1
|
Pan L, He X, Xu R, Bhattarai U, Niu Z, do Carmo J, Sun Y, Zeng H, Clemmer JS, Chen JX, Chen Y. Endothelial specific prolyl hydroxylase domain-containing protein 2 deficiency attenuates aging-related obesity and exercise intolerance. GeroScience 2024; 46:3945-3956. [PMID: 38462569 PMCID: PMC11226575 DOI: 10.1007/s11357-024-01108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Obesity and exercise intolerance greatly reduce the life quality of older people. Prolyl hydroxylase domain-containing protein 2 (PHD2) is an important enzyme in modulating hypoxia-inducible factor-alpha (HIF) protein. Using vascular endothelial cell-specific PHD2 gene knockout (PHD2 ECKO) mice, we investigated the role of endothelial PHD2 in aging-related obesity and exercise capacity. Briefly, PHD2 ECKO mice were obtained by crossing PHD2-floxed mice with VE-Cadherin (Cdh5)-Cre transgenic mice. The effect of PHD2 ECKO on obesity and exercise capacity in PHD2 ECKO mice and control PHD2f/f mice were determined in young mice (6 to 7 months) and aged mice (16-18 months). We found that aged PHD2 ECKO mice, but not young mice, exhibited a lean phenotype, characterized by lower fat mass, and its ratio to lean weight, body weight, or tibial length, while their food uptake was not reduced compared with controls. Moreover, as compared with aged control mice, aged PHD2 ECKO mice exhibited increased oxygen consumption at rest and during exercise, and the maximum rate of oxygen consumption (VO2 max) during exercise. Furthermore, as compared with corresponding control mice, both young and aged PHD2 ECKO mice demonstrated improved glucose tolerance and lower insulin resistance. Together, these data demonstrate that inhibition of vascular endothelial PHD2 signaling significantly attenuates aging-related obesity, exercise intolerance, and glucose intolerance.
Collapse
Affiliation(s)
- Lihong Pan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Xiaochen He
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Rui Xu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Umesh Bhattarai
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ziru Niu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Jussara do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - John S Clemmer
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
2
|
Maxfield A, Hadley C, Hruschka DJ. The relationship between altitude and BMI varies across low- and middle-income countries. Am J Hum Biol 2024; 36:e24036. [PMID: 38213006 DOI: 10.1002/ajhb.24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVES Studies suggest that living at high altitude decreases obesity risk, but this research is limited to single-country analyses. We examine the relationship between altitude and body mass index (BMI) among women living in a diverse sample of low- and middle-income countries. MATERIALS AND METHODS Using Demographic and Health Survey data from 1 583 456 reproductive age women (20-49 years) in 54 countries, we fit regression models predicting BMI and obesity by altitude controlling for a range of demographic factors-age, parity, breastfeeding status, wealth, and education. RESULTS A mixed-effects model with country-level random intercepts and slopes predicts an overall -0.162 kg/m2 (95% CI -0.220, -0.104) reduction in BMI and lower odds of obesity (OR 0.90, 95% CI 0.87, 0.95) for every 200 m increase in altitude. However, countries vary dramatically in whether they exhibit a negative or positive association between altitude and BMI (34 countries negative, 20 positive). Mixed findings also arise when examining odds of obesity. DISCUSSION We show that past findings of declining obesity risk with altitude are not universal. Increasing altitude predicts slightly lower BMIs at the global level, but the relationship within individual countries varies in both strength and direction.
Collapse
Affiliation(s)
- Amanda Maxfield
- Department of Anthropology, Emory University, Atlanta, Georgia, USA
| | - Craig Hadley
- Department of Anthropology, Emory University, Atlanta, Georgia, USA
- Department of Quantitative Theory and Methods, Emory University, Atlanta, Georgia, USA
| | - Daniel J Hruschka
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
Urdampilleta Otegui A, Roche Collado E. Intermittent hypoxia in sport nutrition, performance, health status and body composition. NUTR HOSP 2024; 41:224-229. [PMID: 38095103 DOI: 10.20960/nh.04692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Introduction Intermittent hypoxia refers to the discontinuous use of low oxygen levels in normobaric environment. These conditions can be reproduced in hypoxic tents or chambers while the individual is training in different physical activity protocols. Intermittent hypoxia can affect several body systems, impacting nutrition, physical performance, health status and body composition. Therefore, it is necessary to assess protocols, regarding time and frequency of exposure, passive exposure or training in hypoxia, and the simulated altitude. At the molecular level, the hypoxia-inducible factor-1α is the primary factor mediating induction of target genes, including vascular endothelial growth factor and erythropoietin. The goal of these molecular changes is to preserve oxygen supply for cardiac and neuronal function. In addition, hypoxia produces a sympathetic adrenal activation that can increase the resting metabolic rate. Altogether, these changes are instrumental in protocols designed to improve physical performance as well as functional parameters for certain pathological disorders. In addition, nutrition must adapt to the increased energy expenditure. In this last context, performing physical activity in intermittent hypoxia improves insulin sensitivity by increasing the presence of the glucose transporter GLUT-4 in muscle membranes. These changes could also be relevant for obesity and type 2 diabetes treatment. Also, the anorectic effect of intermittent hypoxia modulates serotonin and circulating leptin levels, which may contribute to regulate food intake and favor body weight adaptation for optimal sport performance and health. All these actions suggest that intermittent hypoxia can be a very effective tool in sports training as well as in certain clinical protocols.
Collapse
Affiliation(s)
| | - Enrique Roche Collado
- Department of Applied Biology-Nutrition. Institute of Bioengineering. Universidad Miguel Hernández
| |
Collapse
|
4
|
Bagińska M, Kałuża A, Tota Ł, Piotrowska A, Maciejczyk M, Mucha D, Ouergui I, Kubacki R, Czerwińska-Ledwig O, Ambroży D, Witkowski K, Pałka T. The Impact of Intermittent Hypoxic Training on Aerobic Capacity and Biometric-Structural Indicators among Obese Women-A Pilot Study. J Clin Med 2024; 13:380. [PMID: 38256514 PMCID: PMC10816855 DOI: 10.3390/jcm13020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Obesity, a common lifestyle-related condition, is correlated with factors like inadequate physical activity. Its connection to diverse health issues presents a significant challenge to healthcare. This pilot study investigated the effects of hypoxic training on aerobic capacity and biometric-structural indicators in obese women. The secondary objective was to determine the feasibility, effectiveness, and safety of the planned research procedures and their potential for larger-scale implementation. MATERIAL AND METHODS Forty-one non-trained women with first-degree obesity were randomly assigned to even normobaric hypoxic training (H + E), normoxic training (E), passive exposure to hypoxia (H), and a control group (C). Training sessions were conducted three times a week for four weeks (12 training sessions). Body composition parameters were assessed, metabolic thresholds were determined, and maximal oxygen consumption (VO2max) was measured before and after interventions. RESULTS The results demonstrated that training in hypoxic conditions significantly affected somatic parameters, with the H + E group achieving the best outcomes in terms of weight reduction and improvements in body composition indicators (p < 0.001). Normoxic training also induced a positive impact on body weight and body composition, although the results were less significant compared to the H + E group (p < 0.001). Additionally, training in hypoxic conditions significantly improved the aerobic capacity among the participants (p < 0.001). The H + E group achieved the best results in enhancing respiratory endurance and oxygen consumption (p < 0.001). CONCLUSIONS The results of this pilot study suggest, that hypoxic training can be effective for weight reduction and improving the aerobic capacity in obese women. Despite study limitations, these findings indicate that hypoxic training could be an innovative approach to address obesity and related conditions. Caution is advised in interpreting the results, considering both the strengths and limitations of the pilot study. Before proceeding to a larger-scale study, the main study should be expanded, including aspects such as dietary control, monitoring physical activity, and biochemical blood analysis.
Collapse
Affiliation(s)
- Małgorzata Bagińska
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland (T.P.)
| | - Anna Kałuża
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland (T.P.)
| | - Łukasz Tota
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland (T.P.)
| | - Anna Piotrowska
- Department of Chemistry and Biochemistry, Faculty of Physiotherapy, University of Physical Education in Krakow, 31-571 Kraków, Poland
| | - Marcin Maciejczyk
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland (T.P.)
| | - Dariusz Mucha
- Department of Body Renovation and Body Posture Correction, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland
| | - Ibrahim Ouergui
- Sports Science, Health and Movement, High Institute of Sport and Physical Education of Kef, University of Jendouba, El Kef 7100, Tunisia
| | - Rafał Kubacki
- Faculty of Physical Education and Sports, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Olga Czerwińska-Ledwig
- Department of Chemistry and Biochemistry, Faculty of Physiotherapy, University of Physical Education in Krakow, 31-571 Kraków, Poland
| | - Dorota Ambroży
- Institute of Sports Sciences, University of Physical Education in Krakow, 31-571 Kraków, Poland
| | - Kazimierz Witkowski
- Faculty of Physical Education and Sports, University of Physical Education in Wrocław, 31-571 Kraków, Poland
| | - Tomasz Pałka
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland (T.P.)
| |
Collapse
|
5
|
Pu L, Zhao L, Lu Q, Chen C. Hypoxia induces food leaving in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000776. [PMID: 37033703 PMCID: PMC10077061 DOI: 10.17912/micropub.biology.000776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 04/11/2023]
Abstract
Hypoxia alters eating behavior in different animals. In C. elegans , hypoxia induces a strong food leaving response. We found that this behavior was independent of the known O 2 response mechanisms including acute O 2 sensation and HIF-1 signaling of chronic hypoxia response. Mutating egl-3 and egl-21 , encoding the neuropeptide pro-protein convertase and carboxypeptidase, led to defects in hypoxia induced food leaving, suggesting that neuropeptidergic signaling was required for this response. However, we failed to identify any neuropeptide mutants that were severely defective in hypoxia induced food leaving, suggesting that multiple neuropeptides act redundantly to modulate this behavior.
Collapse
Affiliation(s)
- Longjun Pu
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lina Zhao
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Qiongxuan Lu
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Changchun Chen
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Chen S, Su H, Liu X, Li Q, Yao Y, Cai J, Gao Y, Ma Q, Shi Y. Effects of exercise training in hypoxia versus normoxia on fat-reducing in overweight and/or obese adults: A systematic review and meta-analysis of randomized clinical trials. Front Physiol 2022; 13:940749. [PMID: 36082216 PMCID: PMC9447682 DOI: 10.3389/fphys.2022.940749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Fat loss theory under various oxygen conditions has been disputed, and relevant systematic review studies are limited. This study is a systematic review and meta-analysis to assess whether hypoxic exercise training (HET) leads to superior fat-reducing compared with normoxic exercise training (NET). Methods: We searched PubMed, Web of Science, CNKI, ProQuest, Google Scholar, Cochrane Library, and EBSCOhost from inception to June 2022 for articles comparing the effects of hypoxic and normoxic exercise on body composition indicators, glycometabolism, and lipometabolism indicators in obese and overweight adults. Only randomized controlled trials (RCTs) were included. The effect sizes were expressed as standardized mean difference (SMD) and 95% confidence intervals (CI). Between-study heterogeneity was examined using the I2 test and evaluated publication bias via Egger’s regression test. The risk of bias assessment was performed for each included trial using Cochrane Evaluation Tool second generation. The meta-analysis was performed by using R 4.1.3 and RevMan 5.3 analytic tools. Results: A total of 19 RCTs with 444 subjects were analyzed according to the inclusion and exclusion criteria. Among them, there were 14 English literature and five Chinese literature. No significant difference in body composition (SMD -0.10, 95% CI -0.20 to -0.01), glycometabolism and lipid metabolism (SMD -0.01, 95% CI -0.13 to -0.10) has been observed when comparing the HET and NET groups. We only found low heterogeneity among trials assessing glycometabolism and lipometabolism (I2 = 20%, p = 0.09), and no publication bias was detected. Conclusion: The effects of HET and NET on fat loss in overweight or obese people are the same. The application and promotion of HET for fat reduction need further exploration.
