroporation, the pH-switch method, solvent shift method, single and double emulsion method, flash nanoprecipitation, and microfluidic synthesis. Considering polymersome structure and composition, there are several types of polymersomes including theranostic polymersomes, polymersomes decorated with targeting ligands for selective delivery, stimuli-responsive polymersomes, or porous polymersomes with multiple promising applications. Due to the shortcomings related to the stability, efficacy, and safety of some therapeutics in the human body, polymersomes as drug delivery systems have been good candidates to improve the quality of therapies against a wide range of diseases, including cancer. Chemotherapy and immunotherapy can be improved by using polymersomes to deliver the drugs, protecting and directing them to the exact site of action. Moreover, this approach is also promising for targeted delivery of biologics since they represent a class of drugs with poor stability and high susceptibility to in vivo clearance. However, the lack of a well-defined regulatory plan for polymersome formulations has hampered their follow-up to clinical trials and subsequent market entry.
Collapse
Affiliation(s)
- Mariana Fonseca
- Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (M.F.); (I.J.); (C.D.); (F.V.)
| | - Ivana Jarak
- Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (M.F.); (I.J.); (C.D.); (F.V.)
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Francis Victor
- Department of Pharmacy, University Chenab Gujarat, Punjab 50700, Pakistan;
| | - Cátia Domingues
- Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (M.F.); (I.J.); (C.D.); (F.V.)
- Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (M.F.); (I.J.); (C.D.); (F.V.)
- Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (M.F.); (I.J.); (C.D.); (F.V.)
- Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal
| |
Collapse
|
18
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
19
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
20
|
Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther 2023; 8:418. [PMID: 37919282 PMCID: PMC10622502 DOI: 10.1038/s41392-023-01642-x] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023] Open
Abstract
Smart nanoparticles, which can respond to biological cues or be guided by them, are emerging as a promising drug delivery platform for precise cancer treatment. The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in smart nanoparticles for safer and more effective cancer therapy. In this review, we will highlight recent advancements in smart nanoparticles, including polymeric nanoparticles, dendrimers, micelles, liposomes, protein nanoparticles, cell membrane nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, carbon nanotubes, black phosphorus, MOF nanoparticles, and others. We will focus on their classification, structures, synthesis, and intelligent features. These smart nanoparticles possess the ability to respond to various external and internal stimuli, such as enzymes, pH, temperature, optics, and magnetism, making them intelligent systems. Additionally, this review will explore the latest studies on tumor targeting by functionalizing the surfaces of smart nanoparticles with tumor-specific ligands like antibodies, peptides, transferrin, and folic acid. We will also summarize different types of drug delivery options, including small molecules, peptides, proteins, nucleic acids, and even living cells, for their potential use in cancer therapy. While the potential of smart nanoparticles is promising, we will also acknowledge the challenges and clinical prospects associated with their use. Finally, we will propose a blueprint that involves the use of artificial intelligence-powered nanoparticles in cancer treatment applications. By harnessing the potential of smart nanoparticles, this review aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.
Collapse
Affiliation(s)
- Leming Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqi Ye
- Sorrento Therapeutics Inc., 4955 Directors Place, San Diego, CA, 92121, USA
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rehmat Islam
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
21
|
Gupta P, Neupane YR, Aqil M, Kohli K, Sultana Y. Lipid-based nanoparticle-mediated combination therapy for breast cancer management: a comprehensive review. Drug Deliv Transl Res 2023; 13:2739-2766. [PMID: 37261602 DOI: 10.1007/s13346-023-01366-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Breast cancer due to the unpredictable and complex etiopathology combined with the non-availability of any effective drug treatment has become the major root of concern for oncologists globally. The number of women affected by the said disease state is increasing at an alarming rate attributed to environmental and lifestyle changes indicating at the exploration of a novel treatment strategy that can eradicate this aggressive disease. So far, it is treated by promising nanomedicine monotherapy; however, according to the numerous studies conducted, the inadequacy of these nano monotherapies in terms of elevated toxicity and resistance has been reported. This review, therefore, puts forth a new multimodal strategic approach to lipid-based nanoparticle-mediated combination drug delivery in breast cancer, emphasizing the recent advancements. A basic overview about the combination therapy and its index is firstly given. Then, the various nano-based combinations of chemotherapeutics involving the combination delivery of synthetic and herbal agents are discussed along with their examples. Further, the recent exploration of chemotherapeutics co-delivery with small interfering RNA (siRNA) agents has also been explained herein. Finally, a section providing a brief description of the delivery of chemotherapeutic agents with monoclonal antibodies (mAbs) has been presented. From this review, we aim to provide the researchers with deep insight into the novel and much more effective combinational lipid-based nanoparticle-mediated nanomedicines tailored specifically for breast cancer treatment resulting in synergism, enhanced antitumor efficacy, and low toxic effects, subsequently overcoming the hurdles associated with conventional chemotherapy.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
- Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201308, India.
