1
|
Edvinsson JCA, Grubor I, Maddahi A, Edvinsson L. Male-female comparison of vasomotor effects of circulating hormones in human intracranial arteries. J Headache Pain 2024; 25:216. [PMID: 39663536 PMCID: PMC11633024 DOI: 10.1186/s10194-024-01933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND The purpose of this study was to examine whether there are sex differences in vasomotor responses and receptor localization of hormones and neuropeptides with relevance to migraine (vasopressin, oxytocin, estrogen, progesterone, testosterone, amylin, adrenomedullin and calcitonin gene-related peptide (CGRP)) in human intracranial arteries. METHODS Human cortical cerebral and middle meningeal arteries were used in this study. The tissues were removed in conjunction with neurosurgery and donated with consent. Vasomotor responses of arteries, after exposure to hormones or neuropeptides, were recorded using a wire myograph. Immunohistochemistry was performed to examine the expression and localization of their receptors within human intracranial arteries. RESULTS Vasopressin showed the strongest contractile responses, followed by oxytocin and progesterone. CGRP displayed the strongest vasodilatory response when compared to adrenomedullin, amylin, testosterone and estrogen. No significant differences were observed in vasomotor responses between male and female arteries. The vasomotor effects were supported by the presence of corresponding receptors in the vascular smooth muscle cells. Estrogen receptors (ERα and ERβ), progesterone receptor (PR), vasopressin 1a receptor (V1aR), and the oxytocin receptor (OTR) were expressed in the walls of both cerebral arteries overlying the cerebral cortex and intracranial arteries of the dura mater. ERα, V1aR, and PR were found to be localized in both smooth muscle cells and endothelium, whereas OTR was exclusively located within the smooth muscle cells. CONCLUSIONS Hypothalamic, sex hormones and the pancreas hormone (amylin) receptors are expressed in the human intracranial artery walls. The vasomotor responses revealed no sex differences, however contractile responses to vasopressin was higher and more potent in MMA compared to CCA when pooling data from both sexes. Overall, the hormones estrogen, progesterone and oxytocin, which drop in circulating levels at onset of menstruation, only showed modest vasomotor responses as compared to CGRP. This suggests that their role in inducing menstrual migraine attacks is not directly related to vasomotor responses.
Collapse
Affiliation(s)
- Jacob C A Edvinsson
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Getingevagen 4, Lund, 22185, Sweden.
| | - Irena Grubor
- Department of Neurosurgery, University Hospital, Lund, Sweden
| | - Aida Maddahi
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Getingevagen 4, Lund, 22185, Sweden
| | - Lars Edvinsson
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Getingevagen 4, Lund, 22185, Sweden
| |
Collapse
|
2
|
Al-Suhaimi E, AlQuwaie R, AlSaqabi R, Winarni D, Dewi FRP, AlRubaish AA, Shehzad A, Elaissari A. Hormonal orchestra: mastering mitochondria's role in health and disease. Endocrine 2024; 86:903-929. [PMID: 39172335 DOI: 10.1007/s12020-024-03967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Mitochondria is a subcellular organelle involved in the pathogenesis of cellular stress, immune responses, differentiation, metabolic disorders, aging, and death by regulating process of fission, fusion, mitophagy, and transport. However, an increased interest in mitochondria as powerhouse for ATP production, the mechanisms of mitochondria-mediated cellular dysfunction in response to hormonal interaction remains unknown. Mitochondrial matrix contains chaperones and proteases that regulate intrinsic apoptosis pathway through pro-apoptotic Bcl-2 family's proteins Bax/Bak, and Cyt C release, and induces caspase-dependent and independent cells death. Energy and growth regulators such as thyroid hormones have profound effect on mitochondrial inner membrane protein and lipid compositions, ATP production by regulating oxidative phosphorylation system. Mitochondria contain cholesterol side-chain cleavage enzyme, P450scc, ferredoxin, and ferredoxin reductase providing an essential site for steroid hormones biosynthesis. In line with this, neurohormones such as oxytocin, vasopressin, and melatonin are correlated with mitochondrial integrity, displaying therapeutic implications for inflammatory and immune responses. Melatonin's also displayed protective role against oxidative stress and mitochondrial synthesis of ROS, suggesting a defense mechanism against aging-related diseases. An imbalance in mitochondrial bioenergetics can cause neurodegenerative disorders, cardiovascular diseases, and cancers. Hormone-induced PGC-1α stimulates mitochondrial biogenesis via activation of NRF1 and NRF2, which in turn triggers mtTFA in brown adipose and cardiac myocytes. Mitochondria can be transferred through cells merging, exosome-mediated transfer, and tunneling through nanotubes. By delineating the underlying molecular mechanism of hormonal mitochondrial interaction, this study reviews the dynamics mechanisms of mitochondria and its effects on cellular level, health, diseases, and therapeutic strategies targeting mitochondrial diseases.
