1
|
Scarpa F, Casu M. Genomics and Bioinformatics in One Health: Transdisciplinary Approaches for Health Promotion and Disease Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1337. [PMID: 39457310 PMCID: PMC11507412 DOI: 10.3390/ijerph21101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
The One Health concept underscores the interconnectedness of human, animal, and environmental health, necessitating an integrated, transdisciplinary approach to tackle contemporary health challenges. This perspective paper explores the pivotal role of genomics and bioinformatics in advancing One Health initiatives. By leveraging genomic technologies and bioinformatics tools, researchers can decode complex biological data, enabling comprehensive insights into pathogen evolution, transmission dynamics, and host-pathogen interactions across species and environments (or ecosystems). These insights are crucial for predicting and mitigating zoonotic disease outbreaks, understanding antimicrobial resistance patterns, and developing targeted interventions for health promotion and disease prevention. Furthermore, integrating genomic data with environmental and epidemiological information enhances the precision of public health responses. Here we discuss case studies demonstrating successful applications of genomics and bioinformatics in One Health contexts, such as including data integration, standardization, and ethical considerations in genomic research. By fostering collaboration among geneticists, bioinformaticians, epidemiologists, zoologists, and data scientists, the One Health approach can harness the full potential of genomics and bioinformatics to safeguard global health. This perspective underscores the necessity of continued investment in interdisciplinary education, research infrastructure, and policy frameworks to effectively employ these technologies in the service of a healthier planet.
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
2
|
Chen PY, Wen SH. Integrating Genome-Wide Polygenic Risk Scores With Nongenetic Models to Predict Surgical Site Infection After Total Knee Arthroplasty Using United Kingdom Biobank Data. J Arthroplasty 2024; 39:2471-2477.e1. [PMID: 38735551 DOI: 10.1016/j.arth.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Prediction of the risk of developing surgical site infection (SSI) in patients following total knee arthroplasty (TKA) is of clinical importance. Genetic susceptibility is involved in developing TKA-related SSI. Previously reported models for predicting SSI were constructed using nongenetic risk factors without incorporating genetic risk factors. To address this issue, we performed a genome-wide association study (GWAS) using the UK Biobank database. METHODS Adult patients who underwent primary TKA (n = 19,767) were analyzed and divided into SSI (n = 269) and non-SSI (n = 19,498) cohorts. Nongenetic covariates, including demographic data and preoperative comorbidities, were recorded. Genetic variants associated with SSI were identified by GWAS and included to obtain standardized polygenic risk scores (zPRS, an estimate of genetic risk). Prediction models were established through analyses of multivariable logistic regression and the receiver operating characteristic curve. RESULTS There were 4 variants (rs117896641, rs111686424, rs8101598, and rs74648298) achieving genome-wide significance that were identified. The logistic regression analysis revealed 7 significant risk factors: increasing zPRS, decreasing age, men, chronic obstructive pulmonary disease, diabetes mellitus, rheumatoid arthritis, and peripheral vascular disease. The areas under the receiver operating characteristic curve were 0.628 and 0.708 when zPRS (model 1) and nongenetic covariates (model 2) were used as predictors, respectively. The areas under the receiver operating characteristic curve increased to 0.76 when both zPRS and nongenetic covariates (model 3) were used as predictors. A risk-prediction nomogram was constructed based on model 3 to visualize the relative effect of statistically significant covariates on the risk of SSI and predict the probability of developing SSI. Age and zPRS were the top 2 covariates that contributed to the risk, with younger age and higher zPRS associated with higher risks. CONCLUSIONS Our GWAS identified 4 novel variants that were significantly associated with susceptibility to SSI following TKA. Integrating genome-wide zPRS with nongenetic risk factors improved the performance of the model in predicting SSI.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Tzu Chi University Center for Health and Welfare Data Science, Ministry of Health and Welfare, Hualien City, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
| | - Shu-Hui Wen
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan; Department of Public Health, College of Medicine, Tzu Chi University, Hualien City, Taiwan
| |
Collapse
|
3
|
Smith CJ, Strausz S, Spence JP, Ollila HM, Pritchard JK. Haplotype Analysis Reveals Pleiotropic Disease Associations in the HLA Region. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.29.24311183. [PMID: 39132491 PMCID: PMC11312630 DOI: 10.1101/2024.07.29.24311183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The human leukocyte antigen (HLA) region plays an important role in human health through involvement in immune cell recognition and maturation. While genetic variation in the HLA region is associated with many diseases, the pleiotropic patterns of these associations have not been systematically investigated. Here, we developed a haplotype approach to investigate disease associations phenome-wide for 412,181 Finnish individuals and 2,459 traits. Across the 1,035 diseases with a GWAS association, we found a 17-fold average per-SNP enrichment of hits in the HLA region. Altogether, we identified 7,649 HLA associations across 647 traits, including 1,750 associations uncovered by haplotype analysis. We find some haplotypes show trade-offs between diseases, while others consistently increase risk across traits, indicating a complex pleiotropic landscape involving a range of diseases. This study highlights the extensive impact of HLA variation on disease risk, and underscores the importance of classical and non-classical genes, as well as non-coding variation.
Collapse
Affiliation(s)
- Courtney J. Smith
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Satu Strausz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Oral and Maxillofacial Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Plastic Surgery, Cleft Palate and Craniofacial Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Jeffrey P. Spence
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hanna M. Ollila
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan K. Pritchard
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Stephenson JD, Totoo P, Burke D, Jänes J, Beltrao P, Martin M. ProtVar: mapping and contextualizing human missense variation. Nucleic Acids Res 2024; 52:W140-W147. [PMID: 38769064 PMCID: PMC11223857 DOI: 10.1093/nar/gkae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Genomic variation can impact normal biological function in complex ways and so understanding variant effects requires a broad range of data to be coherently assimilated. Whilst the volume of human variant data and relevant annotations has increased, the corresponding increase in the breadth of participating fields, standards and versioning mean that moving between genomic, coding, protein and structure positions is increasingly complex. In turn this makes investigating variants in diverse formats and assimilating annotations from different resources challenging. ProtVar addresses these issues to facilitate the contextualization and interpretation of human missense variation with unparalleled flexibility and ease of accessibility for use by the broadest range of researchers. By precalculating all possible variants in the human proteome it offers near instantaneous mapping between all relevant data types. It also combines data and analyses from a plethora of resources to bring together genomic, protein sequence and function annotations as well as structural insights and predictions to better understand the likely effect of missense variation in humans. It is offered as an intuitive web server https://www.ebi.ac.uk/protvar where data can be explored and downloaded, and can be accessed programmatically via an API.
Collapse
Affiliation(s)
| | - Prabhat Totoo
- EMBL-EBI, Wellcome Genome Campus, Hinxton CB10 1SD, Cambridgeshire, UK
| | | | - Jürgen Jänes
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Pedro Beltrao
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Maria J Martin
- EMBL-EBI, Wellcome Genome Campus, Hinxton CB10 1SD, Cambridgeshire, UK
| |
Collapse
|
5
|
Randolph HE, Aracena KA, Lin YL, Mu Z, Barreiro LB. Shaping immunity: The influence of natural selection on population immune diversity. Immunol Rev 2024; 323:227-240. [PMID: 38577999 DOI: 10.1111/imr.13329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Humans exhibit considerable variability in their immune responses to the same immune challenges. Such variation is widespread and affects individual and population-level susceptibility to infectious diseases and immune disorders. Although the factors influencing immune response diversity are partially understood, what mechanisms lead to the wide range of immune traits in healthy individuals remain largely unexplained. Here, we discuss the role that natural selection has played in driving phenotypic differences in immune responses across populations and present-day susceptibility to immune-related disorders. Further, we touch on future directions in the field of immunogenomics, highlighting the value of expanding this work to human populations globally, the utility of modeling the immune response as a dynamic process, and the importance of considering the potential polygenic nature of natural selection. Identifying loci acted upon by evolution may further pinpoint variants critically involved in disease etiology, and designing studies to capture these effects will enrich our understanding of the genetic contributions to immunity and immune dysregulation.