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
22
|
Sherif AY, Harisa GI, Shahba AA, Nasr FA, Taha EI, Alqahtani AS. Assembly of nanostructured lipid carriers loaded gefitinib and simvastatin as hybrid therapy for metastatic breast cancer: Codelivery and repurposing approach. Drug Dev Res 2023; 84:1453-1467. [PMID: 37519092 DOI: 10.1002/ddr.22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Breast cancer represents a life-threatening problem globally. The major challenge in the clinical setting is the management of cancer resistance and metastasis. Hybrid therapy can affect several cellular targets involved in carcinogenesis with a lessening of adverse effects. Therefore, the current study aims to assemble, and optimize a hybrid of gefitinib (GFT) and simvastatin (SIM)-loaded nanostructured lipid carrier (GFT/SIM-NLC) to combat metastatic and drug-resistant breast cancer. GFT/SIM-NLC cargos were prepared using design of experiments to investigate the impact of poloxamer-188 and fatty acids concentrations on the physicochemical and pharmaceutical behavior properties of NLC. Additionally, the biosafety of the prepared GFT/SIM-NLC was studied using a fresh blood sample. Afterward, the optimized formulation was subjected to an MTT assay to study the cytotoxic activity of GFT/SIM-NLC compared to free GFT/SIM using an MCF-7 cell line as a surrogate model for breast cancer. The present results revealed that the particle size of the prepared NLC ranged from (209 to 410 nm) with a negative zeta potential value ranging from (-17.2 to -23.9 mV). Moreover, the optimized GFT/SIM-NLC formulation showed favorable physicochemical properties and promising lymphatic delivery cargos. A biosafety study indicates that the prepared NLC has a gentle effect on erythrocyte hemolysis. Cytotoxicity studies revealed that GFT/SIM-NLC enhanced the killing of the MCF-7 cell line compared to free GFT/SIM. This study concluded that the hybrid therapy of GFT/SIM-NLC is a potential approach to combat metastatic and drug-resistant breast cancer.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad A Shahba
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ehab I Taha
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Chandra J, Hasan N, Nasir N, Wahab S, Thanikachalam PV, Sahebkar A, Ahmad FJ, Kesharwani P. Nanotechnology-empowered strategies in treatment of skin cancer. ENVIRONMENTAL RESEARCH 2023; 235:116649. [PMID: 37451568 DOI: 10.1016/j.envres.2023.116649] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
In current scenario skin cancer is a serious condition that has a significant impact on world health. Skin cancer is divided into two categories: melanoma skin cancer (MSC) and non-melanoma skin cancer (NMSC). Because of its significant psychosocial effects and need for significant investment in new technology and therapies, skin cancer is an illness of global health relevance. From the patient's perspective chemotherapy considered to be the most acceptable form of treatment. However, significant negatives of chemotherapy such as severe toxicities and drug resistance pose serious challenges to the treatment. The field of nanomedicine holds significant promise for enhancing the specificity of targeting neoplastic cells through the facilitation of targeted drug delivery to tumour cells. The integration of multiple therapeutic modalities to selectively address cancer-promoting or cell-maintaining pathways constitutes a fundamental aspect of cancer treatment. The use of mono-therapy remains prevalent in the treatment of various types of cancer, it is widely acknowledged in the academic community that this conventional approach is generally considered to be less efficacious compared to the combination treatment strategy. The employment of combination therapy in cancer treatment has become increasingly widespread due to its ability to produce synergistic anticancer effects, mitigate toxicity associated with drugs, and inhibit multi-drug resistance by means of diverse mechanisms. Nanotechnology based combination therapy represents a promising avenue for the development of efficacious therapies for skin cancer within the context of this endeavour. The objective of this article is to provide a description of distinct challenges for efficient delivery of drugs via skin. This article also provides a summary of the various nanotechnology based combinatorial therapy available for skin cancer with their recent advances. This review also focuses on current status of clinical trials of such therapies.
Collapse
Affiliation(s)
- Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazim Nasir
- Department of Basic Medical Sciences, College of Applied Medical Sciences, Khamis Mushait, Kingdom of Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Punniyakoti Veeraveedu Thanikachalam
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
24
|
Safaei M, Khalighi F, Behabadi FA, Abpeikar Z, Goodarzi A, Kouhpayeh SA, Najafipour S, Ramezani V. Liposomal nanocarriers containing siRNA as small molecule-based drugs to overcome cancer drug resistance. Nanomedicine (Lond) 2023; 18:1745-1768. [PMID: 37965906 DOI: 10.2217/nnm-2023-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2023] Open
Abstract
This review discusses the application of nanoliposomes containing siRNA/drug to overcome multidrug resistance for all types of cancer treatments. As drug resistance-associated factors are overexpressed in many cancer cell types, pumping chemotherapy drugs out of the cytoplasm leads to an inadequate therapeutic response. The siRNA/drug-loaded nanoliposomes are a promising approach to treating multidrug-resistant cancer, as they can effectively transmit a small-molecule drug into the target cytoplasm, ensuring that the drug binds efficiently. Moreover, nanoliposome-based therapeutics with advances in nanotechnology can effectively deliver siRNA to cancer cells. Overall, nanoliposomes have the potential to effectively deliver siRNA and small-molecule drugs in a targeted manner and are thus a promising tool for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Mohsen Safaei
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Fatemeh Khalighi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| | - Fatemeh Akhavan Behabadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, School of Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Vahid Ramezani
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| |
Collapse
|
25
|
Ashoori F, Hajipour-Verdom B, Satari M, Abdolmaleki P. Polyethylenimine-based iron oxide nanoparticles enhance cisplatin toxicity in ovarian cancer cells in the presence of a static magnetic field. Front Oncol 2023; 13:1217800. [PMID: 37771439 PMCID: PMC10522916 DOI: 10.3389/fonc.2023.1217800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Background Drug resistance in cancer cells is a major concern in chemotherapy. Cisplatin (CIS) is one of the most effective chemotherapeutics for ovarian cancer. Here, we investigated an experimental approach to increase CIS cytotoxicity and overcome cell resistance using nanoparticle-based combination treatments. Methods Polyethylenimine (PEI)-based magnetic iron oxide nanocomplexes were used for drug delivery in genetically matched CIS-resistant (A2780/CP) and -sensitive (A2780) ovarian cancer cells in the presence of a 20 mT static magnetic field. Magnetic nanoparticles (MNPs) were synthesized and bonded to PEI cationic polymers to form binary complexes (PM). The binding of CIS to the PM binary complexes resulted in the formation of ternary complexes PM/C (PEI-MNP/CIS) and PMC (PEI-MNP-CIS). Results CIS cytotoxicity increased at different concentrations of CIS and PEI in all binary and ternary delivery systems over time. Additionally, CIS induced cell cycle arrest in the S and G2/M phases and reactive oxygen species production in both cell lines. Ternary complexes were more effective than binary complexes at promoting apoptosis in the treated cells. Conclusion PEI-based magnetic nanocomplexes can be considered novel carriers for increasing CIS cytotoxicity and likely overcoming drug resistance of ovarian cancer cells.
