1
|
Kieliszek M, Sapazhenkava K. The Promising Role of Selenium and Yeast in the Fight Against Protein Amyloidosis. Biol Trace Elem Res 2024:10.1007/s12011-024-04245-x. [PMID: 38829477 DOI: 10.1007/s12011-024-04245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
In recent years, increasing attention has been paid to research on diseases related to the deposition of misfolded proteins (amyloids) in various organs. Moreover, modern scientists emphasise the importance of selenium as a bioelement necessary for the proper functioning of living organisms. The inorganic form of selenium-sodium selenite (redox-active)-can prevent the formation of an insoluble polymer in proteins. It is very important to undertake tasks aimed at understanding the mechanisms of action of this element in inhibiting the formation of various types of amyloid. Furthermore, yeast cells play an important role in this matter as a eukaryotic model organism, which is intensively used in molecular research on protein amyloidosis. Due to the lack of appropriate treatment in the general population, the problem of amyloidosis remains unsolved. This extracellular accumulation of amyloid is one of the main factors responsible for the occurrence of Alzheimer's disease. The review presented here contains scientific information discussing a brief description of the possibility of amyloid formation in cells and the use of selenium as a factor preventing the formation of these protein aggregates. Recent studies have shown that the yeast model can be successfully used as a eukaryotic organism in biotechnological research aimed at understanding the essence of the entire amyloidosis process. Understanding the mechanisms that regulate the reaction of yeast to selenium and the phenomenon of amyloidosis is important in the aetiology and pathogenesis of various disease states. Therefore, it is imperative to conduct further research and analysis aimed at explaining and confirming the role of selenium in the processes of protein misfolding disorders. The rest of the article discusses the characteristics of food protein amyloidosis and their use in the food industry. During such tests, their toxicity is checked because not all food proteins can produce amyloid that is toxic to cells. It should also be noted that a moderate diet is beneficial for the corresponding disease relief caused by amyloidosis.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland.
| | - Katsiaryna Sapazhenkava
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland
| |
Collapse
|
2
|
Madaan K, Sharma S, Kalia A. Effect of selenium and zinc biofortification on the biochemical parameters of Pleurotus spp. under submerged and solid-state fermentation. J Trace Elem Med Biol 2024; 82:127365. [PMID: 38171269 DOI: 10.1016/j.jtemb.2023.127365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Pleurotus has a remarkable nutritional and nutraceutical profile due to mineral mobilization and accumulation abilities from the substrate. The present study aimed to observe the effect of single and dual supplementations Se and Zn on biochemical parameters of P. florida, P. sajor caju and P. djamor. Also, the bioaccumulation of the trace elements in fortified mushrooms was estimated. METHODS Biomass production and radial growth rate were observed on Se and Zn supplemented broth and agar based medium. Furthermore, the influence of Se and Zn supplementation was recorded on the fruit body yield. The colorimetric assays were employed to estimate total soluble protein, total phenol and total flavonoid contents. The antioxidant activity was assayed as DPPH radical scavenging test. While, ICP-AES was performed to estimate the variation in the Zn and Se content of the fruit bodies. RESULTS The Se supplementation at low rate resulted in improvement in the radial growth rate and biomass production for P. sajor caju. For solid-state fermentation, a better yield was obtained with inorganic salt supplementation in comparison to organically enriched Se straw. The maximum total soluble protein content and total flavonoid content were observed in fruit bodies of P. sajor caju at 4 mg L -1 of Se and Se-Zn respectively. Pleurotus djamor exhibited the highest total phenolic content on Zn supplementation (10 mg L-1). Improved antioxidant potential was recorded with dual supplementations. Salt supplementations caused shrinkage, distortion of the fungal hyphae, and decreased basidiospores with significant amelioration in elemental composition in fortified mushrooms. CONCLUSION The inorganic salt supplementation increased the biochemical potential of Pleurotus spp. in comparison to organically enriched substrate which could further be used for the development of dietary supplements.
Collapse
Affiliation(s)
- Kashish Madaan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Shivani Sharma
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Anu Kalia
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab, India.
| |
Collapse
|
3
|
Cantero M, Cvirkaite-Krupovic V, Krupovic M, de Pablo PJ. Mechanical tomography of an archaeal lemon-shaped virus reveals membrane-like fluidity of the capsid and liquid nucleoprotein cargo. Proc Natl Acad Sci U S A 2023; 120:e2307717120. [PMID: 37824526 PMCID: PMC10589707 DOI: 10.1073/pnas.2307717120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
Archaeal lemon-shaped viruses have unique helical capsids composed of highly hydrophobic protein strands which can slide past each other resulting in remarkable morphological reorganization. Here, using atomic force microscopy, we explore the biomechanical properties of the lemon-shaped virions of Sulfolobus monocaudavirus 1 (SMV1), a double-stranded DNA virus which infects hyperthermophilic (~80 °C) and acidophilic (pH ~ 2) archaea. Our results reveal that SMV1 virions are extremely soft and withstand repeated extensive deformations, reaching remarkable strains of 80% during multiple cycles of consecutive mechanical assaults, yet showing scarce traces of disruption. SMV1 virions can reversibly collapse wall-to-wall, reducing their volume by ~90%. Beyond revealing the exceptional malleability of the SMV1 protein shell, our data also suggest a fluid-like nucleoprotein cargo which can flow inside the capsid, resisting and accommodating mechanical deformations without further alteration. Our experiments suggest a packing fraction of the virus core to be as low as 11%, with the amount of the accessory proteins almost four times exceeding that of the viral genome. Our findings indicate that SMV1 protein capsid displays biomechanical properties of lipid membranes, which is not found among protein capsids of other viruses. The remarkable malleability and fluidity of the SMV1 virions are likely necessary for the structural transformations during the infection and adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- Miguel Cantero
- Departamento de Física de la Materia Condensada C03, Universidad Autónoma de Madrid, Madrid28049, Spain
| | | | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris75015, France
| | - Pedro J. de Pablo
- Departamento de Física de la Materia Condensada C03, Universidad Autónoma de Madrid, Madrid28049, Spain
- Instituto de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid28049, Spain
| |
Collapse
|
4
|
Khurana A, Allawadhi P, Singh V, Khurana I, Yadav P, Sathua KB, Allwadhi S, Banothu AK, Navik U, Bharani KK. Antimicrobial and anti-viral effects of selenium nanoparticles and selenoprotein based strategies: COVID-19 and beyond. J Drug Deliv Sci Technol 2023; 86:104663. [PMID: 37362903 PMCID: PMC10249347 DOI: 10.1016/j.jddst.2023.104663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Deficiency of selenium (Se) has been described in a significant number of COVID-19 patients having a higher incidence of mortality, which makes it a pertinent issue to be addressed clinically for effective management of the COVID-19 pandemic. Se nanoparticles (SeNPs) provide a unique option for managing the havoc caused by the COVID-19 pandemic. SeNPs possess promising anti-inflammatory and anti-fibrotic effects by virtue of their nuclear factor kappa-light-chain-stimulator of activated B cells (NFκB), mitogen-activated protein kinase (MAPKs), and transforming growth factor-beta (TGF-β) modulatory activity. In addition, SeNPs possess remarkable immunomodulatory effects, making them a suitable option for supplementation with a much lower risk of toxicity compared to their elemental counterpart. Further, SeNPs have been shown to curtail viral and microbial infections, thus, making it a novel means to halt viral growth. In addition, it can be administered in the form of aerosol spray, direct injection, or infused thin-film transdermal patches to reduce the spread of this highly contagious viral infection. Moreover, a considerable decrease in the expression of selenoprotein along with enhanced expression of IL-6 in COVID-19 suggests a potential association among selenoprotein expression and COVID-19. In this review, we highlight the unique antimicrobial and antiviral properties of SeNPs and the immunomodulatory potential of selenoproteins. We provide the rationale behind their potentially interesting properties and further exploration in the context of microbial and viral infections. Further, the importance of selenoproteins and their role in maintaining a successful immune response along with their association to Se status is summarized.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kshirod Bihari Sathua
- Department of Pharmacology, College of Pharmaceutical Sciences, Konark Marine Drive Road, Puri, 752002, Odisha, India
| | - Sachin Allwadhi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| |
Collapse
|
5
|
Mesdaghinia E, Shahin F, Ghaderi A, Shahin D, Shariat M, Banafshe H. The Effect of Selenium Supplementation on Clinical Outcomes, Metabolic Profiles, and Pulsatility Index of the Uterine Artery in High-Risk Mothers in Terms of Preeclampsia Screening with Quadruple Test: a Randomized, Double-Blind, Placebo-Controlled Clinical Trial : Selenium and preeclampsia. Biol Trace Elem Res 2023; 201:567-576. [PMID: 35224710 PMCID: PMC8882395 DOI: 10.1007/s12011-022-03178-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
Abstract
Data on the effects of selenium (Se) supplementation on clinical outcomes, metabolic profiles, and pulsatility index (PI) in high-risk mothers in terms of preeclampsia (PE) screening with quadruple tests are scarce. This study evaluated the effects of Se supplementation on clinical outcomes, metabolic profiles, and uterine artery PI on Doppler ultrasound in high-risk mothers in terms of PE screening with quad marker. The current randomized, double-blind, placebo-controlled trial was conducted among 60 high-risk pregnant women screening for PE with quad tests. Participants were randomly allocated into two groups (30 participants each group), received either 200 µg/day Se supplements (as Se amino acid chelate) or placebo from 16 to 18 weeks of pregnancy for 12 weeks. Clinical outcomes, metabolic profiles, and uterine artery PI were assessed at baseline and at the end of trial. Se supplementation resulted in a significant elevation in serum Se levels (β 22.25 µg/dl; 95% CI, 18.3, 26.1; P < 0.001) compared with the placebo. Also, Se supplementation resulted in a significant elevation in total antioxidant capacity (β 82.88 mmol/L; 95% CI, 3.03, 162.73; P = 0.04), and total glutathione (β 71.35 µmol/L; 95% CI, 5.76, 136.94; P = 0.03), and a significant reduction in high-sensitivity C-reactive protein levels (β - 1.52; 95% CI, - 2.91, - 0.14; P = 0.03) compared with the placebo. Additionally, Se supplementation significantly decreased PI of the uterine artery in Doppler ultrasound (β - 0.09; 95% CI, - 0.14, - 0.04; P = 0.04), and a significant improvement in depression (β - 5.63; 95% CI, - 6.97, - 4.28; P < 0.001), anxiety (β - 1.99; 95% CI, - 2.56, - 1.42; P < 0.001), and sleep quality (β - 1.97; 95% CI, - 2.47, - 1.46; P < 0.001). Se supplementation for 12 weeks in high-risk pregnant women in terms of PE screening with quad marker had beneficial effects on serum Se level, some metabolic profiles, uterine artery PI, and mental health. IRCT Registration: htpp:// www.irct.ir ; identifier IRCT20200608047701N1.