Collapse
Affiliation(s)
- Haley E Randolph
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Yen-Lung Lin
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Zepeng Mu
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, USA
| | - Luis B Barreiro
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Mac Aogáin M, Tiew PY, Jaggi TK, Narayana JK, Singh S, Hansbro PM, Segal LN, Chotirmall SH. Targeting respiratory microbiomes in COPD and bronchiectasis. Expert Rev Respir Med 2024; 18:111-125. [PMID: 38743428 DOI: 10.1080/17476348.2024.2355155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION This review summarizes our current understanding of the respiratory microbiome in COPD and Bronchiectasis. We explore the interplay between microbial communities, host immune responses, disease pathology, and treatment outcomes. AREAS COVERED We detail the dynamics of the airway microbiome, its influence on chronic respiratory diseases, and analytical challenges. Relevant articles from PubMed and Medline (January 2010-March 2024) were retrieved and summarized. We examine clinical correlations of the microbiome in COPD and bronchiectasis, assessing how current therapies impact upon it. The potential of emerging immunotherapies, antiinflammatories and antimicrobial strategies is discussed, with focus on the pivotal role of commensal taxa in maintaining respiratory health and the promising avenue of microbiome remodeling for disease management. EXPERT OPINION Given the heterogeneity in microbiome composition and its pivotal role in disease development and progression, a shift toward microbiome-directed therapeutics is appealing. This transition, from traditional 'pathogencentric' diagnostic and treatment modalities to those acknowledging the microbiome, can be enabled by evolving crossdisciplinary platforms which have the potential to accelerate microbiome-based interventions into routine clinical practice. Bridging the gap between comprehensive microbiome analysis and clinical application, however, remains challenging, necessitating continued innovation in research, diagnostics, trials, and therapeutic development pipelines.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Shivani Singh
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Leopoldo N Segal
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
7
|
Hurabielle C, LaFlam TN, Gearing M, Ye CJ. Functional genomics in inborn errors of immunity. Immunol Rev 2024; 322:53-70. [PMID: 38329267 PMCID: PMC10950534 DOI: 10.1111/imr.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Inborn errors of immunity (IEI) comprise a diverse spectrum of 485 disorders as recognized by the International Union of Immunological Societies Committee on Inborn Error of Immunity in 2022. While IEI are monogenic by definition, they illuminate various pathways involved in the pathogenesis of polygenic immune dysregulation as in autoimmune or autoinflammatory syndromes, or in more common infectious diseases that may not have a significant genetic basis. Rapid improvement in genomic technologies has been the main driver of the accelerated rate of discovery of IEI and has led to the development of innovative treatment strategies. In this review, we will explore various facets of IEI, delving into the distinctions between PIDD and PIRD. We will examine how Mendelian inheritance patterns contribute to these disorders and discuss advancements in functional genomics that aid in characterizing new IEI. Additionally, we will explore how emerging genomic tools help to characterize new IEI as well as how they are paving the way for innovative treatment approaches for managing and potentially curing these complex immune conditions.
Collapse
Affiliation(s)
- Charlotte Hurabielle
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Taylor N LaFlam
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Melissa Gearing
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Institute of Computational Health Sciences, UCSF, San Francisco, California, USA
- Gladstone Genomic Immunology Institute, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, California, USA
- Arc Institute, Palo Alto, California, USA
| |
Collapse
|
8
|
Wang Z, Liu T, Li W, Yu G, Mi Z, Wang C, Liao X, Huai P, Chu T, Liu D, Sun L, Fu X, Sun Y, Wang H, Wang N, Liu J, Liu H, Zhang F. Genome-wide meta-analysis and fine-mapping prioritize potential causal variants and genes related to leprosy. MedComm (Beijing) 2023; 4:e415. [PMID: 38020709 PMCID: PMC10674079 DOI: 10.1002/mco2.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
To date, genome-wide association studies (GWASs) have discovered 35 susceptible loci of leprosy; however, the cumulative effects of these loci can only partially explain the overall risk of leprosy, and the causal variants and genes within these loci remain unknown. Here, we conducted out new GWASs in two independent cohorts of 5007 cases and 4579 controls and then a meta-analysis in these newly generated and multiple previously published (2277 cases and 3159 controls) datasets were performed. Three novel and 15 previously reported risk loci were identified from these datasets, increasing the known leprosy risk loci of explained genetic heritability from 23.0 to 38.5%. A comprehensive fine-mapping analysis was conducted, and 19 causal variants and 14 causal genes were identified. Specifically, manual checking of epigenomic information from the Epimap database revealed that the causal variants were mainly located within the immune-relevant or immune-specific regulatory elements. Furthermore, by using gene-set, tissue, and cell-type enrichment analyses, we highlighted the key roles of immune-related tissues and cells and implicated the PD-1 signaling pathways in the pathogenetic mechanism of leprosy. Collectively, our study identified candidate causal variants and elucidated the potential regulatory and coding mechanisms for genes associated with leprosy.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of BiostatisticsSchool of Public HealthCheeloo College of MedicineShandong UniversityJinanShandongChina
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Tingting Liu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Wenchao Li
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Gongqi Yu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Zihao Mi
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Chuan Wang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Xiaojie Liao
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Pengcheng Huai
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Tongsheng Chu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Dianchang Liu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Lele Sun
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Xi'an Fu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Yonghu Sun
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Honglei Wang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Na Wang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Jianjun Liu
- Department of Human Genetics, Genome Institute of SingaporeSingaporeSingapore
| | - Hong Liu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Furen Zhang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
9
|
Yang L, Han Y, Zhou T, Lacko LA, Saeed M, Tan C, Danziger R, Zhu J, Zhao Z, Cahir C, Giani AM, Li Y, Dong X, Moroziewicz D, Paull D, Chen Z, Zhong A, Noggle SA, Rice CM, Qi Q, Evans T, Chen S. Isogenic human trophectoderm cells demonstrate the role of NDUFA4 and associated variants in ZIKV infection. iScience 2023; 26:107001. [PMID: 37534130 PMCID: PMC10391681 DOI: 10.1016/j.isci.2023.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/17/2023] [Accepted: 05/25/2023] [Indexed: 08/04/2023] Open
Abstract
Population-based genome-wide association studies (GWAS) normally require a large sample size, which can be labor intensive and costly. Recently, we reported a human induced pluripotent stem cell (hiPSC) array-based GWAS method, identifying NDUFA4 as a host factor for Zika virus (ZIKV) infection. In this study, we extended our analysis to trophectoderm cells, which constitute one of the major routes of mother-to-fetus transmission of ZIKV during pregnancy. We differentiated hiPSCs from various donors into trophectoderm cells. We then infected cells carrying loss of function mutations in NDUFA4, harboring risk versus non-risk alleles of SNPs (rs917172 and rs12386620) or having deletions in the NDUFA4 cis-regulatory region with ZIKV. We found that loss/reduction of NDUFA4 suppressed ZIKV infection in trophectoderm cells. This study validated our published hiPSC array-based system as a useful platform for GWAS and confirmed the role of NDUFA4 as a susceptibility locus for ZIKV in disease-relevant trophectoderm cells.
Collapse
Affiliation(s)
- Liuliu Yang
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Ting Zhou
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Lauretta A. Lacko
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Christina Tan
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Ron Danziger
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Zeping Zhao
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Clare Cahir
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Alice Maria Giani
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Yang Li
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Dorota Moroziewicz
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3Road Floor, New York, NY 10019, USA
| | | | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3Road Floor, New York, NY 10019, USA
| | - Zhengming Chen
- Department of Population Health Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Aaron Zhong
- Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Scott A. Noggle
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3Road Floor, New York, NY 10019, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Qibin Qi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
10
|
Abstract
OBJECTIVE Interindividual variability in the clinical progression of COVID-19 may be explained by host genetics. Emerging literature supports a potential inherited predisposition to severe forms of COVID-19. Demographic and inflammatory characteristics of COVID-19 suggest that acquired hematologic mutations leading to clonal hematopoiesis (CH) may further increase vulnerability to adverse sequelae. This review summarizes the available literature examining genetic predispositions to severe COVID-19 and describes how these findings could eventually be used to improve its clinical management. DATA SOURCES A PubMed literature search was performed. STUDY SELECTION Studies examining the significance of inherited genetic variation or acquired CH mutations in severe COVID-19 were selected for inclusion. DATA EXTRACTION Relevant genetic association data and aspects of study design were qualitatively assessed and narratively synthesized. DATA SYNTHESIS Genetic variants affecting inflammatory responses may increase susceptibility to severe COVID-19. Genome-wide association studies and candidate gene approaches have identified a list of inherited mutations, which likely alter cytokine and interferon secretion, and lung-specific mechanisms of immunity in COVID-19. The potential role of CH in COVID-19 is more uncertain at present; however, the available evidence suggests that the various types of acquired mutations and their differential influence on immune cell function must be carefully considered. CONCLUSIONS The current literature supports the hypothesis that host genetic factors affect vulnerability to severe COVID-19. Further research is required to confirm the full scope of relevant variants and the causal mechanisms underlying these associations. Clinical approaches, which consider the genetic basis of interindividual variability in COVID-19 and potentially other causes of critical illness, could optimize hospital resource allocation, predict responsiveness to treatment, identify more efficacious drug targets, and ultimately improve outcomes.