Collapse
Affiliation(s)
- Faranak Ashoori
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnam Hajipour-Verdom
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Satari
- Department of Biology, Faculty of Sciences, Malayer University, Malayer, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
26
|
Choi JS, Lee SH, Park HB, Chun C, Kim Y, Kim KH, Weon BM, Kim DH, Kim HJ, Lee JH. The deformation of cancer cells through narrow micropores holds the potential to regulate genes that impact cancer malignancy. LAB ON A CHIP 2023; 23:3628-3638. [PMID: 37448298 DOI: 10.1039/d3lc00069a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/15/2023]
Abstract
Surgery, radiation, hormonal therapy, chemotherapy, and immunotherapy are standard treatment strategies for metastatic breast cancer. However, the heterogeneous nature of the disease poses challenges and continues to make it life-threatening. It is crucial to elucidate further the underlying signaling pathways to improve treatment efficacy. Our study established two triple-negative breast cancer cell lines (TW-1 and TW-2) that were physically deformed using 3 μm pores to investigate the relationship between cancer cell deformation and metastasis within a heterogeneous population. The physical transformation of TW-1 and TW-2 cells significantly affected their growth and migration speed, as evidenced by wound healing assays for collective cell migration and microchannel assays for single-cell migration. We conducted bulk RNA sequencing to gain insights into the genes influenced by physical deformation. Additionally, we evaluated the effects of trametinib resistance on breast cancer cell metastasis by assessing cell viability and migration rates. Interestingly, TW-1 and TW-2 cells exhibited resistance to trametinib treatment. We observed a significant upregulation of GABRA-3, a protein commonly expressed in malignant breast cancer, and the critical transcription factor Myc in TW-1 and TW-2 cells compared to the control group (Ori). However, we did not observe a significant difference in Myc expression between TW-1 and TW-2 cells. In contrast, in the trametinib-resistant cell lines (TW-1-Tra and TW-2-Tra), we found increased expression of OCT4 and SOX2 rather than GABRA-3 or Myc. These findings highlight the differential expression patterns of these genes in our study, suggesting their potential role in cancer cell deformation and drug resistance. Our study presents a potential in vitro model for metastatic and drug-resistant breast cancer cells. By investigating the correlation between cancer cell deformation and metastasis, we contribute to understanding breast cancer heterogeneity and lay the groundwork for developing improved treatment strategies.
Collapse
Affiliation(s)
- Jong Seob Choi
- Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
- Division of Advanced Materials Engineering, Kongju National University, Budaedong 275, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea
| | - Su Han Lee
- Digital Health Care Research Center, Gumi Electronics and Information Technology Research Institute (GERI), 350-27, Gumidaero, Gumi, Gyeongbuk 39253, South Korea
| | - Hye Bin Park
- Digital Health Care Research Center, Gumi Electronics and Information Technology Research Institute (GERI), 350-27, Gumidaero, Gumi, Gyeongbuk 39253, South Korea
| | - Changho Chun
- Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Yeseul Kim
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, South Korea
| | - Kyung Hoon Kim
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Byung Mook Weon
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, South Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Hyung Jin Kim
- Digital Health Care Research Center, Gumi Electronics and Information Technology Research Institute (GERI), 350-27, Gumidaero, Gumi, Gyeongbuk 39253, South Korea
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
27
|
Elzayat EM, Sherif AY, Nasr FA, Attwa MW, Alshora DH, Ahmad SF, Alqahtani AS. Enhanced Codelivery of Gefitinib and Azacitidine for Treatment of Metastatic-Resistant Lung Cancer Using Biodegradable Lipid Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5364. [PMID: 37570067 PMCID: PMC10419431 DOI: 10.3390/ma16155364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Lung cancer is a formidable challenge in clinical practice owing to its metastatic nature and resistance to conventional treatments. The codelivery of anticancer agents offers a potential solution to overcome resistance and minimize systemic toxicity. The encapsulation of these agents within nanostructured lipid carriers (NLCs) provides a promising strategy to enhance lymphatic delivery and reduce the risk of relapse. This study aimed to develop an NLC formulation loaded with Gefitinib and Azacitidine (GEF-AZT-NLC) for the treatment of metastatic-resistant lung cancer. The physicochemical properties of the formulations were characterized, and in vitro drug release was evaluated using the dialysis bag method. The cytotoxic activity of the GEF-AZT-NLC formulations was assessed on a lung cancer cell line, and hemocompatibility was evaluated using suspended red blood cells. The prepared formulations exhibited nanoscale size (235-272 nm) and negative zeta potential values (-15 to -31 mV). In vitro study revealed that the GEF-AZT-NLC formulation retained more than 20% and 60% of GEF and AZT, respectively, at the end of the experiment. Hemocompatibility study demonstrated the safety of the formulation for therapeutic use, while cytotoxicity studies suggested that the encapsulation of both anticancer agents within NLCs could be advantageous in treating resistant cancer cells. In conclusion, the GEF-AZT-NLC formulation developed in this study holds promise as a potential therapeutic tool for treating metastatic-resistant lung cancer.
Collapse
Affiliation(s)
- Ehab M Elzayat
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdelrahman Y Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Doaa H Alshora
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
28
|
Ezike TC, Okpala US, Onoja UL, Nwike CP, Ezeako EC, Okpara OJ, Okoroafor CC, Eze SC, Kalu OL, Odoh EC, Nwadike UG, Ogbodo JO, Umeh BU, Ossai EC, Nwanguma BC. Advances in drug delivery systems, challenges and future directions. Heliyon 2023; 9:e17488. [PMID: 37416680 PMCID: PMC10320272 DOI: 10.1016/j.heliyon.2023.e17488] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Advances in molecular pharmacology and an improved understanding of the mechanism of most diseases have created the need to specifically target the cells involved in the initiation and progression of diseases. This is especially true for most life-threatening diseases requiring therapeutic agents which have numerous side effects, thus requiring accurate tissue targeting to minimize systemic exposure. Recent drug delivery systems (DDS) are formulated using advanced technology to accelerate systemic drug delivery to the specific target site, maximizing therapeutic efficacy and minimizing off-target accumulation in the body. As a result, they play an important role in disease management and treatment. Recent DDS offer greater advantages when compared to conventional drug delivery systems due to their enhanced performance, automation, precision, and efficacy. They are made of nanomaterials or miniaturized devices with multifunctional components that are biocompatible, biodegradable, and have high viscoelasticity with an extended circulating half-life. This review, therefore, provides a comprehensive insight into the history and technological advancement of drug delivery systems. It updates the most recent drug delivery systems, their therapeutic applications, challenges associated with their use, and future directions for improved performance and use.