Collapse
Affiliation(s)
- Elahe Mesdaghinia
- Department of Gynecology and Obstetrics, School of Medicine, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Farah Shahin
- Department of Gynecology and Obstetrics, School of Medicine, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine AND Clinical Research Development Unit, Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Mohammad Shariat
- Department of Pathology and Histology, Laboratory of Dr. Shariat, Kashan, Iran
| | - Hamidreza Banafshe
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
High Incidence of Thyroid Cancer in Southern Tuscany (Grosseto Province, Italy): Potential Role of Environmental Heavy Metal Pollution. Biomedicines 2023; 11:biomedicines11020298. [PMID: 36830835 PMCID: PMC9953479 DOI: 10.3390/biomedicines11020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The incidence of thyroid cancer (TC) in Italy is one of the highest in Europe, and the reason for this is unclear. The intra-country heterogeneity of TC incidence suggests the possibility of an overdiagnosis phenomenon, although environmental factors cannot be excluded. The aim of our study is to evaluate the TC incidence trend in southern Tuscany, Italy, an area with particular geological characteristics, where the pollution and subsequent deterioration of various environmental matrices with potentially toxic elements (heavy metals) introduced from either geological or anthropogenic (human activities) sources are documented. The Tuscany cancer registry (ISPRO) provided us with the number of cases and EU standardized incidence rates (IR) of TC patients for all three provinces of southeast Tuscany (Siena, Grosseto, Arezzo) during the period of 2013-2016. In addition, we examined the histological records of 226 TC patients. We observed that the TC incidence rates for both sexes observed in Grosseto Province were significantly higher than those observed in the other two provinces. The increase was mostly due to the papillary (PTC) histotype (92% of cases), which presented aggressive variants in 37% of PTCs and tumor diameters more than 1 cm in 71.3% of cases. We demonstrated a high incidence of TC in Grosseto province, especially among male patients, that could be influenced by the presence of environmental heavy metal pollution.
Collapse
|
7
|
Alshammari MK, Fatima W, Alraya RA, Khuzaim Alzahrani A, Kamal M, Alshammari RS, Alshammari SA, Alharbi LM, Alsubaie NS, Alosaimi RB, Asdaq SMB, Imran M. Selenium and COVID-19: A spotlight on the clinical trials, inventive compositions, and patent literature. J Infect Public Health 2022; 15:1225-1233. [PMID: 36265330 PMCID: PMC9529344 DOI: 10.1016/j.jiph.2022.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Selenium is an indispensable trace element for all living organisms. It is an essential structural component of several selenium-dependent enzymes, which support the human body's defense mechanism. Recently, the significance of selenium in preventing/treating COVID-19 has been documented in the literature. This review highlights the clinical studies, compositions, and patent literature on selenium to prevent/treat COVID-19. Selenium exerts its anti-COVID-19 action by reducing oxidative stress, declining the expression of the ACE-2 receptor, lowering the discharge of pro-inflammatory substances, and inhibiting the 3CLPro (main protease) and PLpro enzyme of SARS-CoV-2. The data of clinical studies, inventive compositions, and patent literature revealed that selenium monotherapy and its compositions with other nutritional supplements/drugs (vitamin, iron, zinc, copper, ferulic acid, resveratrol, spirulina, N-acetylcysteine, fish oil, many herbs, doxycycline, azithromycin, curcumin, quercetin, etc.,) might be practical to prevent/treat COVID-19. The studies have also suggested a correlation between COVID-19 and selenium deficiency. This indicates that adequate selenium supplementation may provide promising treatment outcomes in COVID-19 patients. The authors foresee the development and commercialization of Selenium-based compositions and dosage forms (spray, inhalers, control release dosage forms, etc.) to battle COVID-19. We also trust that numerous selenium-based compositions are yet to be explored. Accordingly, there is good scope for scientists to work on developing novel and inventive selenium-based compositions to fight against COVID-19. However, there is also a need to consider the narrow therapeutic window and chemical interaction of selenium before developing selenium-based compositions.
Collapse
Affiliation(s)
| | - Waseem Fatima
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia.
| | - Reem Ahmed Alraya
- Department of Pharmaceutical Care, First Health Cluster in Eastern Province, King Fahad Specialist Hospital, Dammam, Saudi Arabia.
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia.
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Reem Saud Alshammari
- Department of Pharmaceutical Care, Maternity and Children Hospital, Rafha 76321, Saudi Arabia.
| | - Sarah Ayad Alshammari
- Al-Dawaa Medical Services Company (DMSCO), Eastern Province, Al Khobar, Saudi Arabia.
| | | | - Norah Saad Alsubaie
- Sales Department, SPIMACO Addwaeih, Eastern Region Office, Al-Hofuf 9449, Saudi Arabia.
| | | | | | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia.
| |
Collapse
|
8
|
Deng H, Liu H, Yang Z, Bao M, Lin X, Han J, Qu C. Progress of Selenium Deficiency in the Pathogenesis of Arthropathies and Selenium Supplement for Their Treatment. Biol Trace Elem Res 2022; 200:4238-4249. [PMID: 34779998 DOI: 10.1007/s12011-021-03022-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
Selenium, an essential trace element for human health, exerts an indispensable effect in maintaining physiological homeostasis and functions in the body. Selenium deficiency is associated with arthropathies, such as Kashin-Beck disease, rheumatoid arthritis, osteoarthritis, and osteoporosis. Selenium deficiency mainly affects the normal physiological state of bone and cartilage through oxidative stress reaction and immune reaction. This review aims to explore the role of selenium deficiency and its mechanisms existed in the pathogenesis of arthropathies. Meanwhile, this review also summarized various experiments to highlight the crucial functions of selenium in maintaining the homeostasis of bone and cartilage.
Collapse
Affiliation(s)
- Huan Deng
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Haobiao Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Zhihao Yang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Miaoye Bao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xue Lin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jing Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Chengjuan Qu
- Department of Odontology, Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
9
|
Chen G, Yang F, Fan S, Jin H, Liao K, Li X, Liu GB, Liang J, Zhang J, Xu JF, Pi J. Immunomodulatory roles of selenium nanoparticles: Novel arts for potential immunotherapy strategy development. Front Immunol 2022; 13:956181. [PMID: 35958612 PMCID: PMC9361286 DOI: 10.3389/fimmu.2022.956181] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022] Open
Abstract
Current chemotherapy strategies used in clinic appear with lots of disadvantages due to the low targeting effects of drugs and strong side effects, which significantly restricts the drug potency, causes multiple dysfunctions in the body, and even drives the emergence of diseases. Immunotherapy has been proved to boost the body’s innate and adaptive defenses for more effective disease control and treatment. As a trace element, selenium plays vital roles in human health by regulating the antioxidant defense, enzyme activity, and immune response through various specific pathways. Profiting from novel nanotechnology, selenium nanoparticles have been widely developed to reveal great potential in anticancer, antibacterial, and anti-inflammation treatments. More interestingly, increasing evidence has also shown that functional selenium nanoparticles can be applied for potential immunotherapy, which would achieve more effective treatment efficiency as adjunctive therapy strategies for the current chemotherapy. By directly interacting with innate immune cells, such as macrophages, dendritic cells, and natural killer cells, selenium nanoparticles can regulate innate immunity to intervene disease developments, which were reported to boost the anticancer, anti-infection, and anti-inflammation treatments. Moreover, selenium nanoparticles can also activate and recover different T cells for adaptive immunity regulations to enhance their cytotoxic to combat cancer cells, indicating the potential of selenium nanoparticles for potential immunotherapy strategy development. Here, aiming to enhance our understanding of the potential immunotherapy strategy development based on Se NPs, this review will summarize the immunological regulation effects of selenium nanoparticles and the application of selenium nanoparticle-based immunotherapy strategies. Furthermore, we will discuss the advancing perspective of selenium nanoparticle-based potential immunotherapy as a kind of novel adjunctive therapy to enhance the efficiency of current chemotherapies and also introduce the current obstacles for the development of selenium nanoparticles for potential immunotherapy strategy development. This work is expected to promote the future research on selenium nanoparticle-assisted immunotherapy and finally benefit the more effective disease treatments against the threatening cancer and infectious and chronic diseases.
