1
|
Kiewra D, Dyczko D, Žákovská A, Nejezchlebova H. Prevalence of Borrelia and Rickettsia in Ixodes ricinus from Chosen Urban and Protected Areas in Poland and the Czech Republic. INSECTS 2024; 15:785. [PMID: 39452361 PMCID: PMC11508308 DOI: 10.3390/insects15100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
(1) Background: Ixodes ricinus is responsible for the spreading of medically important pathogens. Monitoring the level of tick infection in various areas is essential for determining the potential tick-born risk. This study aimed to detect Borrelia spp. and Rickettsia spp. in I. ricinus ticks collected in urban and protected areas both in Poland and the Czech Republic. (2) Methods: Ticks were collected by flagging in the years 2016-2017. Borrelia spp. was detected using nested PCR targeting the flaB gene and Rickettsia spp. using nested PCR targeting gltA. (3) Results: In total, DNA of Borrelia spp. was detected in 25.9% of samples. Ticks collected in Poland were more infected compared to the Czech Republic and ticks collected in protected areas were more infected with Borrelia spp. than ticks collected in urban areas. The RFLP analysis showed the occurrence of B. afzelii and B. garinii in both countries, and additionally B. valaisiana, B. burgdorferi s.s., and B. miyamotoi in Poland. Rickettsia spp. was detected in 17.4% of I. ricinus, with comparable infection level in both countries; however, regional differences were observed. (4) Conclusion: The regional differences in Borrelia spp. and Rickettsia spp. prevalence in I. ricinus indicate the complexity of factors influencing the level of infection and underline the need for adaptation public health surveillance strategies in each region.
Collapse
Affiliation(s)
- Dorota Kiewra
- Department of Microbial Ecology and Acaroentomology, University of Wrocław, 51-148 Wrocław, Poland;
| | - Dagmara Dyczko
- Department of Microbial Ecology and Acaroentomology, University of Wrocław, 51-148 Wrocław, Poland;
| | - Alena Žákovská
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic; (A.Ž.); (H.N.)
- Department of Biology, Faculty of Education, Masaryk University, 60200 Brno, Czech Republic
| | - Helena Nejezchlebova
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic; (A.Ž.); (H.N.)
| |
Collapse
|
2
|
Marnin L, Valencia LM, Bogale HN, Laukaitis-Yousey HJ, Rolandelli A, Ferraz CR, O’Neal AJ, Schmitter-Sánchez AD, Cuevas EB, Nguyen TT, Leal-Galvan B, Rickert DM, Mendes MT, Samaddar S, Butler LR, Singh N, Cabrera Paz FE, Oliver JD, Jameson JM, Munderloh UG, Oliva Chávez AS, Mulenga A, Park S, Serre D, Pedra JH. Tick extracellular vesicles undermine epidermal wound healing during hematophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566612. [PMID: 37986907 PMCID: PMC10659423 DOI: 10.1101/2023.11.10.566612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to hematophagy and arthropod-borne diseases. Hematophagous ectoparasites, including ticks, subvert the wound healing response to maintain prolonged attachment and facilitate blood-feeding. Here, we unveil a strategy by which extracellular vesicles (EVs) ensure blood-feeding and arthropod survival in three medically relevant tick species. We demonstrate through single cell RNA sequencing and murine genetics that wildtype animals infested with EV-deficient Ixodes scapularis display a unique population of keratinocytes with an overrepresentation of pathways connected to wound healing. Tick feeding affected keratinocyte proliferation in a density-dependent manner, which relied on EVs and dendritic epidermal T cells (DETCs). This occurrence was linked to phosphoinositide 3-kinase activity, keratinocyte growth factor (KGF) and transforming growth factor β (TGF-β) levels. Collectively, we uncovered a strategy employed by a blood-feeding arthropod that impairs the integrity of the epithelial barrier, contributing to ectoparasite fitness.
Collapse
Affiliation(s)
- Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luisa M. Valencia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haikel N. Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanna J. Laukaitis-Yousey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Camila Rodrigues Ferraz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anya J. O’Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Axel D. Schmitter-Sánchez
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - Emily Bencosme Cuevas
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Thu-Thuy Nguyen
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Brenda Leal-Galvan
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David M. Rickert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M. Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L. Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francy E. Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Julie M Jameson
- Department of Biology, California State University San Marcos, San Marcos, CA, USA
| | | | | | - Albert Mulenga
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Sangbum Park
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - David Serre
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H.F. Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Camargo-Mathias MI, de Lima Rodrigues M, da Silva O, de Abreu MR, Sapatini D. Cannabis sativa (Linnaeus, 1753): The use of its extract against Rhipicephalus linnaei (Audouin, 1826) ticks. Vet Parasitol 2024; 332:110314. [PMID: 39288615 DOI: 10.1016/j.vetpar.2024.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
To minimize the damage caused by synthetic acaricides to non-target organisms, the use of bioactives compounds extracted from plants has been considered. In this study, semi-engorged females of Rhipicephalus linnaei ticks were exposed to Cannabis sativa flower extract (submersion for 5 minutes in different concentrations diluted in ethanol 30 %) evaluated alterations in the integument and salivary glands. The results demonstrated that lower concentrations of the extract caused damage to both the integument and salivary glands, affecting the cuticular epithelial cells responsible for synthesizing all layers of the cuticle. The concentration of 2.5 mg/mL caused more extensive damage than 5.0 mg/mL, and 40 mg/mL completely disrupted the epithelium. Exposure of the salivary glands showed that at 2.5 ug/mL dose the glandular acini was disrupted, leaving only a heterogeneous mass with some nuclei of acinar cells, leading to acinar rupture. These findings indicate that the extract from Cannabis sativa flowers irreversibly alters the morphology and consequently, interferes with the functionality of different vital organs.
Collapse
Affiliation(s)
- Maria Izabel Camargo-Mathias
- Department of General and Applied Biology, Institute of Biosciences of São Paulo State University (Unesp), Rio Claro, Brazil.
| | - Milena de Lima Rodrigues
- Department of General and Applied Biology, Institute of Biosciences of São Paulo State University (Unesp), Rio Claro, Brazil
| | - Odaiza da Silva
- Department of General and Applied Biology, Institute of Biosciences of São Paulo State University (Unesp), Rio Claro, Brazil
| | - Marina Rodrigues de Abreu
- Department of General and Applied Biology, Institute of Biosciences of São Paulo State University (Unesp), Rio Claro, Brazil
| | - Davy Sapatini
- Department of General and Applied Biology, Institute of Biosciences of São Paulo State University (Unesp), Rio Claro, Brazil
| |
Collapse
|
4
|
Wang Y, Li R, Yin T, He Z, Lu Z, Shao Z, Long Y. Prevalence of Tick Infection with Bartonella in China: A Review and Meta-analysis. Acta Parasitol 2024:10.1007/s11686-024-00893-0. [PMID: 39240447 DOI: 10.1007/s11686-024-00893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVE Bartonellosis is a global vector-borne zoonosis caused by Bartonella, a genus of intracellular Gram-negative bacteria. It is one of 14 emerging infectious diseases that have recently been identified in China, and the prevalence varies by region. A more in-depth understanding is needed regarding the role and influencing factors of ticks in the transmission of Bartonella, including the infection rate of ticks with Bartonella in different regions. This study explored the prevalence of Bartonella in ticks and the factors that influence it. METHODS Databases (PubMed, Embase, Elsevier ScienceDirect, Cochrane Library, Web of Science, CNKI, VIP, CBM, and WanFang) were searched to review the preliminary research on Bartonella-carrying ticks in China. RESULTS We identified and included 22 articles. Bartonella infection rates in ticks varied from 0 to 22.79% examined by the included studies. Our meta-analysis revealed that the prevalence of Bartonella in ticks was 3.15% (95% CI: 1.22 - 5.82%); the prevalence was higher in parasitic ticks (4.90%; 95% CI: 1.39 -10.14%) than ticks seeking hosts (1.42%; 95% CI: 0.62 - 2.50%) (P = 0.047). CONCLUSION The prevalence of Bartonella in the southern region of China (6.45%) was higher than that in the northern region (1.28%) (P = 0.030). Knowledge of ticks' vectors and reservoir competence is crucial to reduce the disease burden.
Collapse
Affiliation(s)
- Yuhua Wang
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ruishan Li
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ting Yin
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhen He
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhenhua Lu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhongjun Shao
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yong Long
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Kratou M, Maitre A, Abuin-Denis L, Piloto-Sardiñas E, Corona-Guerrero I, Cano-Argüelles AL, Wu-Chuang A, Bamgbose T, Almazan C, Mosqueda J, Obregón D, Mateos-Hernández L, Said MB, Cabezas-Cruz A. Disruption of bacterial interactions and community assembly in Babesia-infected Haemaphysalis longicornis following antibiotic treatment. BMC Microbiol 2024; 24:322. [PMID: 39237861 PMCID: PMC11378419 DOI: 10.1186/s12866-024-03468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND A previous study highlighted the role of antibiotic-induced dysbiosis in the tick microbiota, facilitating the transstadial transmission of Babesia microti from nymph to adult in Haemaphysalis longicornis. This study builds on previous findings by analyzing sequence data from an earlier study to investigate bacterial interactions that could be linked to enhanced transstadial transmission of Babesia in ticks. The study employed antibiotic-treated (AT) and control-treated (CT) Haemaphysalis longicornis ticks to investigate shifts in microbial community assembly. Network analysis techniques were utilized to assess bacterial interactions, comparing network centrality measures between AT and CT groups, alongside studying network robustness and connectivity loss. Additionally, functional profiling was conducted to evaluate metabolic diversity in response to antibiotic treatment. RESULTS The analysis revealed notable changes in microbial community assembly in response to antibiotic treatment. Antibiotic-treated (AT) ticks displayed a greater number of connected nodes but fewer correlations compared to control-treated (CT) ticks, indicating a less interactive yet more connected microbial community. Network centrality measures such as degree, betweenness, closeness, and eigenvector centrality, differed significantly between AT and CT groups, suggesting alterations in local network dynamics due to antibiotic intervention. Coxiella and Acinetobacter exhibited disrupted connectivity and roles, with the former showing reduced interactions in AT group and the latter displaying a loss of connected nodes, emphasizing their crucial roles in microbial network stability. Robustness tests against node removal showed decreased stability in AT networks, particularly under directed attacks, confirming a susceptibility of the microbial community to disturbances. Functional profile analysis further indicated a higher diversity and richness in metabolic capabilities in the AT group, reflecting potential shifts in microbial metabolism as a consequence of antimicrobial treatment. CONCLUSIONS Our findings support that bacterial interaction traits boosting the transstadial transmission of Babesia could be associated with reduced colonization resistance. The disrupted microbial interactions and decreased network robustness in AT ticks suggest critical vulnerabilities that could be targeted for managing tick-borne diseases.
Collapse
Affiliation(s)
- Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia.
| | - Apolline Maitre
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Lianet Abuin-Denis
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Avenue 31 Between 158 and 190, Havana, 10600, Cuba
| | - Elianne Piloto-Sardiñas
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de Las Lajas, Mayabeque, 32700, Cuba
| | - Ivan Corona-Guerrero
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Ana Laura Cano-Argüelles
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, Salamanca, 37008, Spain
| | - Alejandra Wu-Chuang
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
| | - Timothy Bamgbose
- Department of Biological Sciences, Microbiology Unit, Kings University, Odeomu, Osun State, Nigeria
- National Agency for Food and Drug Control and Administration (NAFDAC), Isolo, Lagos State, Nigeria
| | - Consuelo Almazan
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Juan Mosqueda
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Lourdes Mateos-Hernández
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France.
| |
Collapse
|
6
|
Guardone L, Nogarol C, Accorsi A, Vitale N, Listorti V, Scala S, Brusadore S, Miceli IN, Wolfsgruber L, Guercio A, Di Bella S, Grippi F, Razzuoli E, Mandola ML. Ticks and Tick-Borne Pathogens: Occurrence and Host Associations over Four Years of Wildlife Surveillance in the Liguria Region (Northwest Italy). Animals (Basel) 2024; 14:2377. [PMID: 39199911 PMCID: PMC11350676 DOI: 10.3390/ani14162377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tick-borne diseases (TBDs) are a considerable public health problem worldwide. The occurrence of Anaplasma spp., Borrelia burgdorferi s.l., Coxiella burnetii, Rickettsia spp., and tick-borne encephalitis virus (TBEv) was investigated via PCR and sequencing in 683 ticks collected from 105 roe deer, 61 wild boars, 49 fallow deer, and 2 chamois, in the Liguria region, northwest Italy, between 2019 and 2022. The ticks were morphologically identified. Four different tick species were found: Ixodes ricinus (66.8% of the collected ticks), Dermacentor marginatus (15.8%), Rhipicephalus sanguineus s.s. (15.7%), and Haemaphysalis punctata (0.9%). Six ticks (0.9%) were only identified as Rhipicephalus spp. Of the 222 pools analyzed, 27.9% were positive. Most pools (n = 58, 26.1% of pools analyzed) were positive for Rickettsia spp., and several species were found: Rickettsia slovaca was the dominant species (15.3%), followed by R. monacensis (8.1%), while R. helvetica (1.8%), R. massiliae (0.5%), and R. raoultii (0.5%) were found only sporadically. Anaplasma phagocytophilum was identified in three pools and B. burgdorferi s.l. in one pool. All samples were negative for C. burnetii and TBEv. Significant associations were found between I. ricinus and roe deer, D. marginatus and wild boar, and between R. monacensis and I. ricinus. The prevalence of Rickettsia spp. differed significantly between tick and host species. This updated picture of tick species and TBPs in wild ungulates in Liguria, where the population of these animals is increasing, shows a widespread presence of potentially zoonotic Rickettsia spp. Continuous monitoring and public information on preventive measures are needed.