Collapse
Affiliation(s)
- Tobechukwu Christian Ezike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ugochukwu Solomon Okpala
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ufedo Lovet Onoja
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Chinenye Princess Nwike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Emmanuel Chimeh Ezeako
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Osinachi Juliet Okpara
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Charles Chinkwere Okoroafor
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Shadrach Chinecherem Eze
- Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Onyinyechi Loveth Kalu
- Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | | | - Ugochukwu Gideon Nwadike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - John Onyebuchi Ogbodo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Bravo Udochukwu Umeh
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Emmanuel Chekwube Ossai
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Bennett Chima Nwanguma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
29
|
Kumar G, Virmani T, Sharma A, Pathak K. Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers. Pharmaceutics 2023; 15:889. [PMID: 36986748 PMCID: PMC10055866 DOI: 10.3390/pharmaceutics15030889] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Anticancer drugs in monotherapy are ineffective to treat various kinds of cancer due to the heterogeneous nature of cancer. Moreover, available anticancer drugs possessed various hurdles, such as drug resistance, insensitivity of cancer cells to drugs, adverse effects and patient inconveniences. Hence, plant-based phytochemicals could be a better substitute for conventional chemotherapy for treatment of cancer due to various properties: lesser adverse effects, action via multiple pathways, economical, etc. Various preclinical studies have demonstrated that a combination of phytochemicals with conventional anticancer drugs is more efficacious than phytochemicals individually to treat cancer because plant-derived compounds have lower anticancer efficacy than conventional anticancer drugs. Moreover, phytochemicals suffer from poor aqueous solubility and reduced bioavailability, which must be resolved for efficacious treatment of cancer. Therefore, nanotechnology-based novel carriers are employed for codelivery of phytochemicals and conventional anticancer drugs for better treatment of cancer. These novel carriers include nanoemulsion, nanosuspension, nanostructured lipid carriers, solid lipid nanoparticles, polymeric nanoparticles, polymeric micelles, dendrimers, metallic nanoparticles, carbon nanotubes that provide various benefits of improved solubility, reduced adverse effects, higher efficacy, reduced dose, improved dosing frequency, reduced drug resistance, improved bioavailability and higher patient compliance. This review summarizes various phytochemicals employed in treatment of cancer, combination therapy of phytochemicals with anticancer drugs and various nanotechnology-based carriers to deliver the combination therapy in treatment of cancer.
Collapse
Affiliation(s)
- Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai 206001, India
| |
Collapse
|
30
|
Singh N, Reddy KP, Das P, Kishor BK, Datta P. Complex formulation strategies to overcome the delivery hurdles of laptinib in metastatic breast cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/06/2023]
|
31
|
Kim CH, Lee S, Choi JY, Lyu MJ, Jung HM, Goo YT, Kang MJ, Choi YW. Functionalized Lipid Nanocarriers for Simultaneous Delivery of Docetaxel and Tariquidar to Chemoresistant Cancer Cells. Pharmaceuticals (Basel) 2023; 16:ph16030349. [PMID: 36986449 PMCID: PMC10058271 DOI: 10.3390/ph16030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The simultaneous drug delivery efficiency of a co-loaded single-carrier system of docetaxel (DTX)- and tariquidar (TRQ)-loaded nanostructured lipid carrier (NLC) functionalized with PEG and RIPL peptide (PRN) (D^T-PRN) was compared with that of a physically mixed dual-carrier system of DTX-loaded PRN (D-PRN) and TRQ-loaded PRN (T-PRN) to overcome DTX mono-administration-induced multidrug resistance. NLC samples were prepared using the solvent emulsification evaporation technique and showed homogeneous spherical morphology, with nano-sized dispersion (<220 nm) and zeta potential values of −15 to −7 mV. DTX and/or TRQ was successfully encapsulated in NLC samples (>95% encapsulation efficiency and 73–78 µg/mg drug loading). In vitro cytotoxicity was concentration-dependent; D^T-PRN exhibited the highest MDR reversal efficiency, with the lowest combination index value, and increased the cytotoxicity and apoptosis in MCF7/ADR cells by inducing cell-cycle arrest in the G2/M phase. A competitive cellular uptake assay using fluorescent probes showed that, compared to the dual nanocarrier system, the single nanocarrier system exhibited better intracellular delivery efficiency of multiple probes to target cells. In the MCF7/ADR-xenografted mouse models, simultaneous DTX and TRQ delivery using D^T-PRN significantly suppressed tumor growth as compared to other treatments. A single co-loaded system for PRN-based co-delivery of DTX/TRQ (1:1, w/w) constitutes a promising therapeutic strategy for drug-resistant breast cancer cells.
Collapse
Affiliation(s)
- Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Ji Yeh Choi
- Department of Psychology, York University, 4700 Kneele St., Toronto, ON M3J 1P3, Canada
| | - Min Jeong Lyu
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyun Min Jung
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
- Correspondence:
| |
Collapse
|
32
|
Wang S, Chen Y, Guo J, Huang Q. Liposomes for Tumor Targeted Therapy: A Review. Int J Mol Sci 2023; 24:ijms24032643. [PMID: 36768966 PMCID: PMC9916501 DOI: 10.3390/ijms24032643] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Liposomes, the most widely studied nano-drug carriers in drug delivery, are sphere-shaped vesicles consisting of one or more phospholipid bilayers. Compared with traditional drug delivery systems, liposomes exhibit prominent properties that include targeted delivery, high biocompatibility, biodegradability, easy functionalization, low toxicity, improvements in the sustained release of the drug it carries and improved therapeutic indices. In the wake of the rapid development of nanotechnology, the studies of liposome composition have become increasingly extensive. The molecular diversity of liposome composition, which includes long-circulating PEGylated liposomes, ligand-functionalized liposomes, stimuli-responsive liposomes, and advanced cell membrane-coated biomimetic nanocarriers, endows their drug delivery with unique physiological functions. This review describes the composition, types and preparation methods of liposomes, and discusses their targeting strategies in cancer therapy.