Collapse
|
11
|
Duchen D, Vergara C, Thio CL, Kundu P, Chatterjee N, Thomas DL, Wojcik GL, Duggal P. Pathogen exposure misclassification can bias association signals in GWAS of infectious diseases when using population-based common control subjects. Am J Hum Genet 2023; 110:336-348. [PMID: 36649706 PMCID: PMC9943744 DOI: 10.1016/j.ajhg.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Genome-wide association studies (GWASs) have been performed to identify host genetic factors for a range of phenotypes, including for infectious diseases. The use of population-based common control subjects from biobanks and extensive consortia is a valuable resource to increase sample sizes in the identification of associated loci with minimal additional expense. Non-differential misclassification of the outcome has been reported when the control subjects are not well characterized, which often attenuates the true effect size. However, for infectious diseases the comparison of affected subjects to population-based common control subjects regardless of pathogen exposure can also result in selection bias. Through simulated comparisons of pathogen-exposed cases and population-based common control subjects, we demonstrate that not accounting for pathogen exposure can result in biased effect estimates and spurious genome-wide significant signals. Further, the observed association can be distorted depending upon strength of the association between a locus and pathogen exposure and the prevalence of pathogen exposure. We also used a real data example from the hepatitis C virus (HCV) genetic consortium comparing HCV spontaneous clearance to persistent infection with both well-characterized control subjects and population-based common control subjects from the UK Biobank. We find biased effect estimates for known HCV clearance-associated loci and potentially spurious HCV clearance associations. These findings suggest that the choice of control subjects is especially important for infectious diseases or outcomes that are conditional upon environmental exposures.
Collapse
Affiliation(s)
- Dylan Duchen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Candelaria Vergara
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Chloe L Thio
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Prosenjit Kundu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - David L Thomas
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Abstract
Since the identification of sickle cell trait as a heritable form of resistance to malaria, candidate gene studies, linkage analysis paired with sequencing, and genome-wide association (GWA) studies have revealed many examples of genetic resistance and susceptibility to infectious diseases. GWA studies enabled the identification of many common variants associated with small shifts in susceptibility to infectious diseases. This is exemplified by multiple loci associated with leprosy, malaria, HIV, tuberculosis, and coronavirus disease 2019 (COVID-19), which illuminate genetic architecture and implicate pathways underlying pathophysiology. Despite these successes, most of the heritability of infectious diseases remains to be explained. As the field advances, current limitations may be overcome by applying methodological innovations such as cellular GWA studies and phenome-wide association (PheWA) studies as well as by improving methodological rigor with more precise case definitions, deeper phenotyping, increased cohort diversity, and functional validation of candidate loci in the laboratory or human challenge studies.
Collapse
Affiliation(s)
- Kyle D Gibbs
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, USA;
| | - Benjamin H Schott
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, USA; .,Duke University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, USA; .,Duke University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
13
|
Al-Karaawi IA, Al-bassam WW, Ismaeel HM, Ad'hiah AH. Interleukin-38 promoter variants and risk of COVID-19 among Iraqis. Immunobiology 2022; 227:152301. [PMID: 36375233 PMCID: PMC9651960 DOI: 10.1016/j.imbio.2022.152301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/13/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
Coronavirus disease-19 (COVID-19) has recently emerged as a respiratory infection with a significant impact on health and society. The pathogenesis is primarily attributed to a dysregulation of cytokines, especially those with pro-inflammatory and anti-inflammatory effects. Interleukin-38 (IL-38) is a recently identified anti-inflammatory cytokine with a proposed involvement in mediating COVID-19 pathogenesis, while the association between IL38 gene variants and disease susceptibility has not been explored. Therefore, a pilot study was designed to evaluate the association of three gene variants in the promoter region of IL38 gene (rs7599662 T/A/C/G, rs28992497 T/C and rs28992498 C/A/T) with COVID-19 risk. DNA sequencing was performed to identify these variants. The study included 148 Iraqi patients with COVID-19 and 113 healthy controls (HC). Only rs7599662 showed a significant negative association with susceptibility to COVID-19. The mutant T allele was presented at a significantly lower frequency in patients compared to HC. Analysis of recessive, dominant and codominant models demonstrated that rs7599662 TT genotype frequency was significantly lower in patients than in HC. In terms of haplotypes (in order: rs7599662, rs28992497 and rs28992498), frequency of CTC haplotype was significantly increased in patients compared to HC, while TTC haplotype showed significantly lower frequency in patients. The three SNPs influenced serum IL-38 levels and homozygous genotypes of mutant alleles were associated with elevated levels. In conclusion, this study indicated that IL38 gene in terms of promoter variants and haplotypes may have important implications for COVID-19 risk.
Collapse
|
14
|
Han Y, Tan L, Zhou T, Yang L, Carrau L, Lacko LA, Saeed M, Zhu J, Zhao Z, Nilsson-Payant BE, Lira Neto FT, Cahir C, Giani AM, Chai JC, Li Y, Dong X, Moroziewicz D, Paull D, Zhang T, Koo S, Tan C, Danziger R, Ba Q, Feng L, Chen Z, Zhong A, Wise GJ, Xiang JZ, Wang H, Schwartz RE, tenOever BR, Noggle SA, Rice CM, Qi Q, Evans T, Chen S. A human iPSC-array-based GWAS identifies a virus susceptibility locus in the NDUFA4 gene and functional variants. Cell Stem Cell 2022; 29:1475-1490.e6. [PMID: 36206731 PMCID: PMC9550219 DOI: 10.1016/j.stem.2022.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 06/09/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
Population-based studies to identify disease-associated risk alleles typically require samples from a large number of individuals. Here, we report a human-induced pluripotent stem cell (hiPSC)-based screening strategy to link human genetics with viral infectivity. A genome-wide association study (GWAS) identified a cluster of single-nucleotide polymorphisms (SNPs) in a cis-regulatory region of the NDUFA4 gene, which was associated with susceptibility to Zika virus (ZIKV) infection. Loss of NDUFA4 led to decreased sensitivity to ZIKV, dengue virus, and SARS-CoV-2 infection. Isogenic hiPSC lines carrying non-risk alleles of SNPs or deletion of the cis-regulatory region lower sensitivity to viral infection. Mechanistic studies indicated that loss/reduction of NDUFA4 causes mitochondrial stress, which leads to the leakage of mtDNA and thereby upregulation of type I interferon signaling. This study provides proof-of-principle for the application of iPSC arrays in GWAS and identifies NDUFA4 as a previously unknown susceptibility locus for viral infection.
Collapse
Affiliation(s)
- Yuling Han
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Lei Tan
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ting Zhou
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Liuliu Yang
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Lucia Carrau
- Department of Microbiology, New York University, 430 E 29th Street, New York, NY 10016, USA
| | - Lauretta A Lacko
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Zeping Zhao
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | | | | | - Clare Cahir
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; The Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Alice Maria Giani
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Jin Chou Chai
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yang Li
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Dorota Moroziewicz
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3rd Floor, New York, NY 10019, USA
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3rd Floor, New York, NY 10019, USA
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Soyeon Koo
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Weill Cornell Neuroscience PhD Program, New York, NY, USA
| | - Christina Tan
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Ron Danziger
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Qian Ba
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingling Feng
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Zhengming Chen
- Department of Population Health Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Aaron Zhong
- Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Gilbert J Wise
- Department of Urology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jenny Z Xiang
- Genomic Resource Core Facility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Benjamin R tenOever
- Department of Microbiology, New York University, 430 E 29th Street, New York, NY 10016, USA
| | - Scott A Noggle
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3rd Floor, New York, NY 10019, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Qibin Qi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
15
|
Caruso C, Ligotti ME, Accardi G, Aiello A, Candore G. An immunologist's guide to immunosenescence and its treatment. Expert Rev Clin Immunol 2022; 18:961-981. [PMID: 35876758 DOI: 10.1080/1744666x.2022.2106217] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION : The ageing process causes several changes in the immune system, although immune ageing is strongly influenced by individual immunological history, as well as genetic and environmental factors leading to inter-individual variability. AREAS COVERED : Here, we focused on the biological and clinical meaning of immunosenescence. Data on SARS-CoV-2 and Yellow Fever vaccine have demonstrated the clinical relevance of immunosenescence, while inconsistent results, obtained from longitudinal studies aimed at looking for immune risk phenotypes, have revealed that the immunosenescence process is highly context-dependent. Large projects have allowed the delineation of the drivers of immune system variance, including genetic and environmental factors, sex, smoking, and co-habitation. Therefore, it is difficult to identify the interventions that can be envisaged to maintain or improve immune function in older people. That suggests that drug treatment of immunosenescence should require personalized intervention. Regarding this, we discussed the role of changes in lifestyle as a potential therapeutic approach. EXPERT OPINION : Our review points out that age is only part of the problem of immunosenescence. Everyone ages differently because he/she is unique in genetics and experience of life and this applies even more to the immune system (immunobiography). Finally, the present review shows how appreciable results in the modification of immunosenescence biomarkers can be achieved with lifestyle modification.
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| |
Collapse
|
16
|
Allen RJ, Guillen-Guio B, Croot E, Kraven LM, Moss S, Stewart I, Jenkins RG, Wain LV. Genetic overlap between idiopathic pulmonary fibrosis and COVID-19. Eur Respir J 2022; 60:13993003.03132-2021. [PMID: 35595312 PMCID: PMC9130756 DOI: 10.1183/13993003.03132-2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/07/2022] [Indexed: 12/04/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease potentially leading to long lasting respiratory symptoms and has resulted in over 4 million deaths worldwide. Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease (ILD) characterised by an aberrant response to alveolar injury leading to progressive scarring of the lungs. Individuals with ILD are at a higher risk of death from COVID-19 [1].