Collapse
Affiliation(s)
- Lisa Guardone
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Chiara Nogarol
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Annalisa Accorsi
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Nicoletta Vitale
- S.S. Epidemiologia—Sanità Animale, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy;
| | - Valeria Listorti
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Sonia Scala
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Sonia Brusadore
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Ilaria Nina Miceli
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| | - Lara Wolfsgruber
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Annalisa Guercio
- Centro Nazionale di Referenza per Anaplasma, Babesia, Rickettsia e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.G.); (S.D.B.)
| | - Santina Di Bella
- Centro Nazionale di Referenza per Anaplasma, Babesia, Rickettsia e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.G.); (S.D.B.)
| | - Francesca Grippi
- S.C. Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via Gino Marinuzzi 3, 90129 Palermo, Italy;
| | - Elisabetta Razzuoli
- S.S. Genova e Portualità, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39, 16129 Genova, Italy; (A.A.); (V.L.); (L.W.)
| | - Maria Lucia Mandola
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (C.N.); (S.S.); (S.B.); (I.N.M.); (M.L.M.)
| |
Collapse
|
7
|
Ossa-López PA, Ramírez-Chaves HE, Rivera-Páez FA. Pathogens associated with ticks (Acari: Ixodidae) and mammals in the Orinoquia region of Colombia: An approach to understanding vector-pathogen-host interactions. Acta Trop 2024; 256:107282. [PMID: 38861832 DOI: 10.1016/j.actatropica.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
The hard tick clade (Ixodidae) currently comprises 762 species worldwide (266 Prostriata and 496 Metastriata). A quarter of hard ticks are found in the Neotropical region, and 42 species have been documented in Colombia. Ixodidae species are important vectors of pathogens such as bacteria, helminths, protozoa, and viruses. In tick-borne diseases, vertebrate hosts perform an important role in the transmission, maintenance, and spread of pathogens. Colombia ranks sixth among countries with the highest mammal biodiversity, with a total of 548 species, where some of these species may be involved in pathogen transmission cycles with ticks as vectors. This research evaluated the presence of two genera of bacteria (Borrelia and Rickettsia) and the protozoan (Babesia) in ticks and mammals in the Orinoquia region of Colombia, establishing interaction networks. The information comes from 734 mammals (655 wild and 79 domestic), belonging to 59 species. Tick infestation (n = 1,805) was found with 14.85 % (n = 109) of the examined mammals and corresponds to nine tick species confirmed morphologically and molecularly. To detect pathogens 272 ticks were collected while feeding on 96 mammals; samples from 93 mammals were analyzed. The presence of borreliae from the relapsing fever group (RFG) and the Lyme disease group (LDG) were detected. Rickettsia spp. was detected in ticks and mammals, while Babesia bigemina was only detected in ticks. This research is the first to address the prevalence of zoonotic pathogens in domestic and wild mammals infested with hard ticks in the Department of Arauca, Colombia. Considering that reporting cases of infections with Babesia, Borrelia, and Rickettsia in Colombia is not mandatory, their impact on public health cannot be estimated. This highlights the importance of continuously detecting, confirming, and identifying these and other important pathogens within the "One Health" framework, as they have a significant economic and medical-veterinary impact globally.
Collapse
Affiliation(s)
- Paula A Ossa-López
- Doctorado en Ciencias, Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia; Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Héctor E Ramírez-Chaves
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia; Centro de Museos, Museo de Historia Natural, Universidad de Caldas, Calle 58 No. 21-50, 170004, Manizales, Caldas, Colombia
| | - Fredy A Rivera-Páez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia.
| |
Collapse
|
8
|
Fang Y, Wang J, Sun J, Su Z, Chen S, Xiao J, Ni J, Hu Z, He Y, Shen S, Deng F. RNA viromes of Dermacentor nuttalli ticks reveal a novel uukuvirus in Qīnghăi Province, China. Virol Sin 2024; 39:537-545. [PMID: 38679334 PMCID: PMC11401450 DOI: 10.1016/j.virs.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Ticks are a major parasite on the Qīnghăi-Tibet Plateau, western China, and represent an economic burden to agriculture and animal husbandry. Despite research on tick-borne pathogens that threaten humans and animals, the viromes of dominant tick species in this area remain unknown. In this study, we collected Dermacentor nuttalli ticks near Qīnghăi Lake and identified 13 viruses belonging to at least six families through metagenomic sequencing. Four viruses were of high abundance in pools, including Xīnjiāng tick-associated virus 1 (XJTAV1), and three novel viruses: Qīnghăi Lake virus 1, Qīnghăi Lake virus 2 (QHLV1, and QHLV2, unclassified), and Qīnghăi Lake virus 3 (QHLV3, genus Uukuvirus of family Phenuiviridae in order Bunyavirales), which lacks the M segment. The minimum infection rates of the four viruses in the tick groups were 8.2%, 49.5%, 6.2%, and 24.7%, respectively, suggesting the prevalence of these viruses in D. nuttalli ticks. A putative M segment of QHLV3 was identified from the next-generation sequencing data and further characterized for its signal peptide cleavage site, N-glycosylation, and transmembrane region. Furthermore, we probed the L, M, and S segments of other viruses from sequencing data of other tick pools by using the putative M segment sequence of QHLV3. By revealing the viromes of D. nuttalli ticks, this study enhances our understanding of tick-borne viral communities in highland regions. The putative M segment identified in a novel uukuvirus suggests that previously identified uukuviruses without M segments should have had the same genome organization as typical bunyaviruses. These findings will facilitate virus discovery and our understanding of the phylogeny of tick-borne uukuviruses.
Collapse
Affiliation(s)
- Yaohui Fang
- Key Laboratory of Special Pathogens and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jun Wang
- Key Laboratory of Special Pathogens and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jianqing Sun
- Qīnghăi Lake National Nature Reserve Administration, Xining 810000, China
| | - Zhengyuan Su
- Key Laboratory of Special Pathogens and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shengyao Chen
- Key Laboratory of Special Pathogens and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jian Xiao
- Key Laboratory of Special Pathogens and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jun Ni
- Key Laboratory of Special Pathogens and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhihong Hu
- Key Laboratory of Special Pathogens and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yubang He
- Qīnghăi Lake National Nature Reserve Administration, Xining 810000, China
| | - Shu Shen
- Key Laboratory of Special Pathogens and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Hubei Jiangxia Laboratory, Wuhan 430200, China; Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, 830002, China.
| | - Fei Deng
- Key Laboratory of Special Pathogens and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
9
|
Gęgotek A, Moniuszko-Malinowska A, Groth M, Skrzydlewska E. Changes in cerebrospinal fluid proteome of patients with tick-borne encephalitis. J Med Virol 2024; 96:e29763. [PMID: 38949193 DOI: 10.1002/jmv.29763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Tick-borne encephalitis (TBE) is one of the main diseases transmitted by ticks, the incidence of which is increasing. Moreover, its diagnosis and therapy are often long and difficult according to nonspecific symptoms and complex etiology. This study aimed to observe changes in the proteome of cerebrospinal fluid from TBE patients. Cerebrospinal fluid (CSF) of TBE patients (n = 20) and healthy individuals (n = 10) was analyzed using a proteomic approach (QExactiveHF-Orbitrap mass spectrometer) and zymography. Obtained results show that in CSF of TBE patients, the top-upregulated proteins are involved in pro-inflammatory reaction (interleukins), as well as antioxidant/protective response (peroxiredoxins, heat shock proteins). Moreover, changes in the proteome of CSF are not only the result of this disease development, but they can also be an indicator of its course. This mainly applies to proteins involved in proteolysis including serpins and metalloproteinases, whose activity is proportional to the length of patients' convalescence. The obtained proteomic data strongly direct attention to the changes caused by the development of TBE to antioxidant, pro-inflammatory, and proteolytic proteins, knowledge about which can significantly contribute to faster and more accurate diagnosis of various clinical forms of TBE.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
10
|
Sun M, Wu F, Xu Z, Wang Y, Cao J, Zhou Y, Zhou J, Zhang H, Xu Q. The TCTP is essential for ovarian development and oviposition of Rhipicephalus haemaphysaloides. Vet Parasitol 2024; 329:110212. [PMID: 38781831 DOI: 10.1016/j.vetpar.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Tick infestations transmit various infectious agents and result in significant socioeconomic consequences. Currently, the primary focus of tick control efforts is identifying potential targets for immune intervention. In a previous study, we identified a highly conserved protein abundant in tick haemolymph extracellular vesicles (EVs) known as translationally controlled tumour protein (TCTP). We have found that native TCTP is present in various tissues of the Rhipicephalus haemaphysaloides tick, including salivary glands, midgut, ovary, and fat body. Notably, TCTP is particularly abundant in the tick ovary and its levels increase progressively from the blood-feeding stage to engorgement. When the TCTP gene was knocked down by RNAi, there was a noticeable delay in ovarian development, and the reproductive performance, in terms of egg quantity and survival, was also hindered. Our investigations have revealed that the observed effects in ovary and eggs in dsRNA-treated ticks are not attributable to cell death mechanisms like apoptosis and autophagy but rather to the reduction in the expression of vitellogenin (Vg1, Vg2, and Vg3) and ferritin (ferritin 1 and ferritin 2) proteins crucial for ovarian development and embryo survival in ticks. Additionally, phylogenetic analysis and structural comparisons of RhTCTP and its orthologues across various tick species, vertebrate hosts, and humans have shown that TCTP is conserved in ticks but differs significantly between ticks and their hosts, particularly in the TCTP_1 and TCTP_2 domains. Overall, TCTP plays a vital role in tick reproductive development and presents itself as a potential target for tick control in both humans and animals.
Collapse
Affiliation(s)
- Meng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Fei Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Qianming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
11
|
Lee DAB, Barros-Battesti DM, Arantes PVC, Sada JM, Sanches GS, André MR, Lima VFS. First report of unusual case of parasitism by Amblyomma nodosum (Neumann, 1889) in a yellow cururu toad (Rhinella icterica) in the Northeastern Brazilian Caatinga. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e005324. [PMID: 38958294 PMCID: PMC11253816 DOI: 10.1590/s1984-29612024031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/19/2024] [Indexed: 07/04/2024]
Abstract
The Amblyomma genus (Arachnida: Ixodidae) is widely distributed in South America, with 34 species occurring in Brazil. Amblyomma nodosum Neumann 1889 is a species that predominantly feeds on Passeriformes during immature stages (larvae and nymphs) and anteaters (Myrmecophagidae) during adult stages. The aim of the present study is to report, for the first time, an unusual case of parasitism by adults of A. nodosum on a yellow cururu toad (Rhinella icterica) captured in the city of Nossa Senhora da Glória, Sergipe state (Northeastern Brazil) in the Caatinga biome, and also investigate the presence of DNA of Rickettsia in the collected material. DNA was extracted from all specimens collected (N=8) and subjected to PCR assays based on the tick 16S rRNA endogenous gene and gltA gene for Rickettsia sp. All samples (8/8; 100%) were positive for the 16S rRNA endogenous gene and two amplicons (obtained from one male and one female) were purified and sequenced. The BLASTn analysis of the sequences revealed a high degree of similarity (95-100%) with A. nodosum sequences previously deposited on GenBank, while the phylogenetic analysis clustered the sequences obtained in the same clade as A. nodosum sequences from Brazil.
Collapse
Affiliation(s)
- Daniel Antônio Braga Lee
- Departamento de Patologia, Reprodução, e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias – FCAV, Universidade Estadual Paulista – UNESP, Jaboticabal, SP, Brasil
| | - Darci Moraes Barros-Battesti
- Departamento de Patologia, Reprodução, e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias – FCAV, Universidade Estadual Paulista – UNESP, Jaboticabal, SP, Brasil
| | - Paulo Vitor Cadina Arantes
- Departamento de Patologia, Reprodução, e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias – FCAV, Universidade Estadual Paulista – UNESP, Jaboticabal, SP, Brasil
| | - Jovêncio Mateus Sada
- Departamento de Patologia, Reprodução, e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias – FCAV, Universidade Estadual Paulista – UNESP, Jaboticabal, SP, Brasil
| | - Gustavo Seron Sanches
- Departamento de Patologia, Reprodução, e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias – FCAV, Universidade Estadual Paulista – UNESP, Jaboticabal, SP, Brasil
| | - Marcos Rogério André
- Departamento de Patologia, Reprodução, e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias – FCAV, Universidade Estadual Paulista – UNESP, Jaboticabal, SP, Brasil
| | - Victor Fernando Santana Lima
- Laboratório de Doenças Parasitárias, Departamento de Medicina Veterinária do Sertão, Universidade Federal de Sergipe – UFS, Campus do Sertão, Nossa Senhora da Glória, SE, Brasil
| |
Collapse
|
12
|
Busi A, Martínez-Sánchez ET, Alvarez-Londoño J, Rivera-Páez FA, Ramírez-Chaves HE, Fontúrbel FE, Castaño-Villa GJ. Environmental and ecological factors affecting tick infestation in wild birds of the Americas. Parasitol Res 2024; 123:254. [PMID: 38922478 PMCID: PMC11208200 DOI: 10.1007/s00436-024-08246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
The Americas hold the greatest bird diversity worldwide. Likewise, ectoparasite diversity is remarkable, including ticks of the Argasidae and Ixodidae families - commonly associated with birds. Considering that ticks have potential health implications for humans, animals, and ecosystems, we conducted a systematic review to evaluate the effects of bioclimatic, geographic variables, and bird species richness on tick infestation on wild birds across the Americas. We identified 72 articles that met our inclusion criteria and provided data on tick prevalence in wild birds. Using Generalized Additive Models, we assessed the effect of environmental factors, such as habitat type, climatic conditions, bird species richness, and geographic location, on tick infestation. Our findings show that most bird infestation case studies involved immature ticks, such as larvae or nymphs, while adult ticks represented only 13% of case studies. We found birds infested by ticks of the genera Amblyomma (68%), Ixodes (22%), Haemaphysalis (5%), Dermacentor (1%), and Rhipicephalus (0.8%) in twelve countries across the Americas. Our findings revealed that temperature variation and bird species richness were negatively associated with tick infestation, which also varied with geographic location, increasing in mid-latitudes but declining in extreme latitudes. Our results highlight the importance of understanding how environmental and bird community factors influence tick infestation in wild birds across the Americas and the dynamics of tick-borne diseases and their impact on biodiversity.
Collapse
Affiliation(s)
- Ana Busi
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Grupo de Investigación en Ecosistemas Tropicales, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Doctorado en Ciencias-Agrarias, Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 64B No. 25-65, 170004, Manizales, Caldas, Colombia
| | - Estefani T Martínez-Sánchez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Doctorado en Ciencias-Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Johnathan Alvarez-Londoño
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Facultad de Ciencias Exactas y Naturales, Maestría en Ciencias Biológicas, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Fredy A Rivera-Páez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Héctor E Ramírez-Chaves
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Centro de Museos, Museo de Historia Natural, Universidad de Caldas, Calle 58 No. 21-50, 170004, Manizales, Caldas, Colombia
| | - Francisco E Fontúrbel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, 2373223, Valparaíso, Chile
| | - Gabriel J Castaño-Villa
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 64B No. 25-65, 170004, Manizales, Caldas, Colombia.
| |
Collapse
|
13
|
Ghelichi-Ghojogh M, Ghezeljeh E, Delavari S, Aghapour SA. Alpha-Gal syndrome as a novel food allergy: a case report study. Ann Med Surg (Lond) 2024; 86:3624-3626. [PMID: 38846906 PMCID: PMC11152835 DOI: 10.1097/ms9.0000000000001164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/02/2023] [Indexed: 06/09/2024] Open
Abstract
Introduction and importance Alpha-Gal syndrome (AGS), a distinct form of mammalian meat allergy, presents unique characteristics that set it apart from typical IgE-mediated food hypersensitivities. AGS induces an allergic response typically 3-6 h post-ingestion of mammalian meat, such as beef, pork, or lamb. This prolonged reaction time differentiates AGS from other food allergies, which usually provoke a more immediate response. Case presentation The authors present a case of a 35-year-old male patient who, unbeknownst to him, had been experiencing symptoms consistent with Alpha-Gal allergy for several years. His symptoms only subsided upon the complete elimination of mammalian meat from his diet. It was only then that the possibility of AGS was considered. Complete abstinence from mammalian meat, meat by-products, and other α-Gal containing foods is the most effective preventative strategy for AGS. No definitive cure for AGS has been established as of now. Treatment protocols for hypersensitivity reactions are contingent upon the severity of the reaction, with therapies ranging from antihistamine medications to the administration of epinephrine. Conclusion There is considerable variability among AGS patients concerning the consumption of dairy products. Some individuals with AGS can safely consume dairy products without any adverse reactions, while others are advised to abstain due to potential allergenic responses. This variability in dairy tolerance among AGS patients warrants further investigation.