Collapse
Affiliation(s)
- Shile Wang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
| | - Yanyu Chen
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
| | - Jiancheng Guo
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
| | - Qinqin Huang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
- Correspondence:
| |
Collapse
|
33
|
Huang Y. Targeting glycolysis for cancer therapy using drug delivery systems. J Control Release 2023; 353:650-662. [PMID: 36493949 DOI: 10.1016/j.jconrel.2022.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
There is close crosstalk between cancer metabolism and immunity. Cancer metabolism regulation is a promising therapeutic target for cancer immunotherapy. Warburg effect is characterized by abnormal glucose metabolism that includes common features of increased glucose uptake and lactate production. The aerobic glycolysis can reprogram the cancer cells and promote the formation of a suppressive immune microenvironment. As a case in point, lactate plays an essential role in tumorigenesis, which is the end product of glycolysis as well as serves as a fuel supporting cancer cell survival. Meanwhile, it is also an important immune regulator that drives immunosuppression in tumors. Immunometabolic therapy is to intervene tumor metabolism and regulate the related metabolites that participate in the innate and acquired immunity, thereby reinstalling the immune balance and eliciting anticancer immune responses. In this contribution to the Orations - New Horizons of the Journal of controlled Release I will provide an overview of glucose metabolism in tumors and its effects on drug resistance and tumor metastasis, and present the advance of glycolysis-targeting therapy strategies with drug delivery techniques, as well as discuss the challenges in glycolysis-targeting immunometabolic therapy.
Collapse
Affiliation(s)
- Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, China; Shanghai Institute of Materia Medica Chinese Academy of Science, China.
| |
Collapse
|
34
|
Iqubal MK, Kaur H, Md S, Alhakamy NA, Iqubal A, Ali J, Baboota S. A technical note on emerging combination approach involved in the onconanotherapeutics. Drug Deliv 2022; 29:3197-3212. [PMID: 36226570 PMCID: PMC9578464 DOI: 10.1080/10717544.2022.2132018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
Cancer is the second cause of mortality worldwide, and the currently available conventional treatment approach is associated with serious side effects and poor clinical outcomes. Based on the outcome of the exploratory preclinical and clinical studies, it was found that therapeutic response increases multiple folds when anticancer drugs are used in combination. However, the conventional combination of anticancer drugs was associated with various limitations such as increased cost of treatment, systemic toxicity, drug resistance, and reduced pharmacokinetic attributes. Hence, attempts were made to formulate nanocarrier fabricated combinatorial drugs (NFCDs) to effectively manage and treat cancer. This approach offers several advantages, such as improved stability, lower drug exposure, targeted drug delivery, low side effects, and improved clinical outcome. Hence, in this review, first time, we have discussed the recent advancement and various types of nano carrier-based combinatorial drug delivery systems in a different type of cancer and highlighted the personalized combinatorial theranostic medicine as a futuristic anticancer treatment approach.
Collapse
Affiliation(s)
- Mohammad Kashif Iqubal
- Product Development Department, Sentiss Research Centre, Sentiss Pharma Pvt Ltd, Gurugram, India.,Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
35
|
Jacob MM, Santhosh A, Rajeev A, Joy R, John PM, John F, George J. Current Status of Natural Products/siRNA Co‐Delivery for Cancer Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202203476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
Affiliation(s)
- Megha Mariya Jacob
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Amritha Santhosh
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Anjaly Rajeev
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Reshma Joy
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Pooja Mary John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| |
Collapse
|
36
|
Jafari S, Bakhshaei A, Eskandani M, Molavi O. Silibinin-Loaded Nanostructured Lipid Carriers for Growth Inhibition of Cisplatin-Resistant Ovarian Cancer Cells. Assay Drug Dev Technol 2022; 20:339-348. [DOI: 10.1089/adt.2022.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Sevda Jafari
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atabak Bakhshaei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Raut H, Jadhav C, Shetty K, Laxane N, Nijhawan HP, Rao GSNK, Alavala RR, Joshi G, Patro CN, Soni G, Yadav KS. Sorafenib tosylate novel drug delivery systems: implications of nanotechnology in both approved and unapproved indications. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
|
38
|
Recent Trends in Nanomedicine-Based Strategies to Overcome Multidrug Resistance in Tumors. Cancers (Basel) 2022; 14:cancers14174123. [PMID: 36077660 PMCID: PMC9454760 DOI: 10.3390/cancers14174123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is the leading cause of economic and health burden worldwide. The commonly used approaches for the treatment of cancer are chemotherapy, radiotherapy, and surgery. Chemotherapy frequently results in undesirable side effects, and cancer cells may develop resistance. Combating drug resistance is a challenging task in cancer treatment. Drug resistance may be intrinsic or acquired and can be due to genetic factors, growth factors, the increased efflux of drugs, DNA repair, and the metabolism of xenobiotics. The strategies used to combat drug resistance include the nanomedicine-based targeted delivery of drugs and genes using different nanocarriers such as gold nanoparticles, peptide-modified nanoparticles, as well as biomimetic and responsive nanoparticles that help to deliver payload at targeted tumor sites and overcome resistance. Gene therapy in combination with chemotherapy aids in this respect. siRNA and miRNA alone or in combination with chemotherapy improve therapeutic response in tumor cells. Some natural substances, such as curcumin, quercetin, tocotrienol, parthenolide, naringin, and cyclosporin-A are also helpful in combating the drug resistance of cancer cells. This manuscript summarizes the mechanism of drug resistance and nanoparticle-based strategies used to combat it.