Collapse
Affiliation(s)
- Gengshi Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Kangsheng Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xuemeng Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Pathogenic Biology and Immunology, School of Basic Medicine, Guangdong Medical University, Dongguan, China
| | - Gan-Bin Liu
- Department of Respiration, Dongguan 6th Hospital, Dongguan, China
| | - Jing Liang
- Department of Respiration, Dongguan 6th Hospital, Dongguan, China
| | - Junai Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Junai Zhang, ; Jun-Fa Xu, ; Jiang Pi,
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Junai Zhang, ; Jun-Fa Xu, ; Jiang Pi,
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Junai Zhang, ; Jun-Fa Xu, ; Jiang Pi,
| |
Collapse
|
10
|
Wu C, Cui C, Zheng X, Wang J, Ma Z, Zhu P, Lin G, Zhang S, Guan W, Chen F. The Selenium Yeast vs Selenium Methionine on Cell Viability, Selenoprotein Profile and Redox Status via JNK/ P38 Pathway in Porcine Mammary Epithelial Cells. Front Vet Sci 2022; 9:850935. [PMID: 35433920 PMCID: PMC9011133 DOI: 10.3389/fvets.2022.850935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/14/2022] [Indexed: 01/04/2023] Open
Abstract
Comprehensive studies have been conducted to compare the effect of organic and inorganic selenium previously, but there is still limited knowledge about the difference between organic selenium (Se) from varied sources despite the widely use of organic Se in both animal and human being nutrient additives. In the present study, we systemically compared the effect of two different types of organic Se including selenium yeast (SeY) and selenium methionine (Sel-Met) on cell viability, selenoprotein transcriptome, and antioxidant status in porcine mammary epithelial cells (PMECs) and the results indicated that appropriate addition of SeY and Sel-Met both significantly promoted cell viability and up-regulated the mRNA expression of most selenopreoteins including DIOs, GPXs, and TrxRs family et al. (P < 0.05). Besides, two different sources of Se supplementation both greatly improved redox status with higher levels of T-AOC, SOD, and CAT (P < 0.05), while less content of MDA (P < 0.05), and reduced protein expression of cleaved-caspase-3 (P < 0.05) to mitigate cell apoptosis. Furthermore, the key proteins related to p38/JNK pathway including p38, p-p38, JNK, and p-JNK were apparently reduced in the groups with both of SeY and Sel-Met (P < 0.05). Interestingly we found that the changes induced by SeY supplementation in cell viability, selenoprotein transcriptome, antioxidative capacity, and anti-apoptosis were comprehensively greater compared with same levels addition of Sel-Met in PEMCs (P < 0.05). In conclusion, both SeY and Sel-Met promoted cell viability and attenuated cell apoptosis by regulating the selenoprotein expression and antioxidative capacity via p38/JNK signaling pathway in PMEC, but SeY has more efficient benefits than that of Sel-Met.
Collapse
Affiliation(s)
- Caichi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Chang Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ziwei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pengwei Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Lin
- Key Laboratory of Agrifood Safety and Quality, Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Wutai Guan
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- *Correspondence: Fang Chen
| |
Collapse
|
11
|
Karamalakova Y, Stefanov I, Georgieva E, Nikolova G. Pulmonary Protein Oxidation and Oxidative Stress Modulation by Lemna minor L. in Progressive Bleomycin-Induced Idiopathic Pulmonary Fibrosis. Antioxidants (Basel) 2022; 11:523. [PMID: 35326173 PMCID: PMC8944767 DOI: 10.3390/antiox11030523] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/23/2022] Open
Abstract
Bleomycin (BLM) administration is associated with multifunctional proteins inflammations and induction of idiopathic pulmonary fibrosis (IPF). Lemna minor L. extract, a free-floating monocot macrophyte possesses antioxidant and anti-inflammatory potential. The aim of the study was to examine the protective effect of L. minor extract on lung protein oxidation and oxidative stress modulation by BLM-induced pulmonary fibrosis in Balb/c mice. For this purpose, the protein carbonyl content, advanced glycation end product, nitroxide protein oxidation (5-MSL), and lipid peroxidation (as MDA and ROS), in lung cells were examined. The histological examinations, collagen deposition, and quantitative measurements of IL-1β, IL-6, and TNF in lung tissues and blood were investigated. Intraperitoneal, BLM administration (0.069 U/mL; 0.29 U/kg b.w.) for 33 days, caused IPF induction in Balb/c mice. Pulmonary combining therapy was administered with L. minor at dose 120 mg/mL (0.187 mg/kg b.w.). L. minor histologically ameliorated BLM induced IPF in lung tissues. L. minor significantly modulated (p < 0.05) BLM-alterations induced in lung hydroxyproline, carbonylated proteins, 5-MSL-protein oxidation. Oxidative stress decreased levels in antioxidant enzymatic and non-enzymatic systems in the lung were significantly regulated (p < 0.05) by L. minor. L. minor decreased the IL-1β, IL-6, and TNF-α expression in lung tissues and plasma. The L. minor improves the preventive effect/defense response in specific pulmonary protein oxidation, lipid peroxidation, ROS identifications, and cytokine modulation by BLM-induced chronic inflammations, and could be a good antioxidant, anti-inflammatory, and anti-fibrotic alternative or IPF prevention involved in their pathogenesis.
Collapse
Affiliation(s)
- Yanka Karamalakova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (Y.K.); (E.G.)
| | - Ivaylo Stefanov
- Department of Anatomy, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Ekaterina Georgieva
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (Y.K.); (E.G.)
| | - Galina Nikolova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (Y.K.); (E.G.)
| |
Collapse
|
12
|
Effects of Selenium Nanoparticles on Preventing Patulin-Induced Liver, Kidney and Gastrointestinal Damage. Foods 2022; 11:foods11050749. [PMID: 35267382 PMCID: PMC8909330 DOI: 10.3390/foods11050749] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Patulin (PAT) is a toxic fungal metabolite, and oxidative damage was proved to be its important toxicity mechanism. Selenium nanoparticles (SeNPs) were prepared by reducing sodium selenite with chitosan as a stabilizer and used for preventing PAT-induced liver, kidney and gastrointestinal damage. SeNPs have good dispersibility, in vitro antioxidant activity, and are much less cytotoxic than sodium selenite. Cell culture studies indicated that SeNPs can effectively alleviate PAT-induced excessive production of intracellular ROS, the decline of glutathione peroxidase activity, and the suppression of cell viability. Evaluation of serum biochemical parameters, histopathology, oxidative stress biomarkers and activities of antioxidant enzymes in a mouse model showed that pre-treatment with SeNPs (2 mg Se/kg body weight) could ameliorate PAT-induced oxidative damage to the liver and kidneys of mice, but PAT-induced gastrointestinal oxidative damage and barrier dysfunction were not recovered by SeNPs, possibly because the toxin doses suffered by the gastrointestinal as the first exposed tissues exceeded the regulatory capacity of SeNPs. These results suggested that a combination of other strategies may be required to completely block PAT toxicity.
Collapse
|
13
|
Lin Y, He F, Lian S, Xie B, Liu T, He J, Liu C. Selenium Status in Patients with Chronic Liver Disease: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14050952. [PMID: 35267927 PMCID: PMC8912406 DOI: 10.3390/nu14050952] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Background: The potential role of selenium in preventing chronic liver diseases remains controversial. This meta-analysis aimed to summarize the available evidence from observational studies and intervention trials that had evaluated the associations between body selenium status and chronic liver diseases. Methods: We comprehensively searched MEDLINE, Embase, Web of Science, and Cochrane Library from inception to April 2021. The study protocol was registered at PROSPERO (CRD42020210144). Relative risks (RR) for the highest versus the lowest level of selenium and standard mean differences (SMD) with 95% confidence intervals (CI) were pooled using random-effects models. Heterogeneity and publication bias were evaluated using the I2 statistic and Egger’s regression test, respectively. Results: There were 50 studies with 9875 cases and 12975 population controls in the final analysis. Patients with hepatitis (SMD = −1.78, 95% CI: −2.22 to −1.34), liver cirrhosis (SMD = −2.06, 95% CI: −2.48 to −1.63), and liver cancer (SMD = −2.71, 95% CI: −3.31 to −2.11) had significantly lower selenium levels than controls, whereas there was no significant difference in patients with fatty liver diseases (SMD = 1.06, 95% CI: −1.78 to 3.89). Moreover, the meta-analysis showed that a higher selenium level was significantly associated with a 41% decrease in the incidence of significant advanced chronic liver diseases (RR = 0.59, 95% CI: 0.49 to 0.72). Conclusion: Our meta-analysis suggested that both body selenium status and selenium intake were negatively associated with hepatitis, cirrhosis, and liver cancer. However, the associations for fatty liver diseases were conflicting and need to be established in prospective trials.
Collapse
Affiliation(s)
- Yaduan Lin
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (S.L.); (B.X.); (T.L.)
| | - Fanchen He
- Institute of Land and Sea Transport Systems, Faculty of Mechanical Engineering and Transport Systems, Technical University of Berlin, 10623 Berlin, Germany;
| | - Shaoyan Lian
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (S.L.); (B.X.); (T.L.)
| | - Binbin Xie
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (S.L.); (B.X.); (T.L.)
| | - Ting Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (S.L.); (B.X.); (T.L.)
| | - Jiang He
- Department of Mathematics and Physics, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Correspondence: (J.H.); (C.L.)
| | - Chaoqun Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (S.L.); (B.X.); (T.L.)