Collapse
Affiliation(s)
- Mousa Ghelichi-Ghojogh
- Neonatal and Children’s Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Edris Ghezeljeh
- Neonatal and Children’s Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sahar Delavari
- Institute for the Developing Mind, Children’s Hospital Los Angeles, Keck School of Medicine at the University of Southern California, Los Angeles, CA
| | - Seyed Ali Aghapour
- Neonatal and Children’s Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
14
|
Zapata CA, Morea EGO, Mora-Motta DA, Ojeda DMM, Quiceno-Mayo EJ, Toro DA, Ortiz-Morea FA. Characterization and Seasonal Dynamics of Tick Populations in Dairy Cattle Production Systems of Northwestern Colombian Amazon. Vet Sci 2024; 11:244. [PMID: 38921991 PMCID: PMC11209389 DOI: 10.3390/vetsci11060244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
Cattle ticks are a significant health concern in tropical livestock production due to their hematophagous behavior and potential as vectors for human and animal pathogens. In this study, we investigated the tick population present in dairy cattle production, calves, and grazing areas of livestock systems in the northwestern Colombian Amazon. Identification was based on taxonomic keys and molecular markers. Phylogenetic relationships were established using mitochondrial COX1 and 16S genes. Population structure analysis was performed considering age, racial type (B. indicus vs. B. taurus), and the influence of environmental factors and the geomorphological landscape on tick population dynamics. Our findings revealed the presence of a single tick species, with a unique haplotype identified for each mitochondrial gene assessed. Phylogenetic analysis classified the found species within Clade A of the Rhipicephalus microplus complex. Ticks were more prevalent during periods of low rainfall and high temperature, and B. taurus cows exhibited the highest tick abundance. Thus, these results provide insights into the population characteristics and distribution of the tick species present in dairy cattle production systems in the northwestern part of the Colombian Amazon. This information is fundamental for developing targeted strategies based on seasonal variation and host characteristics to mitigate tick infestation severity in the region.
Collapse
Affiliation(s)
- Cesar A. Zapata
- Centro de Investigaciones Macagual CIMAZ-MACAGUAL, Universidad de la Amazonia, Florencia 180002, Colombia; (C.A.Z.); (E.G.O.M.); (D.A.M.-M.); (D.M.M.O.); (E.J.Q.-M.); (D.A.T.)
- Ciencias Naturales y Desarrollo Sustentable, Facultad Ciencias Agropecuarias, Universidad de la Amazonia, Florencia 180001, Colombia
| | - Edna G. O. Morea
- Centro de Investigaciones Macagual CIMAZ-MACAGUAL, Universidad de la Amazonia, Florencia 180002, Colombia; (C.A.Z.); (E.G.O.M.); (D.A.M.-M.); (D.M.M.O.); (E.J.Q.-M.); (D.A.T.)
- El Centro de Investigaciones e Innovación Uninavarra, Fundación Universitaria Navarra UNINAVARRA, Facultad de Salud, Neiva 410010, Colombia
| | - Dúber A. Mora-Motta
- Centro de Investigaciones Macagual CIMAZ-MACAGUAL, Universidad de la Amazonia, Florencia 180002, Colombia; (C.A.Z.); (E.G.O.M.); (D.A.M.-M.); (D.M.M.O.); (E.J.Q.-M.); (D.A.T.)
| | - Diana M. M. Ojeda
- Centro de Investigaciones Macagual CIMAZ-MACAGUAL, Universidad de la Amazonia, Florencia 180002, Colombia; (C.A.Z.); (E.G.O.M.); (D.A.M.-M.); (D.M.M.O.); (E.J.Q.-M.); (D.A.T.)
| | - Esther J. Quiceno-Mayo
- Centro de Investigaciones Macagual CIMAZ-MACAGUAL, Universidad de la Amazonia, Florencia 180002, Colombia; (C.A.Z.); (E.G.O.M.); (D.A.M.-M.); (D.M.M.O.); (E.J.Q.-M.); (D.A.T.)
| | - Diego A. Toro
- Centro de Investigaciones Macagual CIMAZ-MACAGUAL, Universidad de la Amazonia, Florencia 180002, Colombia; (C.A.Z.); (E.G.O.M.); (D.A.M.-M.); (D.M.M.O.); (E.J.Q.-M.); (D.A.T.)
| | - Fausto A. Ortiz-Morea
- Centro de Investigaciones Macagual CIMAZ-MACAGUAL, Universidad de la Amazonia, Florencia 180002, Colombia; (C.A.Z.); (E.G.O.M.); (D.A.M.-M.); (D.M.M.O.); (E.J.Q.-M.); (D.A.T.)
| |
Collapse
|
15
|
Abduch NG, Reolon HG, Ligori VA, Silva RMDO, Veríssimo CJ, Paz CCP, Stafuzza NB. Resistance to natural tick infestation varies with age and coat and hair traits in a tropically adapted beef cattle breed. Vet Parasitol Reg Stud Reports 2024; 50:101017. [PMID: 38644040 DOI: 10.1016/j.vprsr.2024.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024]
Abstract
Rhipicephalus (Boophilus) microplus causes considerable livestock production losses. Knowledge of the traits that influence tick resistance contributes to the development of breeding strategies designed to improve herd productivity. Within this context, this study evaluated the resistance of Caracu, a tropically adapted cattle breed, to R. microplus. Tick count, hair length, coat thickness, and coat color were evaluated in 202 naturally tick-infested females (cows and heifers) over a period of 18 months. Blood samples were collected from all animals during the winter season for hematological analysis. Data were analyzed using Pearson correlations, generalized linear models, and principal component analysis. Correlation coefficients of tick count with coat color, coat thickness, and hair length were estimated within each season. Hematological parameters were only included in the winter season analysis and were analyzed by the restricted maximum likelihood method using log-transformed data. No differences in blood parameters were observed between animals with and without ticks. However, tick count was negatively correlated with erythrocytes (-0.29) and hematocrit (-0.24) and positively correlated with mean corpuscular hemoglobin (0.21) and mean corpuscular hemoglobin concentration (0.25). These findings suggest that higher tick counts lead to a decrease in erythrocytes but also to an increase in the amount of hemoglobin per erythrocyte, which could reduce the damage caused by low erythrocyte levels due to tick hematophagy, delaying or preventing anemia. Although tick infestation on pasture was demonstrated by the infestation of all staff members during herd management, none of the animals exhibited high tick counts, providing evidence of resistance of Caracu animals to R. microplus. Tick infestation was influenced by age class (cows > heifers), season (spring and summer > fall and winter), coat thickness (>1.5 mm > <1.5 mm), and hair length (>6 mm > <6 mm). Three components were extracted by principal component analysis, which accounted for 69.46% of data variance. The findings of this study will contribute to the development of efficient strategies aimed at reducing economic losses due to tick infestation and could be applied in animal breeding to select for tick resistance traits, reducing chemical control strategies and consequently improving sustainable livestock production.
Collapse
Affiliation(s)
- Natalya Gardezani Abduch
- Department of Genetics, Ribeirao Preto Medical School (FMRP), University of Sao Paulo (USP), Ribeirao Preto, SP 140349-900, Brazil.
| | | | - Viviane Andrade Ligori
- Beef Cattle Research Center, Animal Science Institute (IZ), Sertaozinho, SP 14160-900, Brazil.
| | | | - Cecília José Veríssimo
- Sao Paulo Agency of Agribusiness and Technology, Animal Science Institute (IZ), Nova Odessa, SP 13380-011, Brazil.
| | - Claudia Cristina Paro Paz
- Department of Genetics, Ribeirao Preto Medical School (FMRP), University of Sao Paulo (USP), Ribeirao Preto, SP 140349-900, Brazil; Sustainable Livestock Research Center, Animal Science Institute, Sao Jose do Rio Preto, SP 15130-000, Brazil
| | | |
Collapse
|
16
|
Yuan JM, Su J, Zhang ZH, Sun B, Jiao XL, Zhang X, Zhai YP, Chen YJ. Initial study and phylogenetic analysis of hard ticks (Acari: Ixodidae) in Nantong, China along the route of avian migration. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:871-883. [PMID: 38656472 DOI: 10.1007/s10493-024-00916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
The growing concern about migratory birds potentially spreading ticks due to global warming has become a significant issue. The city of Nantong in this study is situated along the East Asia-Australasian Flyway (EAAF), with numerous wetlands serving as roosting sites for migratory birds. We conducted an investigation of hard ticks and determined the phylogenetic characteristics of tick species in this city. We utilized three different genes for our study: the mitochondrial cytochrome oxidase subunit 1 (COX1) gene, the second internal transcribed spacer (ITS2), and the mitochondrial small subunit rRNA (12 S rRNA) gene. The predominant tick species were Haemaphysalis flava (H. flava) and Haemaphysalis longicornis (H. longicornis). Additionally, specimens of Haemaphysalis campanulata (H. campanulata) and Rhipicephalus sanguineus (R. sanguineus) were collected. The H. flava specimens in this study showed a close genetic relationship with those from inland provinces of China, as well as South Korea and Japan. Furthermore, samples of H. longicornis exhibited a close genetic relationship with those from South Korea, Japan, Australia, and the USA, as well as specific provinces in China. Furthermore, R. sanguineus specimens captured in Nantong showed genetic similarities with specimens from Egypt, Nigeria, and Argentina.
Collapse
Affiliation(s)
- Jian-Ming Yuan
- Nantong Center for Disease Control and Prevention, 226007, Nantong, Jiangsu Province, China
| | - Jing Su
- Nantong Center for Disease Control and Prevention, 226007, Nantong, Jiangsu Province, China.
| | - Zhi-Hai Zhang
- Nantong Center for Disease Control and Prevention, 226007, Nantong, Jiangsu Province, China
| | - Bin Sun
- Nantong Center for Disease Control and Prevention, 226007, Nantong, Jiangsu Province, China
| | - Xue-Li Jiao
- Nantong Center for Disease Control and Prevention, 226007, Nantong, Jiangsu Province, China
| | - Xin Zhang
- Nantong Center for Disease Control and Prevention, 226007, Nantong, Jiangsu Province, China
| | - Yun-Peng Zhai
- Nantong Center for Disease Control and Prevention, 226007, Nantong, Jiangsu Province, China
| | - Yu-Jie Chen
- Nantong Center for Disease Control and Prevention, 226007, Nantong, Jiangsu Province, China
| |
Collapse
|
17
|
Boulanger N, Aran D, Maul A, Camara BI, Barthel C, Zaffino M, Lett MC, Schnitzler A, Bauda P. Multiple factors affecting Ixodes ricinus ticks and associated pathogens in European temperate ecosystems (northeastern France). Sci Rep 2024; 14:9391. [PMID: 38658696 DOI: 10.1038/s41598-024-59867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
In Europe, the main vector of tick-borne zoonoses is Ixodes ricinus, which has three life stages. During their development cycle, ticks take three separate blood meals from a wide variety of vertebrate hosts, during which they can acquire and transmit human pathogens such as Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis. In this study conducted in Northeastern France, we studied the importance of soil type, land use, forest stand type, and temporal dynamics on the abundance of ticks and their associated pathogens. Negative binomial regression modeling of the results indicated that limestone-based soils were more favorable to ticks than sandstone-based soils. The highest tick abundance was observed in forests, particularly among coniferous and mixed stands. We identified an effect of habitat time dynamics in forests and in wetlands: recent forests and current wetlands supported more ticks than stable forests and former wetlands, respectively. We observed a close association between tick abundance and the abundance of Cervidae, Leporidae, and birds. The tick-borne pathogens responsible for Lyme borreliosis, anaplasmosis, and hard tick relapsing fever showed specific habitat preferences and associations with specific animal families. Machine learning algorithms identified soil related variables as the best predictors of tick and pathogen abundance.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Université de Strasbourg UR3073: PHAVI: Groupe Borrelia, 67000, Strasbourg, France.
- Centre National de Référence Borrelia, Centre Hospitalier Régional Universitaire, Strasbourg, France.
| | - Delphine Aran
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | - Armand Maul
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | - Baba Issa Camara
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
- Université de Lorraine, LCOMS EA 7306, 57073, Metz, France
| | - Cathy Barthel
- Université de Strasbourg UR3073: PHAVI: Groupe Borrelia, 67000, Strasbourg, France
| | - Marie Zaffino
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | | | - Annick Schnitzler
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
- Museum National d'Histoire Naturelle, UMR 7194 HNHP CNRS/MNHN/UPVD, 75000, Paris, France
| | - Pascale Bauda
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France.
| |
Collapse
|
18
|
Khogali R, Bastos A, Bargul JL, Getange D, Kabii J, Masiga D, Villinger J. Tissue-specific localization of tick-borne pathogens in ticks collected from camels in Kenya: insights into vector competence. Front Cell Infect Microbiol 2024; 14:1382228. [PMID: 38698904 PMCID: PMC11063324 DOI: 10.3389/fcimb.2024.1382228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Background Tick-borne pathogen (TBP) surveillance studies often use whole-tick homogenates when inferring tick-pathogen associations. However, localized TBP infections within tick tissues (saliva, hemolymph, salivary glands, and midgut) can inform pathogen transmission mechanisms and are key to disentangling pathogen detection from vector competence. Methods We screened 278 camel blood samples and 504 tick tissue samples derived from 126 camel ticks sampled in two Kenyan counties (Laikipia and Marsabit) for Anaplasma, Ehrlichia, Coxiella, Rickettsia, Theileria, and Babesia by PCR-HRM analysis. Results Candidatus Anaplasma camelii infections were common in camels (91%), but absent in all samples from Rhipicephalus pulchellus, Amblyomma gemma, Hyalomma dromedarii, and Hyalomma rufipes ticks. We detected Ehrlichia ruminantium in all tissues of the four tick species, but Rickettsia aeschlimannii was only found in Hy. rufipes (all tissues). Rickettsia africae was highest in Am. gemma (62.5%), mainly in the hemolymph (45%) and less frequently in the midgut (27.5%) and lowest in Rh. pulchellus (29.4%), where midgut and hemolymph detection rates were 17.6% and 11.8%, respectively. Similarly, in Hy. dromedarii, R. africae was mainly detected in the midgut (41.7%) but was absent in the hemolymph. Rickettsia africae was not detected in Hy. rufipes. No Coxiella, Theileria, or Babesia spp. were detected in this study. Conclusions The tissue-specific localization of R. africae, found mainly in the hemolymph of Am. gemma, is congruent with the role of this tick species as its transmission vector. Thus, occurrence of TBPs in the hemolymph could serve as a predictor of vector competence of TBP transmission, especially in comparison to detection rates in the midgut, from which they must cross tissue barriers to effectively replicate and disseminate across tick tissues. Further studies should focus on exploring the distribution of TBPs within tick tissues to enhance knowledge of TBP epidemiology and to distinguish competent vectors from dead-end hosts.