Collapse
|
39
|
Dhilip Kumar SS, Abrahamse H. Recent advances in the development of biocompatible nanocarriers and their cancer cell targeting efficiency in photodynamic therapy. Front Chem 2022; 10:969809. [PMID: 36046728 PMCID: PMC9420852 DOI: 10.3389/fchem.2022.969809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the role of biocompatible nanocarriers (BNs) and their cancer cell targeting efficiency in photodynamic therapy (PDT) holds potential benefits for cancer treatment. Biocompatible and biodegradable nanoparticles are successfully used as carrier molecules to deliver cancer drugs and photosensitizers due to their material safety in the drug delivery system. Biocompatible nanocarriers are non-toxic and ensure high-level biocompatibility with blood, cells, and physiological conditions. The physicochemical properties of BNs often enable them to modify their surface chemistry, which makes conjugating specific ligands or antibodies to achieve cancer cell targeting drug delivery in PDT. This review article focuses on the various types of BNs used in targeted drug delivery, physicochemical properties, and surface chemistry of BNs in targeted drug delivery, advantages of BNs in drug delivery systems, and the targeting efficiency of BNs on some specific targeting receptors for cancer therapy. Furthermore, the review briefly recaps the nanocarrier-based targeted approaches in cancer PDT.
Collapse
|
40
|
Naki T, Matshe W, Ubanako P, Adeyemi SA, Balogun M, Sinha Ray S, Choonara YE, Aderibigbe BA. Dopamine-Loaded Polymer-Drug Conjugates for Potential Synergistic Anti-Cancer Treatment. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2029895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/18/2023]
Affiliation(s)
- Tobeka Naki
- Department of Chemistry, University of Fort Hare, Alice, South Africa
| | - W. Matshe
- Polymer and Composites, CSIR Materials Science and Manufacturing, Pretoria, South Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Samson A. Adeyemi
- DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - M.O. Balogun
- Polymer and Composites, CSIR Materials Science and Manufacturing, Pretoria, South Africa
| | - S. Sinha Ray
- DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
41
|
Emerging concepts in designing next-generation multifunctional nanomedicine for cancer treatment. Biosci Rep 2022; 42:231373. [PMID: 35638450 PMCID: PMC9272595 DOI: 10.1042/bsr20212051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotherapy has emerged as an improved anticancer therapeutic strategy to circumvent the harmful side effects of chemotherapy. It has been proven to be beneficial to offer multiple advantages, including their capacity to carry different therapeutic agents, longer circulation time and increased therapeutic index with reduced toxicity. Over time, nanotherapy evolved in terms of their designing strategies like geometry, size, composition or chemistry to circumvent the biological barriers. Multifunctional nanoscale materials are widely used as molecular transporter for delivering therapeutics and imaging agents. Nanomedicine involving multi-component chemotherapeutic drug-based combination therapy has been found to be an improved promising approach to increase the efficacy of cancer treatment. Next-generation nanomedicine has also utilized and combined immunotherapy to increase its therapeutic efficacy. It helps in targeting tumor immune response sparing the healthy systemic immune function. In this review, we have summarized the progress of nanotechnology in terms of nanoparticle designing and targeting cancer. We have also discussed its further applications in combination therapy and cancer immunotherapy. Integrating patient-specific proteomics and biomarker based information and harnessing clinically safe nanotechnology, the development of precision nanomedicine could revolutionize the effective cancer therapy.
Collapse
|
42
|
Ahmed T, Liu FCF, Lu B, Lip H, Park E, Alradwan I, Liu JF, He C, Zetrini A, Zhang T, Ghavaminejad A, Rauth AM, Henderson JT, Wu XY. Advances in Nanomedicine Design: Multidisciplinary Strategies for Unmet Medical Needs. Mol Pharm 2022; 19:1722-1765. [PMID: 35587783 DOI: 10.1021/acs.molpharmaceut.2c00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
Globally, a rising burden of complex diseases takes a heavy toll on human lives and poses substantial clinical and economic challenges. This review covers nanomedicine and nanotechnology-enabled advanced drug delivery systems (DDS) designed to address various unmet medical needs. Key nanomedicine and DDSs, currently employed in the clinic to tackle some of these diseases, are discussed focusing on their versatility in diagnostics, anticancer therapy, and diabetes management. First-hand experiences from our own laboratory and the work of others are presented to provide insights into strategies to design and optimize nanomedicine- and nanotechnology-enabled DDS for enhancing therapeutic outcomes. Computational analysis is also briefly reviewed as a technology for rational design of controlled release DDS. Further explorations of DDS have illuminated the interplay of physiological barriers and their impact on DDS. It is demonstrated how such delivery systems can overcome these barriers for enhanced therapeutic efficacy and how new perspectives of next-generation DDS can be applied clinically.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Elliya Park
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Abdulmottaleb Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Amin Ghavaminejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
43
|
Bhattacharjee S. Craft of Co-encapsulation in Nanomedicine: A Struggle To Achieve Synergy through Reciprocity. ACS Pharmacol Transl Sci 2022; 5:278-298. [PMID: 35592431 PMCID: PMC9112416 DOI: 10.1021/acsptsci.2c00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2022] [Indexed: 12/19/2022]
Abstract