- Correspondence: (J.H.); (C.L.)
| |
Collapse
|
14
|
Benavides MA. L-Methionine May Modulate the Assembly of SARS-CoV-2 by Interfering with the Mechanism of RNA Polymerase. Med Hypotheses 2022; 161:110798. [PMID: 35185264 PMCID: PMC8841269 DOI: 10.1016/j.mehy.2022.110798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/18/2022]
Abstract
Coronaviruses have received worldwide attention following several severe acute respiratory syndrome (SARS) epidemics. In 2019, the first case of coronavirus disease (COVID-19) caused by a novel coronavirus (SARS-coronavirus 2 [CoV-2]) was reported. SARS-CoV-2 employs RNA-dependent RNA polymerase (RdRp) for genome replication and gene transcription. Recent studies have identified a sulfur (S) metal-binding site in the zinc center structures of the RdRp complex. This metal-binding site is essential for the proper functioning of the viral helicase. We hypothesize that the use of essential nutrients can permeabilize the cell membranes. The oxidation of the metal-binding site occurs via analogs of the essential S-containing amino acid, l-Methionine. l-Methionine can operate as a carrier, and its binding would cause the potential disassembly of RdRp via the S complex and drive methyl donors via a possible countercurrent exchange mechanism and electrical-chemical gradient leading to SARS-CoV-2 replication failure. Our previously published hypothesis on the control of cancer cell proliferation suggests that the presence of a novel disulfide/methyl- adenosine triphosphate pump as an energy source would allow this process. The S binding site in l-Methionine serves as a potential target cofactor for SARS-CoV RdRp, thus providing a possible avenue for the future development of vaccines and antiviral therapeutic strategies to combat COVID-19.
Collapse
|
15
|
Thyroid Cancer Diagnostics Related to Occupational and Environmental Risk Factors: An Integrated Risk Assessment Approach. Diagnostics (Basel) 2022; 12:diagnostics12020318. [PMID: 35204408 PMCID: PMC8870864 DOI: 10.3390/diagnostics12020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
There are still many questions remaining about the etiopathogenesis of thyroid cancer, the most common type of endocrine neoplasia. Numerous occupational and environmental exposures have been shown to represent important risk factors that increase its incidence. Updated information about thyroid cancer diagnostics related to occupational and environmental risk factors is reviewed here, considering an integrated risk assessment approach; new data concerning thyroid cancer etiology and pathogenesis mechanisms, diagnostic biomarkers and methodologies, and risk factors involved in its pathogenesis are presented. A special emphasis is dedicated to specific occupational risk factors and to the association between environmental risk agents and thyroid cancer development. The occupational environment is taken into consideration, i.e., the current workplace and previous jobs, as well as data regarding risk factors, e.g., age, gender, family history, lifestyle, use of chemicals, or radiation exposure outside the workplace. Finally, an integrative approach is presented, underlying the need for an accurate Risk Assessment Matrix based on a systematic questionnaire. We propose a complex experimental design that contains different inclusion and exclusion criteria for patient groups, detailed working protocols for achieving coherent and sustainable, well-defined research stages from sample collection to the identification of biomarkers, with correlations between specific oncometabolites integrated into the Risk Assessment Matrix.
Collapse
|
16
|
Kotlyarov S. Involvement of the Innate Immune System in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2022; 23:985. [PMID: 35055174 PMCID: PMC8778852 DOI: 10.3390/ijms23020985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, socially significant disease characterized by progressive airflow limitation due to chronic inflammation in the bronchi. Although the causes of COPD are considered to be known, the pathogenesis of the disease continues to be a relevant topic of study. Mechanisms of the innate immune system are involved in various links in the pathogenesis of COPD, leading to persistence of chronic inflammation in the bronchi, their bacterial colonization and disruption of lung structure and function. Bronchial epithelial cells, neutrophils, macrophages and other cells are involved in the development and progression of the disease, demonstrating multiple compromised immune mechanisms.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
17
|
Hassabo AA, Ibrahim EI, Ali BA, Emam HE. Anticancer effects of biosynthesized Cu2O nanoparticles using marine yeast. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Vaccaro JA, Naser SA. The Role of Methyl Donors of the Methionine Cycle in Gastrointestinal Infection and Inflammation. Healthcare (Basel) 2021; 10:healthcare10010061. [PMID: 35052225 PMCID: PMC8775811 DOI: 10.3390/healthcare10010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/01/2022] Open
Abstract
Vitamin deficiency is well known to contribute to disease development in both humans and other animals. Nonetheless, truly understanding the role of vitamins in human biology requires more than identifying their deficiencies. Discerning the mechanisms by which vitamins participate in health is necessary to assess risk factors, diagnostics, and treatment options for deficiency in a clinical setting. For researchers, the absence of a vitamin may be used as a tool to understand the importance of the metabolic pathways in which it participates. This review aims to explore the current understanding of the complex relationship between the methyl donating vitamins folate and cobalamin (B12), the universal methyl donor S-adenosyl-L-methionine (SAM), and inflammatory processes in human disease. First, it outlines the process of single-carbon metabolism in the generation of first methionine and subsequently SAM. Following this, established relationships between folate, B12, and SAM in varying bodily tissues are discussed, with special attention given to their effects on gut inflammation.
Collapse
|
19
|
Akter R, Najda A, Rahman MH, Shah M, Wesołowska S, Hassan SSU, Mubin S, Bibi P, Saeeda S. Potential Role of Natural Products to Combat Radiotherapy and Their Future Perspectives. Molecules 2021; 26:5997. [PMID: 34641542 PMCID: PMC8512367 DOI: 10.3390/molecules26195997] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death in the world. Chemotherapy and radiotherapy (RT) are the common cancer treatments. In addition to these limitations, the development of adverse effects from chemotherapy and RT reduces the quality of life for cancer patients. Cellular radiosensitivity, or the ability to resist and overcome cell damage caused by ionizing radiation (IR), is directly related to cancer cells' response to RT. Therefore, radiobiological research is emphasizing chemical compounds 'radiosensitization of cancer cells so that they are more reactive in the IR spectrum. Recent years researchers have seen an increase in interest in natural products that have antitumor effects with minimal side effects. Natural products, on the other hand, are easy to recover and therefore less expensive. There have been several scientific studies done based on these compounds that have tested their ability in vitro and in vivo to induce tumor radiosensitization. The role of natural products in RT, as well as their usefulness and potential applications, is the goal of this current review.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea
- Department of Pharmacy, Southeast University, Banani Street, Dhaka 1213, Bangladesh
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (P.B.); (S.S.)
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sylwia Wesołowska
- Institute of Soil Science and Environment Shaping, University of Life Sciences in Lublin, 7 Leszczyńskiego Street, 20-069 Lublin, Poland;
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai JiaoTong University, Shanghai 200240, China;
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra 21310, Pakistan;
| | - Parveen Bibi
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (P.B.); (S.S.)
| | - Saeeda Saeeda
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (P.B.); (S.S.)
| |
Collapse
|
20
|
Abstract
Selenium (Se) is an element commonly found in the environment at different levels. Its compounds are found in soil, water, and air. This element is also present in raw materials of plant and animal origin, so it can be introduced into human organisms through food. Selenium is a cofactor of enzymes responsible for the antioxidant protection of the body and plays an important role in regulating inflammatory processes in the body. A deficiency in selenium is associated with a number of viral diseases, including COVID-19. This element, taken in excess, may have a toxic effect in the form of joint diseases and diseases of the blood system. Persistent selenium deficiency in the body may also impact infertility, and in such cases supplementation is needed.
Collapse
|
21
|
Turan E, Turksoy VA. Selenium, Zinc, and Copper Status in Euthyroid Nodular Goiter: A Cross-Sectional Study. Int J Prev Med 2021; 12:46. [PMID: 34211677 PMCID: PMC8223911 DOI: 10.4103/ijpvm.ijpvm_337_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/04/2020] [Indexed: 11/29/2022] Open
Abstract
Background: It is known that some elements are needed for normal thyroid gland functions. Iodine and selenium are the most well-known trace elements necessary for thyroid metabolism. Selenium is involved in the formation of thyroid hormones and the structure of the deiodinases associated with the development of the thyroid gland. While the role of zinc in thyroid metabolism is at the T3 receptor level, the role of copper is yet not clear. Objective: To compare the levels of serum trace elements such as selenium, zinc, and copper between the patients with euthyroid nodular goiter and healthy participants. Methods: This cross-sectional study included 98 patients with euthyroid multinodular goiter and 83 healthy subjects without thyroid disease. The demographics, thyroid hormone levels, and thyroid ultrasonography of the participants were recorded. Venous blood samples were centrifuged and sera samples were stored at -80°C until analysis of selenium, zinc, and copper levels. The levels of trace elements were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Results: While serum, zinc, and selenium levels were significantly higher in the control group than the nodular goiter group, the copper levels were similar in the two groups. Trace elements were not correlated with thyroid hormone levels and thyroid volumes. Patients in the nodular goiter group were analyzed according to their solitary and multiple nodule status. The solitary and multiple nodular goiter groups were similar in terms of copper, zinc, and selenium levels. Conclusions: Deficiency of selenium and zinc may be associated with nodular goiter. Replacement of these trace elements may be useful for the prevention of nodular goiter, especially in deficient regions.