Collapse
Affiliation(s)
- Rua Khogali
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan
| | - Armanda Bastos
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Joel L. Bargul
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Dennis Getange
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - James Kabii
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
19
|
Kebzai F, Ashraf K, Rehman MU, Akbar H, Avais M. Prevalence and associated risk factors of ixodid tick species infesting cattle and sheep in Balochistan, Pakistan. Vet Parasitol Reg Stud Reports 2024; 49:100993. [PMID: 38462299 DOI: 10.1016/j.vprsr.2024.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 01/28/2024] [Indexed: 03/12/2024]
Abstract
Tick infestation poses a serious threat to animal health, leading to significant losses in terms of vector-borne disease transmission, reduced live weight, lower quality hides, decreased milk production, and impaired reproduction in tropical and subtropical regions worldwide. This study aimed to determine the prevalence, seasonal variation, distribution pattern, and associated risk factors of Ixodid family tick species in the cattle and sheep population of three different districts in Balochistan, Pakistan. This study employed a convenient sampling method, collecting 4080 adult ticks from 816 cattle and sheep of various breeds, ages, and sexes. Specific morphological keys were used to identify the ticks up to the genus and species level. Among cattle, the highest prevalence was recorded for R. (B) annulatus (27.01%), followed by R. (B) microplus (24.02%), and H. anatolicum (20.54%). H. dromedarii (5.29%) was the least prevalent species observed in cattle. In the sheep population, H. anatolicum (30.34%) showed the highest prevalence, followed by H. marginatium (22.99%), and R. (B) annulatus (20.88%). H. dromedarii (6.96%) was the least prevalent species observed in sheep. The prevalence of R. (B) decoloratus, H. anatolicum and H. dromedarii was found to be significantly associated (P < 0.05) with the breed, age, and sex of both cattle and sheep. However, the presence of R. (B) annulatus, R. (B) microplus and H. marginatium tick species showed no significant association (P > 0.05) with these factors. In addition, the prevalence of ticks was higher in younger, female, and crossbred Friesian cattle compared to adults, males, and other breeds. Conversely, the prevalence of ticks was higher in adult, female and Hernai breed of sheep in the studied area. In conclusion, R. (B) annulatus and H. anatolicum are the dominant tick species infesting the cattle and sheep population in Balochistan. Consequently, this study provides valuable insights for developing practical and effective control measures against ticks and tick-borne diseases in the sheep and cattle population of Balochistan, Pakistan.
Collapse
Affiliation(s)
- Fareeda Kebzai
- Department of Parasitology, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Kamran Ashraf
- Department of Parasitology, University of veterinary and Animal Sciences, Lahore, Pakistan.
| | - Mujeeb Ur Rehman
- Livestock & Dairy Development Department Balochistan, Quetta 87500, Pakistan; Algal Bioactives & Bioproducts, State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou 570228, Hainan, China.
| | - Haroon Akbar
- Department of Parasitology, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Avais
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
20
|
Oviedo Á, Rodríguez MM, Flores FS, Castro LR. New hard tick (Acari: Ixodidae) reports and detection of Rickettsia in ticks from Sierra Nevada de Santa Marta, Colombia. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:507-528. [PMID: 38485886 PMCID: PMC11035439 DOI: 10.1007/s10493-023-00887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/29/2023] [Indexed: 04/23/2024]
Abstract
The Sierra Nevada de Santa Marta (SNSM), located in northern Colombia, is considered a geographical island with high levels of biodiversity and endemism. However, little is known about tick species and their associated microorganisms at the SNSM. In this study we sampled host-seeking ticks in areas of the town of Minca within the SNSM. We collected 47 ticks identified as Amblyomma pacae, Amblyomma longirostre, Amblyomma ovale, Amblyomma mixtum, Haemaphysalis juxtakochi, Ixodes sp. cf. Ixodes affinis and Ixodes sp. Of these ticks, we tested for Rickettsia spp. by amplifying the gltA, SCA1, and 16S rRNA genes via PCR. Rickettsia amblyommatis was detected in one pool of 3 larvae and in a female of A. pacae. Additonally, we isolated Rickettsia sp. belonging to the group of spotted fevers in larvae of A. longirostre. This study reports new findings of six species of ticks and two species of Rickettsia within the SNSM.
Collapse
Affiliation(s)
- Ángel Oviedo
- Grupo de investigación Evolución, Sistemática y Ecología Molecular (GIESEMOL), Universidad del Magdalena, Santa Marta, Colombia
| | - Miguel M Rodríguez
- Grupo de investigación Evolución, Sistemática y Ecología Molecular (GIESEMOL), Universidad del Magdalena, Santa Marta, Colombia
| | - Fernando S Flores
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
- Centro de Investigaciones Entomológicas de Córdoba (CIEC), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lyda R Castro
- Grupo de investigación Evolución, Sistemática y Ecología Molecular (GIESEMOL), Universidad del Magdalena, Santa Marta, Colombia.
| |
Collapse
|
21
|
Ali S, Ahmad AS, Ashraf K, Khan JA, Imran Rashid M. Rearing of Rhipicephalus annulatus ticks on rabbits for the biological transmission of Anaplasma marginale. Vet World 2024; 17:903-910. [PMID: 38798298 PMCID: PMC11111724 DOI: 10.14202/vetworld.2024.903-910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024] Open
Abstract
Background and Aim Anaplasma marginale is an obligate intraerythrocytic rickettsial parasite that infects cattle in tropical and subtropical regions. There is no evidence that A. marginale inoculation can be used to culture Rhipicephalus annulatus in rabbits. This study aimed to determine the molting of R. annulatus larvae, nymphs, and adults on rabbits as well as nymphs and adults of R. annulatus on calves with or without A. marginale. Transstadial, horizontal, and transovarial transmissions of A. marginale in R. annulatus reared on rabbits and calves were evaluated. Materials and Methods Engorged female ticks were collected from field samples of A. marginale-infected and non-infected cattle. We divided the eight rabbits into two groups: A and B. Group A rabbits were infected with A. marginale through parenteral inoculation, whereas Group B rabbits were kept as a control. The "clean rabbits" in Group B were observed for tick rearing without A. marginale. Polymerase chain reaction was used to screen A. marginale in rabbits and stages of tick. The complete life cycle of R. annulatus with or without A. marginale was observed on rabbits. Results A 6.5-day longer life cycle was observed in ticks harboring A. marginale than in ticks without A. marginale. To observe transstadial transmission, transstadial, horizontal, and transovarial transmissions of A. marginale in R. annulatus ticks were experimentally observed in one clean calf fed separately with infected nymphs and female adult ticks. Conclusion We experimentally observed transovarian, transstadial, and transovarial transmission of A. marginale in R. annulatus ticks as a biological vector reared on calves and rabbits. We used rabbits as a model animal for rearing R. annulatus ticks and culture of A. marginale.
Collapse
Affiliation(s)
- Sikandar Ali
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abdullah Saghir Ahmad
- Department of Parasitology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Kamran Ashraf
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jawaria Ali Khan
- Department of Clinical Medicine and Surgery, Faculty of Veterinary Science, The University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
22
|
Boulanger N. [Anthropization and tick-borne diseases: the example of Lyme borreliosis]. C R Biol 2024; 346:35-41. [PMID: 37655860 DOI: 10.5802/crbiol.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/10/2023] [Indexed: 09/02/2023]
Abstract
Ticks and tick-borne diseases are on the rise throughout the world. The reasons are multifactorial but all associated with human practices, including climate change and socio-economic and eco systemic changes. In the northern hemisphere, Lyme borreliosis and its vector, the tick belonging to the Ixodes ricinus complex, are particularly studied. Changes in forestry and the expansion of certain wild ungulates since the Second World War could explain the increasing presence of this tick in our environment. As it is likely to transmit other microorganisms potentially pathogenic to humans, an integrated multidisciplinary approach to identify human practices promoting its expansion is critical to control the (re)emergence of infectious diseases. Other ticks also benefit from the same anthropised context to increase their numbers in the environment.
Collapse
|
23
|
Ullah S, Huang JS, Khan A, Cossío-Bayúgar R, Nasreen N, Niaz S, Khan A, Yen TY, Tsai KH, Ben Said M. First report of Anaplasma spp., Ehrlichia spp., and Rickettsia spp. in Amblyomma gervaisi ticks infesting monitor lizards (Varanus begalensis) of Pakistan. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105569. [PMID: 38354994 DOI: 10.1016/j.meegid.2024.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Ticks pose significant health risks to both wildlife and humans due to their role as vectors for various pathogens. In this study, we investigated tick infestation patterns, tick-associated pathogens, and genetic relationships within the tick species Amblyomma gervaisi, focusing on its prevalence in monitor lizards (Varanus bengalensis) across different districts in Pakistan. We examined 85 monitor lizards and identified an overall mean intensity of 19.59 ticks per infested lizard and an overall mean abundance of 11.98 ticks per examined lizard. All collected ticks (n = 1019) were morphologically identified as A. gervaisi, including 387 males, 258 females, 353 nymphs, and 21 larvae. The highest tick prevalence was observed in the Buner district, followed by Torghar and Shangla, with the lowest prevalence in Chitral. Lizard captures primarily occurred from May to October, correlating with the period of higher tick infestations. Molecular analysis was conducted on tick DNA, revealing genetic similarities among A. gervaisi ticks based on 16S rDNA and ITS2 sequences. Notably, we found the absence of A. gervaisi ITS2 sequences in the NCBI GenBank, highlighting a gap in existing genetic data. Moreover, our study identified the presence of pathogenic microorganisms, including Ehrlichia sp., Candidatus Ehrlichia dumleri, Anaplasma sp., Francisella sp., Rickettsia sp., and Coxiella sp., in these ticks. BLAST analysis revealed significant similarities between these pathogenic sequences and known strains, emphasizing the potential role of these ticks as vectors for zoonotic diseases. Phylogenetic analyses based on nuclear ITS2 and mitochondrial 16S rDNA genes illustrated the genetic relationships of A. gervaisi ticks from Pakistan with other Amblyomma species, providing insights into their evolutionary history. These findings contribute to our understanding of tick infestation patterns, and tick-borne pathogens in monitor lizards, which has implications for wildlife health, zoonotic disease transmission, and future conservation efforts. Further research in this area is crucial for a comprehensive assessment of the risks associated with tick-borne diseases in both wildlife and humans.
Collapse
Affiliation(s)
- Shakir Ullah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Jing-Syuan Huang
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
| | - Afshan Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Raquel Cossío-Bayúgar
- Centro Nacional de Investigación Disciplinaria en Salud Animal eInocuidad, INIFAP, Km 11 Carretera Federal Cuernavaca- Cuautla, No. 8534, Col. Progreso, CP 62550 Jiutepec, Morelos, Mexico
| | - Nasreen Nasreen
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Sadaf Niaz
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Adil Khan
- Department of Zoology, Bacha Khan University, Charsadda 24420, Pakistan.
| | - Tsai-Ying Yen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan; Global Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia; Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| |
Collapse
|
24
|
Basharat Z, Sattar S, Bahauddin AA, Al Mouslem AK, Alotaibi G. Screening Marine Microbial Metabolites as Promising Inhibitors of Borrelia garinii: A Structural Docking Approach towards Developing Novel Lyme Disease Treatment. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9997082. [PMID: 38456098 PMCID: PMC10919988 DOI: 10.1155/2024/9997082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Lyme disease caused by the Borrelia species is a growing health concern in many parts of the world. Current treatments for the disease may have side effects, and there is also a need for new therapies that can selectively target the bacteria. Pathogens responsible for Lyme disease include B. burgdorferi, B. afzelii, and B. garinii. In this study, we employed structural docking-based screening to identify potential lead-like inhibitors against the bacterium. We first identified the core essential genome fraction of the bacterium, using 37 strains. Later, we screened a library of lead-like marine microbial metabolites (n = 4730) against the arginine deiminase (ADI) protein of Borrelia garinii. This protein plays a crucial role in the survival of the bacteria, and inhibiting it can kill the bacterium. The prioritized lead compounds demonstrating favorable binding energies and interactions with the active site of ADI were then evaluated for their drug-like and pharmacokinetic parameters to assess their suitability for development as drugs. Results from molecular dynamics simulation (100 ns) and other scoring parameters suggest that the compound CMNPD18759 (common name: aureobasidin; IUPAC name: 2-[(4R,6R)-4,6-dihydroxydecanoyl]oxypropan-2-yl (3S,5R)-3,5-dihydroxydecanoate) holds promise as a potential drug candidate for the treatment of Lyme disease, caused by B. garinii. However, further experimental studies are needed to validate the efficacy and safety of this compound in vivo.
Collapse
Affiliation(s)
| | - Sadia Sattar
- Molecular Virology Labs, Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad 45550, Pakistan
| | | | - Abdulaziz K. Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Ghallab Alotaibi
- Department of Pharmacology, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
25
|
Wu Y, Zhou Q, Mao M, Chen H, Qi R. Diversity of species and geographic distribution of tick-borne viruses in China. Front Microbiol 2024; 15:1309698. [PMID: 38476950 PMCID: PMC10929907 DOI: 10.3389/fmicb.2024.1309698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Tick-borne pathogens especially viruses are continuously appearing worldwide, which have caused severe public health threats. Understanding the species, distribution and epidemiological trends of tick-borne viruses (TBVs) is essential for disease surveillance and control. Methods In this study, the data on TBVs and the distribution of ticks in China were collected from databases and literature. The geographic distribution of TBVs in China was mapped based on geographic locations of viruses where they were prevalent or they were detected in vector ticks. TBVs sequences were collected from The National Center for Biotechnology Information and used to structure the phylogenetic tree. Results Eighteen TBVs from eight genera of five families were prevalent in China. Five genera of ticks played an important role in the transmission of TBVs in China. According to phylogenetic analysis, some new viral genotypes, such as the Dabieshan tick virus (DTV) strain detected in Liaoning Province and the JMTV strain detected in Heilongjiang Province existed in China. Discussion TBVs were widely distributed but the specific ranges of viruses from different families still varied in China. Seven TBVs belonging to the genus Orthonairovirus of the family Nairoviridae such as Nairobi sheep disease virus (NSDV) clustered in the Xinjiang Uygur Autonomous Region (XUAR) and northeastern areas of China. All viruses of the family Phenuiviridae except Severe fever with thrombocytopenia syndrome virus (SFTSV) were novel viruses that appeared in the last few years, such as Guertu virus (GTV) and Tacheng tick virus 2 (TcTV-2). They were mainly distributed in the central plains of China. Jingmen tick virus (JMTV) was distributed in at least fourteen provinces and had been detected in more than ten species of tick such as Rhipicephalus microplus and Haemaphysalis longicornis, which had the widest distribution and the largest number of vector ticks among all TBVs. Parainfluenza virus 5 (PIV5) and Lymphatic choriomeningitis virus (LCMV) were two potential TBVs in Northeast China that could cause serious diseases in humans or animals. Ixodes persulcatus carried the highest number of TBVs, followed by Dermacentor nuttalli and H. longicornis. They could carry as many as ten TBVs. Three strains of Tick-borne encephalitis (TBEV) from Inner Mongolia Province clustered with ones from Russia, Japan and Heilongjiang Province, respectively. Several SFTSV strains from Zhejiang Province clustered with strains from Korea and Japan. Specific surveillance of dominant TBVs should be established in different areas in China.