Collapse
|
7
|
Intermittent Hypoxia as a Therapeutic Tool to Improve Health Parameters in Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095339. [PMID: 35564732 PMCID: PMC9103404 DOI: 10.3390/ijerph19095339] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/23/2022]
Abstract
Aging is associated with metabolic alterations, and with a loss of strength, muscle and bone mass. Moderate intermittent hypoxia has been proposed as a new tool to enhance health-related function. The aim of this study was to evaluate the effect of moderate intermittent hypoxia exposures on parameters related to cardiovascular and bone health in older adults. A total of 38 healthy older adults (aged 65-75 years) were divided into two groups: control group (C), and hypoxia group (H) that was subjected to an intermittent hypoxia exposure (at simulated altitude of 2500 m asl) during a 24-week period (3 days/week). Body composition, blood pressure, metabolic parameters (Cholesterol, triglycerides and glucose), C-reactive protein (CRP), vascular cell adhesion molecule-1 (VCAM-1), interleukin 8 (IL-8), interleukin 10 (IL-10), N-terminal propeptide of type I procollagen (PINP) and beta C-terminal telopeptide of collagen bone formation (b-CTX) were analyzed before and after the intervention. A repeated measures analysis of variance was performed to evaluate between-group differences. The results showed that the hypoxia group achieved after the intervention a decrease in fat mass, CRP (pro-inflammatory biomarker) and b-CTX (bone resorption biomarker), as well as an increase in PINP (bone formation biomarker). In conclusion, the intermittent hypoxia might be a useful therapeutic tool to deal with problems associated with aging, such as the increase in body fat, the loss of bone mass or low-grade inflammation.
Collapse
|
8
|
Kong Z, Lei OK, Sun S, Li L, Shi Q, Zhang H, Nie J. Hypoxic repeated sprint interval training improves cardiorespiratory fitness in sedentary young women. J Exerc Sci Fit 2022; 20:100-107. [PMID: 35154334 PMCID: PMC8819388 DOI: 10.1016/j.jesf.2022.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China
| | - On Kei Lei
- Faculty of Education, University of Macau, Macao, China
| | - Shengyan Sun
- Institute of Physical Education, Huzhou University, Huzhou, Zhejiang Province, China
| | - Lei Li
- School of Physical Education, Ludong University, Shandong Province, China
| | - Qingde Shi
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China
| | - Haifeng Zhang
- College of Physical Education, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Jinlei Nie
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China
- Corresponding author. School of Health Sciences and Sports, Macao Polytechnic Institute, Rua de Luís Gonzaga Gomes, Macao, China.
| |
Collapse
|
9
|
Lopez-Pascual A, Trayhurn P, Martínez JA, González-Muniesa P. Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxid Redox Signal 2021; 35:642-687. [PMID: 34036800 DOI: 10.1089/ars.2019.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: In recent years, a number of studies have shown altered oxygen partial pressure at a tissue level in metabolic disorders, and some researchers have considered oxygen to be a (macro) nutrient. Oxygen availability may be compromised in obesity and several other metabolism-related pathological conditions, including sleep apnea-hypopnea syndrome, the metabolic syndrome (which is a set of conditions), type 2 diabetes, cardiovascular disease, and cancer. Recent Advances: Strategies designed to reduce adiposity and its accompanying disorders have been mainly centered on nutritional interventions and physical activity programs. However, novel therapies are needed since these approaches have not been sufficient to counteract the worldwide increasing rates of metabolic disorders. In this regard, intermittent hypoxia training and hyperoxia could be potential treatments through oxygen-related adaptations. Moreover, living at a high altitude may have a protective effect against the development of abnormal metabolic conditions. In addition, oxygen delivery systems may be of therapeutic value for supplying the tissue-specific oxygen requirements. Critical Issues: Precise in vivo methods to measure oxygenation are vital to disentangle some of the controversies related to this research area. Further, it is evident that there is a growing need for novel in vitro models to study the potential pathways involved in metabolic dysfunction to find appropriate therapeutic targets. Future Directions: Based on the existing evidence, it is suggested that oxygen availability has a key role in obesity and its related comorbidities. Oxygen should be considered in relation to potential therapeutic strategies in the treatment and prevention of metabolic disorders. Antioxid. Redox Signal. 35, 642-687.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom.,Clore Laboratory, The University of Buckingham, Buckingham, United Kingdom
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.,Precision Nutrition and Cardiometabolic Health, IMDEA Food, Madrid Institute for Advanced Studies, Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| |
Collapse
|
10
|
Kietzmann T, Mäkelä VH. The hypoxia response and nutritional peptides. Peptides 2021; 138:170507. [PMID: 33577839 DOI: 10.1016/j.peptides.2021.170507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Hypoxia controls metabolism at several levels, e.g., via mitochondrial ATP production, glucose uptake and glycolysis. Hence it is likely that hypoxia also affects the action and/or production of many peptide hormones linked to food intake and appetite control. Many of those are produced in the gastrointestinal tract, endocrine pancreas, adipose tissue, and selective areas in the brain which modulate and concert their actions. However, the complexity of the hypoxia response and the links to peptides/hormones involved in food intake and appetite control in the different organs are not well known. This review summarizes the role of the hypoxia response and its effects on major peptides linked to appetite regulation, nutrition and metabolism.
Collapse
Affiliation(s)
- Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu, Finland.
| | - Ville H Mäkelä
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu, Finland
| |
Collapse
|
11
|
Mehata S, Shrestha N, Ghimire S, Atkins E, Karki DK, Mishra SR. Association of altitude and urbanization with hypertension and obesity: analysis of the Nepal Demographic and Health Survey 2016. Int Health 2021; 13:151-160. [PMID: 32623453 PMCID: PMC7902681 DOI: 10.1093/inthealth/ihaa034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/14/2020] [Accepted: 06/09/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Nepal's Himalayan range attracts mountaineers, climbers and tourists from all across the globe. Limited recent evidence suggests that exposure to hypoxia at a higher altitude may be a risk factor for hypertension and a protective factor for obesity. The existing urban-rural disparities in Nepal in health and economic resources may be anticipated in the burden of hypertension and obesity, two rapidly growing public health issues, but they remain largely unstudied. Therefore this study aims to assess the association of altitude and urbanization with hypertension and overweight/obesity in Nepal. METHODS Data on 10 473 participants from a nationally representative survey, the 2016 Nepal Demographic and Health Survey (NDHS), was used. The NDHS assessed/measured blood pressure, height, weight, urbanization and the altitude of participants' households by following standard procedures. Logistic and linear regression models were used to study the association of altitude (per 100 m increases) and urbanization with hypertension and obesity, or their continuous measurements (i.e. systolic and diastolic blood pressure [SBP and DBP, respectively] and body mass index [BMI]). RESULTS The prevalence of hypertension, overweight and obesity was 25.6%, 19.6% and 4.8%, respectively. After controlling for covariates, residents of metropolitan cities had a 30% higher prevalence of overweight/obesity (adjusted prevalence ratio 1.30 [95% confidence interval {CI} 1.11 to 1.52]) than their rural counterparts. For altitude, there was a marginally increased odds of hypertension and overweight/obesity with elevation. Consistently, DBP (β = 0.18 [95% CI 0.09 to 0.27]) and BMI increased with altitude (β = 0.11 [95% CI 0.08 to 0.13]). CONCLUSION Urbanization was positively associated with BMI, while altitude showed a marginally positive association with hypertension and overweight/obesity. Given the role of obesity and hypertension in the aetiology of other chronic diseases and subsequently associated mortality and health care costs, residents in urban areas and at higher altitudes may benefit from weight control interventions and BP monitoring, respectively.
Collapse
Affiliation(s)
- Suresh Mehata
- Ministry of Population and Health, Nepal Government, Kathmandu
| | - Nipun Shrestha
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Saruna Ghimire
- Department of Sociology and Gerontology, Miami University, Oxford, OH, USA.,Scripps Gerontology Center, Miami University, Oxford, OH, USA
| | - Emily Atkins
- George Institute for Global Health, University of New South Wales Sydney, Newtown, NSW, Australia
| | | | | |
Collapse
|
12
|
Qaid EYA, Zakaria R, Mohd Yusof NA, Sulaiman SF, Shafin N, Othman Z, Ahmad AH, Abd Aziz CB, Muthuraju S. Tualang Honey Ameliorates Hypoxia-induced Memory Deficits by Reducing Neuronal Damage in the Hippocampus of Adult Male Sprague Dawley Rats. Turk J Pharm Sci 2020; 17:555-564. [PMID: 33177938 DOI: 10.4274/tjps.galenos.2019.32704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/07/2019] [Indexed: 01/21/2023]
Abstract
Objectives A growing body of evidence indicates that hypoxia exposure causes learning and memory deficits. An effective natural therapeutic approach has, however, not been explored widely. Our previous studies found that Tualang honey administration protected learning and memory functions in ovariectomized rats. Therefore, the present study investigated its efficacy in ameliorating hypoxia-induced memory deficits in adult male Sprague Dawley rats. Materials and Methods The rats were divided into four groups: i) Normoxia treated with sucrose (n=12), ii) Normoxia treated with Tualang honey (n=12), iii) Hypoxia treated with sucrose (n=12), and iv) Hypoxia treated with Tualang honey (n=12). Tualang honey (0.2 g/kg/BW) and sucrose (1 mL of 7.9%) supplementations were administered orally to the rats daily for 14 days. Then the hypoxia groups were exposed to hypoxia (~11%) for 7 days, while the normoxia groups were kept in normal conditions. Following exposure to hypoxia, the rats' memories were analyzed using a novel object recognition task and T-maze test. Results The data revealed that rats exposed to hypoxia showed significant impairment in short-term memory (STM), spatial memory (p<0.01), and long-term memory (LTM) when compared to the normoxia group. Hypoxia rats treated with Tualang honey showed significant improvement in STM, LTM, and spatial memory (p<0.05) compared with those treated with sucrose (p<0.05). Tualang honey also reduced neuronal damage in the hippocampus of adult male Sprague Dawley rats exposed to hypoxia. Conclusion It is suggested that Tualang honey pretreatment has protective effects against hypoxia-induced memory deficits, possibly through its antioxidant contents.