Collapse
Affiliation(s)
- Ebtesam Al-Suhaimi
- Vice presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
- King Abdulaziz and his Companions Foundation for Giftedness and Creativity "Mawhiba", Riyadh, Saudi Arabia.
| | - Rahaf AlQuwaie
- Master Program of Biotechnology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem AlSaqabi
- Master Program of Biotechnology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Abdullah A AlRubaish
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Adeeb Shehzad
- Biodiversity Unit, Research Center, Dhofar University, Salalah, Oman
| | | |
Collapse
|
3
|
Yang Y, Liu J, Wang L, Wu W, Wang Q, Zhao Y, Qian X, Wang Z, Fu N, Wang Y, Qian J. Oxytocin attenuates cardiac hypertrophy by improving cardiac glucose metabolism and regulating OXTR/JAK2/STAT3 axis. Peptides 2024; 182:171323. [PMID: 39613260 DOI: 10.1016/j.peptides.2024.171323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND The progress of cardiac hypertrophy is modulated by JAK2/STAT3 signaling pathway. Cardiac glucose metabolism derangement exacerbates the progression of cardiac hypertrophy. Oxytocin (OT) has emerged as a significant hormone involved in cardiovascular homeostasis, especially in protecting against cardiac hypertrophy. The present study aims to explore whether the anti-hypertrophy effect of oxytocin is related to the JAK2/STAT3 signaling pathway and cardiac glucose metablism. METHODS Cardiac hypertrophy model was induced by angiotensin II (Ang II) in H9c2 cells and in mice with or without oxytocin treatment. Changes in cardiac histopathology were evaluated by hematoxylin and eosin (H&E), Masson staining, and wheat germ agglutinin (WGA) staining. The hypertrophy-related genes and JAK2/STAT3 pathway signaling molecules were analyzed by qRT-PCR and western blotting. The levels of glucose, pyruvic acid, lactic acid, and lactate dehydrogenase activity in H9c2 cells using the corresponding assay kits. RESULTS The results showed that OT inhibited hypertrophic and fibrotic changes. Furthermore, OT increased intracellular levels of glucose and pyruvic acid, and decreased lactate dehydrogenase activity and lactic acid levels. Mechanistically, Ang II decreased oxytocin receptors (OXTR) expression and facilitated JAK2 and STAT3 phosphorylation. OT treatment increased OXTR expression and blocked JAK2 and STAT3 phosphorylation The OXTR-specific siRNA-mediated depleted expression could abrogate OT-induced anti-hypertrophic effects in H9c2 cells following angiotensin II insult. However, the JAK2/STAT3 inhibitor AG490 rescued the protective effects of OT against cardiac hypertrophy under OXTR downregulation. CONCLUSION OT exerts its protective effects against cardiac hypertrophy by improving cardiac glucose metabolism and regulating OXTR/JAK2/STAT3 axis.