Collapse
Affiliation(s)
- Richard J Allen
- Department of Health Sciences, University of Leicester, Leicester, UK .,These authors contributed equally
| | - Beatriz Guillen-Guio
- Department of Health Sciences, University of Leicester, Leicester, UK.,These authors contributed equally
| | - Emma Croot
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Luke M Kraven
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Samuel Moss
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Iain Stewart
- National Heart and Lung Institute, Imperial College London, London, UK
| | - R Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK.,National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
17
|
Tandoh KZ, Quaye O. Genetic associations in chronic hepatitis B infection: toward developing polygenic risk scores. Future Microbiol 2022; 17:541-549. [PMID: 35332782 DOI: 10.2217/fmb-2021-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chronic hepatitis B (CHB) infection results in multiple clinical phenotypes of varying severity. One of the critical gaps in CHB management is the lack of a genetic-based tool to aid existing hepatocellular carcinoma and cirrhosis risk stratification models for patients with active CHB. Such individual predictive models for CHB are plagued by an inherent limitation of discriminatory power that clearly indicates the need for their improvement. In this article, we highlight genetic association studies in CHB that identified HLA and cytokine genetic susceptibility loci to CHB. We advance the position that translating CHB genetic susceptibility loci into polygenic risk scores will be a welcome addendum to the current arsenal of CHB outcome predictive models. We conclude with comments on hurdles that future research efforts should address within the research enclave of CHB and advocate for increased genetic data representation from sub-Saharan Africa.
Collapse
Affiliation(s)
- Kwesi Z Tandoh
- Department of Biochemistry, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
18
|
Li P, Zhang Y, Shen W, Shi S, Zhao Z. dbGSRV: A manually curated database of genetic susceptibility to respiratory virus. PLoS One 2022; 17:e0262373. [PMID: 35298480 PMCID: PMC8929643 DOI: 10.1371/journal.pone.0262373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
Human genetics has been proposed to play an essential role in inter-individual differences in respiratory virus infection occurrence and outcomes. To systematically understand human genetic contributions to respiratory virus infection, we developed the database dbGSRV, a manually curated database that integrated the host genetic susceptibility and severity studies of respiratory viruses scattered over literatures in PubMed. At present, dbGSRV contains 1932 records of genetic association studies relating 1010 unique variants and seven respiratory viruses, manually curated from 168 published articles. Users can access the records by quick searching, batch searching, advanced searching and browsing. Reference information, infection status, population information, mutation information and disease relationship are provided for each record, as well as hyperlinks to public databases in convenient of users accessing more information. In addition, a visual overview of the topological network relationship between respiratory viruses and associated genes is provided. Therefore, dbGSRV offers a convenient resource for researchers to browse and retrieve genetic associations with respiratory viruses, which may inspire future studies and provide new insights in our understanding and treatment of respiratory virus infection. Database URL: http://www.ehbio.com/dbGSRV/front/
Collapse
Affiliation(s)
- Ping Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Wenlong Shen
- Beijing Institute of Biotechnology, Beijing, China
| | - Shu Shi
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing, China
- * E-mail:
| |
Collapse
|
19
|
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, Boiko DI, Tarianyk KA, Alexiou A. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 2022; 74:101554. [PMID: 34973458 DOI: 10.1016/j.arr.2021.101554] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a common motor disorder that has become increasingly prevalent in the ageing population. Recent works have suggested that circadian rhythms disruption is a common event in PD patients. Clock genes regulate the circadian rhythm of biological processes in eukaryotic organisms, but their roles in PD remain unclear. Despite this, several lines of evidence point to the possibility that clock genes may have a significant impact on the development and progression of the disease. This review aims to consolidate recent understanding of the roles of clock genes in PD. We first summarized the findings of clock gene expression and epigenetic analyses in PD patients and animal models. We also discussed the potential contributory role of clock gene variants in the development of PD and/or its symptoms. We further reviewed the mechanisms by which clock genes affect mitochondrial dynamics as well as the rhythmic synthesis and secretion of endocrine hormones, the impairment of which may contribute to the development of PD. Finally, we discussed the limitations of the currently available studies, and suggested future potential studies to deepen our understanding of the roles of clock genes in PD pathogenesis.
Collapse
Affiliation(s)
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | | | | | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Peterlee Place NSW2700, Australia; AFNP Med, Haidingergasse 29, 1030 Wien, Austria
| |
Collapse
|
20
|
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, Boiko DI, Tarianyk KA, Alexiou A. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 2022; 74:101554. [DOI: https:/doi.org/10.1016/j.arr.2021.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
21
|
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, Boiko DI, Tarianyk KA, Alexiou A. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 2022. [DOI: https://doi.org/10.1016/j.arr.2021.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Moon J, Ryu BH. Transmission risks of respiratory infectious diseases in various confined spaces: A meta-analysis for future pandemics. ENVIRONMENTAL RESEARCH 2021; 202:111679. [PMID: 34265349 PMCID: PMC8566017 DOI: 10.1016/j.envres.2021.111679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND If the different transmission risks of respiratory infectious diseases according to the type of confined space and associated factors could be discovered, this kind of information will be an important basis for devising future quarantine policies. However, no comprehensive systematic review or meta-analysis for this topic exists. OBJECTIVE The objective of this study is to analyze different transmission risks of respiratory infectious diseases according to the type of confined space. This information will be an important basis for devising future quarantine policies. METHODS A medical librarian searched MEDLINE, EMBASE, and the Cochrane Library (until December 01, 2020). RESULTS A total of 147 articles were included. The risk of transmission in all types of confined spaces was approximately 3 times higher than in open space (combined RR, 2.95 (95% CI 2.62-3.33)). Among them, school or workplace showed the highest transmission risk (combined RR, 3.94 (95% CI 3.16-4.90)). Notably, in the sub-analysis for SARS-CoV-2, residential space and airplane were the riskiest space (combined RR, 8.30 (95% CI 3.30-20.90) and 7.30 (95% CI 1.15-46.20), respectively). DISCUSSION Based on the equation of the total number of contacts, the order of transmission according to the type of confined space was calculated. The calculated order was similar to the observed order in this study. The transmission risks in confined spaces can be lowered by reducing each component of the aforementioned equation. However, as seen in the data for SARS-CoV-2, the closure of one type of confined space could increase the population density in another confined space. The authority of infection control should consider this paradox. Appropriate quarantine measures targeted for specific types of confined spaces with a higher risk of transmission, school or workplace for general pathogens, and residential space/airplane for SARS-CoV-2 can reduce the transmission of respiratory infectious diseases.
Collapse
Affiliation(s)
- Jinyoung Moon
- Department of Environmental Health Science, Graduate School of Public Health, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Department of Occupational and Environmental Medicine, Seoul Saint Mary's Hospital, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Byung-Han Ryu
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si, Gyeongsangnam-do, 51472, Republic of Korea.
| |
Collapse
|
23
|
Namkoong H, Omae Y, Asakura T, Ishii M, Suzuki S, Morimoto K, Kawai Y, Emoto K, Oler AJ, Szymanski EP, Yoshida M, Matsuda S, Yagi K, Hase I, Nishimura T, Sasaki Y, Asami T, Shiomi T, Matsubara H, Shimada H, Hamamoto J, Jhun BW, Kim SY, Huh HJ, Won HH, Ato M, Kosaki K, Betsuyaku T, Fukunaga K, Kurashima A, Tettelin H, Yanai H, Mahasirimongkol S, Olivier KN, Hoshino Y, Koh WJ, Holland SM, Tokunaga K, Hasegawa N. Genome-wide association study in patients with pulmonary Mycobacterium avium complex disease. Eur Respir J 2021; 58:13993003.02269-2019. [PMID: 33542050 DOI: 10.1183/13993003.02269-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/30/2020] [Indexed: 12/26/2022]
Abstract
RATIONALE Nontuberculous mycobacteria (NTM) are environmental mycobacteria that can cause a chronic progressive lung disease. Although epidemiological data indicate potential genetic predisposition, its nature remains unclear. OBJECTIVES We aimed to identify host susceptibility loci for Mycobacterium avium complex (MAC), the most common NTM pathogen. METHODS This genome-wide association study (GWAS) was conducted in Japanese patients with pulmonary MAC and healthy controls, followed by genotyping of candidate single-nucleotide polymorphisms (SNPs) in another Japanese cohort. For verification by Korean and European ancestry, we performed SNP genotyping. RESULTS The GWAS discovery set included 475 pulmonary MAC cases and 417 controls. Both GWAS and replication analysis of 591 pulmonary MAC cases and 718 controls revealed the strongest association with chromosome 16p21, particularly with rs109592 (p=1.64×10-13, OR 0.54), which is in an intronic region of the calcineurin-like EF-hand protein 2 (CHP2). Expression quantitative trait loci analysis demonstrated an association with lung CHP2 expression. CHP2 was expressed in the lung tissue in pulmonary MAC disease. This SNP was associated with the nodular bronchiectasis subtype. Additionally, this SNP was significantly associated with the disease in patients of Korean (p=2.18×10-12, OR 0.54) and European (p=5.12×10-03, OR 0.63) ancestry. CONCLUSIONS We identified rs109592 in the CHP2 locus as a susceptibility marker for pulmonary MAC disease.