Achieving synergism, often by combination therapy via codelivery of chemotherapeutic agents, remains the mainstay of treating multidrug-resistance cases in cancer and microbial strains. With a typical core-shell architecture and surface functionalization to ensure facilitated targeting of tissues, nanocarriers are emerging as a promising platform toward gaining such synergism. Co-encapsulation of disparate theranostic agents in nanocarriers-from chemotherapeutic molecules to imaging or photothermal modalities-can not only address the issue of protecting the labile drug payload from a hostile biochemical environment but may also ensure optimized drug release as a mainstay of synergistic effect. However, the fate of co-encapsulated molecules, influenced by temporospatial proximity, remains unpredictable and marred with events with deleterious impact on therapeutic efficacy, including molecular rearrangement, aggregation, and denaturation. Thus, more than just an art of confining multiple therapeutics into a 3D nanoscale space, a co-encapsulated nanocarrier, while aiming for synergism, should strive toward achieving a harmonious cohabitation of the encapsulated molecules that, despite proximity and opportunities for interaction, remain innocuous toward each other and ensure molecular integrity. This account will inspect the current progress in co-encapsulation in nanocarriers and distill out the key points toward accomplishing such synergism through reciprocity.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
44
|
Nel AE, Mei KC, Liao YP, Lu X. Multifunctional Lipid Bilayer Nanocarriers for Cancer Immunotherapy in Heterogeneous Tumor Microenvironments, Combining Immunogenic Cell Death Stimuli with Immune Modulatory Drugs. ACS NANO 2022; 16:5184-5232. [PMID: 35348320 PMCID: PMC9519818 DOI: 10.1021/acsnano.2c01252] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/04/2023]
Abstract
In addition to the contribution of cancer cells, the solid tumor microenvironment (TME) has a critical role in determining tumor expansion, antitumor immunity, and the response to immunotherapy. Understanding the details of the complex interplay between cancer cells and components of the TME provides an unprecedented opportunity to explore combination therapy for intervening in the immune landscape to improve immunotherapy outcome. One approach is the introduction of multifunctional nanocarriers, capable of delivering drug combinations that provide immunogenic stimuli for improvement of tumor antigen presentation, contemporaneous with the delivery of coformulated drug or synthetic molecules that provide immune danger signals or interfere in immune-escape, immune-suppressive, and T-cell exclusion pathways. This forward-looking review will discuss the use of lipid-bilayer-encapsulated liposomes and mesoporous silica nanoparticles for combination immunotherapy of the heterogeneous immune landscapes in pancreatic ductal adenocarcinoma and triple-negative breast cancer. We describe how the combination of remote drug loading and lipid bilayer encapsulation is used for the synthesis of synergistic drug combinations that induce immunogenic cell death, interfere in the PD-1/PD-L1 axis, inhibit the indoleamine-pyrrole 2,3-dioxygenase (IDO-1) immune metabolic pathway, restore spatial access to activated T-cells to the cancer site, or reduce the impact of immunosuppressive stromal components. We show how an integration of current knowledge and future discovery can be used for a rational approach to nanoenabled cancer immunotherapy.
Collapse
Affiliation(s)
- André E. Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Kuo-Ching Mei
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiangsheng Lu
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
45
|
Nanoliposomes in Cancer Therapy: Marketed Products and Current Clinical Trials. Int J Mol Sci 2022; 23:ijms23084249. [PMID: 35457065 PMCID: PMC9030431 DOI: 10.3390/ijms23084249] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
The drugs used for cancer treatment have many drawbacks, as they damage both tumor and healthy cells and, in addition, they tend to be poorly soluble drugs. Their transport in nanoparticles can solve these problems as these can release the drug into tumor tissues, as well as improve their solubility, bioavailability, and efficacy, reducing their adverse effects. This article focuses on the advantages that nanotechnology can bring to medicine, with special emphasis on nanoliposomes. For this, a review has been made of the nanoliposomal systems marketed for the treatment of cancer, as well as those that are in the research phase, highlighting the clinical trials being carried out. All marketed liposomes studied are intravenously administered, showing a reduced intensity of side-effects compared with the nonliposomal form. Doxorubicin is the active ingredient most frequently employed. Ongoing clinical trials expand the availability of liposomal medicines with new clinical indications. In conclusion, the introduction of drugs in nanoliposomes means an improvement in their efficacy and the quality of life of patients. The future focus of research could be directed to develop multifunctional targeted nanoliposomes using new anticancer drugs, different types of existing drugs, or new standardized methodologies easily translated into industrial scale.
Collapse
|
46
|
Mirzaeinia S, Zeinali S, Budisa N, Karbalaei-Heidari HR. Targeted Codelivery of Prodigiosin and Simvastatin Using Smart BioMOF: Functionalization by Recombinant Anti-VEGFR1 scFv. Front Bioeng Biotechnol 2022; 10:866275. [PMID: 35402395 PMCID: PMC8987009 DOI: 10.3389/fbioe.2022.866275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Biological metal-organic frameworks (BioMOFs) are hybrid compounds in which metal nodes are linked to biocompatible organic ligands and have potential for medical application. Herein, we developed a novel BioMOF modified with an anti-VEGFR1 scFv antibody (D16F7 scFv). Our BioMOF is co-loaded with a combination of an anticancer compound and a lipid-lowering drug to simultaneously suppress the proliferation, growth rate and metastases of cancer cells in cell culture model system. In particular, Prodigiosin (PG) and Simvastatin (SIM) were co-loaded into the newly synthesized Ca-Gly BioMOF nanoparticles coated with maltose and functionalized with a recombinant maltose binding protein-scFv fragment of anti-VEGFR1 (Ca-Gly-Maltose-D16F7). The nanoformulation, termed PG + SIM-NP-D16F7, has been shown to have strong active targeting behavior towards VEGFR1-overexpresing cancer cells. Moreover, the co-delivery of PG and SIM not only effectively inhibits the proliferation of cancer cells, but also prevents their invasion and metastasis. The PG + SIM-NP-D16F7 nanocarrier exhibited stronger cytotoxic and anti-metastatic effects compared to mono-treatment of free drugs and drug-loaded nanoparticles. Smart co-delivery of PG and SIM on BioMOF nanoparticles had synergistic effects on growth inhibition and prevented cancer cell metastasis. The present nanoplatform can be introduced as a promising tool for chemotherapy compared with mono-treatment and/or non-targeted formulations.