Collapse
Affiliation(s)
- Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jin Liu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lingyan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wen Wu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Quan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu Zhao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xi Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhuoran Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Na Fu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yanqiong Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Gardashli M, Baron M, Drohat P, Quintero D, Kaplan LD, Szeto A, Mendez AJ, Best TM, Kouroupis D. The roles of regulatory-compliant media and inflammatory/oxytocin priming selection in enhancing human mesenchymal stem/stromal cell immunomodulatory properties. Sci Rep 2024; 14:29438. [PMID: 39604514 PMCID: PMC11603324 DOI: 10.1038/s41598-024-80050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Osteoarthritis (OA) represents a significant global health burden without a known disease modifying agent thereby necessitating pursuit of innovative therapeutic approaches. The infrapatellar fat pad (IFP) serves as a reservoir of mesenchymal stem/stromal cells (MSC), and with adjacent synovium plays key roles in joint disease affecting local inflammatory responses. Therapeutically, IFP-MSC have garnered attention for their potential in OA treatment due to their immunomodulatory and regenerative properties. However, optimizing their therapeutic efficacy necessitates a comprehensive understanding of how growth medium and inflammatory/hormonal priming influence their behavior. In this study, we isolated and expanded IFP-MSC in three different growth media: DMEM + 10% fetal bovine serum (FBS), DMEM + 10% human platelet lysate (HPL), and xeno-/serum-free synthetic (XFSF) medium. Subsequently, cells were induced with an inflammatory/fibrotic cocktail (TIC) with or without oxytocin (OXT). We evaluated various parameters including growth kinetics, phenotype, immunomodulatory capacity, gene expression, and macrophage polarization capacity. Our results revealed significant differences in the behavior of MSC cultured in different media. IFP-MSC cultured in HPL and XFSF exhibited superior growth kinetics and colony-forming abilities compared to those cultured in FBS. Furthermore, both HPL and XFSF media enhanced the expression of MSC markers (> 90%) and potentiated their immunomodulatory properties. Notably, XFSF-conditioned IFP-MSC demonstrated the highest attenuation of peripheral blood mononuclear cell (PBMC) proliferation, indicating their robust immunosuppressive capacity. Additionally, TIC priming further augmented the immunomodulatory functionality of MSC, with IFP-MSC exhibiting enhanced suppression of PBMC proliferation upon TIC priming. Of particular interest, gene expression analysis revealed distinct patterns in TIC + OXT induced MSC compared to TIC only induced, with upregulation of genes associated with immunomodulatory and regenerative functions. Furthermore, TIC + OXT priming promoted M2 polarization in macrophages, suggesting a potential therapeutic strategy for immune-mediated inflammatory joint conditions including OA. Our findings highlight the critical influence of growth medium and inflammatory/hormonal priming on MSC behavior and therapeutic potential. XFSF and HPL media offer promising alternatives to FBS, enhancing MSC growth and immunomodulatory properties. Moreover, TIC + OXT priming represents a novel approach to augment MSC immunomodulation and promote M2 polarization, providing insights into potential therapeutic strategies for OA and other immune-mediated inflammatory conditions.
Collapse
Affiliation(s)
- Mahammad Gardashli
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Max Baron
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Philip Drohat
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Daniel Quintero
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Lee D Kaplan
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Angela Szeto
- Department of Psychology, University of Miami, Miami, FL, USA
| | - Armando J Mendez
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Thomas M Best
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
5
|
Huang H, Apaijai N, Oo TT, Suntornsaratoon P, Charoenphandhu N, Chattipakorn N, Chattipakorn SC. Gestational diabetes mellitus, not obesity, triggers postpartum brain inflammation and premature aging in Sprague-Dawley rats. Neuroscience 2024; 559:166-180. [PMID: 39236804 DOI: 10.1016/j.neuroscience.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/10/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Previous studies showed that women with gestational diabetes mellitus (GDM) are susceptible to cognitive dysfunction. We investigated the effects of GDM on brain pathologies and premature brain aging in rats. Seven-week-old female Sprague-Dawley rats were fed a normal diet (ND) or a high-fat diet (HFD) after two weeks of acclimatization. On pregnancy day 0, HFD-treated rats received streptozotocin (GDM group) or vehicle (Obese mothers). ND-treated rats received vehicle (ND-control mothers). On postpartum day 21, brains and blood were collected. The GDM group showed increased inflammatory and premature aging markers, mitochondrial changes, and compensatory increases in the blood-brain barrier and synaptic proteins in the prefrontal cortex and hippocampus. GDM triggers maternal brain inflammation and premature aging, suggesting compensatory mechanisms may protect against these effects.