Collapse
Affiliation(s)
- Entesar Yaseen Abdo Qaid
- Universiti Sains Malaysia, School of Medical Sciences, Department of Physiology, Kubang Kerian, Malaysia
| | - Rahimah Zakaria
- Universiti Sains Malaysia, School of Medical Sciences, Department of Physiology, Kubang Kerian, Malaysia
| | - Nurul Aiman Mohd Yusof
- Universiti Sains Malaysia, School of Medical Sciences, Department of Anatomy, Kubang Kerian, Malaysia
| | | | - Nazlahshaniza Shafin
- Universiti Sains Malaysia, School of Medical Sciences, Department of Physiology, Kubang Kerian, Malaysia
| | - Zahiruddin Othman
- Universiti Sains Malaysia, School of Medical Sciences, Department of Psychiatry, Kubang Kerian, Malaysia
| | - Asma Hayati Ahmad
- Universiti Sains Malaysia, School of Medical Sciences, Department of Physiology, Kubang Kerian, Malaysia
| | - Che Badariah Abd Aziz
- Universiti Sains Malaysia, School of Medical Sciences, Department of Physiology, Kubang Kerian, Malaysia
| | - Sangu Muthuraju
- Universiti Sains Malaysia, School of Medical Sciences, Department of Neuroscience, Kubang Kerian, Malaysia
| |
Collapse
|
13
|
Implication of gut microbiota in the physiology of rats intermittently exposed to cold and hypobaric hypoxia. PLoS One 2020; 15:e0240686. [PMID: 33142314 PMCID: PMC7608931 DOI: 10.1371/journal.pone.0240686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
This study examines the influence of intermittent exposure to cold, hypobaric hypoxia, and their combination, in gut microbiota and their metabolites in vivo, and explores their effects on the physiology of the host. Sprague-Dawley rats were exposed to cold (4°C), hypobaric hypoxia (462 torr), or both simultaneously, 4 h/day for 21 days. Biometrical and hematological parameters were monitored. Gut bacterial subgroups were evaluated by qPCR and short-chain fatty acids were determined by gas chromatography in caecum and feces. Cold increased brown adipose tissue, Clostridiales subpopulation and the concentration of butyric and isovaleric acids in caecum. Hypobaric hypoxia increased hemoglobin, red and white cell counts and Enterobacteriales, and reduced body and adipose tissues weights and Lactobacilliales. Cold plus hypobaric hypoxia counteracted the hypoxia-induced weight loss as well as the increase in white blood cells, while reducing the Bacteroidetes:Firmicutes ratio and normalizing the populations of Enterobacteriales and Lactobacilliales. In conclusion, intermittent cold and hypobaric hypoxia exposures by themselves modified some of the main physiological variables in vivo, while their combination kept the rats nearer to their basal status. The reduction of the Bacteroidetes:Firmicutes ratio and balanced populations of Enterobacteriales and Lactobacilliales in the gut may contribute to this effect.
Collapse
|
14
|
Ramos-Campo DJ, Girard O, Pérez A, Rubio-Arias JÁ. Additive stress of normobaric hypoxic conditioning to improve body mass loss and cardiometabolic markers in individuals with overweight or obesity: A systematic review and meta-analysis. Physiol Behav 2019; 207:28-40. [PMID: 31047948 DOI: 10.1016/j.physbeh.2019.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 02/07/2023]
Abstract
We performed a systematic review and meta-analysis to determine if hypoxic conditioning, compared to similar training near sea level, maximizes body mass loss and further improves cardiometabolic markers in overweight and obese individuals. A systematic search of PubMed, Web of Science and the Cochrane Library databases (up to January 2019) was performed. This analysis included randomized controlled trials with humans with overweight or obesity assessing the effects of HC on body mass loss or cardiometabolic markers. A subgroup analysis was performed to examine if HC effects differed between individuals with overweight or obesity. 13 articles (336 participants) qualified for inclusion. HC significantly decreased body mass (p = .01), fat mass (p = .04), waist/hip ratio (p < .001), waist (p < .001), LDL (p = .01), diastolic (p < .01) and systolic blood pressure (p < .01) with these effects not being larger than equivalent normoxic interventions. There were trends towards higher triglycerides decrement (p = .06) and higher muscle mass gain in hypoxic (p = .08) compared with normoxic condition. Also, the two BMI categories displayed no difference in the magnitude of the responses. Compared to normoxic equivalent, HC provides greater reductions in triglycerides and greater muscle growth, while body mass changes are similar. In addition, HC responses were essentially similar between individuals with overweight or obesity.
Collapse
Affiliation(s)
- Domingo J Ramos-Campo
- Department of Physical Activity and Sports Sciences, Faculty of Sports, UCAM, Catholic University San Antonio, Murcia, Spain.
| | - Olivier Girard
- Murdoch Applied Sport Science Laboratory, Murdoch University, Perth, Australia
| | - Andrés Pérez
- UCAM Research Centre for High Performance Sport, Catholic University San Antonio, Murcia, Spain
| | - Jacobo Á Rubio-Arias
- Department of Physical Activity and Sports Sciences, Faculty of Sports, UCAM, Catholic University San Antonio, Murcia, Spain
| |
Collapse
|
15
|
Martínez-Guardado I, Ramos-Campo DJ, Olcina GJ, Rubio-Arias JA, Chung LH, Marín-Cascales E, Alcaraz PE, Timón R. Effects of high-intensity resistance circuit-based training in hypoxia on body composition and strength performance. Eur J Sport Sci 2019; 19:941-951. [PMID: 30638154 DOI: 10.1080/17461391.2018.1564796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hypoxic training methods are increasingly being used by researchers in an attempt to improve performance in normoxic ambients. Moreover, previous research suggests that resistance training in hypoxia can cause physiological and muscle adaptations. The primary aim of this study was to compare the effects of 8 weeks of high-intensity resistance circuit-based (HRC) training in hypoxia on body composition and strength performance. The secondary aim was to examine the effects of HRC on metabolic parameters. Twenty-eight male participants were randomly assigned to either hypoxia (Fraction of inspired oxygen [FIO2] = 15%; HRChyp: n = 15; age: 24.6 ± 6.8 years; height: 177.4 ± 5.9 cm; weight: 74.9 ± 11.5 kg) or normoxia [FIO2] = 20.9%; HRCnorm: n = 13; age: 23.2 ± 5.2 years; height: 173.4 ± 6.2 cm; weight: 69.4 ± 7.4 kg) groups. Training sessions consisted of two blocks of three exercises (Block 1: bench press, leg extension and front pull down; Block 2: deadlift, elbow flexion and ankle extension). Each exercise was performed at six repetition maximum. Rest periods lasted for 35-s between exercises, 3-min between sets and 5-min between blocks. Participants exercised twice weekly for 8 weeks, and body composition, strength and blood tests were performed before and after the training program. Lean body mass and bone mineral density significantly increased over time in the HRChyp (p < .005; ES = 0.14 and p < .014; ES = 0.19, respectively) but not in the HRCnorm after training. Both groups improved their strength performance over time (p < .001), but without group effect differences. These results indicate that simulated hypoxia during HRC exercise produced trivial effects on lean body mass and bone mineral density compared to normoxia.
Collapse
Affiliation(s)
| | - Domingo J Ramos-Campo
- b Department of Physical Activity and Sport Science, Sport Science Faculty , Catholic University of Murcia , Murcia , Spain.,c UCAM Research Center for High Performance Sport , Murcia , Spain
| | | | - Jacobo A Rubio-Arias
- b Department of Physical Activity and Sport Science, Sport Science Faculty , Catholic University of Murcia , Murcia , Spain.,c UCAM Research Center for High Performance Sport , Murcia , Spain
| | - Linda H Chung
- b Department of Physical Activity and Sport Science, Sport Science Faculty , Catholic University of Murcia , Murcia , Spain.,c UCAM Research Center for High Performance Sport , Murcia , Spain
| | | | - Pedro E Alcaraz
- b Department of Physical Activity and Sport Science, Sport Science Faculty , Catholic University of Murcia , Murcia , Spain.,c UCAM Research Center for High Performance Sport , Murcia , Spain
| | - Rafael Timón
- a Sport Science Faculty , University of Extremadura , Cáceres , Spain
| |
Collapse
|
16
|
Koirala S, Nakano M, Arima H, Takeuchi S, Ichikawa T, Nishimura T, Ito H, Pandey BD, Pandey K, Wada T, Yamamoto T. Current health status and its risk factors of the Tsarang villagers living at high altitude in the Mustang district of Nepal. J Physiol Anthropol 2018; 37:20. [PMID: 30157969 PMCID: PMC6114060 DOI: 10.1186/s40101-018-0181-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022] Open
Abstract
Background Epidemiology of noncommunicable diseases (NCDs) such as obesity and diabetes mellitus (DM) are influenced by multiple hosts and environmental factors. This study aims to investigate the prevalence of NCDs and determine their risk factors among the adults residing in an isolated village situated at a rural highland of Nepal. Methods A cross-sectional survey was conducted in a village located at 3570 m. Each 188 randomly selected participants of age ≥ 18 years old answered a questionnaire and took a full physical exam that included biomedical measurements of glycosylated hemoglobin (HbA1c). Results The prevalence of intermediate hyperglycemia and DM was 31.6% and 4.6% respectively, and the prevalence of hypoxemia (SpO2 < 90%) was 27.1%. A multiple logistic regression analysis for factors for the prevalence of glucose intolerance (HbA1c ≥ 6%) revealed older age (odds ratio [OR] 1.11, 95% confidence interval [CI] 1.06–1.16, for every 1 year increase) and SpO2 (OR for hypoxemia 3.58, 95% CI 1.20–10.68, vs SpO2 ≥ 90%). Conclusions Tibetan highlanders in the remote mountainous Mustang valley of Nepal have high prevalence of impaired glucose metabolism which could be related to hypoxemia imposed by the hypoxic conditions of high altitude living.
Collapse
Affiliation(s)
- Sweta Koirala
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Masayuki Nakano
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Hiroaki Arima
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Shouhei Takeuchi
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, 1-1-1 Manabino, Nagayo, Nishisonogi, Nagasaki, 851-2195, Japan
| | - Tomo Ichikawa
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Society and Regional Culture, Okinawa International University, 2-6-1 Ginowan, Ginowan City, Okinawa, 901-2701, Japan
| | - Takayuki Nishimura
- Department of Public Health, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Japan
| | - Hiromu Ito
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of General System Studies, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.,Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Basu Dev Pandey
- Everest International Clinic and Research Center, GPO 9045, Kathmandu, Nepal.,National Center for AIDS & STD Control, Ministry of Health and Population, GPO 9045, Teku, Kathmandu, Nepal
| | - Kishor Pandey
- Everest International Clinic and Research Center, GPO 9045, Kathmandu, Nepal.,Nepal Academy of Science and Technology, GPO 3323, Khumaltar, Lalitpur, Nepal
| | - Takayuki Wada
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Taro Yamamoto
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
17
|
Park HY, Kim J, Park MY, Chung N, Hwang H, Nam SS, Lim K. Exposure and Exercise Training in Hypoxic Conditions as a New Obesity Therapeutic Modality: A Mini Review. J Obes Metab Syndr 2018; 27:93-101. [PMID: 31089548 PMCID: PMC6489458 DOI: 10.7570/jomes.2018.27.2.93] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 01/15/2023] Open
Abstract
Obesity is an important health problem caused by positive energy balance. Generally, low calorie dietary intake combined with regular exercise is the most common modality to lose bodily fat in obese people. Although this is the first modality of choice for obesity treatment, it needs to be applied to obese patients for at least 12 weeks or more and it does not provide consistent results because it is difficult to suppress increased appetite due to exercise. Recently, many researchers have been applying hypoxic conditions for the treatment of obesity, as many studies show that people residing in high altitudes have a lower percentage of body fat and fewer obesity-related illnesses than people living at sea level. Hypoxic therapy treatment, including hypoxic exposure or hypoxic exercise training, is recommended as a way to treat and prevent obesity by suppression of appetite, increasing basal metabolic rate and fat oxidation, and minimizing side effects. Hypoxic therapy inhibits energy intake and appetite-related hormones, and enhances various cardiovascular and metabolic function parameters. These observations indicate that hypoxic therapy is a new treatment modality for inducing fat reduction and promoting metabolic and cardiovascular health, which may be an important and necessary strategy for the treatment of obesity. As such, hypoxic therapy is now used as a general medical practice for obesity treatment in many developed countries. Therefore, hypoxic therapy could be a new, practical, and useful therapeutic modality for obesity and obesity-related comorbidities.