Collapse
Affiliation(s)
- Elif Turan
- Department of Endocrinology and Metabolic Disease, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Vugar Ali Turksoy
- Department of Public Health, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
22
|
Calvo-Martín G, Plano D, Encío I, Sanmartín C. Novel N, N'-Disubstituted Selenoureas as Potential Antioxidant and Cytotoxic Agents. Antioxidants (Basel) 2021; 10:antiox10050777. [PMID: 34068900 PMCID: PMC8156206 DOI: 10.3390/antiox10050777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/28/2022] Open
Abstract
A series of 30 novel N,N disubstituted selenoureas were synthesized, characterized, and their antioxidant ability was tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assays. Additionally, their cytotoxic activity was tested in vitro in a panel of three different cancer (breast, lung and colon) and two normal cell lines. Each selenourea entity contains a para-substituted phenyl ring with different electron-withdrawing and electron-donating groups, and different aliphatic and aromatic nuclei. All of the synthesized selenoureas present antioxidant capacity at high concentrations in the DPPH assay, and three of them (2b, 2c and 2d) showed greater radical scavenging capacity than ascorbic acid at lower concentrations. These results were confirmed by the ABTS assay, where these novel selenoureas present even higher antioxidant capacity than the reference compound Trolox. On the other hand, 10 selenoureas present IC50 values below 10 µM in at least one cancer cell line, resulting in the adamantyl nucleus (6a–6e), the most interesting in terms of activity and selectivity. Outstanding results were found for selenourea 6c, tested in the NCI60 cell line panel and showing an average GI50 of 1.49 µM for the 60 cell lines, and LC50 values ranging from 9.33 µM to 4.27 µM against 10 of these cancer cell lines. To gain insight into its anticancer activity mechanism, we investigated the cell cycle progression of the promising compound 6c, as well as the type of programmed-cell death in a colon cancer cell line it provokes (HT-29). Compound 6c provoked S phase cell cycle arrest and the induction of cell death was independent of caspase activation, suggesting autophagy, though this assertion requires additional studies. Overall, we envision that this compound can be further developed for the potential treatment of colon cancer.
Collapse
Affiliation(s)
- Gorka Calvo-Martín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
- Correspondence: ; Tel.: +34-948425600 (ext. 806388)
| |
Collapse
|
23
|
Li J, Zhu Y, Zhou Y, Jiang H, Chen Z, Lu B, Shen X. The SELS rs34713741 Polymorphism Is Associated with Susceptibility to Colorectal Cancer and Gastric Cancer: A Meta-Analysis. Genet Test Mol Biomarkers 2020; 24:835-844. [PMID: 33290140 DOI: 10.1089/gtmb.2020.0099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims: The selenoprotein S (SELS) gene has been suggested to be an important factor in the development of multiple diseases, including gastric cancer (GC) and colorectal cancer (CRC). However, the association between the SELS gene rs34713741 polymorphism and risk of GC and CRC is inconclusive. Thus, we aimed to investigate the relationship between this polymorphism and the susceptibility to GC and CRC through a meta-analysis. Materials and Methods: Literature was retrieved through the following electronic databases: PubMed, Embase, Web of Science, and Chinese National Knowledge Infrastructure. The pooled odds ratio (OR) and 95% confidence interval (CI) were used to assess the strength of the associations of the alleles of rs4713741 locus with the risk of CRC and GC. Results: Seven studies that collectively included 2331 cases and 2233 controls were utilized for this meta-analysis. Under the allelic and dominant models, the T allele of the SELS rs34713741 polymorphism was significantly associated with CRC risk (allelic model: OR = 1.20, 95% CI = 1.08-1.33, p = 0.0004; dominant model: OR = 1.25, 95% CI = 1.10-1.43, p = 0.001). In addition, all of the genetic models (allelic, dominant, and recessive models) identified the rs34713741 T allele as being significantly associated with GC risk (allelic model: OR = 1.67, 95% CI = 1.30-2.15, p < 0.001; dominant model: OR = 1.70, 95% CI = 1.25-2.30, p = 0.0006; recessive model: OR = 2.39, 95% CI = 1.26-4.50, p = 0.007). Conclusions: The SELS gene rs34713741 T-allele is a highly probable risk factor for both CRC and GC. The results of this study will provide support for using this single nucleotide polymorphism in the diagnosis of GC and CRC.
Collapse
Affiliation(s)
- Jin Li
- Department of Gastroenterological Surgery, The Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Yi Zhu
- Department of Gastroenterological Surgery, The Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Yuan Zhou
- Department of Gastroenterological Surgery, The Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - HongGang Jiang
- Department of Gastroenterological Surgery, The Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - ZhiHeng Chen
- Department of Gastroenterological Surgery, The Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - BoHao Lu
- Department of Gastroenterological Surgery, The Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - XuNing Shen
- Department of Gastroenterological Surgery, The Affiliated Hospital of Jiaxing University, Zhejiang, China
| |
Collapse
|
24
|
Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses 2020; 143:109878. [PMID: 32464491 PMCID: PMC7246001 DOI: 10.1016/j.mehy.2020.109878] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/09/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Selenium (Se) is a ubiquitous element akin to sulfur (S) existing in the Earth crust in various organic and inorganic forms. Selenium concentration varies greatly depending on the geographic area. Consequently, the content of selenium in food products is also variable. It is known that low Se is associated with increased incidence of cancer and heart diseases. Therefore, it is advisable to supplement diet with this element albeit in a proper form. Although blood increased concentrations of Se can be achieved with various pharmacological preparations, only one chemical form (sodium selenite) can offer a true protection. Sodium selenite, but not selenate, can oxidize thiol groups in the virus protein disulfide isomerase rendering it unable to penetrate the healthy cell membrane. In this way selenite inhibits the entrance of viruses into the healthy cells and abolish their infectivity. Therefore, this simple chemical compound can potentially be used in the recent battle against coronavirus epidemic.
Collapse
Affiliation(s)
- Marek Kieliszek
- Institute of Food Sciences, Department of Food Biotechnology and Microbiology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | | |
Collapse
|
25
|
Li R, Song S, He X, Shi X, Sun Z, Li Z, Song J. Relationship Between Fibrinogen to Albumin Ratio and Prognosis of Gastrointestinal Stromal Tumors: A Retrospective Cohort Study. Cancer Manag Res 2020; 12:8643-8651. [PMID: 32982455 PMCID: PMC7509338 DOI: 10.2147/cmar.s271171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Objective The fibrinogen to albumin ratio (FAR) is an important parameter that reflects the coagulation state, systemic inflammation, and nutritional status of a patient and plays an essential role in tumor progression. Here, we evaluate the prognostic significance of FAR in gastrointestinal stromal tumor (GIST) patients that underwent radical surgery. Methods We retrospectively analyzed the data of 227 GIST patients that underwent radical surgery in Beijing Hospital from October 2004 to July 2018. We drew a curve of receiver operating characteristics to confirm the optimal critical values for hemoglobin (Hb), prognostic nutrition index (PNI), and FAR. Cox regression analysis and the Kaplan–Meier method were used to assess the prognostic factors. Results The FAR optimal critical value for postoperative recurrence-free survival (RFS) was 0.09. Many significant factors, including approach, the location and size of the tumor, mitotic index, risk classification, Hb levels, PNI, and recurrence, affect FAR. Multivariate analysis indicated that for patients with GISTs who underwent surgery, the tumor location (hazard ratio [HR]=3.393, 95% confidence interval [CI]: 1.539–7.479, P=0.002), mitotic index (HR=4.788, 95% CI: 1.836–12.486, P=0.001), tumor rupture (HR=10.954, 95% CI: 2.170–55.296, P=0.004), and FAR (HR=3.093, 95% CI: 1.303–7.339, P=0.010) were independent factors affecting RFS. Moreover, the FAR remained of prognostic significance for GIST stratified by subgroup analysis. Conclusion Preoperative FAR is a reliable marker for evaluating the prognosis of GIST, the prognostic ability of FAR is significantly better than Hb and PNI.
Collapse
Affiliation(s)
- Rui Li
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Peking University Fifth School of Clinical Medicine, Beijing 100730, People's Republic of China
| | - Shibo Song
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Xiuwen He
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Peking University Fifth School of Clinical Medicine, Beijing 100730, People's Republic of China
| | - Xiaolei Shi
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Peking University Fifth School of Clinical Medicine, Beijing 100730, People's Republic of China
| | - Zhen Sun
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Peking University Fifth School of Clinical Medicine, Beijing 100730, People's Republic of China
| | - Zhe Li
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Peking University Fifth School of Clinical Medicine, Beijing 100730, People's Republic of China
| | - Jinghai Song
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Peking University Fifth School of Clinical Medicine, Beijing 100730, People's Republic of China
| |
Collapse
|
26
|
Kieliszek M, Bierla K, Jiménez-Lamana J, Kot AM, Alcántara-Durán J, Piwowarek K, Błażejak S, Szpunar J. Metabolic Response of the Yeast Candida utilis During Enrichment in Selenium. Int J Mol Sci 2020; 21:ijms21155287. [PMID: 32722488 PMCID: PMC7432028 DOI: 10.3390/ijms21155287] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Selenium (Se) was found to inhibit the growth of the yeast Candida utilis ATCC 9950. Cells cultured in 30 mg selenite/L supplemented medium could bind 1368 µg Se/g of dry weight in their structures. Increased accumulation of trehalose and glycogen was observed, which indicated cell response to stress conditions. The activity of antioxidative enzymes (glutathione peroxidase, glutathione reductase, thioredoxin reductase, and glutathione S-transferase) was significantly higher than that of the control without Se addition. Most Se was bound to water-insoluble protein fraction; in addition, the yeast produced 20–30 nm Se nanoparticles (SeNPs). Part of Se was metabolized to selenomethionine (10%) and selenocysteine (20%). The HPLC-ESI-Orbitrap MS analysis showed the presence of five Se compounds combined with glutathione in the yeast. The obtained results form the basis for further research on the mechanisms of Se metabolism in yeast cells.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland; (A.M.K.); (K.P.); (S.B.)