Collapse
Affiliation(s)
- Ho Namkoong
- Division of Pulmonary Medicine, Dept of Medicine, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.,JSPS Overseas Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan.,H. Namkoong and Y. Omae are co-first authors.,H. Namkoong, N. Hasegawa and K. Tokunaga contributed equally to this article as lead authors and supervised the work
| | - Yosuke Omae
- Dept of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Tokyo, Japan.,H. Namkoong and Y. Omae are co-first authors
| | - Takanori Asakura
- Division of Pulmonary Medicine, Dept of Medicine, Keio University School of Medicine, Tokyo, Japan.,Dept of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Dept of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shoji Suzuki
- Division of Pulmonary Medicine, Dept of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yosuke Kawai
- Dept of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Tokyo, Japan
| | - Katsura Emoto
- Dept of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Eva P Szymanski
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mitsunori Yoshida
- Dept of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuichi Matsuda
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kazuma Yagi
- Division of Pulmonary Medicine, Dept of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Isano Hase
- Dept of Respiratory Medicine, National Hospital Organization Utsunomiya Hospital, Tochigi, Japan
| | | | - Yuka Sasaki
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Takahiro Asami
- Division of Pulmonary Medicine, Dept of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuya Shiomi
- Dept of Pulmonary Medicine, Keiyu Hospital, Kanagawa, Japan
| | | | - Hisato Shimada
- Dept of Pulmonary Medicine, Kawasaki Municipal Ida Hospital, Kanagawa, Japan
| | - Junko Hamamoto
- Division of Pulmonary Medicine, Dept of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee Jae Huh
- Dept of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Manabu Ato
- Dept of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Dept of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Dept of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Atsuyuki Kurashima
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Hervé Tettelin
- Dept of Microbiology and Immunology, School of Medicine, University of Maryland, Bethesda, MD, USA.,Institute for Genome Sciences, School of Medicine, University of Maryland, Bethesda, MD, USA
| | - Hideki Yanai
- Dept of Clinical Laboratory, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Surakameth Mahasirimongkol
- Medical Genetics Center, Medical Life Sciences Institute, Dept of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Kenneth N Olivier
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yoshihiko Hoshino
- Dept of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Katsushi Tokunaga
- Dept of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Tokyo, Japan.,H. Namkoong, N. Hasegawa and K. Tokunaga contributed equally to this article as lead authors and supervised the work
| | - Naoki Hasegawa
- Dept of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan.,H. Namkoong, N. Hasegawa and K. Tokunaga contributed equally to this article as lead authors and supervised the work
| | | |
Collapse
|
24
|
Kulkeaw K, Pengsart W. Progress and Challenges in the Use of a Liver-on-a-Chip for Hepatotropic Infectious Diseases. MICROMACHINES 2021; 12:mi12070842. [PMID: 34357252 PMCID: PMC8306537 DOI: 10.3390/mi12070842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 12/16/2022]
Abstract
The liver is a target organ of life-threatening pathogens and prominently contributes to the variation in drug responses and drug-induced liver injury among patients. Currently available drugs significantly decrease the morbidity and mortality of liver-dwelling pathogens worldwide; however, emerging clinical evidence reveals the importance of host factors in the design of safe and effective therapies for individuals, known as personalized medicine. Given the primary adherence of cells in conventional two-dimensional culture, the use of these one-size-fit-to-all models in preclinical drug development can lead to substantial failures in assessing therapeutic safety and efficacy. Advances in stem cell biology, bioengineering and material sciences allow us to develop a more physiologically relevant model that is capable of recapitulating the human liver. This report reviews the current use of liver-on-a-chip models of hepatotropic infectious diseases in the context of precision medicine including hepatitis virus and malaria parasites, assesses patient-specific responses to antiviral drugs, and designs personalized therapeutic treatments to address the need for a personalized liver-like model. Second, most organs-on-chips lack a monitoring system for cell functions in real time; thus, the review discusses recent advances and challenges in combining liver-on-a-chip technology with biosensors for assessing hepatocyte viability and functions. Prospectively, the biosensor-integrated liver-on-a-chip device would provide novel biological insights that could accelerate the development of novel therapeutic compounds.
Collapse
Affiliation(s)
- Kasem Kulkeaw
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: ; Tel.: +66-2-419-6468 (ext. 96484)
| | - Worakamol Pengsart
- Faculty of Graduate Studies, Mahidol University, Nakhon Pathom 73170, Thailand;
| |
Collapse
|
25
|
|
26
|
Genetic factors affect the susceptibility to bacterial infections in diabetes. Sci Rep 2021; 11:9464. [PMID: 33947878 PMCID: PMC8096814 DOI: 10.1038/s41598-021-88273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes increases the risk of bacterial infections. We investigated whether common genetic variants associate with infection susceptibility in Finnish diabetic individuals. We performed genome-wide association studies and pathway analysis for bacterial infection frequency in Finnish adult diabetic individuals (FinnDiane Study; N = 5092, Diabetes Registry Vaasa; N = 4247) using national register data on antibiotic prescription purchases. Replication analyses were performed in a Swedish diabetic population (ANDIS; N = 9602) and in a Finnish non-diabetic population (FinnGen; N = 159,166). Genome-wide data indicated moderate but significant narrow-sense heritability for infection susceptibility (h2 = 16%, P = 0.02). Variants on chromosome 2 were associated with reduced infection susceptibility (rs62192851, P = 2.23 × 10–7). Homozygotic carriers of the rs62192851 effect allele (N = 44) had a 37% lower median annual antibiotic purchase rate, compared to homozygotic carriers of the reference allele (N = 4231): 0.38 [IQR 0.22–0.90] and 0.60 [0.30–1.20] respectively, P = 0.01). Variants rs6727834 and rs10188087, in linkage disequilibrium with rs62192851, replicated in the FinnGen-cohort (P < 0.05), but no variants replicated in the ANDIS-cohort. Pathway analysis suggested the IRAK1 mediated NF-κB activation through IKK complex recruitment-pathway to be a mediator of the phenotype. Common genetic variants on chromosome 2 may associate with reduced risk of bacterial infections in Finnish individuals with diabetes.
Collapse
|
27
|
Secolin R, de Araujo TK, Gonsales MC, Rocha CS, Naslavsky M, Marco LD, Bicalho MAC, Vazquez VL, Zatz M, Silva WA, Lopes-Cendes I. Genetic variability in COVID-19-related genes in the Brazilian population. Hum Genome Var 2021; 8:15. [PMID: 33824725 PMCID: PMC8017521 DOI: 10.1038/s41439-021-00146-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 utilizes the angiotensin-converting enzyme 2 (ACE2) receptor and transmembrane serine protease (TMPRSS2) to infect human lung cells. Previous studies have suggested that different host ACE2 and TMPRSS2 genetic backgrounds might contribute to differences in the rate of SARS-CoV-2 infection or COVID-19 severity. Recent studies have also shown that variants in 15 genes related to type I interferon immunity to influenza virus might predispose patients toward life-threatening COVID-19 pneumonia. Other genes (SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, XCR1, IL6, CTSL, ABO, and FURIN) and HLA alleles have also been implicated in the response to infection with SARS-CoV-2. Currently, Brazil has recorded the third-highest number of COVID-19 cases worldwide. We aimed to investigate the genetic variation present in COVID-19-related genes in the Brazilian population. We analyzed 27 candidate genes and HLA alleles in 954 admixed Brazilian exomes. We used the information available in two public databases (http://www.bipmed.org and http://abraom.ib.usp.br/) and additional exomes from individuals born in southeast Brazil, the region of the country with the highest number of COVID-19 patients. Variant allele frequencies were compared with the 1000 Genomes Project phase 3 (1KGP) and gnomAD databases. We detected 395 nonsynonymous variants; of these, 325 were also found in the 1KGP and/or gnomAD. Six of these variants were previously reported to influence the rate of infection or clinical prognosis of COVID-19. The remaining 70 variants were identified exclusively in the Brazilian sample, with a mean allele frequency of 0.0025. In silico analysis revealed that seven of these variants are predicted to affect protein function. Furthermore, we identified HLA alleles previously associated with the COVID-19 response at loci DQB1 and DRB1. Our results showed genetic variability common to other populations and rare and ultrarare variants exclusively found in the Brazilian population. These findings might lead to differences in the rate of infection or response to infection by SARS-CoV-2 and should be further investigated in patients with this disease. Genetic variants in the Brazilian population do not appear to explain the relatively high overall rates of COVID-19 cases compared to other countries, but could be relevant for risk assessment at the individual level. Iscia Lopes-Cendes of the University of Campinas and colleagues in Brazil examined gene sequences for variations in 27 genes reported to influence COVID-19 infection in Brazilians of mixed heritage and of people born in the southeast where case numbers are high. These studies included the ACE2 gene that codes for a receptor allowing SARS-CoV-2 to enter host cells. Genetic variants were also identified in two international genome databases. Seventy variants were unique to Brazilians, but computer modeling predicted only seven variants that could affect protein function. The team also looked for and found variants that could affect individual immunity to COVID-19. Similar genetic studies could help identify at-risk individuals and therapeutic targets.