Collapse
Affiliation(s)
| | | | | | | | - Rui Qi
- Institute of Microbiome Frontiers and One Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
26
|
Xi D, Garg K, Lambert JS, Rajput-Ray M, Madigan A, Avramovic G, Gilbert L. Scrutinizing Clinical Biomarkers in a Large Cohort of Patients with Lyme Disease and Other Tick-Borne Infections. Microorganisms 2024; 12:380. [PMID: 38399784 PMCID: PMC10893018 DOI: 10.3390/microorganisms12020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Standard clinical markers can improve tick-borne infection (TBI) diagnoses. We investigated immune and other clinical biomarkers in 110 patients clinically diagnosed with TBIs before (T0) and after antibiotic treatment (T2). At T0, both the initial observation group and patients without seroconversion for tick-borne pathogens exhibited notably low percentages and counts of CD3 percentage (CD3%), CD3+ cells, CD8+ suppressors, CD4 percentage (CD4%), and CD4+ helper cells, with the latter group showing reductions in CD3%, CD3+, and CD8+ counts in approximately 15-22% of cases. Following treatment at the T2 follow-up, patients typically experienced enhancements in their previously low CD3%, CD3+ counts, CD4%, and CD4+ counts; however, there was no notable progress in their low CD8+ counts, and a higher number of patients presented with insufficient transferrin levels. Moreover, among those with negative serology for tick-borne infections, there was an improvement in low CD3% and CD3+ counts, which was more pronounced in patients with deficient transferrin amounts. Among those with CD57+ (n = 37) and CD19+ (n = 101) lymphocyte analysis, 59.46% of patients had a low CD57+ count, 14.85% had a low CD19 count, and 36.63% had a low CD19 percentage (CD19%). Similar findings were observed concerning low CD57+, CD19+, and CD19% markers for negative TBI serology patients. Overall, this study demonstrates that routine standard clinical markers could assist in a TBI diagnosis.
Collapse
Affiliation(s)
- David Xi
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
| | | | - John S. Lambert
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
- Infectious Diseases Department, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Infectious Diseases Department, The Rotunda Hospital, D01 P5W9 Dublin, Ireland
| | - Minha Rajput-Ray
- Curaidh Clinic: Innovative Solutions for Pain, Chronic Disease and Work Health, Perth PH2 8EH, UK;
| | - Anne Madigan
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
| | - Gordana Avramovic
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (J.S.L.); (G.A.)
| | | |
Collapse
|
27
|
Butler LR, Singh N, Marnin L, Valencia LM, O'Neal AJ, Paz FEC, Shaw DK, Chavez ASO, Pedra JHF. The role of Rab27 in tick extracellular vesicle biogenesis and pathogen infection. Parasit Vectors 2024; 17:57. [PMID: 38336752 PMCID: PMC10854084 DOI: 10.1186/s13071-024-06150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The blacklegged tick, Ixodes scapularis, transmits most vector-borne diseases in the US. It vectors seven pathogens of public health relevance, including the emerging human pathogen Anaplasma phagocytophilum. Nevertheless, it remains critically understudied compared to other arthropod vectors. Ixodes scapularis releases a variety of molecules that assist in the modulation of host responses. Recently, it was found that extracellular vesicles (EVs) carry several of these molecules and may impact microbial transmission to the mammalian host. EV biogenesis has been studied in mammalian systems and is relatively well understood, but the molecular players important for the formation and secretion of EVs in arthropods of public health relevance remain elusive. RabGTPases are among the major molecular players in mammalian EV biogenesis. They influence membrane identity and vesicle budding, uncoating, and motility. METHODS Using BLAST, an in silico pathway for EV biogenesis in ticks was re-constructed. We identified Rab27 for further study. EVs were collected from ISE6 tick cells after knocking down rab27 to examine its role in tick EV biogenesis. Ixodes scapularis nymphs were injected with small interfering RNAs to knock down rab27 and then fed on naïve and A. phagocytophilum-infected mice to explore the importance of rab27 in tick feeding and bacterial acquisition. RESULTS Our BLAST analysis identified several of the proteins involved in EV biogenesis in ticks, including Rab27. We show that silencing rab27 in I. scapularis impacts tick fitness. Additionally, ticks acquire less A. phagocytophilum after rab27 silencing. Experiments in the tick ISE6 cell line show that silencing of rab27 causes a distinct range profile of tick EVs, indicating that Rab27 is needed to regulate EV biogenesis. CONCLUSIONS Rab27 is needed for successful tick feeding and may be important for acquiring A. phagocytophilum during a blood meal. Additionally, silencing rab27 in tick cells results in a shift of extracellular vesicle size. Overall, we have observed that Rab27 plays a key role in tick EV biogenesis and the tripartite interactions among the vector, the mammalian host, and a microbe it encounters.
Collapse
Affiliation(s)
- L Rainer Butler
- The University of Maryland Baltimore, Baltimore, MD, USA
- Harvard Medical School, Boston, MA, USA
| | - Nisha Singh
- The University of Maryland Baltimore, Baltimore, MD, USA
| | - Liron Marnin
- The University of Maryland Baltimore, Baltimore, MD, USA
| | | | - Anya J O'Neal
- The University of Maryland Baltimore, Baltimore, MD, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Dana K Shaw
- Washington State University, Pullman, WA, USA
| | | | - Joao H F Pedra
- The University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
28
|
CHIKUFENJI B, CHATANGA E, GALON EM, MOHANTA UK, MDZUKULU G, MA Y, NKHATA M, UMEMIYA-SHIRAFUJI R, XUAN X. First report of dog ticks and tick-borne pathogens they are carrying in Malawi. J Vet Med Sci 2024; 86:150-159. [PMID: 38171881 PMCID: PMC10898992 DOI: 10.1292/jvms.23-0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Ticks are vectors for transmitting tick-borne pathogens (TBPs) in animals and humans. Therefore, tick identification is necessary to understand the distribution of tick species and the pathogens they carry. Unfortunately, data on dog ticks and the TBPs they harbor in Malawi are incomplete. This study aimed to identify dog ticks and the TBPs they transmit in Malawi. One hundred thirty-two ticks were collected from 87 apparently healthy but infested domestic dogs in four districts of Malawi, which were pooled into 128 tick samples. The ticks were morphologically identified under a stereomicroscope using identification keys, and species identification was authenticated by polymerase chain reaction (PCR) through the amplification and sequencing of 12S rRNA and cytochrome c oxidase subunit I (CO1) genes. The tick species identified were Rhipicephalus sanguineus sensu lato (58.3%), Haemaphysalis elliptica (32.6%), and Hyalomma truncatum (9.1%). Screening for TBPs using species-specific PCR assays revealed that 48.4% of the ticks were infected with at least one TBP. The TBP detection rates were 13.3% for Anaplasma platys, 10.2% for Babesia rossi, 8.6% for B. vogeli, 6.3% for Ehrlichia canis, 3.9% for A. phagocytophilum, 3.1% for B. gibsoni, 2.3% for B. canis and 0.8% for Hepatozoon canis. Co-infections of up to three pathogens were observed in 48.4% of the positive samples. This is the first study to identify dog ticks and the TBPs they harbor in Malawi. These findings provide the basis for understanding dog tick distribution and pathogens they carry in Malawi. This study necessitates the examination of ticks from more study locations to have a better picture of tick challenge, and the development of ticks and tick-borne disease control methods in Malawi.
Collapse
Affiliation(s)
- Boniface CHIKUFENJI
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Hokkaido, Japan
- Ministry of Agriculture, Irrigation and Water Development,
Department of Animal Health and Livestock Development, Lilongwe, Malawi
- Vets of Purpose Organization, Lilongwe, Malawi
| | - Elisha CHATANGA
- Department of Veterinary Pathobiology, Faculty of Veterinary
Medicine, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Eloiza May GALON
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Hokkaido, Japan
- College of Veterinary Medicine and Biomedical Sciences,
Cavite State University, Cavite, Philippines
| | - Uday Kumar MOHANTA
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Hokkaido, Japan
- Department of Microbiology and Parasitology, Sher-e-Bangla
Agricultural University, Dhaka, Bangladesh
| | - Gift MDZUKULU
- Ministry of Agriculture, Irrigation and Water Development,
Department of Animal Health and Livestock Development, Lilongwe, Malawi
| | - Yihong MA
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | - Rika UMEMIYA-SHIRAFUJI
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Xuenan XUAN
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| |
Collapse
|
29
|
Valente D, Carolino N, Gomes J, Coelho AC, Espadinha P, Pais J, Carolino I. A study of knowledge, attitudes, and practices on ticks and tick-borne diseases of cattle among breeders of two bovine Portuguese autochthonous breeds. Vet Parasitol Reg Stud Reports 2024; 48:100989. [PMID: 38316511 DOI: 10.1016/j.vprsr.2024.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
Beef cattle production in Portugal is an important sector of national agricultural production, with half of the herd being in the Alentejo region. Despite this, animal health is essential for its productivity, which may be compromised by ticks and tick-borne diseases. So far, no study has been conducted in Portugal to assess knowledge, attitudes, and practices (KAP) on ticks and tick-borne diseases in cattle, which the authors are aware of. This type of questionnaire is a very useful tool in the development and application of effective and sustainable prevention and control measures. Therefore, a KAP questionnaire was applied to 44 cattle breeders of autochthonous Portuguese breeds, namely 14 breeders of the Alentejana breed and 30 of the Mertolenga breed, between January 1 and May 9, 2023. Based on the analysis criteria of these surveys, 64% of the Alentejana breeders and 63% of the Mertolenga breeders have an average level of knowledge about ticks and tick-borne diseases, and 21% of the Alentejana breeders and 33% of the Mertolenga breeders have a high level of knowledge. Although only 21.4% of the Alentejana and 36.7% of the Mertolenga breeders consider tick infestation as a major animal health problem, 71.4% of the Alentejana and 63.3% of breeders of the Mertolenga state that one of the main reasons for veterinary consultations on their farm is deworming of animals, and 92.9% of breeders of the Alentejana and 96.7% of breeders of the Mertolenga refer the use of dewormers as a strategy to control tick infestation. The results of this study contribute to highlighting the importance of correcting some identified knowledge gaps and improving knowledge, especially on the life cycle of this parasite, its local distribution and seasonality, resistance to acaricides, and alternative control strategies.
Collapse
Affiliation(s)
- Diana Valente
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, Coimbra 3020-210, Portugal; Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real 5000-801, Portugal.
| | - Nuno Carolino
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, Coimbra 3020-210, Portugal; Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa 1300-477, Portugal; Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa 1300-477, Portugal; Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação da Fonte Boa-Estação Zootécnica Nacional, Santarém 2005-424, Portugal
| | - Jacinto Gomes
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa 1300-477, Portugal; Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa 1300-477, Portugal; Escola Superior Agrária de Elvas, Instituto Politécnico de Portalegre, Elvas 7350-092, Portugal
| | - Ana Cláudia Coelho
- Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real 5000-801, Portugal; Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa 1300-477, Portugal
| | - Pedro Espadinha
- Associação de Criadores de Bovinos da Raça Alentejana, Monforte Herdade da Coutada Real - Assumar, Assumar 7450-051, Portugal
| | - José Pais
- Associação de Criadores de Bovinos Mertolengos, Évora 7006-806, Portugal
| | - Inês Carolino
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, Coimbra 3020-210, Portugal; Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação da Fonte Boa-Estação Zootécnica Nacional, Santarém 2005-424, Portugal; Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa 1349-017, Portugal
| |
Collapse
|
30
|
Ali A, Khan M, Ullah Z, Numan M, Tsai KH, Alouffi A, Almutairi MM, Tanaka T. First record of Alectorobius coniceps (Ixodoidea: Argasidae) and Dermacentor sp. (Ixodoidea: Ixodidae) in Pakistan. Front Vet Sci 2024; 10:1326734. [PMID: 38292134 PMCID: PMC10824997 DOI: 10.3389/fvets.2023.1326734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
Alectorobius species are soft ticks primarily infesting birds, such as swallows, while Dermacentor species are hard ticks mainly infesting mammals, such as small ruminants. This study for the first time reported on the morphological and molecular bases of two tick species, namely A. coniceps and a Dermacentor sp. in Pakistan. The former species was examined in swallows' nests in Khyber Pakhtunkhwa province, while the latter species was examined in small ruminants in Balochistan province. In total, 25 ticks were collected, with 14 ticks morphologically identified as A. coniceps (males = 9 and females = 5) and 11 ticks identified as Dermacentor sp. (males = 7 and females = 4). Following morphological identification, molecular identification was gained by obtaining 16S rDNA and cox1 sequences for these ticks. The BLAST results for the 16S rDNA and cox1 sequences from A. coniceps shared a maximum identity of 97.46% and 96.49% with the same species from Malta. The BLAST analysis of the 16S rDNA and cox1 sequences from Dermacentor sp. showed maximum identities of 98.42% and 97.45% with Dermacentor pavlovskyi from China. The phylogenetic analysis based on 16S rDNA and cox1 of A. coniceps showed a close evolutionary relationship with the same species. The case of Dermacentor sp., based on 16S DNA and cox1, indicated a close evolutionary relationship with Dermacentor pavlovskyi from China.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Mehran Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Zafar Ullah
- Department of Zoology, University of Loralai, Loralai, Balochistan, Pakistan
| | - Muhammad Numan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
31
|
Díaz-Corona C, Roblejo-Arias L, Piloto-Sardiñas E, Díaz-Sánchez AA, Foucault-Simonin A, Galon C, Wu-Chuang A, Mateos-Hernández L, Zając Z, Kulisz J, Wozniak A, Castro-Montes de Oca MK, Lobo-Rivero E, Obregón D, Moutailler S, Corona-González B, Cabezas-Cruz A. Microfluidic PCR and network analysis reveals complex tick-borne pathogen interactions in the tropics. Parasit Vectors 2024; 17:5. [PMID: 38178247 PMCID: PMC10765916 DOI: 10.1186/s13071-023-06098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Ixodid ticks, particularly Rhipicephalus sanguineus s.l., are important vectors of various disease-causing agents in dogs and humans in Cuba. However, our understading of interactions among tick-borne pathogens (TBPs) in infected dogs or the vector R. sanguineus s.l. remains limited. This study integrates microfluidic-based high-throughput real-time PCR data, Yule's Q statistic, and network analysis to elucidate pathogen-pathogen interactions in dogs and ticks in tropical western Cuba. METHODS A cross-sectional study involving 46 client-owned dogs was conducted. Blood samples were collected from these dogs, and ticks infesting the same dogs were morphologically and molecularly identified. Nucleic acids were extracted from both canine blood and tick samples. Microfluidic-based high-throughput real-time PCR was employed to detect 25 bacterial species, 10 parasite species, 6 bacterial genera, and 4 parasite taxa, as well as to confirm the identity of the collected ticks. Validation was performed through end-point PCR assays and DNA sequencing analysis. Yule's Q statistic and network analysis were used to analyse the associations between different TBP species based on binary presence-absence data. RESULTS The study revealed a high prevalence of TBPs in both dogs and R. sanguineus s.l., the only tick species found on the dogs. Hepatozoon canis and Ehrlichia canis were among the most common pathogens detected. Co-infections were observed, notably between E. canis and H. canis. Significant correlations were found between the presence of Anaplasma platys and H. canis in both dogs and ticks. A complex co-occurrence network among haemoparasite species was identified, highlighting potential facilitative and inhibitory roles. Notably, H. canis was found as a highly interconnected node, exhibiting significant positive associations with various taxa, including A. platys, and E. canis, suggesting facilitative interactions among these pathogens. Phylogenetic analysis showed genetic diversity in the detected TBPs. CONCLUSIONS Overall, this research enhances our understanding of TBPs in Cuba, providing insights into their prevalence, associations, and genetic diversity, with implications for disease surveillance and management.