Collapse
Affiliation(s)
- Huatuo Huang
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand; Center for Medical Laboratory Science, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Panan Suntornsaratoon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
6
|
Moberg KU. Oxytocin in growth, reproduction, restoration and health. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 20:100268. [PMID: 39435014 PMCID: PMC11492126 DOI: 10.1016/j.cpnec.2024.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
This article summarizes my scientific work and describes some personal experiences during this period. After my basal medical training (MD) (1971), I obtained a PhD in pharmacology (1976) and ended up as a professor of Physiology. My initial studies were within the field of gastroenterology. I showed that the gastrointestinal hormone gastrin, which stimulates HCL secretion in the stomach, was released in response to stimulation of the vagal nerve. Later I showed that the entire endocrine system of the gastrointestinal (GI) tract that promotes digestion and anabolic metabolism and growth was under vagal nerve control. I also showed that activation of the vagal nerve inhibits the function of the inhibitory substance somatostatin. 10 years later, after some big changes in my personal life, my research focus changed. I became interested in female physiology, particularly the role of oxytocin. In addition, I became aware of the situation of female scientists and started to work with questions regarding equality between women and men. I gathered a group of interested female medical students and midwives around me. We demonstrated that breastfeeding and touch (e.g., between mother and baby), via stimulation of sensory nerves in the skin, activated the endocrine system of the GI tract and, thereby, anabolic processes and growth. The effects were exerted via a vagal mechanism and involved activation of parvocellular oxytocinergic neurons from the paraventricular nucleus (PVN). We also showed that the gastrointestinal hormone cholecystokinin stimulated the release of oxytocin in a calorie-dependent way via an afferent vagal mechanism. In summary, there is a bidirectional, vagally mediated connection between the endocrine system of the GI tract and the oxytocin producing neurons in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus.1. Oxytocinergic neurons from the PVN enhances the activity of the endocrine system of the GI tract and thereby growth and regeneration. The effect is exerted via efferent vagal fibers which inhibit the release of somatostatin. 2. Food in the duodenum triggers a release of cholecystokinin (CCK), which via a vagal afferent mechanism stimulates the release and function of oxytocin. This mechanism is not activated in the absence of food intake. Administration of oxytocin induces a multitude of actions, i.e., anxiolytic and sedative effects, increased pain threshold, lowering of cortisol and blood pressure and an increased activity of the endocrine system of the GI tract. Repeated administration of oxytocin may induce long-term effects and "secondary" mechanisms such as an increased activity of alpha-2- adrenoceptors are involved. Oxytocin released by suckling during breastfeeding or by touch during social interaction will induce a similar effect spectrum. Activation of the parvocellular neurons will stimulate some aspects of social behavior, induce calm and well-being, and decrease levels of fear, stress, and pain. In addition, vagal functions and the activity of the endocrine system of the GI tract will be stimulated. Together, these effects are consistent with the oxytocin-mediated calm and connection response and, in a long-term perspective, with the promotion of well-being and health. A second period of professional difficulties occurred in the late 1990s. I moved to the Swedish University of Agriculture, where I started to investigate the role of oxytocin in interactions between humans and pets, as this type of interaction had been shown to promote health. I continued to study the role of oxytocin in female reproduction, in particular, the role of oxytocin during labor and birth and in the peripartum period. In addition, I started to write books about different aspects of oxytocin. I also wanted to establish a role for oxytocin in the treatment of vaginal atrophy. Several clinical studies show that local intravaginal application of oxytocin in women with vaginal atrophy increases the regeneration of vaginal mucosal cells and function.
Collapse
Affiliation(s)
- Kerstin Uvnäs Moberg
- Swedish University of Agriculture, Department of Applied Animal Science and Welfare, Skara, Sweden
| |
Collapse
|
7
|
Bhullar SK, Rabinovich-Nikitin I, Kirshenbaum LA. Oral hormonal contraceptives and cardiovascular risks in females. Can J Physiol Pharmacol 2024; 102:572-584. [PMID: 38781602 DOI: 10.1139/cjpp-2024-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Oral hormonal contraception (OHC) is a widely employed method in females for the prevention of unintended pregnancies, as well as for the treatment of menstrual disorders, endometriosis, and polycystic ovarian syndrome. However, it is believed that with OHCs use, some females may have higher risk of cardiovascular diseases, such as hypertension, diabetes, myocardial infarction, thrombosis, and heart failure. Although such risks are infrequently detected in healthy young females with the use of oral contraceptives, slightly elevated risks of cardiovascular diseases have been observed among reproductive-aged healthy females. However, prolonged use of OHC has also been claimed to have protective cardiac effects and may contribute to reduced risk of cardiovascular disease. In fact, the debate on whether OHC administration increases the risk of cardiovascular diseases has been ongoing with inconsistent and controversial viewpoints. Nevertheless, a great deal of work has been carried out to understand the relationship between OHC use and the occurrence of cardiovascular risk in females who use OHC for preventing the unwanted pregnancy or treatment of other disorders. Therefore, in this review we summarize the most recent available evidence regarding the association between the use of oral hormonal contraceptives and the risk for cardiovascular disease in females who are using OHC to prevent unintended pregnancy.