Collapse
Affiliation(s)
- Rodrigo Secolin
- Department of Translational Medicine, University of Campinas (UNICAMP), and The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP Brazil
| | - Tânia K de Araujo
- Department of Translational Medicine, University of Campinas (UNICAMP), and The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP Brazil
| | - Marina C Gonsales
- Department of Translational Medicine, University of Campinas (UNICAMP), and The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP Brazil
| | - Cristiane S Rocha
- Department of Translational Medicine, University of Campinas (UNICAMP), and The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP Brazil
| | - Michel Naslavsky
- Departament of Genetics and Evolutive Biology, Institute of Bioscience, University of São Paulo, (USP) and The Human Genome and Stem Cell Research Center, São Paulo, SP Brazil
| | - Luiz De Marco
- Department of Surgery, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Maria A C Bicalho
- Department of Clinical Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Vinicius L Vazquez
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos, SP Brazil
| | - Mayana Zatz
- Departament of Genetics and Evolutive Biology, Institute of Bioscience, University of São Paulo, (USP) and The Human Genome and Stem Cell Research Center, São Paulo, SP Brazil
| | - Wilson A Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo at Ribeirão Preto (USP), Ribeirão Preto, SP Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine, University of Campinas (UNICAMP), and The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP Brazil
| |
Collapse
|
28
|
Boahen CK, Joosten LA, Netea MG, Kumar V. Conceptualization of population-specific human functional immune-genomics projects to identify factors that contribute to variability in immune and infectious diseases. Heliyon 2021; 7:e06755. [PMID: 33912719 PMCID: PMC8066384 DOI: 10.1016/j.heliyon.2021.e06755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
The human immune system presents remarkable inter-individual variability in response to pathogens or perturbations. Recent high-throughput technologies have enabled the identification of both heritable and non-heritable determinants of immune response variation between individuals. In this review, we summarize the advances made through the Human Functional Genomics Projects (HFGPs), challenges and the need for more refined strategies. Inter-individual variability in stimulation-induced cytokine responses is influenced in part by age, gender, seasonality, and gut microbiome. Host genetic regulators especially single nucleotide polymorphisms in multiple immune gene loci, particularly the TLR1-TLR6-TLR10 locus, have been identified using individuals of predominantly European descent. However, transferability of such findings to other populations is challenging. We are beginning to incorporate diverse population cohorts and leverage multi-omics approaches at single cell level to bridge the current knowledge gap. We believe that such an approach presents the opportunities to comprehensively assess both genetic and environmental factors driving variation seen in immune response phenotype and a better understanding of the molecular and biological mechanisms involved.
Collapse
Affiliation(s)
- Collins K. Boahen
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, 9700 RB, the Netherlands
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Medical Sciences Complex, Deralakatte, Mangalore, 575018, India
| |
Collapse
|
29
|
Bourgeois JS, Smith CM, Ko DC. These Are the Genes You're Looking For: Finding Host Resistance Genes. Trends Microbiol 2021; 29:346-362. [PMID: 33004258 PMCID: PMC7969353 DOI: 10.1016/j.tim.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Humanity's ongoing struggle with new, re-emerging and endemic infectious diseases serves as a frequent reminder of the need to understand host-pathogen interactions. Recent advances in genomics have dramatically advanced our understanding of how genetics contributes to host resistance or susceptibility to bacterial infection. Here we discuss current trends in defining host-bacterial interactions at the genome-wide level, including screens that harness CRISPR/Cas9 genome editing, natural genetic variation, proteomics, and transcriptomics. We report on the merits, limitations, and findings of these innovative screens and discuss their complementary nature. Finally, we speculate on future innovation as we continue to progress through the postgenomic era and towards deeper mechanistic insight and clinical applications.
Collapse
Affiliation(s)
- Jeffrey S Bourgeois
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA; Duke Human Vaccine Institute, School of Medicine, Duke University Durham, NC, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA; Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Bertrams W, Jung AL, Maxheim M, Schmeck B. [Role of genetic factors in pneumonia and COVID-19]. PNEUMOLOGE 2021; 18:212-217. [PMID: 33716601 PMCID: PMC7934978 DOI: 10.1007/s10405-021-00385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 11/25/2022]
Abstract
Die Pneumonie ist die Infektionskrankheit mit der weltweit höchsten Mortalität. Die häufigsten Erreger sind Bakterien, es gibt jedoch auch epidemisch oder pandemisch auftretende virale Lungenentzündungen durch Influenza- oder Coronaviren, wie die aktuelle Pandemie durch das SARS Coronavirus 3766 Fälle (SARS-CoV-2). Wichtige Herausforderungen liegen neben dem Auftreten von Antibiotikaresistenzen und Immunpathologien etwa in der Sepsis in der Betrachtung der Suszeptibilität individueller Patienten: Hier werden vor allen Dingen das Lebensalter, Medikamente und Komorbiditäten betrachtet. Es gibt jedoch auch klare Hinweise für genetische Einflüsse auf das individuelle Risiko, an einer Pneumonie zu erkranken oder einen schweren Verlauf der Erkrankung zu entwickeln. In diesem Beitrag wollen wir die genetischen Einflüsse auf die Pneumonie und ihre klinische Bedeutung darstellen.
Collapse
Affiliation(s)
- Wilhelm Bertrams
- Institut für Lungenforschung, Universities of Gießen and Marburg Lung Center (UGMLC), Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Deutschland
| | - Anna Lena Jung
- Institut für Lungenforschung, Universities of Gießen and Marburg Lung Center (UGMLC), Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Deutschland
| | - Michael Maxheim
- Klinik für Innere Medizin mit Schwerpunkt Pneumologie, Universitätsklinikum Marburg, Philipps-Universität Marburg, Marburg, Deutschland
| | - Bernd Schmeck
- Institut für Lungenforschung, Universities of Gießen and Marburg Lung Center (UGMLC), Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Deutschland
- Klinik für Innere Medizin mit Schwerpunkt Pneumologie, Universitätsklinikum Marburg, Philipps-Universität Marburg, Marburg, Deutschland
| |
Collapse
|
31
|
Ansari MA, Marchi E, Ramamurthy N, Aschenbrenner D, Morgan S, Hackstein CP, Lin SK, Bowden R, Sharma E, Pedergnana V, Venkateswaran S, Kugathasan S, Mo A, Gibson G, Cooke GS, McLauchlan J, Baillie JK, Teichmann S, Mentzer A, Knight J, Todd JA, Hinks T, Barnes EJ, Uhlig HH, Klenerman P. In vivo negative regulation of SARS-CoV-2 receptor, ACE2, by interferons and its genetic control. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16559.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Angiotensin I converting enzyme 2 (ACE2) is a receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and differences in its expression may affect susceptibility to infection. Methods: We performed a genome-wide expression quantitative trait loci (eQTL) analysis using hepatitis C virus-infected liver tissue from 190 individuals. Results: We discovered that polymorphism in a type III interferon gene (IFNL4), which eliminates IFN-λ4 production, is associated with a two-fold increase in ACE2 RNA expression. Conversely, among genes negatively correlated with ACE2 expression, IFN-signalling pathways were highly enriched and ACE2 was downregulated after IFN-α treatment. Negative correlation was also found in the gastrointestinal tract where inflammation driven IFN-stimulated genes were negatively correlated with ACE2 expression and in lung tissue from a murine model of SARS-CoV-1 infection suggesting conserved regulation of ACE2 across tissue and species. Conclusions: We conclude that ACE2 is likely a negatively-regulated interferon-stimulated gene (ISG) and carriage of IFNL4 gene alleles which modulates ISGs expression in viral infection may play a role in SARS-CoV-2 pathogenesis with implications for therapeutic interventions.