Collapse
Affiliation(s)
- Cristian Díaz-Corona
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Lisset Roblejo-Arias
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
| | - Elianne Piloto-Sardiñas
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Adrian A Díaz-Sánchez
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Angélique Foucault-Simonin
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Clemence Galon
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Lourdes Mateos-Hernández
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Aneta Wozniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - María Karla Castro-Montes de Oca
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
| | - Evelyn Lobo-Rivero
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Sara Moutailler
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Belkis Corona-González
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba.
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France.
| |
Collapse
|
32
|
Melis S, Batisti Biffignandi G, Olivieri E, Galon C, Vicari N, Prati P, Moutailler S, Sassera D, Castelli M. High-throughput screening of pathogens in Ixodes ricinus removed from hosts in Lombardy, northern Italy. Ticks Tick Borne Dis 2024; 15:102285. [PMID: 38035456 DOI: 10.1016/j.ttbdis.2023.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Ticks are important vectors of many pathogens in Europe, where the most impactful species is Ixodes ricinus. Recently, the geographical distribution of this tick species has been expanding, resulting in an increased risk of human exposure to tick bites. With the present study, we aimed to screen 350 I. ricinus specimens collected from humans and wild animals (mainly ungulates), to have a broader understanding of the tick-borne pathogens circulating in the Lombardy region, in northern Italy. To do so, we took advantage of a high-throughput real-time microfluidic PCR approach to screen ticks in a cost-effective and time-saving manner. Molecular analysis of the dataset revealed the presence of four genera of bacteria and two genera of protozoa: in ungulates, 77 % of collected ticks carried Anaplasma phagocytophilum, while the most common pathogen species in ticks removed from humans were those belonging to Borrelia burgdorferi sensu lato group (7.6 %). We also detected other pathogenic microorganisms, such as Rickettisa monacensis, Rickettsia helvetica, Neoehrlichia mikurensis, Babesia venatorum, and Hepatozoon martis. Besides, we also reported the presence of the pathogenic agent Borrelia miyamotoi in the area (1.4 % overall). The most common dual co-infection detected in the same tick individual involved A. phagocytophilum and Rickettsia spp. Our study provided evidence of the circulation of different tick-borne pathogens in a densely populated region in Italy.
Collapse
Affiliation(s)
- Sophie Melis
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Emanuela Olivieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Nadia Vicari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Paola Prati
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy; Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
33
|
El-Alfy ES, Abbas I, Saleh S, Elseadawy R, Fereig RM, Rizk MA, Xuan X. Tick-borne pathogens in camels: A systematic review and meta-analysis of the prevalence in dromedaries. Ticks Tick Borne Dis 2024; 15:102268. [PMID: 37769585 DOI: 10.1016/j.ttbdis.2023.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Published data on tick-borne pathogens (TBPs) in camels worldwide have been collected to provide an overview of the global prevalence and species diversity of camelid TBPs. Several TBPs have been detected in dromedary camels, raising concerns regarding their role as natural or maintenance hosts for tick-borne pathogens. Insubstantial evidence exists regarding the natural infection of camels with Babesia spp., Theileria spp., Anaplasma spp., and Ehrlichia spp., particularly because most of the camels were considered healthy at the time of sampling. Based on polymerase chain reaction (PCR) testing, a pooled prevalence of 35.3% (95% CI: 22.6-48.1%) was estimated for Anaplasma, which was the most frequently tested TBP in dromedaries, and DNA of Anaplasma marginale, Anaplasma centrale, Anaplasma ovis, Anaplasma platys, and A. platys-like were isolated, of which ruminants and dogs are reservoirs. Similarly, the estimated pooled prevalence for the two piroplasmid genera; Babesia and Theileria was approximately equal (10-12%) regardless of the detection method (microscopy or PCR testing). Nevertheless, Babesia caballi, Theileria equi, and Theileria annulata DNA have frequently been detected in camels but they have not yet been proven to be natural hosts. Scarce data detected Babesia microti, Anaplasma phagocytophilum, and Borrelia burgdorferi sensu lato (s.l.) DNA in blood of dromedaries, although ticks of the genus Ixodes are distributed in limited areas where dromedaries are raised. Interestingly, a pooled seroprevalence of 47.7% (26.3-69.2%) was estimated for Crimean-Congo hemorrhagic fever virus, and viral RNA was detected in dromedary blood; however, their contribution to maintain the viral transmission cycles requires further experimental investigation. The substantially low incidence and scarcity of data on Rickettsia and Ehrlichia species could imply that camels were accidentally infected. In contrast, camels may play a role in the spread of Coxiella burnetii, which is primarily transmitted through the inhalation of aerosols emitted by diseased animals and contaminated environments. Bactrian camels showed no symptoms due to the examined TBPs, meanwhile, clinical disease was seen in alpacas infected with A. phagocytophilum. Similar to dromedaries, accidental tick bites may be the cause of TBP DNA found in the blood of Bactrian camels.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ibrahim Abbas
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Somaya Saleh
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rana Elseadawy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ragab M Fereig
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan
| |
Collapse
|
34
|
Sarani S, Enferadi A, Hasani SJ, Sarani MY, Rahnama M, Sarani F. Identification of zoonotic pathogenic bacteria from blood and ticks obtained from hares and long-eared hedgehogs (Hemiechinus megalofis) in eastern Iran. Comp Immunol Microbiol Infect Dis 2024; 104:102097. [PMID: 38029723 DOI: 10.1016/j.cimid.2023.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
The role of wildlife in the complex balance of tick-borne diseases within ecosystems is crucial, as they serve as hosts for tick carriers and reservoirs for the pathogens carried by these ticks. This study aimed to investigate the presence of zoonotic pathogenic bacteria in wildlife, specifically in hares and long-eared hedgehogs (Hemiechinus megalofis), in the eastern region of Iran. The focus was on the detection of Borrelia spp., Coxiella burnetii, Anaplasma spp., Francisella spp., and Leptospira spp., using the Nested-PCR method. We analyzed a total of 124 blood samples, and 196 ticks collected from hares and long-eared hedgehogs were analyzed. The Nested-PCR method was employed to identify the presence of zoonotic pathogenic bacteria DNA. Our study revealed the presence of these zoonotic pathogenic bacteria in both wildlife species, indicating their potential role as hosts and reservoirs for the ticks carrying these pathogens. The specific presence and prevalence of Borrelia spp., Coxiella burnetii, Anaplasma spp., Francisella spp., and Leptospira spp. were determined through the Nested-PCR method. This study contributes to the limited knowledge about the involvement of wild animals in the transmission of tick-borne diseases. By using the Nested-PCR method, we successfully identified the presence of zoonotic pathogenic bacteria in hares and long-eared hedgehogs. This study emphasizes the need for further research to better understand the ecological process of tick-borne diseases, particularly the role of wildlife in their spread. Such knowledge is crucial for wildlife conservation efforts and the management of tick-borne diseases, ultimately benefiting both animal and human health.
Collapse
Affiliation(s)
- Saeedeh Sarani
- Department of Pathology, Faculty of Veterinary Medicine, Zabol University, Iran
| | - Ahmad Enferadi
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Iran.
| | - Sayyed Jafar Hasani
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Iran
| | | | - Mohammad Rahnama
- Department of Pathology, Faculty of Veterinary Medicine, Zabol University, Iran
| | - Faroogh Sarani
- Department of Pathology, Faculty of Veterinary Medicine, Zabol University, Iran
| |
Collapse
|
35
|
Li Z, McComic S, Chen R, Kim WTH, Gaithuma AK, Mooney B, Macaluso KR, Mulenga A, Swale DR. ATP-sensitive inward rectifier potassium channels regulate secretion of pro-feeding salivary proteins in the lone star tick (Amblyomma americanum). Int J Biol Macromol 2023; 253:126545. [PMID: 37652342 DOI: 10.1016/j.ijbiomac.2023.126545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Understanding the physiological and molecular regulation of tick feeding is necessary for developing intervention strategies to curb disease transmission by ticks. Pharmacological activation of ATP-gated inward rectifier potassium (KATP) channels reduced fluid secretion from isolated salivary gland and blood feeding in the lone star tick, Amblyomma americanum, yet the temporal expression pattern of KATP channel proteins remained unknown. KATP channels were highly expressed in type II and III acini in off-host stage and early feeding phase ticks, yet expression was reduced in later stages of feeding. We next assessed KATP channel regulation of the secreted proteome of tick saliva. LC-MS/MS analysis identified 40 differentially secreted tick saliva proteins after exposure to KATP activators or inhibitors. Secretion of previously validated tick saliva proteins that promote tick feeding, AV422, AAS27, and AAS41 were significantly reduced by upwards of 8 log units in ticks exposed to KATP channel activators when compared to untreated ticks. Importantly, activation of KATP channels inhibited tick feeding and vice versa for KATP channel inhibitors. Data indicate KATP channels regulate tick feeding biology by controlling secretion of pro-feeding proteins that are essential during early feeding phases, which provides insights into physiological and molecular regulation of tick feeding behavior.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, United States of America; Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Sarah McComic
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Rui Chen
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - William Tae Heung Kim
- Department of Veterinary pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Alex Kiarie Gaithuma
- Department of Veterinary pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Brian Mooney
- Department of Biochemistry, Charles W Gehrlke Proteomics Center, University of Missouri, MO, USA
| | - Kevin R Macaluso
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Albert Mulenga
- Department of Veterinary pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Daniel R Swale
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
36
|
Paquette SJ, Simon AY, XIII A, Kobinger GP, Shahhosseini N. Medically Significant Vector-Borne Viral Diseases in Iran. Microorganisms 2023; 11:3006. [PMID: 38138150 PMCID: PMC10745727 DOI: 10.3390/microorganisms11123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Vector-borne viral diseases (VBVDs) continue to pose a considerable public health risk to animals and humans globally. Vectors have integral roles in autochthonous circulation and dissemination of VBVDs worldwide. The interplay of agricultural activities, population expansion, urbanization, host/pathogen evolution, and climate change, all contribute to the continual flux in shaping the epidemiology of VBVDs. In recent decades, VBVDs, once endemic to particular countries, have expanded into new regions such as Iran and its neighbors, increasing the risk of outbreaks and other public health concerns. Both Iran and its neighboring countries are known to host a number of VBVDs that are endemic to these countries or newly circulating. The proximity of Iran to countries hosting regional diseases, along with increased global socioeconomic activities, e.g., international trade and travel, potentially increases the risk for introduction of new VBVDs into Iran. In this review, we examined the epidemiology of numerous VBVDs circulating in Iran, such as Chikungunya virus, Dengue virus, Sindbis virus, West Nile virus, Crimean-Congo hemorrhagic fever virus, Sandfly-borne phleboviruses, and Hantavirus, in relation to their vectors, specifically mosquitoes, ticks, sandflies, and rodents. In addition, we discussed the interplay of factors, e.g., urbanization and climate change on VBVD dissemination patterns and the consequent public health risks in Iran, highlighting the importance of a One Health approach to further surveil and to evolve mitigation strategies.
Collapse
Affiliation(s)
- Sarah-Jo Paquette
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - Ayo Yila Simon
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Ara XIII
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.X.); (G.P.K.)
| | - Gary P. Kobinger
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.X.); (G.P.K.)
| | - Nariman Shahhosseini
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| |
Collapse
|
37
|
Zortman I, de Garine-Wichatitsky M, Arsevska E, Dub T, Van Bortel W, Lefrançois E, Vial L, Pollet T, Binot A. A social-ecological systems approach to tick bite and tick-borne disease risk management: Exploring collective action in the Occitanie region in southern France. One Health 2023; 17:100630. [PMID: 38024266 PMCID: PMC10665146 DOI: 10.1016/j.onehlt.2023.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
Ticks are amongst the most important zoonotic disease vectors affecting human and animal health worldwide. Tick-borne diseases (TBDs) are rapidly expanding geographically and in incidence, most notably in temperate regions of Europe where ticks are considered the principal zoonotic vector of Public Health relevance, as well as a major health and economic preoccupation in agriculture and equine industries. Tick-borne pathogen (TBP) transmission is contingent on complex, interlinked vector-pathogen-host dynamics, environmental and ecological conditions and human behavior. Tackling TBD therefore requires a better understanding of the interconnected social and ecological variables (i.e., the social-ecological system) that favor disease (re)-emergence. The One Health paradigm recognizes the interdependence of human, animal and environmental health and proposes an integrated approach to manage TBD. However, One Health interventions are limited by significant gaps in our understanding of the complex, systemic nature of TBD risk, in addition to a lack of effective, universally accepted and environmentally conscious tick control measures. Today individual prevention gestures are the most effective strategy to manage TBDs in humans and animals, making local communities important actors in TBD detection, prevention and management. Yet, how they engage and collaborate within a multi-actor TBD network has not yet been explored. Here, we argue that transdisciplinary collaborations that go beyond research, political and medical stakeholders, and extend to local community actors can aid in identifying relevant social-ecological risk indicators key for informing multi-level TBD detection, prevention and management measures. This article proposes a transdisciplinary social-ecological systems framework, based on participatory research approaches, to better understand the necessary conditions for local actor engagement to improve TBD risk. We conclude with perspectives for implementing this methodological framework in a case study in the south of France (Occitanie region), where multi-actor collaborations are mobilized to stimulate multi-actor collective action and identify relevant social-ecological indicators of TBD risk.