Collapse
Affiliation(s)
- Hun-Young Park
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
| | - Jisu Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
| | - Mi-Young Park
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
| | - Nana Chung
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
| | - Hyejung Hwang
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
| | - Sang-Seok Nam
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
| | - Kiwon Lim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea.,Laboratory of Exercise Nutrition, Department of Physical Education, Konkuk University, Seoul, Korea
| |
Collapse
|
18
|
Cabrera-Aguilera I, Rizo-Roca D, Marques EA, Santocildes G, Pagès T, Viscor G, Ascensão AA, Magalhães J, Torrella JR. Additive Effects of Intermittent Hypobaric Hypoxia and Endurance Training on Bodyweight, Food Intake, and Oxygen Consumption in Rats. High Alt Med Biol 2018; 19:278-285. [PMID: 29957064 DOI: 10.1089/ham.2018.0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cabrera-Aguilera, Ignacio, David Rizo-Roca, Elisa A. Marques, Garoa Santocildes, Teresa Pagès, Gines Viscor, António A. Ascensão, José Magalhães, and Joan Ramon Torrella. Additive effects of intermittent hypobaric hypoxia and endurance training on bodyweight, food intake, and oxygen consumption in rats. High Alt Med Biol. 19:278-285, 2018.-We used an animal model to elucidate the effects of an intermittent hypobaric hypoxia (IHH) and endurance exercise training (EET) protocol on bodyweight (BW), food and water intake, and oxygen consumption. Twenty-eight young adult male rats were divided into four groups: normoxic sedentary (NS), normoxic exercised (NE), hypoxic sedentary (HS), and hypoxic exercised (HE). Normoxic groups were maintained at an atmospheric pressure equivalent to sea level, whereas the IHH protocol consisted of 5 hours per day for 33 days at a simulated altitude of 6000 m. Exercised groups ran in normobaric conditions on a treadmill for 1 hour/day for 5 weeks at a speed of 25 m/min. At the end of the protocol, both hypoxic groups showed significant decreases in BW from the ninth day of exposure, reaching final 10% (HS) to 14.5% (HE) differences when compared with NS. NE rats also showed a significant weight reduction after the 19th day, with a decrease of 7.4%. The BW of hypoxic animals was related to significant hypophagia elicited by IHH exposure (from 8% to 12%). In contrast, EET had no effect on food ingestion. Total water intake was not affected by hypoxia but was significantly increased by exercise. An analysis of oxygen consumption at rest (mL O2/[kg·min]) revealed two findings: a significant decrease in both hypoxic groups after the protocol (HS, 21.7 ± 0.70 vs. 19.1 ± 0.78 and HE, 22.8 ± 0.80 vs. 17.1 ± 0.90) and a significant difference at the end of the protocol between NE (21.3 ± 0.77) and HE (17.1 ± 0.90). These results demonstrate that IHH and EET had an additive effect on BW loss, providing evidence that rats underwent a metabolic adaptation through a reduction in oxygen consumption measured under normoxic conditions. These data suggest that the combination of IHH and EET could serve as an alternative treatment for the management of overweight and obesity.
Collapse
Affiliation(s)
- Ignacio Cabrera-Aguilera
- 1 Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona , Barcelona, Spain
| | - David Rizo-Roca
- 1 Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona , Barcelona, Spain .,2 LaMetEx-Laboratory of Metabolism and Exercise, Faculdade de Desporto, Centro de Investigação em Atividade Física e Lazer (CIAFEL), Universidade do Porto , Porto, Portugal
| | - Elisa A Marques
- 3 Centro de Investigação em Desporto, Saúde e Desenvolvimento Humano (CIDESD), Instituto Universitário da Maia (ISMAI) , Maia, Portugal
| | - Garoa Santocildes
- 1 Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona , Barcelona, Spain
| | - Teresa Pagès
- 1 Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona , Barcelona, Spain
| | - Gines Viscor
- 1 Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona , Barcelona, Spain
| | - António A Ascensão
- 2 LaMetEx-Laboratory of Metabolism and Exercise, Faculdade de Desporto, Centro de Investigação em Atividade Física e Lazer (CIAFEL), Universidade do Porto , Porto, Portugal
| | - José Magalhães
- 2 LaMetEx-Laboratory of Metabolism and Exercise, Faculdade de Desporto, Centro de Investigação em Atividade Física e Lazer (CIAFEL), Universidade do Porto , Porto, Portugal
| | - Joan Ramon Torrella
- 1 Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona , Barcelona, Spain
| |
Collapse
|
19
|
Gudowska A, Bauchinger U. Food consumption in ground beetles is limited under hypoxic conditions in response to ad libitum feeding, but not restricted feeding. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:7-13. [PMID: 29432765 DOI: 10.1016/j.jinsphys.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/23/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Habitats on land with low oxygen availability provide unique niches inhabited by numerous species. The occupation of such hypoxic niches by animals is hypothesized to come at a cost linked to the limitations of aerobic metabolism and thus energy budget but may also provide benefits through physical protection from predators and parasitoids or reduced competition for food. We investigated the effects of hypoxic conditions on standard metabolic rate (SMR) and specific dynamic action (SDA) in male Carabus nemoralis. SMR and SDA were determined under three manipulated oxygen availabilities: 7, 14 and 21% O2 and two feeding regimes: limited or ad libitum food consumption. In both hypoxic conditions, C. nemoralis was able to maintain SMR at levels similar to those in normoxia. When the meal size was limited, SDA duration did not differ among the oxygen availability conditions, but SDA was smaller under hypoxic conditions than at normoxic levels. The relative cost of digestion was significantly higher in normoxia than in hypoxia, but it did not affect net energy intake. In contrast, when offered a large meal to simulate ad libitum food conditions, beetles reduced their food consumption and net energy gain by 30% under hypoxia. Oxygen availability may influence the consumed prey size: the hypoxic condition did not limit net energy gain when the beetles fed on a small meal but did when they fed on a large meal. The results indicate that meal size is an important variable in determining differences in physiological costs and whole animal energy budgets at different concentrations of environmental oxygen levels.
Collapse
Affiliation(s)
- Agnieszka Gudowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
20
|
Kim ER, Fan S, Akhmedov D, Sun K, Lim H, O'Brien W, Xu Y, Mangieri LR, Zhu Y, Lee CC, Chung Y, Xia Y, Xu Y, Li F, Sun K, Berdeaux R, Tong Q. Red blood cell β-adrenergic receptors contribute to diet-induced energy expenditure by increasing O2 supply. JCI Insight 2017; 2:93367. [PMID: 28724789 DOI: 10.1172/jci.insight.93367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/01/2017] [Indexed: 12/21/2022] Open
Abstract
Diet-induced obesity (DIO) represents the major cause for the current obesity epidemic, but the mechanism underlying DIO is unclear. β-Adrenergic receptors (β-ARs) play a major role in sympathetic nervous system-mediated (SNS-mediated) diet-induced energy expenditure (EE). Rbc express abundant β-ARs; however, a potential role for rbc in DIO remains untested. Here, we demonstrated that high-fat, high-caloric diet (HFD) feeding increased both EE and blood O2 content, and the HFD-induced increases in blood O2 level and in body weight gain were negatively correlated. Deficiency of β-ARs in rbc reduced glycolysis and ATP levels, diminished HFD-induced increases in both blood O2 content and EE, and resulted in DIO. Importantly, specific activation of cAMP signaling in rbc promoted HFD-induced EE and reduced HFD-induced tissue hypoxia independent of obesity. Both HFD and pharmacological activation cAMP signaling in rbc led to increased glycolysis and ATP levels. These results identify a previously unknown role for rbc β-ARs in mediating the SNS action on HFD-induced EE by increasing O2 supply, and they demonstrate that HFD-induced EE is limited by blood O2 availability and can be augenmented by increased O2 supply.
Collapse
Affiliation(s)
- Eun Ran Kim
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA
| | - Shengjie Fan
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA.,School of Pharmacy, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Dmitry Akhmedov
- Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences
| | - Kaiqi Sun
- Department of Biochemistry and Molecular Biology, Graduate Program in Biochemistry, and
| | - Hoyong Lim
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA
| | - William O'Brien
- Department of Biochemistry and Molecular Biology, Graduate Program in Biochemistry, and
| | - Yuanzhong Xu
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA
| | - Leandra R Mangieri
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA.,Department of Neurobiology and Anatomy, Graduate Program in Neuroscience, Graduate School of Biological Sciences, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Yaming Zhu
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA
| | - Cheng-Chi Lee
- Department of Biochemistry and Molecular Biology, Graduate Program in Biochemistry, and
| | - Yeonseok Chung
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, Graduate Program in Biochemistry, and
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, and
| | - Feng Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kai Sun
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA
| | - Rebecca Berdeaux
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA.,Department of Neurobiology and Anatomy, Graduate Program in Neuroscience, Graduate School of Biological Sciences, University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
21
|
Hobbins L, Hunter S, Gaoua N, Girard O. Normobaric hypoxic conditioning to maximize weight loss and ameliorate cardio-metabolic health in obese populations: a systematic review. Am J Physiol Regul Integr Comp Physiol 2017; 313:R251-R264. [PMID: 28679682 DOI: 10.1152/ajpregu.00160.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023]
Abstract
Normobaric hypoxic conditioning (HC) is defined as exposure to systemic and/or local hypoxia at rest (passive) or combined with exercise training (active). HC has been previously used by healthy and athletic populations to enhance their physical capacity and improve performance in the lead up to competition. Recently, HC has also been applied acutely (single exposure) and chronically (repeated exposure over several weeks) to overweight and obese populations with the intention of managing and potentially increasing cardio-metabolic health and weight loss. At present, it is unclear what the cardio-metabolic health and weight loss responses of obese populations are in response to passive and active HC. Exploration of potential benefits of exposure to both passive and active HC may provide pivotal findings for improving health and well being in these individuals. A systematic literature search for articles published between 2000 and 2017 was carried out. Studies investigating the effects of normobaric HC as a novel therapeutic approach to elicit improvements in the cardio-metabolic health and weight loss of obese populations were included. Studies investigated passive (n = 7; 5 animals, 2 humans), active (n = 4; all humans) and a combination of passive and active (n = 4; 3 animals, 1 human) HC to an inspired oxygen fraction ([Formula: see text]) between 4.8 and 15.0%, ranging between a single session and daily sessions per week, lasting from 5 days up to 8 mo. Passive HC led to reduced insulin concentrations (-37 to -22%) in obese animals and increased energy expenditure (+12 to +16%) in obese humans, whereas active HC lead to reductions in body weight (-4 to -2%) in obese animals and humans, and blood pressure (-8 to -3%) in obese humans compared with a matched workload in normoxic conditions. Inconclusive findings, however, exist in determining the impact of acute and chronic HC on markers such as triglycerides, cholesterol levels, and fitness capacity. Importantly, most of the studies that included animal models involved exposure to severe levels of hypoxia ([Formula: see text] = 5.0%; simulated altitude >10,000 m) that are not suitable for human populations. Overall, normobaric HC demonstrated observable positive findings in relation to insulin and energy expenditure (passive), and body weight and blood pressure (active), which may improve the cardio-metabolic health and body weight management of obese populations. However, further evidence on responses of circulating biomarkers to both passive and active HC in humans is warranted.