Collapse
|
32
|
Ellwanger JH, Veiga ABGD, Kaminski VDL, Valverde-Villegas JM, Freitas AWQD, Chies JAB. Control and prevention of infectious diseases from a One Health perspective. Genet Mol Biol 2021; 44:e20200256. [PMID: 33533395 PMCID: PMC7856630 DOI: 10.1590/1678-4685-gmb-2020-0256] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
The ongoing COVID-19 pandemic has caught the attention of the global community and rekindled the debate about our ability to prevent and manage outbreaks, epidemics, and pandemics. Many alternatives are suggested to address these urgent issues. Some of them are quite interesting, but with little practical application in the short or medium term. To realistically control infectious diseases, human, animal, and environmental factors need to be considered together, based on the One Health perspective. In this article, we highlight the most effective initiatives for the control and prevention of infectious diseases: vaccination; environmental sanitation; vector control; social programs that encourage a reduction in the population growth; control of urbanization; safe sex stimulation; testing; treatment of sexually and vertically transmitted infections; promotion of personal hygiene practices; food safety and proper nutrition; reduction of the human contact with wildlife and livestock; reduction of social inequalities; infectious disease surveillance; and biodiversity preservation. Subsequently, this article highlights the impacts of human genetics on susceptibility to infections and disease progression, using the SARS-CoV-2 infection as a study model. Finally, actions focused on mitigation of outbreaks and epidemics and the importance of conservation of ecosystems and translational ecology as public health strategies are also discussed.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Universidade Federal do Rio Grande do Sul - UFRGS, Departamento de Genética, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul - UFRGS, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular - PPGBM, Porto Alegre, RS, Brazil
| | | | - Valéria de Lima Kaminski
- Universidade Federal de São Paulo - UNIFESP, Instituto de Ciência e Tecnologia - ICT, Laboratório de Imunologia Aplicada, Programa de Pós-Graduação em Biotecnologia, São José dos Campos, SP, Brazil
| | - Jacqueline María Valverde-Villegas
- Universidade Federal do Rio Grande do Sul - UFRGS, Departamento de Genética, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
- Institut de Génétique Moléculaire de Montpellier (IGMM), Centre National de la Recherche Scientifique (CNRS), Laboratoire coopératif IGMM/ABIVAX, UMR 5535, Montpellier, France
| | - Abner Willian Quintino de Freitas
- Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Programa de Pós-Graduação em Tecnologias da Informação e Gestão em Saúde, Porto Alegre, RS, Brazil
| | - José Artur Bogo Chies
- Universidade Federal do Rio Grande do Sul - UFRGS, Departamento de Genética, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul - UFRGS, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular - PPGBM, Porto Alegre, RS, Brazil
| |
Collapse
|
33
|
Lin YC, Brooks JD, Bull SB, Gagnon F, Greenwood CMT, Hung RJ, Lawless J, Paterson AD, Sun L, Strug LJ. Statistical power in COVID-19 case-control host genomic study design. Genome Med 2020; 12:115. [PMID: 33371892 PMCID: PMC7768597 DOI: 10.1186/s13073-020-00818-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
The identification of genetic variation that directly impacts infection susceptibility to SARS-CoV-2 and disease severity of COVID-19 is an important step towards risk stratification, personalized treatment plans, therapeutic, and vaccine development and deployment. Given the importance of study design in infectious disease genetic epidemiology, we use simulation and draw on current estimates of exposure, infectivity, and test accuracy of COVID-19 to demonstrate the feasibility of detecting host genetic factors associated with susceptibility and severity in published COVID-19 study designs. We demonstrate that limited phenotypic data and exposure/infection information in the early stages of the pandemic significantly impact the ability to detect most genetic variants with moderate effect sizes, especially when studying susceptibility to SARS-CoV-2 infection. Our insights can aid in the interpretation of genetic findings emerging in the literature and guide the design of future host genetic studies.
Collapse
Affiliation(s)
- Yu-Chung Lin
- Dalla Lana School of Public Health, University of Toronto, Room 500, 155 College St, Toronto, ON, M5T3M7, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Room 12.9801, 686 Bay Street, Toronto, ON, M5G0A4, Canada
| | - Jennifer D Brooks
- Dalla Lana School of Public Health, University of Toronto, Room 500, 155 College St, Toronto, ON, M5T3M7, Canada
| | - Shelley B Bull
- Dalla Lana School of Public Health, University of Toronto, Room 500, 155 College St, Toronto, ON, M5T3M7, Canada
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - France Gagnon
- Dalla Lana School of Public Health, University of Toronto, Room 500, 155 College St, Toronto, ON, M5T3M7, Canada
| | - Celia M T Greenwood
- Gerald Bronfman Department of Oncology, Department of Epidemiology, Biostatistics & Occupational Health, Department of Human Genetics, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Rayjean J Hung
- Dalla Lana School of Public Health, University of Toronto, Room 500, 155 College St, Toronto, ON, M5T3M7, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Room 12.9801, 686 Bay Street, Toronto, ON, M5G0A4, Canada
| | - Jerald Lawless
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Andrew D Paterson
- Dalla Lana School of Public Health, University of Toronto, Room 500, 155 College St, Toronto, ON, M5T3M7, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Room 12.9801, 686 Bay Street, Toronto, ON, M5G0A4, Canada
| | - Lei Sun
- Dalla Lana School of Public Health, University of Toronto, Room 500, 155 College St, Toronto, ON, M5T3M7, Canada
- Department of Statistical Sciences, University of Toronto, 9th Floor, Ontario Power Building 700 University Ave, Toronto, ON, M5G 1Z5, Canada
| | - Lisa J Strug
- Dalla Lana School of Public Health, University of Toronto, Room 500, 155 College St, Toronto, ON, M5T3M7, Canada.
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Room 12.9801, 686 Bay Street, Toronto, ON, M5G0A4, Canada.
- Department of Statistical Sciences, University of Toronto, 9th Floor, Ontario Power Building 700 University Ave, Toronto, ON, M5G 1Z5, Canada.
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
34
|
Cahill ME, Loeb M, Dewan AT, Montgomery RR. In-Depth Analysis of Genetic Variation Associated with Severe West Nile Viral Disease. Vaccines (Basel) 2020; 8:E744. [PMID: 33302579 PMCID: PMC7768385 DOI: 10.3390/vaccines8040744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/04/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus which causes symptomatic disease in a minority of infected humans. To identify novel genetic variants associated with severe disease, we utilized data from an existing case-control study of WNV and included population controls for an expanded analysis. We conducted imputation and gene-gene interaction analysis in the largest and most comprehensive genetic study conducted to date for West Nile neuroinvasive disease (WNND). Within the imputed West Nile virus dataset (severe cases n = 381 and asymptomatic/mild controls = 441), we found novel loci within the MCF.2 Cell Line Derived Transforming Sequence Like (MCF2L) gene (rs9549655 and rs2297192) through the individual loci analyses, although none reached statistical significance. Incorporating population controls from the Wisconsin Longitudinal Study on Aging (n = 9012) did not identify additional novel variants, a possible reflection of the cohort's inclusion of individuals who could develop mild or severe WNV disease upon infection. Many of the top gene-gene interaction results were intergenic, with currently undefined biological roles, highlighting the need for further investigation into these regions and other identified gene targets in severe WNND. Further studies including larger sample sizes and more diverse populations reflective of those at risk are needed to fully understand the genetic architecture of severe WNDD and provide guidance on viable targets for therapeutic and vaccine development.
Collapse
Affiliation(s)
- Megan E. Cahill
- Center for Perinatal, Pediatric and Environmental Epidemiology, Department of Chronic Disease Epidemiology, Yale School of Public Health, 1 Church Street, New Haven, CT 06510, USA; (M.E.C.); (A.T.D.)
| | - Mark Loeb
- 3208 Michael DeGroote Centre for Learning & Discovery, Division of Clinical Pathology, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Andrew T. Dewan
- Center for Perinatal, Pediatric and Environmental Epidemiology, Department of Chronic Disease Epidemiology, Yale School of Public Health, 1 Church Street, New Haven, CT 06510, USA; (M.E.C.); (A.T.D.)
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
35
|
Suárez LJ, Garzón H, Arboleda S, Rodríguez A. Oral Dysbiosis and Autoimmunity: From Local Periodontal Responses to an Imbalanced Systemic Immunity. A Review. Front Immunol 2020; 11:591255. [PMID: 33363538 PMCID: PMC7754713 DOI: 10.3389/fimmu.2020.591255] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The current paradigm of onset and progression of periodontitis includes oral dysbiosis directed by inflammophilic bacteria, leading to altered resolution of inflammation and lack of regulation of the inflammatory responses. In the construction of explanatory models of the etiopathogenesis of periodontal disease, autoimmune mechanisms were among the first to be explored and historically, for more than five decades, they have been described in an isolated manner as part of the tissue damage process observed in periodontitis, however direct participation of these mechanisms in the tissue damage is still controversial. Autoimmunity is affected by genetic and environmental factors, leading to an imbalance between the effector and regulatory responses, mostly associated with failed resolution mechanisms. However, dysbiosis/infection and chronic inflammation could trigger autoimmunity by several mechanisms including bystander activation, dysregulation of toll-like receptors, amplification of autoimmunity by cytokines, epitope spreading, autoantigens complementarity, autoantigens overproduction, microbial translocation, molecular mimicry, superantigens, and activation or inhibition of receptors related to autoimmunity by microorganisms. Even though autoreactivity in periodontitis is biologically plausible, the associated mechanisms could be related to non-pathologic responses which could even explain non-recognized physiological functions. In this review we shall discuss from a descriptive point of view, the autoimmune mechanisms related to periodontitis physio-pathogenesis and the participation of oral dysbiosis on local periodontal autoimmune responses as well as on different systemic inflammatory diseases.