Collapse
Affiliation(s)
- Iyonna Zortman
- Joint Research Unit Animal, Health, Territories, Risks, Ecosystems (UMR ASTRE), French Agricultural Research Centre for International Development (CIRAD), National Research Institute for Agriculture, Food and Environment (INRAE), Montpellier, France
| | - Michel de Garine-Wichatitsky
- Joint Research Unit Animal, Health, Territories, Risks, Ecosystems (UMR ASTRE), French Agricultural Research Centre for International Development (CIRAD), National Research Institute for Agriculture, Food and Environment (INRAE), Montpellier, France
- Kasetsart University, Faculty of Veterinary Medicine, Bangkok, Thailand
| | - Elena Arsevska
- Joint Research Unit Animal, Health, Territories, Risks, Ecosystems (UMR ASTRE), French Agricultural Research Centre for International Development (CIRAD), National Research Institute for Agriculture, Food and Environment (INRAE), Montpellier, France
| | - Timothée Dub
- Infectious Disease Control and Vaccination Unit, Department of Health Security, Finnish Institute for Health and Welfare (THL), Unit Po Box 30. FI-00271 Helsinki, Finland
| | - Wim Van Bortel
- Unit Entomology and Outbreak Research Team, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat, 155, Antwerpen, Belgium
| | - Estelle Lefrançois
- LIRDEF, Université de Montpellier and Université Paul Valéry Montpellier, France
| | - Laurence Vial
- Joint Research Unit Animal, Health, Territories, Risks, Ecosystems (UMR ASTRE), French Agricultural Research Centre for International Development (CIRAD), National Research Institute for Agriculture, Food and Environment (INRAE), Montpellier, France
| | - Thomas Pollet
- Joint Research Unit Animal, Health, Territories, Risks, Ecosystems (UMR ASTRE), French Agricultural Research Centre for International Development (CIRAD), National Research Institute for Agriculture, Food and Environment (INRAE), Montpellier, France
| | - Aurélie Binot
- Joint Research Unit Animal, Health, Territories, Risks, Ecosystems (UMR ASTRE), French Agricultural Research Centre for International Development (CIRAD), National Research Institute for Agriculture, Food and Environment (INRAE), Montpellier, France
- Maison des Sciences de l'Homme Sud, Montpellier, France
| |
Collapse
|
38
|
Khan M, Almutairi MM, Alouffi A, Tanaka T, Chang SC, Chen CC, Ali A. Molecular evidence of Borrelia theileri and closely related Borrelia spp. in hard ticks infesting domestic animals. Front Vet Sci 2023; 10:1297928. [PMID: 38089703 PMCID: PMC10715414 DOI: 10.3389/fvets.2023.1297928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/01/2023] [Indexed: 06/09/2024] Open
Abstract
Ticks pose significant threats to hosts by transmitting Borrelia spp., which are grouped into Lyme borreliae, relapsing fever borreliae (RF), and reptiles- and monotremes-associated borreliae. The RF borreliae encompass a group of Borrelia species predominantly transmitted by soft ticks, but some of its members can also be transmitted by hard ticks. Information on the detection and genetic characterization of tick-borne RF borreliae, including Borrelia theileri, is notably rare in Asia, particularly in Pakistan. Herein, we employed molecular techniques to detect borreliae in hard ticks collected from domestic animals in Khyber Pakhtunkhwa, Pakistan. Ticks were subjected to morphological analysis, followed by DNA extraction and PCR amplification of partial fragments of borrelial 16S rRNA and flaB genes. A total of 729 ticks were collected from 264 hosts, with Haemaphysalis cornupunctata (12.9%; 94/729) being the most prevalent, followed by Hyalomma anatolicum (11.7%; 85/729), Rhipicephalus microplus (10.0%; 73/729), Haemaphysalis kashmirensis (9.1%; 66/729), Haemaphysalis bispinosa (8.5%; 62/729), Rhipicephalus sanguineus (8%; 58/729), Haemaphysalis montgomeryi (6.2%; 45/729), Rhipicephalus turanicus (5.5%; 40/729), Hyalomma dromedarii and Ixodes kashmirensis (4.4%; 32/729 each), Rhipicephalus haemaphysaloides (4.1%; 30/729), Haemaphysalis sulcata and Hyalomma scupense (3.8%; 28/729 each), Haemaphysalis danieli (2.9%; 21/729), Hyalomma kumari (2.6%; 19/729), and Hyalomma isaaci (2.2%; 16/729). Based on 16S rRNA detection of Borrelia spp., only R. turanicus yielded positive results, resulting in an overall infection rate of 0.3% (2/160), while using flaB-based detection, four tick species including R. microplus, R. turanicus, Ha. sulcata, and Ha. cornupunctata showed positive results, yielding an overall infection rate of 6.9% (11/160). The amplified DNA fragments of borrelial 16S rRNA and flaB in R. turanicus from goats shared maximum identities of 100 and 99.40% with Borrelia theileri, respectively. Amplified borrelial flaB fragments in R. microplus from cows and sheep displayed 100% identity with B. theileri, while flaB fragments in Ha. cornupunctata and Ha. sulcata from goats revealed identities of 99.32 and 99.75% with undetermined RF Borrelia spp., respectively. Phylogenetic analysis revealed clustering of B. theileri from R. microplus and R. turanicus with the same species, while Borrelia spp. from Ha. cornupunctata and Ha. sulcata with undetermined RF Borrelia spp. Notably, this research marks the first documentation of B. theileri in R. turanicus and the identification of RF Borrelia spp. in Ha. cornupunctata and Ha. sulcata.
Collapse
Affiliation(s)
- Mehran Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shun-Chung Chang
- Department of Emergency Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
39
|
Rainer Butler L, Singh N, Marnin L, Valencia LM, O’Neal AJ, Cabrera Paz FE, Shaw DK, Oliva Chavez AS, Pedra JH. Rab27 in tick extracellular vesicle biogenesis and infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565357. [PMID: 37961338 PMCID: PMC10635084 DOI: 10.1101/2023.11.02.565357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background The blacklegged tick, Ixodes scapularis, transmits most vector-borne diseases in the United States. It vectors seven pathogens of public health relevance, including the emerging human pathogen Anaplasma phagocytophilum. Nevertheless, it remains critically understudied when compared to other arthropod vectors. I. scapularis releases a variety of molecules that assist in the modulation of host responses. Recently, it was found that extracellular vesicles (EVs) carry several of these molecules and may impact microbial transmission to the mammalian host. EV biogenesis has been studied in mammalian systems and is relatively well understood, but the molecular players important for the formation and secretion of EVs in arthropods of public health relevance remain elusive. RabGTPases are among the major molecular players in mammalian EV biogenesis. They influence membrane identity and vesicle budding, uncoating, and motility. Methods Using BLAST, an in-silico pathway for EV biogenesis in ticks was re-constructed. We identified Rab27 for further study. EVs were collected from ISE6 tick cells after knocking down rab27 to examine its role in tick EV biogenesis. I. scapularis nymphs were injected with small interfering RNAs to knock down rab27 then fed on naïve and A. phagocytophilum infected mice to explore the importance of rab27 in tick feeding and bacterial acquisition. Results Our BLAST analysis identified several of the proteins involved in EV biogenesis in ticks, including Rab27. We show that silencing rab27 in I. scapularis impacts tick fitness. Additionally, ticks acquire less A. phagocytophilum after rab27 silencing. Experiments in the tick ISE6 cell line show that silencing of rab27 causes a distinct range profile of tick EVs, indicating that Rab27 is needed to regulate EV biogenesis. Conclusions Rab27 is needed for successful tick feeding and may be important for acquiring A. phagocytophilum during a blood meal. Additionally, silencing rab27 in tick cells results in a shift of extracellular vesicle size. Overall, we have observed that Rab27 plays a key role in tick EV biogenesis and the tripartite interactions among the vector, the mammalian host, and a microbe it encounters.
Collapse
Affiliation(s)
| | - Nisha Singh
- The University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Liron Marnin
- The University of Maryland Baltimore, Baltimore, Maryland, USA
| | | | - Anya J. O’Neal
- The University of Maryland Baltimore, Baltimore, Maryland, USA
| | | | - Dana K. Shaw
- Washington State University, Pullman, Washington, USA
| | | | - Joao H.F. Pedra
- The University of Maryland Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Nandy K, Tamakloe C, Sonenshine DE, Sultana H, Neelakanta G. Anti-tick vaccine candidate subolesin is important for blood feeding and innate immune gene expression in soft ticks. PLoS Negl Trop Dis 2023; 17:e0011719. [PMID: 37934730 PMCID: PMC10629623 DOI: 10.1371/journal.pntd.0011719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Subolesin is a conserved molecule in both hard and soft ticks and is considered as an effective candidate molecule for the development of anti-tick vaccine. Previous studies have reported the role of subolesin in blood feeding, reproduction, development, and gene expression in hard ticks. However, studies addressing the role of subolesin in soft ticks are limited. In this study, we report that subolesin is not only important in soft tick Ornithodoros turicata americanus blood feeding but also in the regulation of innate immune gene expression in these ticks. We identified and characterized several putative innate immune genes including Toll, Lysozyme precursor (Lp), fibrinogen-domain containing protein (FDP), cystatin and ML-domain containing protein (MLD) in O. turicata americanus ticks. Quantitative real-time polymerase chain reaction analysis revealed the expression of these genes in both O. turicata americanus salivary glands and midgut and in all developmental stages of these soft ticks. Significantly increased expression of fdp was noted in salivary glands and midgut upon O. turicata americanus blood feeding. Furthermore, RNAi-mediated knockdown of O. turicata americanus subolesin expression affected blood feeding and innate immune gene expression in these ticks. Significant downregulation of toll, lp, fdp, cystatin, and mld transcripts was evident in sub-dsRNA-treated ticks when compared to the levels noted in mock-dsRNA-treated control. Collectively, our study not only reports identification and characterization of various innate immune genes in O. turicata americanus ticks but also provides evidence on the role of subolesin in blood feeding and innate immune gene expression in these medically important ticks.
Collapse
Affiliation(s)
- Krittika Nandy
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Comfort Tamakloe
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
- The University of Queensland- Ochsner Clinical School, Jefferson, Loiusiana, United States of America
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
41
|
Gyura AN, Buser JM, Keesing H, Nelsen L, Marx GE, Hinckley AF, Seman C, Nelson CA. Lyme Disease Knowledge, Practices, and Vaccine Acceptability Among Nurse Practitioners in Pediatric Practice. J Pediatr Health Care 2023; 37:673-683. [PMID: 37702645 DOI: 10.1016/j.pedhc.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION Lyme disease (LD) is a major public health problem in the United States. Given its incidence and geographic expansion, nurse practitioners (NPs) will likely encounter patients with this condition. METHOD NPs were invited to participate in an electronic survey via email, newsletter, and social media posts. The 31-question survey collected information on provider characteristics, clinical scenario decisions, resources used, and vaccine sentiment for LD. RESULTS Survey participants (n = 606) were primarily cisgender female (75%) and aged 30-49 years (62%). Responding to six hypothetical clinical scenarios, only 31% of participants answered most questions correctly. If an LD vaccine becomes available, 39% said they would incorporate it into practice; 48% would seek further information before deciding. DISCUSSION Additional education on LD prevention, diagnosis, and treatment is needed for NPs. Increasing provider awareness of current guidelines and developing tailored resources for NPs may improve patient care.
Collapse
|
42
|
Laison EKE, Hamza Ibrahim M, Boligarla S, Li J, Mahadevan R, Ng A, Muthuramalingam V, Lee WY, Yin Y, Nasri BR. Identifying Potential Lyme Disease Cases Using Self-Reported Worldwide Tweets: Deep Learning Modeling Approach Enhanced With Sentimental Words Through Emojis. J Med Internet Res 2023; 25:e47014. [PMID: 37843893 PMCID: PMC10616745 DOI: 10.2196/47014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/26/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Lyme disease is among the most reported tick-borne diseases worldwide, making it a major ongoing public health concern. An effective Lyme disease case reporting system depends on timely diagnosis and reporting by health care professionals, and accurate laboratory testing and interpretation for clinical diagnosis validation. A lack of these can lead to delayed diagnosis and treatment, which can exacerbate the severity of Lyme disease symptoms. Therefore, there is a need to improve the monitoring of Lyme disease by using other data sources, such as web-based data. OBJECTIVE We analyzed global Twitter data to understand its potential and limitations as a tool for Lyme disease surveillance. We propose a transformer-based classification system to identify potential Lyme disease cases using self-reported tweets. METHODS Our initial sample included 20,000 tweets collected worldwide from a database of over 1.3 million Lyme disease tweets. After preprocessing and geolocating tweets, tweets in a subset of the initial sample were manually labeled as potential Lyme disease cases or non-Lyme disease cases using carefully selected keywords. Emojis were converted to sentiment words, which were then replaced in the tweets. This labeled tweet set was used for the training, validation, and performance testing of DistilBERT (distilled version of BERT [Bidirectional Encoder Representations from Transformers]), ALBERT (A Lite BERT), and BERTweet (BERT for English Tweets) classifiers. RESULTS The empirical results showed that BERTweet was the best classifier among all evaluated models (average F1-score of 89.3%, classification accuracy of 90.0%, and precision of 97.1%). However, for recall, term frequency-inverse document frequency and k-nearest neighbors performed better (93.2% and 82.6%, respectively). On using emojis to enrich the tweet embeddings, BERTweet had an increased recall (8% increase), DistilBERT had an increased F1-score of 93.8% (4% increase) and classification accuracy of 94.1% (4% increase), and ALBERT had an increased F1-score of 93.1% (5% increase) and classification accuracy of 93.9% (5% increase). The general awareness of Lyme disease was high in the United States, the United Kingdom, Australia, and Canada, with self-reported potential cases of Lyme disease from these countries accounting for around 50% (9939/20,000) of the collected English-language tweets, whereas Lyme disease-related tweets were rare in countries from Africa and Asia. The most reported Lyme disease-related symptoms in the data were rash, fatigue, fever, and arthritis, while symptoms, such as lymphadenopathy, palpitations, swollen lymph nodes, neck stiffness, and arrythmia, were uncommon, in accordance with Lyme disease symptom frequency. CONCLUSIONS The study highlights the robustness of BERTweet and DistilBERT as classifiers for potential cases of Lyme disease from self-reported data. The results demonstrated that emojis are effective for enrichment, thereby improving the accuracy of tweet embeddings and the performance of classifiers. Specifically, emojis reflecting sadness, empathy, and encouragement can reduce false negatives.