Collapse
Affiliation(s)
- Sukhwinder K Bhullar
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Inna Rabinovich-Nikitin
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lorrie A Kirshenbaum
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Bordini M, Wang Z, Soglia F, Petracci M, Schmidt CJ, Abasht B. RNA-sequencing revisited data shed new light on wooden breast myopathy. Poult Sci 2024; 103:103902. [PMID: 38908127 PMCID: PMC11246058 DOI: 10.1016/j.psj.2024.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024] Open
Abstract
Wooden Breast (WB) abnormality represents one of the major challenges that the poultry industry has faced in the last 10 years. Despite the enormous progress in understanding the mechanisms underlying WB, the precise initial causes remain to be clarified. In this scenario, the present research is intended to characterize the gene expression profiles of broiler Pectoralis major muscles affected by WB, comparing them to the unaffected counterpart, to provide new insights into the biological mechanisms underlying this defect and potentially identifying novel genes likely involved in its occurrence. To this purpose, data obtained in a previous study through the RNA-sequencing technology have been used to identify differentially expressed genes (DEGs) between 6 affected and 5 unaffected broilers' breast muscles, by using the newest reference genome assembly for Gallus gallus (GRCg7b). Also, to deeply investigate molecular and biological pathways involved in the WB progression, pathways analyses have been performed. The results achieved through the differential gene expression analysis mainly evidenced the downregulation of glycogen metabolic processes, gluconeogenesis, and tricarboxylic acid cycle in WB muscles, thus corroborating the evidence of a dysregulated energy metabolism characterizing breasts affected by this abnormality. Also, genes related to hypertrophic muscle growth have been identified as differentially expressed (e.g., WFIKKN1). Together with that, a downregulation of genes involved in mitochondrial biogenesis and functionality has been detected. Among them, PPARGC1A and PPARGC1B chicken genes are particularly noteworthy. These genes not only have essential roles in regulating mitochondrial biogenesis but also play pivotal roles in maintaining glucose and energy homeostasis. In view of that, their downregulation in WB-affected muscle may be considered as potentially related to both the mitochondrial dysfunction and altered glucose metabolism in WB muscles, and their key involvement in the molecular alterations characterizing this muscular abnormality might be hypothesized.
Collapse
Affiliation(s)
- Martina Bordini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, Italy
| | - Ziqing Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, Italy.