Collapse
Affiliation(s)
- L Hobbins
- Sport and Exercise Science Research Centre, London South Bank University, London, United Kingdom;
| | - S Hunter
- Sport and Exercise Science Research Centre, London South Bank University, London, United Kingdom
| | - N Gaoua
- Sport and Exercise Science Research Centre, London South Bank University, London, United Kingdom
| | - O Girard
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar; and.,Institute of Sport Sciences, University of Lausanne, Switzerland
| |
Collapse
|
22
|
Abstract
Excessive fat deposition in obesity has a multifactorial aetiology, but is widely considered the result of disequilibrium between energy intake and expenditure. Despite specific public health policies and individual treatment efforts to combat the obesity epidemic, >2 billion people worldwide are overweight or obese. The central nervous system circuitry, fuel turnover and metabolism as well as adipose tissue homeostasis are important to comprehend excessive weight gain and associated comorbidities. Obesity has a profound impact on quality of life, even in seemingly healthy individuals. Diet, physical activity or exercise and lifestyle changes are the cornerstones of obesity treatment, but medical treatment and bariatric surgery are becoming important. Family history, food environment, cultural preferences, adverse reactions to food, perinatal nutrition, previous or current diseases and physical activity patterns are relevant aspects for the health care professional to consider when treating the individual with obesity. Clinicians and other health care professionals are often ill-equipped to address the important environmental and socioeconomic drivers of the current obesity epidemic. Finally, understanding the epigenetic and genetic factors as well as metabolic pathways that take advantage of 'omics' technologies could play a very relevant part in combating obesity within a precision approach.
Collapse
|
23
|
Debevec T. Hypoxia-Related Hormonal Appetite Modulation in Humans during Rest and Exercise: Mini Review. Front Physiol 2017; 8:366. [PMID: 28611686 PMCID: PMC5447736 DOI: 10.3389/fphys.2017.00366] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/17/2017] [Indexed: 12/25/2022] Open
Abstract
Obesity is associated with numerous chronic ailments and represents one of the major health and economic issues in the modernized societies. Accordingly, there is an obvious need for novel treatment approaches. Recently, based on the reports of reduced appetite and subsequent weight loss following high-altitude sojourns, exposure to hypoxia has been proposed as a viable weight-reduction strategy. While altitude-related appetite modulation is complex and not entirely clear, hypoxia-induced alterations in hormonal appetite modulation might be among the key underlying mechanisms. The present paper summarizes the up-to-date research on hypoxia/altitude-induced changes in the gut and adipose tissue derived peptides related to appetite regulation. Orexigenic hormone ghrelin and anorexigenic peptides leptin, glucagon-like peptide-1, peptide YY, and cholecystokinin have to-date been investigated as potential modulators of hypoxia-driven appetite alterations. Current evidence suggests that hypoxia can, especially acutely, lead to decreased appetite, most probably via reduction of acylated ghrelin concentration. Hypoxia-related short and long-term changes in other hormonal markers are more unclear although hypoxia seems to importantly modulate leptin levels, especially following prolonged hypoxic exposures. Limited evidence also suggests that different activity levels during exposures to hypoxia do not additively affect hormonal appetite markers. Although very few studies have been performed in obese/overweight individuals, the available data indicate that hypoxia/altitude exposures do not seem to differentially affect appetite regulation via hormonal pathways in this cohort. Given the lack of experimental data, future well-controlled acute and prolonged studies are warranted to expand our understanding of hypoxia-induced hormonal appetite modulation and its kinetics in health and disease.
Collapse
Affiliation(s)
- Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan InstituteLjubljana, Slovenia
| |
Collapse
|
24
|
Hypoxia in Obesity and Diabetes: Potential Therapeutic Effects of Hyperoxia and Nitrate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5350267. [PMID: 28607631 PMCID: PMC5457776 DOI: 10.1155/2017/5350267] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
Abstract
The prevalence of obesity and diabetes is increasing worldwide. Obesity and diabetes are associated with oxidative stress, inflammation, endothelial dysfunction, insulin resistance, and glucose intolerance. Obesity, a chronic hypoxic state that is associated with decreased nitric oxide (NO) bioavailability, is one of the main causes of type 2 diabetes. The hypoxia-inducible factor-1α (HIF-1α) is involved in the regulation of several genes of the metabolic pathways including proinflammatory adipokines, endothelial NO synthase (eNOS), and insulin signaling components. It seems that adipose tissue hypoxia and NO-dependent vascular and cellular dysfunctions are responsible for other consequences linked to obesity-related disorders. Although hyperoxia could reverse hypoxic-related disorders, it increases the production of reactive oxygen species (ROS) and decreases the production of NO. Nitrate can restore NO depletion and has antioxidant properties, and recent data support the beneficial effects of nitrate therapy in obesity and diabetes. Although it seems reasonable to combine hyperoxia and nitrate treatments for managing obesity/diabetes, the combined effects have not been investigated yet. This review discusses some aspects of tissue oxygenation and the potential effects of hyperoxia and nitrate interventions on obesity/diabetes management. It can be proposed that concomitant use of hyperoxia and nitrate is justified for managing obesity and diabetes.
Collapse
|
25
|
San Martin R, Brito J, Siques P, León-Velarde F. Obesity as a Conditioning Factor for High-Altitude Diseases. Obes Facts 2017; 10:363-372. [PMID: 28810235 PMCID: PMC5644942 DOI: 10.1159/000477461] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 05/10/2017] [Indexed: 12/19/2022] Open
Abstract
Obesity, a worldwide epidemic, has become a major health burden because it is usually accompanied by an increased risk for insulin resistance, diabetes, hypertension, cardiovascular diseases, and even some kinds of cancer. It also results in associated increases in healthcare expenditures and labor and economic consequences. There are also other fields of medicine and biology where obesity or being overweight play a major role, such as high-altitude illnesses (acute mountain sickness, hypoxic pulmonary hypertension, and chronic mountain sickness), where an increasing relationship among these two morbid statuses has been demonstrated. This association could be rooted in the interactions between obesity-related metabolic alterations and critical ventilation impairments due to obesity, which would aggravate hypobaric hypoxia at high altitudes, leading to hypoxemia, which is a trigger for developing high-altitude diseases. This review examines the current literature to support the idea that obesity or overweight could be major conditioning factors at high altitude.
Collapse
Affiliation(s)
- Rocío San Martin
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile
| | - Julio Brito
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile
- *Julio Brito, Institute of Health Studies, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique, 1110939, Chile,
| | - Patricia Siques
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile
| | - Fabiola León-Velarde
- Department of Biological and Physiological Sciences. Facultad de Ciencias y Filosofía/ IIA, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
26
|
van de Pol I, Flik G, Gorissen M. Comparative Physiology of Energy Metabolism: Fishing for Endocrine Signals in the Early Vertebrate Pool. Front Endocrinol (Lausanne) 2017; 8:36. [PMID: 28303116 PMCID: PMC5332387 DOI: 10.3389/fendo.2017.00036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/10/2017] [Indexed: 01/23/2023] Open
Abstract
Energy is the common currency of life. To guarantee a homeostatic supply of energy, multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation of the delicate balance of energy intake and expenditure may result in severe pathologies. Feeding-related pathologies have fueled research on mammals, including of course the human species. The mechanisms regulating food intake and body mass are well-characterized in these vertebrates. The majority of animal life is ectothermic, only birds and mammals are endotherms. What can we learn from a (comparative) study on energy homeostasis in teleostean fishes, ectotherms, with a very different energy budget and expenditure? We present several adaptation strategies in fish. In recent years, the components that regulate food intake in fishes have been identified. Although there is homology of the major genetic machinery with mammals (i.e., there is a vertebrate blueprint), in many cases this does not imply analogy. Although both mammals and fish must gain their energy from food, the expenditure of the energy obtained is different. Mammals need to spend vast amounts of energy to maintain body temperature; fishes seem to utilize a broader metabolic range to their advantage. In this review, we briefly discuss ecto- and endothermy and their consequences for energy balance. Next, we argue that the evolution of endothermy and its (dis-)advantages may explain very different strategies in endocrine regulation of energy homeostasis among vertebrates. We follow a comparative and evolutionary line of thought: we discuss similarities and differences between fish and mammals. Moreover, given the extraordinary radiation of teleostean fishes (with an estimated number of 33,400 contemporary species, or over 50% of vertebrate life forms), we also compare strategies in energy homeostasis between teleostean species. We present recent developments in the field of (neuro)endocrine regulation of energy balance in teleosts, with a focus on leptin.
Collapse
Affiliation(s)
- Iris van de Pol
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
- *Correspondence: Gert Flik,
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
27
|
Welsby PD. Why diets fail: a hypothesis for discussion. Postgrad Med J 2016; 93:360-363. [PMID: 27965417 DOI: 10.1136/postgradmedj-2016-134447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 11/03/2022]
Abstract
Weight regulation depends on the difference between weights of absorbed and metabolised carbon and excretion of the end products of metabolism, calories and carbon dioxide, which can be independently and variably excreted. Calories can be variably excreted as heat by vasoconstriction or vasodilation and carbon dioxide can be excreted variably as exhaled carbon dioxide (the major route of carbon excretion). Unless there are changes in ventilatory carbon excretion, 'metabolism,' 'genetic factors,' 'hormones' or 'exercise' do not provide complete explanatory mechanisms for weight changes, obesity and failure of diets. Low sensitivity of respiratory centres to carbon dioxide may cause overweight and dietary failures after initial weight loss.
Collapse
|
28
|
Díaz-Gutiérrez J, Martínez-González MÁ, Pons Izquierdo JJ, González-Muniesa P, Martínez JA, Bes-Rastrollo M. Living at Higher Altitude and Incidence of Overweight/Obesity: Prospective Analysis of the SUN Cohort. PLoS One 2016; 11:e0164483. [PMID: 27812092 PMCID: PMC5094724 DOI: 10.1371/journal.pone.0164483] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/25/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Residence at high altitude has been associated with lower obesity rates probably due to hypoxia conditions. However, there is no evidence of this association in a free-living population. OBJECTIVES We assessed the association between the altitude where each participant of a Spanish cohort (the SUN Project) was living and the incidence of overweight/obesity. METHODS The SUN Project is a dynamic, prospective, multipurpose cohort of Spanish university graduates with a retention rate of 89%. We included in the analysis 9 365 participants free of overweight/obesity at baseline. At the baseline questionnaire, participants reported their postal code and the time they had been living in their city/village. We imputed the altitude of each postal code according to the data of the Spanish National Cartographic Institute and categorized participants in tertiles. We used Cox regression models to adjust for potential confounding variables. RESULTS During a median follow-up of 10 years, we identified 2 156 incident cases of overweight/obesity. After adjusting for sex, age, time of residence at current city, baseline body mass index, physical activity, sedentarism and years of education (≤ 3 years, ≥ 4 years, Master/PhD), those participants in the third tertile (>456 m) exhibited a statistically significant 14% reduction in the risk of developing overweight/obesity in comparison to those in the first tertile (<124 m) (adjusted HR = 0.86; 95% CI: 0.77, 0.96). CONCLUSIONS Living in cities of higher altitude was inversely associated with the risk of developing overweight/obesity in a cohort of Spanish university graduates.