Collapse
Affiliation(s)
- Elda Kokoe Elolo Laison
- Département de médecine sociale et préventive, École de Santé Publique de l'Université de Montréal, Université de Montréal, Montréal, QC, Canada
| | | | - Srikanth Boligarla
- Harvard Extension School, Harvard University, Cambridge, MA, United States
| | - Jiaxin Li
- Harvard Extension School, Harvard University, Cambridge, MA, United States
| | - Raja Mahadevan
- Harvard Extension School, Harvard University, Cambridge, MA, United States
| | - Austen Ng
- Harvard Extension School, Harvard University, Cambridge, MA, United States
| | | | - Wee Yi Lee
- Harvard Extension School, Harvard University, Cambridge, MA, United States
| | - Yijun Yin
- Harvard Extension School, Harvard University, Cambridge, MA, United States
| | - Bouchra R Nasri
- Département de médecine sociale et préventive, École de Santé Publique de l'Université de Montréal, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
43
|
Rowan S, Mohseni N, Chang M, Burger H, Peters M, Mir S. From Tick to Test: A Comprehensive Review of Tick-Borne Disease Diagnostics and Surveillance Methods in the United States. Life (Basel) 2023; 13:2048. [PMID: 37895430 PMCID: PMC10608558 DOI: 10.3390/life13102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Tick-borne diseases (TBDs) have become a significant public health concern in the United States over the past few decades. The increasing incidence and geographical spread of these diseases have prompted the implementation of robust surveillance systems to monitor their prevalence, distribution, and impact on human health. This comprehensive review describes key disease features with the geographical distribution of all known tick-borne pathogens in the United States, along with examining disease surveillance efforts, focusing on strategies, challenges, and advancements. Surveillance methods include passive and active surveillance, laboratory-based surveillance, sentinel surveillance, and a One Health approach. Key surveillance systems, such as the National Notifiable Diseases Surveillance System (NNDSS), TickNET, and the Tick-Borne Disease Laboratory Network (TBDLN), are discussed. Data collection and reporting challenges, such as underreporting and misdiagnosis, are highlighted. The review addresses challenges, including lack of standardization, surveillance in non-human hosts, and data integration. Innovations encompass molecular techniques, syndromic surveillance, and tick surveillance programs. Implications for public health cover prevention strategies, early detection, treatment, and public education. Future directions emphasize enhanced surveillance networks, integrated vector management, research priorities, and policy implications. This review enhances understanding of TBD surveillance, aiding in informed decision-making for effective disease prevention and control. By understanding the current surveillance landscape, public health officials, researchers, and policymakers can make informed decisions to mitigate the burden of (TBDs).
Collapse
Affiliation(s)
| | | | | | | | | | - Sheema Mir
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.R.)
| |
Collapse
|
44
|
Butler LR, Gonzalez J, Pedra JHF, Oliva Chavez AS. Tick extracellular vesicles in host skin immunity and pathogen transmission. Trends Parasitol 2023; 39:873-885. [PMID: 37591719 PMCID: PMC10528898 DOI: 10.1016/j.pt.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Ticks can transmit a variety of human pathogens, including intracellular and extracellular bacteria, viruses, and protozoan parasites. Historically, their saliva has been of immense interest due to its anticoagulant, anti-inflammatory, and anesthetic properties. Only recently, it was discovered that tick saliva contains extracellular vesicles (EVs). Briefly, it has been observed that proteins associated with EVs are important for multiple tick-borne intracellular microbial lifestyles. The impact of tick EVs on viral and intracellular bacterial pathogen transmission from the tick to the mammalian host has been shown experimentally. Additionally, tick EVs interact with the mammalian skin immune system at the bite site. The interplay between tick EVs, the transmission of pathogens, and the host skin immune system affords opportunities for future research.
Collapse
Affiliation(s)
- L Rainer Butler
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD, USA
| | - Julia Gonzalez
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD, USA
| | | |
Collapse
|
45
|
Shah JS, Burrascano JJ, Ramasamy R. Recombinant protein immunoblots for differential diagnosis of tick-borne relapsing fever and Lyme disease. J Vector Borne Dis 2023; 60:353-364. [PMID: 38174512 DOI: 10.4103/0972-9062.383641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Lyme disease (LD) is caused by a group of tick-borne bacteria of the genus Borrelia termed Lyme disease Borreliae (LDB). The detection of serum antibodies to specific LDB antigens is widely used to support diagnosis of LD. Recent findings highlight a need for serological tests that can differentiate LD from tick-borne relapsing fever (TBRF) caused by a separate group of Borrelia species termed relapsing fever Borreliae. This is because LD and TBRF share some clinical symptoms and can occur in overlapping locations. The development of serological tests for TBRF is at an early stage compared with LD. This article reviews the application of line immunoblots (IBs), where recombinant proteins applied as lines on nitrocellulose membrane strips are used to detect antibodies in patient sera, for the diagnosis and differentiation of LD and TBRF.
Collapse
Affiliation(s)
- Jyotsna S Shah
- IGeneX Inc. Milpitas; ID-FISH Technology Inc., California, USA
| | | | | |
Collapse
|
46
|
Grassi L, Drigo M, Zelená H, Pasotto D, Cassini R, Mondin A, Franzo G, Tucciarone CM, Ossola M, Vidorin E, Menandro ML. Wild ungulates as sentinels of flaviviruses and tick-borne zoonotic pathogen circulation: an Italian perspective. BMC Vet Res 2023; 19:155. [PMID: 37710273 PMCID: PMC10500747 DOI: 10.1186/s12917-023-03717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Vector-borne zoonotic diseases are a concerning issue in Europe. Lyme disease and tick-borne encephalitis virus (TBEV) have been reported in several countries with a large impact on public health; other emerging pathogens, such as Rickettsiales, and mosquito-borne flaviviruses have been increasingly reported. All these pathogens are linked to wild ungulates playing roles as tick feeders, spreaders, and sentinels for pathogen circulation. This study evaluated the prevalence of TBEV, Borrelia burgdorferi sensu lato, Rickettsia spp., Ehrlichia spp., and Coxiella spp. by biomolecular screening of blood samples and ticks collected from wild ungulates. Ungulates were also screened by ELISA and virus neutralization tests for flaviviral antibody detection. RESULTS A total of 274 blood samples were collected from several wild ungulate species, as well as 406 Ixodes ricinus, which were feeding on them. Blood samples tested positive for B. burgdorferi s.l. (1.1%; 0-2.3%) and Rickettsia spp. (1.1%; 0-2.3%) and showed an overall flaviviral seroprevalence of 30.6% (22.1-39.2%): 26.1% (17.9-34.3%) for TBEV, 3.6% (0.1-7.1%) for Usutu virus and 0.9% (0-2.7%) for West Nile virus. Ticks were pooled when possible and yielded 331 tick samples that tested positive for B. burgdorferi s.l. (8.8%; 5.8-11.8%), Rickettsia spp. (26.6%; 21.8-31.2%) and Neoehrlichia mikurensis (1.2%; 0-2.4%). TBEV and Coxiella spp. were not detected in either blood or tick samples. CONCLUSIONS This research highlighted a high prevalence of several tick-borne zoonotic pathogens and high seroprevalence for flaviviruses in both hilly and alpine areas. For the first time, an alpine chamois tested positive for anti-TBEV antibodies. Ungulate species are of particular interest due to their sentinel role in flavivirus circulation and their indirect role in tick-borne diseases and maintenance as Ixodes feeders and spreaders.
Collapse
Affiliation(s)
- Laura Grassi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Hana Zelená
- Department of Virology, Institute of Public Health, Ostrava, Czech Republic
| | - Daniela Pasotto
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Rudi Cassini
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Alessandra Mondin
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Martina Ossola
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Elena Vidorin
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Maria Luisa Menandro
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| |
Collapse
|
47
|
Xi D, Thoma A, Rajput-Ray M, Madigan A, Avramovic G, Garg K, Gilbert L, Lambert JS. A Longitudinal Study of a Large Clinical Cohort of Patients with Lyme Disease and Tick-Borne Co-Infections Treated with Combination Antibiotics. Microorganisms 2023; 11:2152. [PMID: 37763996 PMCID: PMC10536678 DOI: 10.3390/microorganisms11092152] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The rising prevalence of tick-borne infections (TBIs) necessitates further attention. This study retrospectively investigated the types of TBIs, symptoms, and if combination antibiotics were helpful within a patient cohort at an infectious disease clinic in Ireland. In this chart audit of 301 individuals (184 female, 117 male) tested for TBIs, 140 (46.51%) had positive antibody responses for TBIs from an ELISA (enzyme-linked immunoassay) that was based on a modified two-tiered testing protocol. A total of 93 (66.43%) patients had positive antibody responses to one TBI: 83 (59.29%) for Borrelia, 7 (5.00%) for Rickettsia, and 1 (0.71%) each for either Babesia, Bartonella, or Ehrlichia. The remaining 47 (33.57%) patients were infected with multiple TBIs. These patients were treated with combination antibiotics and monitored at two subsequent follow-ups. Only 2 of 101 patients (1.98%) had discontinued treatment by the second follow-up. In the first follow-up with 118 patients, 70 (59.32%) reported pain and 48 (40.68%) had neurological symptoms. In the next follow-up of 101 patients, 41 (40.59%) had pain while 30 (29.70%) had neurological symptoms. There were statistically significant reductions in the incidence of pain (41.43%) and neurological (37.50%) symptoms between follow-ups. Thus, our study demonstrates that combination antibiotics effectively relieve TBI symptoms with good patient tolerance.
Collapse
Affiliation(s)
- David Xi
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (A.T.); (A.M.); (G.A.)
| | - Abbie Thoma
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (A.T.); (A.M.); (G.A.)
| | - Minha Rajput-Ray
- Curaidh Clinic: Innovative Solutions for Pain, Chronic Disease and Work Health, Perthshire PH2 8EH, UK;
| | - Anne Madigan
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (A.T.); (A.M.); (G.A.)
| | - Gordana Avramovic
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (A.T.); (A.M.); (G.A.)
| | - Kunal Garg
- Te?ted Oy, 40100 Jyväskylä, Finland; (K.G.); (L.G.)
| | | | - John S. Lambert
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (D.X.); (A.T.); (A.M.); (G.A.)
- Infectious Diseases Department, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Infectious Diseases Department, The Rotunda Hospital, D01 P5W9 Dublin, Ireland
| |
Collapse
|
48
|
Septfons A, Rigaud E, Bénézet L, Velay A, Zilliox L, Baldinger L, Gonzalez G, Figoni J, de Valk H, Deffontaines G, Desenclos JC, Jaulhac B. Seroprevalence for Borrelia burgdorferi sensu lato and tick-borne encephalitis virus antibodies and associated risk factors among forestry workers in northern France, 2019 to 2020. Euro Surveill 2023; 28:2200961. [PMID: 37561054 PMCID: PMC10416575 DOI: 10.2807/1560-7917.es.2023.28.32.2200961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/25/2023] [Indexed: 08/11/2023] Open
Abstract
BackgroundLyme borreliosis (LB) is the most common tick-borne disease (TBD) in France. Forestry workers are at high risk of TBD because of frequent exposure to tick bites.AimWe aimed to estimate the seroprevalence of Borrelia burgdorferi sensu lato and tick-borne encephalitis virus (TBEV) antibodies among forestry workers in northern France. We compared seroprevalence by geographical area and assessed factors associated with seropositivity.MethodsBetween 2019 and 2020, we conducted a randomised cross-sectional seroprevalence survey. Borrelia burgdorferi sl seropositivity was defined as positive ELISA and positive or equivocal result in western blot. Seropositivity for TBEV was defined as positive result from two ELISA tests, confirmed by serum neutralisation. We calculated weighted seroprevalence and adjusted prevalence ratios to determine association between potential risk factors and seropositivity.ResultsA total of 1,778 forestry workers participated. Seroprevalence for B. burgdorferi sl was 15.5% (95% confidence interval (CI): 13.9-17.3), 3.5 times higher in the eastern regions than in the western and increased with seniority and with weekly time in a forest environment. Seroprevalence was 2.5 times higher in forestry workers reporting a tick bite during past years and reporting usually not removing ticks rapidly. Seroprevalence for TBEV was 0.14% (95% CI: 0.05-0.42).ConclusionWe assessed for the first time seroprevalence of B. burgdorferi sl and TBEV antibodies among forestry workers in northern France. These results will be used, together with data on LB and tick-borne encephalitis (TBE) incidence and on exposure to tick-bites, to target prevention programmes.
Collapse
Affiliation(s)
- Alexandra Septfons
- These authors contributed equally to the work and share first authorship
- Santé publique France, Saint-Maurice, France
| | - Emma Rigaud
- These authors contributed equally to the work and share first authorship
- Caisse Centrale de la Mutualité Sociale Agricole, Bobigny, France
| | | | - Aurelie Velay
- Virology Laboratory, University Hospital of Strasbourg, Strasbourg, France
| | - Laurence Zilliox
- French National Reference Center for Borrelia, University Hospital of Strasbourg, Strasbourg, France
| | - Lisa Baldinger
- French National Reference Center for Borrelia, University Hospital of Strasbourg, Strasbourg, France
| | - Gaëlle Gonzalez
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | | | | | | | | | - Benoit Jaulhac
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, Strasbourg, France
- French National Reference Center for Borrelia, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
49
|
Parizi LF, Githaka NW, Logullo C, Zhou J, Onuma M, Termignoni C, da Silva Vaz I. Universal Tick Vaccines: Candidates and Remaining Challenges. Animals (Basel) 2023; 13:2031. [PMID: 37370541 DOI: 10.3390/ani13122031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Recent advancements in molecular biology, particularly regarding massively parallel sequencing technologies, have enabled scientists to gain more insight into the physiology of ticks. While there has been progress in identifying tick proteins and the pathways they are involved in, the specificities of tick-host interaction at the molecular level are not yet fully understood. Indeed, the development of effective commercial tick vaccines has been slower than expected. While omics studies have pointed to some potential vaccine immunogens, selecting suitable antigens for a multi-antigenic vaccine is very complex due to the participation of redundant molecules in biological pathways. The expansion of ticks and their pathogens into new territories and exposure to new hosts makes it necessary to evaluate vaccine efficacy in unusual and non-domestic host species. This situation makes ticks and tick-borne diseases an increasing threat to animal and human health globally, demanding an urgent availability of vaccines against multiple tick species and their pathogens. This review discusses the challenges and advancements in the search for universal tick vaccines, including promising new antigen candidates, and indicates future directions in this crucial research field.
Collapse
Affiliation(s)
- Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Misao Onuma
- Department of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Brazil
| |
Collapse
|
50
|
Lu Y, Yang S, Zhao Q, Yuan C, Xia Q. Diversity analysis of the endosymbiotic bacterial community in field-collected Haemaphysalis ticks on the tropical Hainan Island, China. Folia Parasitol (Praha) 2023; 70:2023.012. [PMID: 37326358 DOI: 10.14411/fp.2023.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
Ticks are important vectors of various pathogens that cause infectious diseases in humans. Endosymbiotic bacteria have been explored as targets for tick and tick-borne disease control. However, the tick bacterial community on Hainan Island, which is the largest tropical island in China and has an environment favourable to ticks, has not yet been studied. In this study, we surveyed the bacterial community of ticks collected from grass in one village in Haikou. A total of 20 ticks were morphologically and molecularly identified as Haemaphysalis spp. The tick bacterial 16S rRNA hypervariable region amplicon libraries were sequenced on an Illumina MiSeq platform. A total of 10 possible bacterial genera were detected, indicating a low-diversity bacterial community profile. The dominant bacterial genus, Massilia, accounted for 97.85% of the population. Some other bacterial genera, including Arsenophonus and Pseudomonas, have been reported to play a role in tick development and tick-borne pathogen transmission in other tick species. Overall, the study highlights the first descriptive understanding of the tick bacterial community on Hainan Island and provides a basis for deciphering the interactions between the tick microbiome and tick-borne pathogens.
Collapse
Affiliation(s)
- Yajun Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Siqi Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiuyu Zhao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chuanfei Yuan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|