Collapse
Affiliation(s)
- Somayyeh Mirzaeinia
- Molecular Biotechnology Lab, Department of Biology, Faculty of Science, Shiraz University, Shiraz, Iran
| | - Sedighe Zeinali
- Department of Nanochemical Engineering, School of Advanced Technologies, Nanotechnology Research Institute, Shiraz University, Shiraz, Iran
| | - Nediljko Budisa
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Hamid Reza Karbalaei-Heidari
- Molecular Biotechnology Lab, Department of Biology, Faculty of Science, Shiraz University, Shiraz, Iran
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
47
|
Li Y, Jiang Y, Zheng Z, Du N, Guan S, Guo W, Tang X, Cui J, Zhang L, Liu K, Yu Q, Gan Z. Co-Delivery of Precisely Prescribed Multi-Prodrug Combination by an Engineered Nanocarrier enables Efficient Individualized Cancer Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110490. [PMID: 35044690 DOI: 10.1002/adma.202110490] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/24/2021] [Indexed: 06/14/2023]
Abstract
The limited anticancer drug library and the frequent occurrence of drug resistance have driven monotherapy-based cancer therapy into a difficult situation. Considering the formidable process of new drug discovery, combination therapy using currently available drugs is a potential alternative. Nevertheless, the barrier between in vitro combination screening and precise in vivo delivery remains insurmountable in the current free-drug- or nanoparticle (NP)-based combination therapy, which substantially hinders the application of combination therapy. Herein, a novel, precise drug delivery strategy to realize efficient and individualized combination therapy is proposed. Nanomedicine (NM) is engineered using a microfluidics-based mixer by combining rationally designed polymeric prodrugs of three commercial chemotherapeutics and a cascade-responsive block copolymer; the NM possesses ratiometric drug loading and synchronized drug release. In addition to quantitative drug loading and precisely controlled drug combination, consistent nanoproperties of these NPs make their in vivo fate predictable. Consequently, tumor growth and metastasis can be effectively inhibited by precisely prescribed NPs derived from in vitro combination screening. This proof-of-concept study clearly reveals the feasibility of overcoming the current drug-library limitations through precise delivery of any predetermined drug combination, facilitating translational research of individualized combination therapy.
Collapse
Affiliation(s)
- Yuqiang Li
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yitong Jiang
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ziyan Zheng
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nan Du
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuli Guan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenxuan Guo
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohu Tang
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiajunzi Cui
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lanqiong Zhang
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kunpeng Liu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingsong Yu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Gan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
48
|
Hatami E, Nagesh PKB, Chauhan N, Jaggi M, Chauhan SC, Yallapu MM. In Situ Nanoparticle Self-Assembly for Combination Delivery of Therapeutics to Non-Small Cell Lung Cancer. ACS APPLIED BIO MATERIALS 2022; 5:1104-1119. [PMID: 35179871 DOI: 10.1021/acsabm.1c01158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Chemotherapy often experiences several challenges including severe systemic toxicity and adverse effects. The combination chemotherapy arose as an effective clinical practice aimed at reducing doses of drugs to achieve synergistic actions with low toxicity. Our recent efforts demonstrated a synergistic therapeutic benefit of gambogic acid (GA) and gemcitabine (Gem) against lung cancer. However, simultaneous delivery of these two drugs at the tumor site is highly challenging. Therefore, the development of an injectable formulation that can effectively deliver both hydrophobic (GA) and hydrophilic (Gem) drugs in one formulation is a clinically unmet need. Herein, this study reports an in situ human serum albumin (HSA)- and tannic acid (TA)-mediated complexed GA and Gem nanoparticles (G-G@HTA NPs). G-G@HTA NP formation was confirmed by the particle size, Fourier transform infrared spectroscopy, and 1H NMR spectroscopy. The superior therapeutic activity of G-G@HTA NPs was demonstrated by multiple in vitro functional assays. Additionally, G-G@HTA NPs revealed an obvious and precise targeting of tumors in vivo. The promoted and more synergistic anti-tumor efficacy of G-G@HTA NPs was attained than that of combined treatments and single drug treatments. These events have resulted in no apparent systemic and organ toxicities. Together, this study suggests that in situ HSA-TA-based combinatorial treatment strategy is a suitable approach for application in lung cancer treatment.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Prashanth K B Nagesh
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| |
Collapse
|
49
|
Zhang C, Zhou X, Zhang H, Han X, Li B, Yang R, Zhou X. Recent Progress of Novel Nanotechnology Challenging the Multidrug Resistance of Cancer. Front Pharmacol 2022; 13:776895. [PMID: 35237155 PMCID: PMC8883114 DOI: 10.3389/fphar.2022.776895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) of tumors is one of the clinical direct reasons for chemotherapy failure. MDR directly leads to tumor recurrence and metastasis, with extremely grievous mortality. Engineering a novel nano-delivery system for the treatment of MDR tumors has become an important part of nanotechnology. Herein, this review will take those different mechanisms of MDR as the classification standards and systematically summarize the advances in nanotechnology targeting different mechanisms of MDR in recent years. However, it still needs to be seriously considered that there are still some thorny problems in the application of the nano-delivery system against MDR tumors, including the excessive utilization of carrier materials, low drug-loading capacity, relatively narrow targeting mechanism, and so on. It is hoped that through the continuous development of nanotechnology, nano-delivery systems with more universal uses and a simpler preparation process can be obtained, for achieving the goal of defeating cancer MDR and accelerating clinical transformation.
Collapse
Affiliation(s)
- Chengyuan Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Xuemei Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Hanyi Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Xuanliang Han
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Baijun Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Ran Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
50
|
Abstract
Combinational therapy using chemodynamictherapy (CDT) and photothermal therapy (PTT) is known to enhance the therapeutic outcome for cancer treatment. In this study, a biocompatible nano formulation was developed by coating polydopamine (PDA) over doxorubicin (DOX)-loaded copper-substituted mesoporous silica (CuMSN) nanoparticles. PDA coating not only allowed selective photothermal properties with an extended DOX release but also enhanced the water solubility and biocompatibility of the nanocomposites. The nanocomposites displayed a monodispersed shape and pH-dependent release characteristics, with an outstanding photothermal conversion and excellent tumor cell inhibition. The cellular-uptake experiments of CuMSN@DOX@PDA in A549 cells indicated that nanoparticles (NPs) aided in the enhanced DOX uptake in tumor cells compared to free DOX with synergistic anti-cancer effects. Moreover, the cell-viability studies displayed remarkable tumor inhibition in combinational therapy over monotherapy. Thus, the synthesized CuMSN@DOX@PDA NPs can serve as a promising platform for dual cancer therapy.
Collapse
|