Collapse
Affiliation(s)
- Jesús Díaz-Gutiérrez
- University of Navarra, Department of Preventive Medicine and Public Health, School of Medicine, Pamplona, Spain
| | - Miguel Ángel Martínez-González
- University of Navarra, Department of Preventive Medicine and Public Health, School of Medicine, Pamplona, Spain
- IDISNA Navarra’s Health Research Institute, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Harvard TH Chan School of Public Health, Boston, United States of America
| | - Juan José Pons Izquierdo
- University of Navarra, Department of History, Art History, and Geography, School of Humanities and Social Sciences, Pamplona, Spain
| | - Pedro González-Muniesa
- IDISNA Navarra’s Health Research Institute, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- University of Navarra, Department of Nutrition and Food Sciences and Physiology, School of Pharmacy, Pamplona, Spain
| | - J. Alfredo Martínez
- IDISNA Navarra’s Health Research Institute, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- University of Navarra, Department of Nutrition and Food Sciences and Physiology, School of Pharmacy, Pamplona, Spain
| | - Maira Bes-Rastrollo
- University of Navarra, Department of Preventive Medicine and Public Health, School of Medicine, Pamplona, Spain
- IDISNA Navarra’s Health Research Institute, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
29
|
Debevec T, Simpson EJ, Mekjavic IB, Eiken O, Macdonald IA. Effects of prolonged hypoxia and bed rest on appetite and appetite-related hormones. Appetite 2016; 107:28-37. [PMID: 27395413 DOI: 10.1016/j.appet.2016.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/02/2016] [Accepted: 07/04/2016] [Indexed: 12/25/2022]
Abstract
Environmental hypoxia and inactivity have both been shown to modulate appetite. To elucidate the independent and combined effects of hypoxia and bed rest-induced inactivity on appetite-related hormones and subjective appetite, eleven healthy, non-obese males underwent three experimental interventions in a cross-over and randomized fashion: 1) Hypoxic confinement combined with daily moderate-intensity exercise (HAMB, FiO2 = 0.141 ± 0.004; PiO2 = 90.0 ± 0.4 mmHg) 2) Bed rest in normoxia (NBR, FiO2 = 0.209; PiO2 = 133.1 ± 0.3 mmHg) and 3) Bed rest in hypoxia (HBR, FiO2 = 0.141 ± 0.004; PiO2 = 90.0 ± 0.4 mmHg). A mixed-meal tolerance test (MTT), followed by an ad libitum meal were performed before (Pre) and after 16-days (Post) of each intervention. Composite satiety scores (CSS) during the MTT were calculated from visual analogue scores, while fasting and postprandial concentrations of total ghrelin, peptide YY (PYY), glucagon-like peptide-1 (GLP-1) and leptin were quantified from arterialized-venous samples. Postprandial CSS were significantly lower at Post compared to Pre in NBR only (P < 0.05) with no differences observed in ad libitum meal intakes. Postprandial concentrations and incremental area under the curve (AUC) for total ghrelin and PYY were unchanged following all interventions. Postprandial GLP-1 concentrations were only reduced at Post following HBR (P < 0.05) with resulting AUC changes being significantly lower compared to HAMB (P < 0.01). Fasting leptin was reduced following HAMB (P < 0.05) with no changes observed following NBR and HBR. These findings suggest that independently, 16-day of simulated altitude exposure (∼4000 m) and bed rest-induced inactivity do not significantly alter subjective appetite or ad libitum intakes. The measured appetite-related hormones following both HAMB and HBR point to a situation of hypoxia-induced appetite stimulation, although this did not reflect in higher ad libitum intakes. CLINICAL TRIAL REGISTRATION NUMBER NCT02293772.
Collapse
Affiliation(s)
- Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.
| | - Elizabeth J Simpson
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham Medical School, School of Life Sciences, Queen's Medical Centre, Nottingham, United Kingdom
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Stockholm, Sweden
| | - Ian A Macdonald
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham Medical School, School of Life Sciences, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
30
|
Solas M, Milagro FI, Martínez-Urbistondo D, Ramirez MJ, Martínez JA. Precision Obesity Treatments Including Pharmacogenetic and Nutrigenetic Approaches. Trends Pharmacol Sci 2016; 37:575-593. [DOI: 10.1016/j.tips.2016.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 01/04/2023]
|
31
|
González-Muniesa P, Garcia-Gerique L, Quintero P, Arriaza S, Lopez-Pascual A, Martinez JA. Effects of Hyperoxia on Oxygen-Related Inflammation with a Focus on Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:8957827. [PMID: 26697142 PMCID: PMC4678090 DOI: 10.1155/2016/8957827] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/29/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Several studies have shown a pathological oxygenation (hypoxia/hyperoxia) on the adipose tissue in obese subjects. Additionally, the excess of body weight is often accompanied by a state of chronic low-degree inflammation. The inflammation phenomenon is a complex biological response mounted by tissues to combat injurious stimuli in order to maintain cell homeostasis. Furthermore, it is believed that the abnormal oxygen partial pressure occurring in adipose tissue is involved in triggering inflammatory processes. In this context, oxygen is used in modern medicine as a treatment for several diseases with inflammatory components. Thus, hyperbaric oxygenation has demonstrated beneficial effects, apart from improving local tissue oxygenation, on promoting angiogenesis, wound healing, providing neuroprotection, facilitating glucose uptake, appetite, and others. Nevertheless, an excessive hyperoxia exposure can lead to deleterious effects such as oxidative stress, pulmonary edema, and maybe inflammation. Interestingly, some of these favorable outcomes occur under high and low oxygen concentrations. Hereby, we review a potential therapeutic approach to the management of obesity as well as the oxygen-related inflammation accompanying expanded adipose tissue, based on elevated oxygen concentrations. To conclude, we highlight at the end of this review some areas that need further clarification.
Collapse
Affiliation(s)
- Pedro González-Muniesa
- Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain
| | - Laura Garcia-Gerique
- Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Pablo Quintero
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Suyen Arriaza
- Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Amaya Lopez-Pascual
- Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - J. Alfredo Martinez
- Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain
| |
Collapse
|
32
|
Impact of intermittent hypoxia and exercise on blood pressure and metabolic features from obese subjects suffering sleep apnea-hypopnea syndrome. J Physiol Biochem 2015; 71:589-99. [DOI: 10.1007/s13105-015-0410-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/30/2015] [Indexed: 02/03/2023]
|
33
|
Kong Z, Zang Y, Hu Y. Author response to: hypoxia a consequence of obesity and also a tool to treat excessive weight loss. Sleep Breath 2015; 19:9-10. [DOI: 10.1007/s11325-014-0981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 11/24/2022]
|
34
|
Interleukin-6 is a better metabolic biomarker than interleukin-18 in young healthy adults. J Physiol Biochem 2015; 71:527-35. [DOI: 10.1007/s13105-015-0391-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
|
35
|
The application of maximal heart rate predictive equations in hypoxic conditions. Eur J Appl Physiol 2014; 115:277-84. [PMID: 25294663 DOI: 10.1007/s00421-014-3007-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Peak heart rate (HRpeak) is a common tool used in exercise prescription for groups in which maximal exercise intensity is contraindicated; however, the application of this method in normobaric hypoxia is unknown. Therefore, this study investigated the response of HRpeak and the application of predictive HRpeak equations to prescribe exercise intensity in acute normobaric hypoxia. Results were used to examine whether age-derived HRpeak predictive equations are valid in hypoxic conditions. METHODS Fifteen untrained (eight men) volunteers (age 22 ± 2 years; peak rate of oxygen consumption 46.3 ± 7.0 ml kg(-1) min(-1)) completed incremental cycle ergometer tests (randomised order) to measure HRpeak at sea-level (SL (ambient inspiratory oxygen fraction (FIO2) 0.209)) and four normobaric hypoxic conditions FIO2: 0.185, 0.165, 0.142, 0.125 (≈1,000-4,000 m). RESULTS HRpeak was similar across all conditions (SL, 182 ± 13; 0.185, 178 ± 11; 0.165, 177 ± 9; 0.142, 178 ± 9; 0.125, 175 ± 10 b min(-1)) despite a reduction in oxygen saturation with increasing hypoxia (SL, 95 ± 5; 0.185, 95 ± 2; 0.165, 92 ± 2; 0.142, 88 ± 3; 0.125, 82 ± 4 %; P ≤ 0.05). The HRpeak was overestimated by all equations compared to the measured value (P < 0.05). Four equations overestimated HRpeak in all conditions (P < 0.01); two in four conditions (0.185, 0.165, 0.142, 0.125; P < 0.01); and two in three conditions (0.165, 0.142, 0.125; P < 0.01). CONCLUSION The overestimation of HRpeak by commonly used age-derived predictive equations in normobaric hypoxic conditions suggests that despite possible contraindications researchers should directly measure HRpeak whenever possible if it is to be used to prescribe exercise intensities.
Collapse
|
36
|
Rahtu-Korpela L, Karsikas S, Hörkkö S, Blanco Sequeiros R, Lammentausta E, Mäkelä KA, Herzig KH, Walkinshaw G, Kivirikko KI, Myllyharju J, Serpi R, Koivunen P. HIF prolyl 4-hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction. Diabetes 2014; 63:3324-33. [PMID: 24789921 DOI: 10.2337/db14-0472] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Obesity is a major public health problem, predisposing subjects to metabolic syndrome, type 2 diabetes, and cardiovascular diseases. Specific prolyl 4-hydroxylases (P4Hs) regulate the stability of the hypoxia-inducible factor (HIF), a potent governor of metabolism, with isoenzyme 2 being the main regulator. We investigated whether HIF-P4H-2 inhibition could be used to treat obesity and its consequences. Hif-p4h-2-deficient mice, whether fed normal chow or a high-fat diet, had less adipose tissue, smaller adipocytes, and less adipose tissue inflammation than their littermates. They also had improved glucose tolerance and insulin sensitivity. Furthermore, the mRNA levels of the HIF-1 targets glucose transporters, glycolytic enzymes, and pyruvate dehydrogenase kinase-1 were increased in their tissues, whereas acetyl-CoA concentration was decreased. The hepatic mRNA level of the HIF-2 target insulin receptor substrate-2 was higher, whereas that of two key enzymes of fatty acid synthesis was lower. Serum cholesterol levels and de novo lipid synthesis were decreased, and the mice were protected against hepatic steatosis. Oral administration of an HIF-P4H inhibitor, FG-4497, to wild-type mice with metabolic dysfunction phenocopied these beneficial effects. HIF-P4H-2 inhibition may be a novel therapy that not only protects against the development of obesity and its consequences but also reverses these conditions.