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
9
|
Uvnäs-Moberg K. The physiology and pharmacology of oxytocin in labor and in the peripartum period. Am J Obstet Gynecol 2024; 230:S740-S758. [PMID: 38462255 DOI: 10.1016/j.ajog.2023.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 03/12/2024]
Abstract
Oxytocin is a reproductive hormone implicated in the process of parturition and widely used during labor. Oxytocin is produced within the supraoptic nucleus and paraventricular nucleus of the hypothalamus and released from the posterior pituitary lobe into the circulation. Oxytocin is released in pulses with increasing frequency and amplitude in the first and second stages of labor, with a few pulses released in the third stage of labor. During labor, the fetus exerts pressure on the cervix of the uterus, which activates a feedforward reflex-the Ferguson reflex-which releases oxytocin. When myometrial contractions activate sympathetic nerves, it decreases oxytocin release. When oxytocin binds to specific myometrial oxytocin receptors, it induces myometrial contractions. High levels of circulating estrogen at term make the receptors more sensitive. In addition, oxytocin stimulates prostaglandin synthesis and release in the decidua and chorioamniotic membranes by activating a specific type of oxytocin receptor. Prostaglandins contribute to cervical ripening and uterine contractility in labor. The oxytocin system in the brain has been implicated in decreasing maternal levels of fear, pain, and stress, and oxytocin release and function during labor are stimulated by a social support. Moreover, studies suggest, but have not yet proven, that labor may be associated with long-term, behavioral and physiological adaptations in the mother and infant, possibly involving epigenetic modulation of oxytocin production and release and the oxytocin receptor. In addition, infusions of synthetic oxytocin are used to induce and augment labor. Oxytocin may be administered according to different dose regimens at increasing rates from 1 to 3 mIU/min to a maximal rate of 36 mIU/min at 15- to 40-minute intervals. The total amount of synthetic oxytocin given during labor can be 5 to 10 IU, but lower and higher amounts of oxytocin may also be given. High-dose infusions of oxytocin may shorten the duration of labor by up to 2 hours compared with no infusion of oxytocin; however, it does not lower the frequency of cesarean delivery. When synthetic oxytocin is administered, the plasma concentration of oxytocin increases in a dose-dependent way: at infusion rates of 20 to 30 mIU/min, plasma oxytocin concentration increases approximately 2- to 3-fold above the basal level. Synthetic oxytocin administered at recommended dose levels is not likely to cross the placenta or maternal blood-brain barrier. Synthetic oxytocin should be administered with caution as high levels may induce tachystole and uterine overstimulation, with potentially negative consequences for the fetus and possibly the mother. Of note, 5 to 10 IU of synthetic oxytocin is often routinely given as an intravenous or intramuscular bolus administration after delivery to induce uterine contractility, which, in turn, induces uterine separation of the placenta and prevents postpartum hemorrhage. Furthermore, it promotes the expulsion of the placenta.
Collapse
Affiliation(s)
- Kerstin Uvnäs-Moberg
- Department of Animal Environment and Health, Swedish University of Agriculture, Uppsala, Sweden.
| |
Collapse
|
10
|
Buemann B. Does activation of oxytocinergic reward circuits postpone the decline of the aging brain? Front Psychol 2023; 14:1250745. [PMID: 38222845 PMCID: PMC10786160 DOI: 10.3389/fpsyg.2023.1250745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/20/2023] [Indexed: 01/16/2024] Open
Abstract
Oxytocin supports reproduction by promoting sexual- and nursing behavior. Moreover, it stimulates reproductive organs by different avenues. Oxytocin is released to the blood from terminals of oxytocinergic neurons which project from the hypothalamus to the pituitary gland. Concomitantly, the dendrites of these neurons discharge oxytocin into neighboring areas of the hypothalamus. At this location it affects other neuroendocrine systems by autocrine and paracrine mechanisms. Moreover, sensory processing, affective functions, and reward circuits are influenced by oxytocinergic neurons that reach different sites in the brain. In addition to its facilitating impact on various aspects of reproduction, oxytocin is revealed to possess significant anti-inflammatory, restoring, and tranquilizing properties. This has been demonstrated both in many in-vivo and in-vitro studies. The oxytocin system may therefore have the capacity to alleviate detrimental physiological- and mental stress reactions. Thus, high levels of endogenous oxytocin may counteract inadequate inflammation and malfunctioning of neurons and supportive cells in the brain. A persistent low-grade inflammation increasing with age-referred to as inflammaging-may lead to a cognitive decline but may also predispose to neurodegenerative diseases such as Alzheimer's and Parkinson. Interestingly, animal studies indicate that age-related destructive processes in the body can be postponed by techniques that preserve immune- and stem cell functions in the hypothalamus. It is argued in this article that sexual activity-by its stimulating impact on the oxytocinergic activity in many regions of the brain-has the capacity to delay the onset of age-related cerebral decay. This may also postpone frailty and age-associated diseases in the body. Finally, oxytocin possesses neuroplastic properties that may be applied to expand sexual reward. The release of oxytocin may therefore be further potentiated by learning processes that involves oxytocin itself. It may therefore be profitable to raise the consciousness about the potential health benefits of sexual activity particularly among the seniors.