- Correspondence: (M.K.); (J.S.)
| | - Katarzyna Bierla
- Institute of Analytical Sciences, IPREM, UMR 5254, CNRS-UPPA, Hélioparc, 2 Avenue Angot, 64053 Pau, France; (K.B.); (J.J.-L.)
| | - Javier Jiménez-Lamana
- Institute of Analytical Sciences, IPREM, UMR 5254, CNRS-UPPA, Hélioparc, 2 Avenue Angot, 64053 Pau, France; (K.B.); (J.J.-L.)
| | - Anna Maria Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland; (A.M.K.); (K.P.); (S.B.)
| | - Jaime Alcántara-Durán
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen, Spain;
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland; (A.M.K.); (K.P.); (S.B.)
| | - Stanisław Błażejak
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland; (A.M.K.); (K.P.); (S.B.)
| | - Joanna Szpunar
- Institute of Analytical Sciences, IPREM, UMR 5254, CNRS-UPPA, Hélioparc, 2 Avenue Angot, 64053 Pau, France; (K.B.); (J.J.-L.)
- Correspondence: (M.K.); (J.S.)
| |
Collapse
|
27
|
Zhu Y, Ding J, Shi Y, Fang Y, Li P, Fan F, Wu J, Hu Q. Deciphering the role of selenium‐enriched rice protein hydrolysates in the regulation of Pb
2+
‐induced cytotoxicity: an
in vitro
Caco‐2 cell model study. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yiqing Zhu
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Jian Ding
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Yi Shi
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Yong Fang
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Peng Li
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Fengjiao Fan
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Jian Wu
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| | - Qiuhui Hu
- College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing210023China
| |
Collapse
|
28
|
Turan E, Karaaslan O. The Relationship between Iodine and Selenium Levels with Anxiety and Depression in Patients with Euthyroid Nodular Goiter. Oman Med J 2020; 35:e161. [PMID: 32802419 PMCID: PMC7418102 DOI: 10.5001/omj.2020.84] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/21/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Selenium and iodine are essential microelements for normal body functions. These two elements play important roles in thyroid metabolism. The potential relationship between thyroid diseases and mental disorders have been demonstrated. We aimed to investigate the relationship between selenium and iodine levels with anxiety and depression in patients with euthyroid nodular goiter (ENG). METHODS In this cross-sectional study, we enrolled 102 consecutive patients with ENG who attended the endocrine outpatient clinic between January 2018 and June 2018. We noted the patient's demographics, thyroid ultrasound imaging, thyroid hormones, and urinary iodine concentration (UIC) results. We also obtained venous blood samples for serum selenium measurement. The same psychiatrist completed the Beck Anxiety Inventory (BAI) and Hamilton Depression Rating Scale (HDRS) for all participants. The study population was dichotomized according to the median values of selenium levels and UIC. RESULTS BAI and HDRS scores were significantly higher in the low selenium group than the high selenium group (p = 0.032 and p = 0.042, respectively). BAI scores were significantly higher in the low UIC group than the high UIC group (p = 0.007). CONCLUSIONS Low selenium and UIC levels may contribute to the development of anxiety and depression, independent of thyroid functions, in patients with ENG. In these patients, selenium and iodine replacement may be useful for the prevention of anxiety and depression, especially in deficient regions.
Collapse
Affiliation(s)
- Elif Turan
- Department of Endocrinology and Metabolic Disease, Medical School of Yozgat Bozok University, Yozgat, Turkey
| | - Ozgul Karaaslan
- Department of Psychiatry, Medical School of Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
29
|
Ranjbary AG, Mehrzad J, Dehghani H, Abdollahi A, Hosseinkhani S. Variation in Blood and Colorectal Epithelia's Key Trace Elements Along with Expression of Mismatch Repair Proteins from Localized and Metastatic Colorectal Cancer Patients. Biol Trace Elem Res 2020; 194:66-75. [PMID: 31172427 DOI: 10.1007/s12011-019-01749-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) is an increasingly common medical issue affecting millions worldwide, and contribution of the body's trace elements to CRC is arguable. The concentrations and buffered status of selenium, iron, copper, zinc, and phosphorus in blood and large intestinal tissues of CRC patients are, respectively, variable and vital for cell physiology. The aim of this study was to assess selenium, iron, copper, zinc, and phosphorus variations in blood and colorectal epithelia along with examining the expression of mismatch repair proteins in CRC patients with/without metastasis for potential diagnosis/therapy. Concentrations of selenium, iron, copper, zinc, and phosphorus in blood of healthy versus CRC patients and colorectal epithelia (adenocarcinomatous versus non-adenocarcinomatous/control) were measured in 40 CRC patients (55.87 ± 11.9 years old) with/without metastasis before surgery using ICP-OES. Mismatch repair (MMR) protein expression was analyzed through histopathological/immunohistochemistry assays, which was sparse in 5 CRC patient's colorectal tissues (12%). Compared with healthy individuals, blood and colorectal tissue's levels of phosphorus, copper, and iron were significantly higher in the CRC patients, and more pronounced in metastatic CRC patients; conversely, blood and colorectal tissue's selenium levels were significantly lower in metastatic patients. Unlike blood zinc, cancerous colorectal tissue's zinc concentration was significantly lower in CRC patients compared to healthy control cohorts. There was no significant difference on the measured elements in samples from CRC patients with MMR- compared to CRC patients with MMR+. Receiver operating characteristic analysis revealed a correlation of blood iron, zinc, copper, and phosphorus to CRC, and inappropriately low levels of blood and colorectal selenium correlated with exacerbated metastasis. Altered levels of selenium, iron, copper, zinc, and phosphorus in vivo may impact the pathogenesis and detection of CRC, and their diagnostic/therapeutic potential in CRC would be revealing.
Collapse
Affiliation(s)
- Ali Ghorbani Ranjbary
- Department of Pathobiology, Section Biotechnology, Faculty of Veterinary Medicine, and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Abdollahi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
30
|
Accumulation of Selenium in Candida utilis Growing in Media of Increasing Concentration of this Element. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selenium is considered an essential component of all living organisms. Studies on the enrichment of yeast cells with selenium, using the ability of cell biomass to bind this element, are being reported more and more. Yeast cultures were cultivated in YPD medium enriched with Na2SeO3 salts for 72 h at 28 °C on a shaker utilizing reciprocating motion. Selenium in cell biomass was determined with the use of ICP–MS. It was observed that the addition of selenium to the experimental medium (in the range of 4–100 mg/L) increased the content of this element in the yeast cell biomass. During the extension of cultivation time, the number of yeast cells and biomass yield exhibited a decreasing trend. Based on the obtained results, it was concluded that yeast cells exhibited the ability to accumulate selenium in both logarithmic and stationary growth phases. The dose of 20 and 30 mg/L of selenium in the culture medium meets the expectations in terms of both the content of selenium bound to yeast cells (1944 ± 110.8 μg/g dry weight) under 48-h cultivation. The obtained results confirmed that the Candida utilis ATCC 9950 strain exhibits the ability to bind selenium, which means that the biomass of these yeasts may be used as a natural source of selenium in the diet of humans and animals.
Collapse
|
31
|
Selenium Attenuates Chronic Heat Stress-Induced Apoptosis via the Inhibition of Endoplasmic Reticulum Stress in Mouse Granulosa Cells. Molecules 2020; 25:molecules25030557. [PMID: 32012916 PMCID: PMC7037519 DOI: 10.3390/molecules25030557] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Heat stress induces apoptosis in various cells. Selenium, an essential micronutrient, has beneficial effects in maintaining the cellular physiological functions. However, its potential protective action against chronic heat stress (CHS)-induced apoptosis in granulosa cells and the related molecular mechanisms are not fully elucidated. In this study, we investigated the roles of selenium in CHS-induced apoptosis in mouse granulosa cells and explored its underlying mechanism. The heat treatment for 6–48 h induced apoptosis, potentiated caspase 3 activity, increased the expression levels of apoptosis-related gene BAX and ER stress markers, glucose-regulated protein 78 (GRP78), and CCAAT/enhancer binding protein homologous protein (CHOP) in mouse granulosa cells. The treatment with ER stress inhibitor 4-PBA significantly attenuated the adverse effects caused by CHS. Selenium treatment significantly attenuated the CHS- or thapsigargin (Tg, an ER stress activator)-induced apoptosis, potentiation of caspase 3 activity, and the increased protein expression levels of BAX, GRP78, and CHOP. Additionally, treatment of the cells with 5 ng/mL selenium significantly ameliorated the levels of estradiol, which were decreased in response to heat exposure. Consistently, administering selenium supplement alleviated the hyperthermia-caused reduction in the serum estradiol levels in vivo. Together, our findings indicate that selenium has protective effects on CHS-induced apoptosis via inhibition of the ER stress pathway. The current study provides new insights in understanding the role of selenium during the process of heat-induced cell apoptosis.
Collapse
|
32
|
Ruberte AC, Ramos-Inza S, Aydillo C, Talavera I, Encío I, Plano D, Sanmartín C. Novel N, N'-Disubstituted Acylselenoureas as Potential Antioxidant and Cytotoxic Agents. Antioxidants (Basel) 2020; 9:antiox9010055. [PMID: 31936213 PMCID: PMC7023466 DOI: 10.3390/antiox9010055] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022] Open
Abstract
Selenium compounds are pivotal in medicinal chemistry for their antitumoral and antioxidant properties. Forty seven acylselenoureas have been designed and synthesized following a fragment-based approach. Different scaffolds, including carbo- and hetero-cycles, along with mono- and bi-cyclic moieties, have been linked to the selenium containing skeleton. The dose- and time-dependent radical scavenging activity for all of the compounds were assessed using the in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assays. Some of them showed a greater radical scavenging capacity at low doses and shorter times than ascorbic acid. Therefore, four compounds were evaluated to test their protective effects against H2O2-induced oxidative stress. One derivative protected cells against H2O2-induced damage, increasing cell survival by up to 3.6-fold. Additionally, in vitro cytotoxic activity of all compounds was screened against several cancer cells. Eight compounds were selected to determine their half maximal inhibitory concentration (IC50) values towards breast and lung cancer cells, along with their selectivity indexes. The breast cancer cells turned out to be much more sensitive than the lung. Two compounds (5d and 10a) stood out with IC50 values between 4.2 μM and 8.0 μM towards MCF-7 and T47D cells, with selectivity indexes greater than 22.9. In addition, compound 10b exhibited dual antioxidant and cytotoxic activities. Although further evidence is needed, the acylselenourea scaffold could be a feasible frame to develop new dual agents.