Collapse
Affiliation(s)
- Lea Rahtu-Korpela
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | - Sara Karsikas
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | - Sohvi Hörkkö
- Nordlab Oulu, Oulu University Hospital, FIN-90220 Oulu, Finland Department of Medical Microbiology and Immunology, Medical Research Center, University of Oulu, FIN-90014 Oulu, Finland
| | - Roberto Blanco Sequeiros
- Department of Radiology, Oulu University Hospital and University of Oulu, FIN-90029 Oulu, Finland
| | - Eveliina Lammentausta
- Department of Radiology, Oulu University Hospital and University of Oulu, FIN-90029 Oulu, Finland
| | - Kari A Mäkelä
- Biocenter Oulu, Department of Physiology, University of Oulu, FIN-90014 Oulu, Finland
| | - Karl-Heinz Herzig
- Biocenter Oulu, Department of Physiology, University of Oulu, FIN-90014 Oulu, Finland
| | | | - Kari I Kivirikko
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| |
Collapse
|
37
|
Debevec T, Bali TC, Simpson EJ, Macdonald IA, Eiken O, Mekjavic IB. Separate and combined effects of 21-day bed rest and hypoxic confinement on body composition. Eur J Appl Physiol 2014; 114:2411-25. [PMID: 25091855 DOI: 10.1007/s00421-014-2963-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE This study tested the hypothesis that hypoxia exacerbates reductions in body mass observed during unloading. METHODS To discern the separate and combined effects of simulated microgravity and hypoxia, 11 healthy males underwent three 21-day campaigns in a counterbalanced fashion: (1) normoxic bed rest (NBR; FiO₂ = 0.209; PiO₂ = 133.1 ± 0.3); (2) hypoxic ambulatory confinement (HAMB; FiO₂ = 0.141 ± 0.004; PiO₂ = 90.0 ± 0.4; ~4,000 m); and (3) hypoxic bed rest (HBR; FiO₂ = 0.141 ± 0.004; PiO₂ = 90.0 ± 0.4). The same dietary menu was applied in all campaigns. Targeted energy intakes were estimated individually using the Harris-Benedict equation taking into account whether the subjects were bedridden or ambulatory. Body mass and water balance were assessed throughout the campaigns. Whole body and regional body composition was determined before and after the campaigns using dual-energy X-ray absorptiometry. Before and during the campaigns, indirect calorimetry and visual analogue scores were employed to assess the resting energy expenditure (REE) and perceived appetite sensations, respectively. RESULTS Energy intakes were lower than targeted in all campaigns (NBR: -5%; HAMB: -14%; HBR: -6%; P < 0.01). Body mass significantly decreased following all campaigns (NBR: -3%; HAMB: -4%; HBR: -5%; P < 0.01). While fat mass was not significantly altered, the whole body fat free mass was reduced (NBR: -4%; HAMB: -5%; HBR: -5%; P < 0.01), secondary to lower limb fat-free mass reduction. Water balance was comparable between the campaigns. No changes were observed in REE and perceived appetite. CONCLUSIONS Exposure to simulated altitude of ~4,000 m does not seem to worsen the whole body mass and fat-free mass reductions or alter resting energy expenditure and appetite during a 21-day simulated microgravity.
Collapse
Affiliation(s)
- Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia,
| | | | | | | | | | | |
Collapse
|
38
|
González-Muniesa P, Quintero P, De Andrés J, Martínez JA. Hypoxia: a consequence of obesity and also a tool to treat excessive weight loss. Sleep Breath 2014; 19:7-8. [PMID: 24807116 DOI: 10.1007/s11325-014-0972-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/03/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Pedro González-Muniesa
- Centre for Nutrition Research/Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008, Pamplona, Spain
| | | | | | | |
Collapse
|
39
|
Gallagher CA, Willems MET, Lewis MP, Myers SD. Effect of acute normobaric hypoxia on the ventilatory threshold. Eur J Appl Physiol 2014; 114:1555-62. [DOI: 10.1007/s00421-014-2882-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/31/2014] [Indexed: 11/28/2022]
|
40
|
Voss JD, Allison DB, Webber BJ, Otto JL, Clark LL. Lower obesity rate during residence at high altitude among a military population with frequent migration: a quasi experimental model for investigating spatial causation. PLoS One 2014; 9:e93493. [PMID: 24740173 PMCID: PMC3989193 DOI: 10.1371/journal.pone.0093493] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/05/2014] [Indexed: 11/29/2022] Open
Abstract
We sought to evaluate whether residence at high altitude is associated with the development of obesity among those at increased risk of becoming obese. Obesity, a leading global health priority, is often refractory to care. A potentially novel intervention is hypoxia, which has demonstrated positive long-term metabolic effects in rats. Whether or not high altitude residence confers benefit in humans, however, remains unknown. Using a quasi-experimental, retrospective study design, we observed all outpatient medical encounters for overweight active component enlisted service members in the U.S. Army or Air Force from January 2006 to December 2012 who were stationed in the United States. We compared high altitude (>1.96 kilometers above sea level) duty assignment with low altitude (<0.98 kilometers). The outcome of interest was obesity related ICD-9 codes (278.00-01, V85.3x-V85.54) by Cox regression. We found service members had a lower hazard ratio (HR) of incident obesity diagnosis if stationed at high altitude as compared to low altitude (HR 0.59, 95% confidence interval [CI] 0.54–0.65; p<0.001). Using geographic distribution of obesity prevalence among civilians throughout the U.S. as a covariate (as measured by the Centers for Disease Control and Prevention and the REGARDS study) also predicted obesity onset among service members. In conclusion, high altitude residence predicts lower rates of new obesity diagnoses among overweight service members in the U.S. Army and Air Force. Future studies should assign exposure using randomization, clarify the mechanism(s) of this relationship, and assess the net balance of harms and benefits of high altitude on obesity prevention.
Collapse
Affiliation(s)
- Jameson D. Voss
- Epidemiology Consult Division, US Air Force School of Aerospace Medicine, Wright Patterson Air Force Base, Ohio, United States of America
- Department of Preventive Medicine, Uniformed Services University, Bethesda, Maryland, United States of America
- * E-mail:
| | - David B. Allison
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bryant J. Webber
- Department of Preventive Medicine, Uniformed Services University, Bethesda, Maryland, United States of America
- Trainee Health Surveillance, Joint Base San Antonio – Lackland, Lackland, Texas, United States of America
| | - Jean L. Otto
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Leslie L. Clark
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, United States of America
- General Dynamics Information Technology, Fairfax, Virginia, United States of America
| |
Collapse
|
41
|
Debevec T, McDonnell AC, Macdonald IA, Eiken O, Mekjavic IB. Whole body and regional body composition changes following 10-day hypoxic confinement and unloading–inactivity. Appl Physiol Nutr Metab 2014; 39:386-95. [DOI: 10.1139/apnm-2013-0278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Future planetary habitats will expose inhabitants to both reduced gravity and hypoxia. This study investigated the effects of short-term unloading and normobaric hypoxia on whole body and regional body composition (BC). Eleven healthy, recreationally active, male participants with a mean (SD) age of 24 (2) years and body mass index of 22.4 (3.2) kg·m−2 completed the following 3 10-day campaigns in a randomised, cross-over designed protocol: (i) hypoxic ambulatory confinement (HAMB; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), (ii) hypoxic bed rest (HBR; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), and (iii) normoxic bed rest (NBR; FIO2 = 0.209; PIO2 = 133.5 (0.7) mm Hg). Nutritional requirements were individually precalculated and the actual intake was monitored throughout the study protocol. Body mass, whole body, and regional BC were assessed before and after the campaigns using dual-energy X-ray absorptiometry. The calculated daily targeted energy intake values were 2071 (170) kcal for HBR and NBR and 2417 (200) kcal for HAMB. In both HBR and NBR campaigns the actual energy intake was within the targeted level, whereas in the HAMB the intake was lower than targeted (–8%, p < 0.05). Body mass significantly decreased in all 3 campaigns (–2.1%, –2.8%, and –2.0% for HAMB, HBR, and NBR, respectively; p < 0.05), secondary to a significant decrease in lean mass (–3.8%, –3.8%, –4.3% for HAMB, HBR, and NBR, respectively; p < 0.05) along with a slight, albeit not significant, increase in fat mass. The same trend was observed in the regional BC regardless of the region and the campaign. These results demonstrate that, hypoxia per se, does not seem to alter whole body and regional BC during short-term bed rest.
Collapse
Affiliation(s)
- Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Adam C. McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Ian A. Macdonald
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham Medical School, School of Life Sciences, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Ola Eiken
- Department of Environmental Physiology, School of Technology and Health, KTH Royal Institute of Technology, Berzelius v. 13, Stockholm, Sweden
| | - Igor B. Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
42
|
GARCIA-DIAZ DF, LOPEZ-LEGARREA P, QUINTERO P, MARTINEZ JA. Vitamin C in the Treatment and/or Prevention of Obesity. J Nutr Sci Vitaminol (Tokyo) 2014; 60:367-79. [DOI: 10.3177/jnsv.60.367] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Pablo QUINTERO
- Department of Gastroenterology, School of Medicine, Pontifical Catholic University of Chile
| | - Jose Alfredo MARTINEZ
- CIBERobn. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III
- Department of Food Sciences and Physiology, University of Navarra
| |
Collapse
|
43
|
Kong Z, Zang Y, Hu Y. Normobaric hypoxia training causes more weight loss than normoxia training after a 4-week residential camp for obese young adults. Sleep Breath 2013; 18:591-7. [PMID: 24318688 DOI: 10.1007/s11325-013-0922-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intermittent normobaric hypoxia training, an alternative to altitude training for athletes, may be beneficial to treat overweight and obesity. The purpose of this study is to investigate whether normobaric hypoxia training combined with low-caloric diet has the additive effect on weight loss compared with normoxia training in obese young adults. METHODS Twenty-two subjects (age 17-25 years, body mass index >27.5 kg/m(2)) were recruited for a 4-week residential camp of weight loss with low caloric intake, and trained at 60-70% maximal heart rate of aerobics and 40-50% of maximal strength of training. They were randomly assigned to either a normobaric hypoxia (HT, FiO2 = 16.4-14.5 %) or normoxia training group (NT, FiO2 = 21%), and subjects in HT and NT groups experienced weekly 16-h normoxia and 6-h hypoxia or 22-h normoxia training, respectively. Body composition, resting blood pressure (BP) and brachial-ankle pulse wave velocity (baPWV) were determined before and after the intervention. RESULTS Weight loss was found in HT (-6.9 kg or -7.0%, p < 0.01) and NT groups (-4.3 kg or -4.2%, p < 0.01) significantly, and the former lost more weight than the latter (p < 0.01). Hypoxia training improved systolic BP (-7.6%) and mean BP (-7.1%) significantly (p < 0.05) despite having no effect on baPWV. CONCLUSION Four weeks of normobaric hypoxia residential training with low caloric diet has an additive improvement on weight loss. It seems that normobaric hypoxia training might be a promising method to treat obesity.