Collapse
Affiliation(s)
- Lina J. Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hernan Garzón
- Grupo de Investigación en Salud Oral, Universidad Antonio Nariño, Bogotá, Colombia
| | - Silie Arboleda
- Unidad de Investigación en Epidemiologia Clínica Oral (UNIECLO), Universidad El Bosque, Bogotá, Colombia
| | - Adriana Rodríguez
- Centro de Investigaciones Odontológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
36
|
Unraveling the susceptibility of paracoccidioidomycosis: Insights towards the pathogen-immune interplay and immunogenetics. INFECTION GENETICS AND EVOLUTION 2020; 86:104586. [PMID: 33039601 DOI: 10.1016/j.meegid.2020.104586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic mycosis caused by Paracoccidioides spp. This disease comprises three clinical forms: symptomatic acute and chronic forms (PCM disease) and PCM infection, a latent form without clinical symptoms. PCM disease differs markedly according to severity, clinical manifestations, and host immune response. Fungal virulence factors and adhesion molecules are determinants for entry, latency, immune escape and invasion, and dissemination in the host. Neutrophils and macrophages play a paramount role in first-line defense against the fungus through the recognition of antigens by pattern recognition receptors (PRRs), activating their microbicidal machinery. Furthermore, the clinical outcome of the PCM is strongly associated with the variability of cytokines and immunoglobulins produced by T and B cells. While the mechanisms that mediate susceptibility or resistance to infection are dictated by the immune system, some genetic factors may alter gene expression and its final products and, hence, modulate how the organism responds to infection and injury. This review outlines the main findings relative to this topic, addressing the complexity of the immune response triggered by Paracoccidioides spp. infection from preclinical investigations to studies in humans. Here, we focus on mechanisms of fungal pathogenesis, the patterns of innate and adaptive immunity, and the genetic and molecular basis related to immune response and susceptibility to the development of the PCM and its clinical forms. Immunogenetic features such as HLA system, cytokines/cytokines receptors genes and other immune-related genes, and miRNAs are likewise discussed. Finally, we point out the occurrence of PCM in patients with primary immunodeficiencies and call attention to the research gaps and challenges faced by the PCM field.
Collapse
|
37
|
Armstrong J, Rudkin JK, Allen N, Crook DW, Wilson DJ, Wyllie DH, O’Connell AM. Dynamic linkage of COVID-19 test results between Public Health England's Second Generation Surveillance System and UK Biobank. Microb Genom 2020; 6:mgen000397. [PMID: 32553051 PMCID: PMC7478634 DOI: 10.1099/mgen.0.000397] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
UK Biobank (UKB) is an international health resource enabling research into the genetic and lifestyle determinants of common diseases of middle and older age. It comprises 500 000 participants. Public Health England's Second Generation Surveillance System is a centralized microbiology database covering English clinical diagnostics laboratories that provides national surveillance of legally notifiable infections, bacterial isolations and antimicrobial resistance. We previously developed secure, pseudonymized, individual-level linkage of these systems. In this study, we implemented rapid dynamic linkage, which allows us to provide a regular feed of new COVID-19 (SARS-CoV-2) test results to UKB to facilitate rapid and urgent research into the epidemiological and human genetic risk factors for severe infection in the cohort. Here, we have characterized the first 1352 cases of COVID-19 in UKB participants, of whom 895 met our working definition of severe COVID-19 as inpatients hospitalized on or after 16 March 2020. We found that the incidence of severe COVID-19 among UKB cases was 27.4 % lower than the general population in England, although this difference varied significantly by age and sex. The total number of UKB cases could be estimated as 0.6 % of the publicly announced number of cases in England. We considered how increasing case numbers will affect the power of genome-wide association studies. This new dynamic linkage system has further potential to facilitate the investigation of other infections and the prospective collection of microbiological cultures to create a microbiological biobank (bugbank) for studying the interaction of environment, human and microbial genetics on infection in the UKB cohort.
Collapse
Affiliation(s)
- Jacob Armstrong
- Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, University of Oxford, Oxford OX3 7LF, UK
| | - Justine K. Rudkin
- Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, University of Oxford, Oxford OX3 7LF, UK
| | - Naomi Allen
- Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, University of Oxford, Oxford OX3 7LF, UK
- UK Biobank, 1–2 Spectrum Way, Adswood, Stockport SK3 0SA, UK
| | - Derrick W. Crook
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Daniel J. Wilson
- Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, University of Oxford, Oxford OX3 7LF, UK
| | - David H. Wyllie
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Field Service, Public Health England, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Anne Marie O’Connell
- Data and Analytical Services, National Infection Service, Public Health England, London NW9 5EQ, UK
| |
Collapse
|
38
|
Kennedy RB, Ovsyannikova IG, Palese P, Poland GA. Current Challenges in Vaccinology. Front Immunol 2020; 11:1181. [PMID: 32670279 PMCID: PMC7329983 DOI: 10.3389/fimmu.2020.01181] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines, which prime the immune system to respond to future infections, has led to global declines in morbidity and mortality from dreadful infectious communicable diseases. However, many pathogens of public health importance are highly complex and/or rapidly evolving, posing unique challenges to vaccine development. Several of these challenges include an incomplete understanding of how immunity develops, host and pathogen genetic variability, and an increased societal skepticism regarding vaccine safety. In particular, new high-dimensional omics technologies, aided by bioinformatics, are driving new vaccine development (vaccinomics). Informed by recent insights into pathogen biology, host genetic diversity, and immunology, the increasing use of genomic approaches is leading to new models and understanding of host immune system responses that may provide solutions in the rapid development of novel vaccine candidates.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Peter Palese
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
39
|
Saulle I, Vicentini C, Clerici M, Biasin M. An Overview on ERAP Roles in Infectious Diseases. Cells 2020; 9:E720. [PMID: 32183384 PMCID: PMC7140696 DOI: 10.3390/cells9030720] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 (ERAPs) are crucial enzymes shaping the major histocompatibility complex I (MHC I) immunopeptidome. In the ER, these enzymes cooperate in trimming the N-terminal residues from precursors peptides, so as to generate optimal-length antigens to fit into the MHC class I groove. Alteration or loss of ERAPs function significantly modify the repertoire of antigens presented by MHC I molecules, severely affecting the activation of both NK and CD8+ T cells. It is, therefore, conceivable that variations affecting the presentation of pathogen-derived antigens might result in an inadequate immune response and onset of disease. After the first evidence showing that ERAP1-deficient mice are not able to control Toxoplasma gondii infection, a number of studies have demonstrated that ERAPs are control factors for several infectious organisms. In this review we describe how susceptibility, development, and progression of some infectious diseases may be affected by different ERAPs variants, whose mechanism of action could be exploited for the setting of specific therapeutic approaches.
Collapse
Affiliation(s)
- Irma Saulle
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
| | - Chiara Vicentini
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| | - Mario Clerici
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
- IRCCS Fondazione Don Carlo Gnocchi, 20157 Milan, Italy
| | - Mara Biasin
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| |
Collapse
|
40
|
Correa R, Caballero Z, De León LF, Spadafora C. Extracellular Vesicles Could Carry an Evolutionary Footprint in Interkingdom Communication. Front Cell Infect Microbiol 2020; 10:76. [PMID: 32195195 PMCID: PMC7063102 DOI: 10.3389/fcimb.2020.00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are minute particles secreted by the cells of living organisms. Although the functional role of EVs is not yet clear, recent work has highlighted their role in intercellular communication. Here, we expand on this view by suggesting that EVs can also mediate communication among interacting organisms such as hosts, pathogens and vectors. This inter-kingdom communication via EVs is likely to have important evolutionary consequences ranging from adaptation of parasites to specialized niches in the host, to host resistance and evolution and maintenance of parasite virulence and transmissibility. A potential system to explore these consequences is the interaction among the human host, the mosquito vector and Plasmodium parasite involved in the malaria disease. Indeed, recent studies have found that EVs derived from Plasmodium infected red blood cells in humans are likely mediating the parasite's transition from the asexual to sexual stage, which might facilitate transmission to the mosquito vector. However, more work is needed to establish the adaptive consequences of this EV signaling among different taxa. We suggest that an integrative molecular approach, including a comparative phylogenetic analysis of the molecules (e.g., proteins and nucleic acids) derived from the EVs of interacting organisms (and their closely-related species) in the malaria system will prove useful for understanding interkingdom communication. Such analyses will also shed light on the evolution and persistence of host, parasite and vector interactions, with implications for the control of vector borne infectious diseases.
Collapse
Affiliation(s)
- Ricardo Correa
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia (INDICASAT AIP), Panama, Panama.,Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Zuleima Caballero
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia (INDICASAT AIP), Panama, Panama
| | - Luis F De León
- Department of Biology, University of Massachusetts, Boston, MA, United States
| | - Carmenza Spadafora
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia (INDICASAT AIP), Panama, Panama
| |
Collapse
|
41
|
|