Collapse
Affiliation(s)
- Ana Carolina Ruberte
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Sandra Ramos-Inza
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Carlos Aydillo
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Irene Talavera
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, 31008 Pamplona, Spain
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
- Correspondence: ; Tel.: +34-948425600 (ext. 806388)
| |
Collapse
|
33
|
Calvaruso M, Pucci G, Musso R, Bravatà V, Cammarata FP, Russo G, Forte GI, Minafra L. Nutraceutical Compounds as Sensitizers for Cancer Treatment in Radiation Therapy. Int J Mol Sci 2019; 20:ijms20215267. [PMID: 31652849 PMCID: PMC6861933 DOI: 10.3390/ijms20215267] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 02/05/2023] Open
Abstract
The improvement of diagnostic techniques and the efficacy of new therapies in clinical practice have allowed cancer patients to reach a higher chance to be cured together with a better quality of life. However, tumors still represent the second leading cause of death worldwide. On the contrary, chemotherapy and radiotherapy (RT) still lack treatment plans which take into account the biological features of tumors and depend on this for their response to treatment. Tumor cells' response to RT is strictly-connected to their radiosensitivity, namely, their ability to resist and to overcome cell damage induced by ionizing radiation (IR). For this reason, radiobiological research is focusing on the ability of chemical compounds to radiosensitize cancer cells so to make them more responsive to IR. In recent years, the interests of researchers have been focused on natural compounds that show antitumoral effects with limited collateral issues. Moreover, nutraceuticals are easy to recover and are thus less expensive. On these bases, several scientific projects have aimed to test also their ability to induce tumor radiosensitization both in vitro and in vivo. The goal of this review is to describe what is known about the role of nutraceuticals in radiotherapy, their use and their potential application.
Collapse
Affiliation(s)
- Marco Calvaruso
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| | - Gaia Pucci
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| | - Rosa Musso
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| | - Valentina Bravatà
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| | - Francesco P Cammarata
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| | - Giorgio Russo
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| | - Giusi I Forte
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| | - Luigi Minafra
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| |
Collapse
|
34
|
Characterization and Hemostatic Potential of Two Kaolins from Southern China. Molecules 2019; 24:molecules24173160. [PMID: 31480278 PMCID: PMC6749497 DOI: 10.3390/molecules24173160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 11/17/2022] Open
Abstract
The physicochemical properties and potential hemostatic application of Wenchang kaolin and Maoming kaolin were inspected and evaluated. Chemical composition analysis, Fourier transform infrared (FTIR) spectroscopy, surface area determination, X-ray diffraction, particle size, scanning electron microscopy (SEM) observations, and zeta potential analysis were performed to quantify the physical and chemical properties of the two kaolins. The results showed that both kaolins have typical FTIR bands of kaolinite with a weight fraction for kaolinite over 90 wt%. Larger conglobate aggregates of Maoming kaolin demonstrated wider particle size distributions with two peaks at 3.17 and 35.57 μm, while the book-like Wenchang kaolin had narrow particle size distribution, with a frequent size of 5.64 μm. Furthermore, thrombelastography, the whole blood clotting tests (WBCT), plasma recalcification time (PRT) measurement, and MTT assay were performed to measure the clotting activities and biocompatibility of the two kaolins. The results showed that both kaolins could promote blood coagulation with good cytocompatibility, while Wenchang kaolin had a better procoagulant activity than Maoming kaolin. These findings demonstrated Wenchang kaolin to be a more suitable local source material for application as a hemostatic agent.
Collapse
|
35
|
Dietary Intake of Selenium in Relation to Pubertal Development in Mexican Children. Nutrients 2019; 11:nu11071595. [PMID: 31337124 PMCID: PMC6682956 DOI: 10.3390/nu11071595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 12/27/2022] Open
Abstract
Alterations in pubertal timing have been associated with long-term health outcomes. While a few reports have shown that dietary intake of selenium is associated with fertility and testosterone levels in men, no human studies have considered the association between selenium and pubertal development in children. We examined the cross-sectional association of childhood dietary intake of selenium with pubertal development among 274 girls and 245 boys aged 10–18 years in Mexico City. Multiple logistic and ordinal regression models were used to capture the association between energy-adjusted selenium intake (below Recommended Dietary Allowance (RDA) vs. above RDA) and stages of sexual maturity in children, adjusted for covariates. We found that boys with consumption of selenium below the RDA had lower odds of a higher stage for pubic hair growth (odds ratio (OR) = 0.51, 95% confidence interval (95% CI): 0.27–0.97) and genital development (OR = 0.53, 95% CI: 0.28–0.99) as well as a lower probability of having matured testicular volume (OR = 0.37, 95% CI: 0.15–0.88) compared with boys who had adequate daily dietary intake of selenium (above RDA). No associations were found in girls. According to our results, it is possible that inadequate consumption of selenium may be associated with later pubertal development in boys, suggesting a sex-specific pattern. Future work with a larger sample size and measures of selenium biomarkers is needed to confirm our findings and improve understanding of the role of this mineral in children’s sexual development.
Collapse
|
36
|
Dietary selenium deficiency or selenomethionine excess drastically alters organ selenium contents without altering the expression of most selenoproteins in mice. J Nutr Biochem 2019; 69:120-129. [DOI: 10.1016/j.jnutbio.2019.03.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/27/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
|
37
|
Sodium Selenite Alleviates Breast Cancer-Related Lymphedema Independent of Antioxidant Defense System. Nutrients 2019; 11:nu11051021. [PMID: 31067718 PMCID: PMC6566195 DOI: 10.3390/nu11051021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 11/16/2022] Open
Abstract
Long-term surveillance is necessary to identify patients at risk of developing secondary lymphedema after breast cancer surgery. We assessed how sodium selenite supplementation would affect breast cancer-related lymphedema (BCRL) symptoms and parameters in association with antioxidant effects. A randomized, double-blind, controlled trial was conducted on 26 participants with clinical stage II to III BCRL. The control group (CTRL, n = 12) and selenium group (SE, n = 14) underwent five sessions of 0.9% saline and 500 μg sodium selenite (Selenase®) IV injections, respectively, within 2 weeks. All patients were educated on recommended behavior and self-administered manual lymphatic drainage. Clinical diagnosis on lymphedema by physicians, bioimpedance data, blood levels of oxidative markers, including glutathione (GSH), glutathione disulfide (GSSG), malondialdehyde (MDA), glutathione peroxidase activity (GSH-Px), and serum oxygen radical absorbance capacity (ORAC) levels, were investigated at timelines defined as baseline, 2-week, and follow-up. Sodium selenite increased whole blood selenium concentration in the SE group. Compared to the baseline, at 2 weeks, 75.0% of participants in clinical stage showed improvement, while there was no change in the CTRL group. At follow-up, 83.3% and 10.0% of the SE and CTRL, respectively, showed stage changes from III to II (p = 0.002). Extracellular water (ECW) ratios were significantly reduced at 2 weeks and follow-up, only in the SE group. Blood GSH, GSSG, GSH/GSSG ratio, MDA, and ORAC levels did not change by selenium supplementation. Sodium selenite improved diagnostic stages of BCRL along with ECW ratios, although the beneficial effect might not be related to its antioxidant activity. Selenite’s effect on lymphedema may be associated with non-antioxidant properties, such as anti-inflammation and immune function. Further mechanistic research using a larger population is needed.