Collapse
Affiliation(s)
- Zhaowei Kong
- Faculty of Education, University of Macau, Avenida Padre Tomas Pereira, Taipa, Macao, China,
| | | | | |
Collapse
|
44
|
Milagro F, Mansego M, De Miguel C, Martínez J. Dietary factors, epigenetic modifications and obesity outcomes: Progresses and perspectives. Mol Aspects Med 2013; 34:782-812. [DOI: 10.1016/j.mam.2012.06.010] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/27/2012] [Indexed: 12/31/2022]
|
45
|
Matsuura H, Ichiki T, Inoue E, Nomura M, Miyazaki R, Hashimoto T, Ikeda J, Takayanagi R, Fong GH, Sunagawa K. Prolyl Hydroxylase Domain Protein 2 Plays a Critical Role in Diet-Induced Obesity and Glucose Intolerance. Circulation 2013; 127:2078-87. [DOI: 10.1161/circulationaha.113.001742] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hirohide Matsuura
- From the Departments of Cardiovascular Medicine (H.M., T.I., E.I., R.M., T.H., J.I., K.S.), Advanced Therapeutics for Cardiovascular Diseases (T.I.), and Medicine and Bioregulatory Science (M.N., R.T.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; and Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington (G.-H.F.)
| | - Toshihiro Ichiki
- From the Departments of Cardiovascular Medicine (H.M., T.I., E.I., R.M., T.H., J.I., K.S.), Advanced Therapeutics for Cardiovascular Diseases (T.I.), and Medicine and Bioregulatory Science (M.N., R.T.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; and Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington (G.-H.F.)
| | - Eriko Inoue
- From the Departments of Cardiovascular Medicine (H.M., T.I., E.I., R.M., T.H., J.I., K.S.), Advanced Therapeutics for Cardiovascular Diseases (T.I.), and Medicine and Bioregulatory Science (M.N., R.T.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; and Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington (G.-H.F.)
| | - Masatoshi Nomura
- From the Departments of Cardiovascular Medicine (H.M., T.I., E.I., R.M., T.H., J.I., K.S.), Advanced Therapeutics for Cardiovascular Diseases (T.I.), and Medicine and Bioregulatory Science (M.N., R.T.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; and Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington (G.-H.F.)
| | - Ryohei Miyazaki
- From the Departments of Cardiovascular Medicine (H.M., T.I., E.I., R.M., T.H., J.I., K.S.), Advanced Therapeutics for Cardiovascular Diseases (T.I.), and Medicine and Bioregulatory Science (M.N., R.T.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; and Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington (G.-H.F.)
| | - Toru Hashimoto
- From the Departments of Cardiovascular Medicine (H.M., T.I., E.I., R.M., T.H., J.I., K.S.), Advanced Therapeutics for Cardiovascular Diseases (T.I.), and Medicine and Bioregulatory Science (M.N., R.T.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; and Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington (G.-H.F.)
| | - Jiro Ikeda
- From the Departments of Cardiovascular Medicine (H.M., T.I., E.I., R.M., T.H., J.I., K.S.), Advanced Therapeutics for Cardiovascular Diseases (T.I.), and Medicine and Bioregulatory Science (M.N., R.T.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; and Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington (G.-H.F.)
| | - Ryoichi Takayanagi
- From the Departments of Cardiovascular Medicine (H.M., T.I., E.I., R.M., T.H., J.I., K.S.), Advanced Therapeutics for Cardiovascular Diseases (T.I.), and Medicine and Bioregulatory Science (M.N., R.T.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; and Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington (G.-H.F.)
| | - Guo-Hua Fong
- From the Departments of Cardiovascular Medicine (H.M., T.I., E.I., R.M., T.H., J.I., K.S.), Advanced Therapeutics for Cardiovascular Diseases (T.I.), and Medicine and Bioregulatory Science (M.N., R.T.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; and Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington (G.-H.F.)
| | - Kenji Sunagawa
- From the Departments of Cardiovascular Medicine (H.M., T.I., E.I., R.M., T.H., J.I., K.S.), Advanced Therapeutics for Cardiovascular Diseases (T.I.), and Medicine and Bioregulatory Science (M.N., R.T.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; and Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington (G.-H.F.)
| |
Collapse
|
46
|
Yang H, An BS, Choi KC, Jeung EB. Change of genes in calcium transport channels caused by hypoxic stress in the placenta, duodenum, and kidney of pregnant rats. Biol Reprod 2013; 88:30. [PMID: 23255337 DOI: 10.1095/biolreprod.112.103705] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Preeclampsia is a pregnancy-specific disease characterized by concurrent development of hypertension, proteinuria, and oxidative stress in the placenta. In this study, we induced hypoxic stress in rats during pregnancy to reproduce physiological conditions associated with preeclampsia. The maternal weight of hypoxic pregnant rats was lower than that of normoxic animals. The level of calcium ions were also increased in urine collected from the hypoxic animals. In contrast, urinary concentrations of sodium, chloride, and potassium ions declined in hypoxic rats, and developed to proteinuria. The expression of genes known as two biomarkers, sFLT1 (for preeclampsia) and HIF-1alpha (for hypoxia), were highly induced in the placenta, duodenum, and kidney by hypoxic stress. The overexpression of sFLT1 and HIF-1alpha demonstrated that our experimental conditions closely mimicked ones that are associated with preeclampsia. In the present study, we measured the expression of calcium transporters (TRPV5, TRPV6, PMCA1, NCKX3, NCX1, and CaBP-9k) in the placenta, duodenum, and kidney under hypoxic conditions on Gestational Day 19.5 in rats. Placental TRPV5, TRPV6, and PMCA1 expression was up-regulated in the hypoxic rats, whereas the levels of NCX1 and CaBP-9k were unchanged. In addition, NCKX3 expression was increased in the placenta of hypoxic rats. Duodenal expression of CaBP-9k, TRPV5, TRPV 6, and PMCA1 was decreased in the hypoxic rats, whereas levels of NCXs were not altered. Renal expression of NCKX3 and TRPV6 was increased, whereas NCX1 was decreased in the hypoxic rats compared to the normoxic controls. Taken together, these results indicate that physiological changes observed in the hypoxic rats were similar to ones associated with preeclampsia. Expression of calcium transport genes in the placenta, duodenum, and kidney perturbed by hypoxic stress during pregnancy may cause calcium loss in the urine, and thereby induce calcium-deficient characteristics of preeclampsia.
Collapse
Affiliation(s)
- Hyun Yang
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | | | | | | |
Collapse
|
47
|
Association of elevation, urbanization and ambient temperature with obesity prevalence in the United States. Int J Obes (Lond) 2013; 37:1407-12. [PMID: 23357956 DOI: 10.1038/ijo.2013.5] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/10/2012] [Accepted: 12/19/2012] [Indexed: 01/25/2023]
Abstract
BACKGROUND The macrogeographic distribution of obesity in the United States, including the association between elevation and body mass index (BMI), is largely unexplained. This study examines the relationship between obesity and elevation, ambient temperature and urbanization. METHODS AND FINDINGS Data from a cross-sectional, nationally representative sample of 422603 US adults containing BMI, behavioral (diet, physical activity, smoking) and demographic (age, sex, race/ethnicity, education, employment, income) variables from the 2011 Behavioral Risk Factor Surveillance System were merged with elevation and temperature data from WorldClim and with urbanization data from the US Department of Agriculture. There was an approximately parabolic relationship between mean annual temperature and obesity, with maximum prevalence in counties with average temperatures near 18 °C. Urbanization and obesity prevalence exhibited an inverse relationship (30.9% in rural or nonmetro counties, 29.2% in metro counties with <250000 people, 28.1% in counties with population from 250000 to 1 million and 26.2% in counties with >1 million). After controlling for urbanization, temperature category and behavioral and demographic factors, male and female Americans living <500 m above sea level had 5.1 (95% confidence interval (CI) 2.7-9.5) and 3.9 (95% CI 1.6-9.3) times the odds of obesity, respectively, as compared with counterparts living ≥ 3000 m above sea level. CONCLUSIONS Obesity prevalence in the United States is inversely associated with elevation and urbanization, after adjusting for temperature, diet, physical activity, smoking and demographic factors.
Collapse
|
48
|
Tissot van Patot MC, Ebensperger G, Gassmann M, Llanos AJ. The Hypoxic Placenta. High Alt Med Biol 2012; 13:176-84. [DOI: 10.1089/ham.2012.1046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Martha C. Tissot van Patot
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland
| | - German Ebensperger
- Unidad de Fisiología y Fisiopatología Perinatal (UFFP), Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago-Arica-Putre, Providencia, Santiago, Chile
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Aníbal J. Llanos
- Unidad de Fisiología y Fisiopatología Perinatal (UFFP), Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago-Arica-Putre, Providencia, Santiago, Chile
| |
Collapse
|
49
|
Bernier NJ, Gorissen M, Flik G. Differential effects of chronic hypoxia and feed restriction on the expression of leptin and its receptor, food intake regulation and the endocrine stress response in common carp. J Exp Biol 2012; 215:2273-82. [DOI: 10.1242/jeb.066183] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Appetite suppression is a common response to hypoxia in fish that confers significant energy savings. Yet little is known about the endocrine signals involved in the regulation of food intake during chronic hypoxia. Thus, we assessed the impact of chronic hypoxia on food intake, the expression of the potent anorexigenic signal leptin and its receptor (lepr), the mRNA levels of key hypothalamic appetite-regulating genes, and the activity of the hypothalamic–pituitary–interrenal (HPI) axis in common carp, Cyprinus carpio. Fish exposed to 10% O2 saturation for 8 days were chronically anorexic and consumed on average 79% less food than normoxic controls. Hypoxia also elicited gradual and parallel increases in the expression of liver leptin-a-I, leptin-a-II, lepr and erythropoietin, a known hypoxia-responsive gene. In contrast, the liver mRNA levels of all four genes remained unchanged in normoxic fish pair-fed to the hypoxia treatment. In the hypothalamus, expression of the appetite-regulating genes were consistent with an inhibition and stimulation of hunger in the hypoxic and pair-fed fish, respectively, and reduced feed intake led to a decrease in lepr. Although both treatments elicited similar delayed increases in plasma cortisol, they were characterized by distinct HPI axis effector transcript levels and a marked differential increase in pituitary lepr expression. Together, these results show that a reduction in O2 availability, and not feed intake, stimulates liver leptin-a expression in common carp and suggest that this pleiotropic cytokine is involved in the regulation of appetite and the endocrine stress response during chronic hypoxia.
Collapse
Affiliation(s)
- Nicholas J. Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Marnix Gorissen
- Department of Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Gert Flik
- Department of Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
50
|
Quintero P, González-Muniesa P, García-Díaz DF, Martínez JA. Effects of hyperoxia exposure on metabolic markers and gene expression in 3T3-L1 adipocytes. J Physiol Biochem 2012; 68:663-9. [PMID: 22535284 DOI: 10.1007/s13105-012-0169-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/30/2012] [Indexed: 12/31/2022]
Abstract
Adipose tissue often becomes poorly oxygenated in obese subjects. This feature may provide cellular mechanisms involving chronic inflammation processes such as the release of pro-inflammatory cytokines and macrophage infiltration. In this context, the purpose of the present study was to determine whether a hyperoxia exposure on mature adipocytes may influence the expression of some adipokines and involve favorable changes in specific metabolic variables. Thus, 3T3-L1 adipocytes (14 days differentiated) were treated with 95 % oxygen for 24 h. Cell viability, intra and extracellular reactive oxygen species (ROS) content, glucose uptake, as well as lactate and glycerol concentrations were measured in the culture media. Also, mRNA levels of hypoxia-inducible factor (HIF)-1α, leptin, interleukin (IL)-6, monocyte chemotactic protein (MCP)-1, peroxisome proliferator-activated receptor (PPAR)-γ, adiponectin, and angiopoietin-related protein (ANGPTL)4 were analyzed. Hyperoxia treatment increased intra and extracellular ROS content, reduced glucose uptake and lactate release and increased glycerol release. Additionally, a higher oxygen tension led to an upregulation of the expression of IL-6, MCP-1, and PPAR-γ, while ANGPTL4 was downregulated in the hyperoxia group with respect to control. The present data shows that hyperoxia treatment seems to produce an inflammatory response due to the release of ROS and the upregulation of pro-inflammatory adipokines, such as IL-6 and MCP-1. On the other hand, hyperoxia may have an indirect effect on insulin sensitivity due to the upregulation of PPAR-γ signaling as well as a possible modulation of both glucose and lipid metabolic markers. To our knowledge, this is the first study analyzing the effect of hyperoxia in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- P Quintero
- Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | | | | | | |
Collapse
|