Collapse
|
38
|
Xin X, Ambati RR, Cai Z, Lei B. Development of universal purification protocols for fibrinolytic enzyme-producing bacilli. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2018.1561521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiong Xin
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Ranga Rao Ambati
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
- Zhuhai Key Laboratory of Agriculture Product Quality and Food Safety, Zhuhai, Guangdong, China
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research University (VFSTRU), Guntur, Andhra Pradesh, India
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, China
- Zhuhai Key Laboratory of Agriculture Product Quality and Food Safety, Zhuhai, Guangdong, China
| | - Bo Lei
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
- Zhuhai Key Laboratory of Agriculture Product Quality and Food Safety, Zhuhai, Guangdong, China
| |
Collapse
|
39
|
Zhang Y, Xiao G. Prognostic significance of the ratio of fibrinogen and albumin in human malignancies: a meta-analysis. Cancer Manag Res 2019; 11:3381-3393. [PMID: 31114374 PMCID: PMC6497111 DOI: 10.2147/cmar.s198419] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/10/2019] [Indexed: 12/18/2022] Open
Abstract
Background and aim: Serum fibrinogen and albumin are two important factors in systemic inflammation and these two factors are related to tumor progression. This study aimed to comprehensively reveal the prognostic value of the ratio of fibrinogen and albumin in malignant tumors. Methods: We systematically searched relevant studies in PubMed, Web of Science and Embase up to November 21, 2018. Hazard ratios (HRs) or odds ratio (ORs) for overall survival (OS)/disease-free survival (DFS), as well as relevant clinical data, were collected for analysis; all data analyses were performed by using STATA/SE 14. Results: Twelve cohort studies were included in this meta-analysis, with a total of 5,088 cases including 9 different kinds of tumors recruited. The pooled results showed that high albumin/fibrinogen ratio (FAR) and low fibrinogen/albumin ratio (AFR) were significantly associated with poor OS (HR=1.50, 95% CI: 1.30–1.70). Subgroup analyses for OS were also performed based on the disease type, detection method, follow-up time and treatment. Similarly, high FAR or low AFR indicated a worse DFS in cancer patients (HR=1.86; 95% CI: 1.41–2.31). In addition, high FAR or low AFR was statistically significant in relation to deeper tumor infiltration (OR=2.81, 95%CI: 1.67–4.72), positive lymph node metastasis (OR=1.57, 95%CI: 1.23–2.02) and distant metastasis (OR=2.30, 95% CI: 1.36–3.89) as well as advanced clinical stage (OR=2.02, 95% CI: 1.17–3.47). Conclusions: The ratio of fibrinogen and albumin could act as a promising prognostic marker in human malignant tumors. It might assist physicians to select optimal treatments by identifying the current status of the patient. Future multicenter clinical trials are needed to validate its applications.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, The First People's Hospital of Neijiang, Neijiang 641000, Sichuan Province, People's Republic of China
| | - Guoliang Xiao
- Department of General Surgery, The First People's Hospital of Neijiang, Neijiang 641000, Sichuan Province, People's Republic of China
| |
Collapse
|
40
|
Kieliszek M. Selenium⁻Fascinating Microelement, Properties and Sources in Food. Molecules 2019; 24:E1298. [PMID: 30987088 PMCID: PMC6480557 DOI: 10.3390/molecules24071298] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
Selenium is a micronutrient that is essential for the proper functioning of all organisms. Studies on the functions of selenium are rapidly developing. This element is a cofactor of many enzymes, for example, glutathione peroxidase or thioredoxin reductase. Insufficient supplementation of this element results in the increased risk of developing many chronic degenerative diseases. Selenium is important for the protection against oxidative stress, demonstrating the highest activity as a free radical scavenger and anti-cancer agent. In food, it is present in organic forms, as exemplified by selenomethionine and selenocysteine. In dietary supplementation, the inorganic forms of selenium (selenite and selenate) are used. Organic compounds are more easily absorbed by human organisms in comparison with inorganic compounds. Currently, selenium is considered an essential trace element of fundamental importance for human health. Extreme selenium deficiencies are widespread among people all over the world. Therefore, it is essential to supplement the deficiency of this micronutrient with selenium-enriched food or yeast cell biomass in the diet.
Collapse
Affiliation(s)
- Marek Kieliszek
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland.
| |
Collapse
|
41
|
Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kot AM. Effect of selenium on growth and antioxidative system of yeast cells. Mol Biol Rep 2019; 46:1797-1808. [PMID: 30734169 DOI: 10.1007/s11033-019-04630-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
Selenium exhibits health-promoting properties in humans and animals. Therefore, the development of selenium-enriched dietary supplements has been growing worldwide. However, it may also exhibit toxicity at higher concentrations, causing increased oxidative stress. Different species of yeasts may exhibit different tolerances toward selenium. Therefore, in this study, we aimed to determine the effect of selenium on growth and on the antioxidative system in Candida utilis ATCC 9950 and Saccharomyces cerevisiae ATCC MYA-2200 yeast cells. The results of this study have demonstrated that high doses of selenium causes oxidative stress in yeasts, thereby increasing the process of lipid peroxidation. In addition, we obtained an increased level of GSSG from aqueous solutions of yeast biomass grown with selenium supplementation (40-60 mg/L). Increased levels of selenium in aqueous solutions resulted in an increase in the activity of antioxidant enzymes, including glutathione peroxidase and glutathione reductase. These results should encourage future research on the possibility of a thorough understanding of antioxidant system functioning in yeast cells.
Collapse
Affiliation(s)
- Marek Kieliszek
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland.
| | - Stanisław Błażejak
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Anna Bzducha-Wróbel
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Anna M Kot
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| |
Collapse
|
42
|
Speciation Analysis of Selenium in Candida utilis Yeast Cells Using HPLC-ICP-MS and UHPLC-ESI-Orbitrap MS Techniques. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Selenium plays a key role in the proper metabolism of living organisms. The search for new selenium compounds opens up new possibilities for understanding selenometabolome in yeast cells. This study was aimed at the identification of compounds containing selenium in the feed yeasts Candida utilis ATCC 9950. Yeast biomass was kept in aqueous solutions enriched with inorganic selenium (20 mg·L−1) for 24 h. Speciation analysis of the element was performed using the HPLC-ICP-MS and UHPLC-ESI-Orbitrap MS techniques. The obtained selenium value in the yeast was 629 μg·g−1, while the selenomethionine value was 31.57 μg·g−1. The UHPLC-ESI-Orbitrap MS analysis conducted allowed for the identification of six selenium compounds: dehydro-selenomethionine-oxide, selenomethionine, selenomethionine-NH3, a Se-S conjugate of selenoglutathione-cysteine, methylthioselenoglutathione, and 2,3-DHP-selenocysteine-cysteine. In order to explain the structure of selenium compounds, the selected ions were subjected to fragmentation. The selenium compounds obtained with a low mass play a significant role in the metabolism of the compound. However, the bioavailability of such components and their properties have not been fully understood. The number of signals indicating the presence of selenium compounds obtained using the UHPLC-ESI-Orbitrap MS method was characterized by higher sensitivity than when using the HPLC-ICP-MS method. The obtained results will expand upon knowledge about the biotransformation of selenium in eukaryotic yeast cells. Future research should focus on understanding the entire selenium metabolism in cells and on the search for new transformation pathways for this element. This opens up new possibilities for obtaining functional food, rich in easily absorbable selenium sources, and constituting an alternative to dietary supplements based on this compound found primarily in inorganic form.
Collapse
|
43
|
Selenium-Related Transcriptional Regulation of Gene Expression. Int J Mol Sci 2018; 19:ijms19092665. [PMID: 30205557 PMCID: PMC6163693 DOI: 10.3390/ijms19092665] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
The selenium content of the body is known to control the expression levels of numerous genes, both so-called selenoproteins and non-selenoproteins. Selenium is a trace element essential to human health, and its deficiency is related to, for instance, cardiovascular and myodegenerative diseases, infertility and osteochondropathy called Kashin–Beck disease. It is incorporated as selenocysteine to the selenoproteins, which protect against reactive oxygen and nitrogen species. They also participate in the activation of the thyroid hormone, and play a role in immune system functioning. The synthesis and incorporation of selenocysteine occurs via a special mechanism, which differs from the one used for standard amino acids. The codon for selenocysteine is a regular in-frame stop codon, which can be passed by a specific complex machinery participating in translation elongation and termination. This includes a presence of selenocysteine insertion sequence (SECIS) in the 3′-untranslated part of the selenoprotein mRNAs. Nonsense-mediated decay is involved in the regulation of the selenoprotein mRNA levels, but other mechanisms are also possible. Recent transcriptional analyses of messenger RNAs, microRNAs and long non-coding RNAs combined with proteomic data of samples from Keshan and Kashin–Beck disease patients have identified new possible cellular pathways related to transcriptional regulation by selenium.
Collapse
|
44
|
Matejczyk M, Świderski G, Świsłocka R, Rosochacki SJ, Lewandowski W. Seleno-l-methionine and l-ascorbic acid differentiate the biological activity of doxorubicin and its metal complexes as a new anticancer drugs candidate. J Trace Elem Med Biol 2018; 48:141-148. [PMID: 29773172 DOI: 10.1016/j.jtemb.2018.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/16/2018] [Accepted: 03/23/2018] [Indexed: 01/03/2023]
Abstract
The most important problems of anti-cancer therapy include the toxicity of the drugs applied to healthy cells and the multi-drug cells resistance to chemotherapeutics. One of the most commonly used anticancer drugs is doxorubicin (DOX) used to treat certain leukemias and non-Hodgkin's lymphomas, as well as bladder, breast, stomach, lung, ovarian, thyroid, multiple myeloma and other cancers. Preliminary studies showed that metal complex with DOX improve its cytostatic activity with changes in their molecular structure and distribution of electrons, resulting in a substantial change of its biological activity (including antitumor activity). Thus, there is a chance to receiving derivatives of DOX with low toxicity for the healthy body cells, thus increasing its therapeutic selectivity. In the present study we examined the influence of Mn, Mg, Fe, Co and Ni, seleno-l-methionine and vitamin C on biological activity of DOX in prokaryotic model - Escherichia coli RFM443, with plasmid transcriptional fusion of recA promoter and luxCDABE as a reporter gene. Cytotoxic potency of tested chemicals was calculated on the basis of the bacteria culture growth inhibition (GI%) values. Genotoxic properties were calculated on the basis of the fold increase (FI) of relative luminescence units (RLU) values compared to control. Obtained results showed that doxorubicin metal complexes particularly with Ni, Co and Fe increased the cyto- and genotoxic activities of DOX. Bacteria culture supplemented with SeMet and vitamin C differentiate the DOX and its metal complexes toxicity. It seems, that DOX-Ni, DOX-Fe and DOX-Co complexes could be potent cytostatic drug candidates. Moreover, we noticed different sensitivity of recA::luxCDABE for 3 h and 24 h cultures of bacteria strain. It suggests, that the potency of genetic construct reactivity- recA::luxCDABE in E. coli depends on the growth-phase of bacterial culture.
Collapse
Affiliation(s)
- Marzena Matejczyk
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland.
| | - Grzegorz Świderski
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland
| | - Renata Świsłocka
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland
| | - Stanisław Józef Rosochacki
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland
| | - Włodzimierz Lewandowski
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland
| |
Collapse
|