Collapse
|
11
|
Zagoory-Sharon O, Levine A, Feldman R. Human sweat contains oxytocin. Psychoneuroendocrinology 2023; 158:106407. [PMID: 37797406 DOI: 10.1016/j.psyneuen.2023.106407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/20/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Oxytocin (OT) has been detected in various body fluids, including blood, urine, saliva, breastmilk, and spinal fluid. Consistent with models that regard skin as a social organ and in line with studies demonstrating that skin cells express both OT and its receptor, our study sought to examine the presence of OT in human sweat. METHODS Overall, 553 individuals participated in a pilot study and three experiments. Firstly, 50 participants provided sweat after engaging in various sports for different durations. Secondly, 26 participants provided sweat from forehead, upper-chest, forearm, and underarm, including 11 in natural setting and 15 following OT administration and a 30-minute exercise. Thirdly, of 435 volunteers, 97 provided sufficient axillary sweat for assaying. Of these, 84 participated in a naturalistic experiment that involved saliva and sweat collection in response to physical activity in either solitary or social settings. OT and testosterone (TS) were assayed in sweat and saliva. RESULTS Intense activity for at least 25 min was required to produce sufficient sweat for OT analysis. Highest OT levels were found in axillary sweat compared to sweat from the forehead, upper-chest, and forearm. Salivary OT and TS increased after both solitary and social physical activity; however, higher sweat OT was found after solitary sports. Post-hoc preliminary findings indicate that highly extroverted individuals exercising in solitary environments showed the highest sweat OT levels. CONCLUSIONS Findings demonstrate, for the first time, the presence of OT in human sweat and show the feasibility of its measurement. Much further research is required to illuminate how sweat OT is impacted by personality and social context and to uncover the role of the skin in OT production.
Collapse
Affiliation(s)
| | - Ari Levine
- Center for Developmental Social Neuroscience, Reichman University, Israel
| | - Ruth Feldman
- Center for Developmental Social Neuroscience, Reichman University, Israel
| |
Collapse
|
12
|
Korkmaz H, Deveci CD, Üstün Y, Pehlivanoğlu B. Comparison of plasma oxytocin level in women with natural and surgical menopause. Endocrine 2023; 82:209-214. [PMID: 37477780 DOI: 10.1007/s12020-023-03453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE We aimed to investigate plasma oxytocin level in women with natural and surgical menopause and its relation with other metabolic parameters. METHODS This study included 89 postmenopausal women admitted to menopausal outpatient clinics and gave written consent to participate. Participants were allocated into natural (Group 1; n = 61) and surgical (Group 2; n = 28) menopause groups based on causative process for the onset of menopause. After the clinical evaluation and physical examination, blood samples are collected for biochemical profile and plasma oxytocin levels. The complete blood count, lipid profile, thyroid panel, blood glucose concentration, vitamin D and liver enzymes were measured by autoanalyzer, plasma oxytocin level was measured spectrophotometrically by ELISA method. RESULTS The groups were comparable for age, body mass index, menopause duration, gravity and blood parameters measured except significantly different plasma oxytocin levels between the two groups as 6.8 (3.2-20.6) ng/ml in natural menopause group and 4.2 (2.9-18.2) ng/ml in surgical menopause group (p < 0.001). Plasma oxytocin level was also negatively correlated with age (r = -0.245, p = 0.022) and menopausal duration (r = -0.275, p = 0.01). CONCLUSION Our results point out that oxytocin might be a target hormone to manage menopause associated disorders and/or it should be considered for its role in the differences in the incidences of postmenopausal diseases and quality of life in the course of natural and surgical menopausal transition.
Collapse
Affiliation(s)
- Hilal Korkmaz
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Canan Dura Deveci
- Department of Obstetrics and Gynecology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Yusuf Üstün
- Department of Obstetrics and Gynecology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Bilge Pehlivanoğlu
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Nagasawa T, Kimura Y, Masuda K, Uchiyama H. Effects of Interactions with Cats in Domestic Environment on the Psychological and Physiological State of Their Owners: Associations among Cortisol, Oxytocin, Heart Rate Variability, and Emotions. Animals (Basel) 2023; 13:2116. [PMID: 37443915 DOI: 10.3390/ani13132116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Interactions with animals, including cats, is believed to influence human health. However, studies that investigate the psychological and physiological effects of interacting with cats in their household environment are limited. In this remote study, 32 cat owners in Japan participated from June to October 2021. They completed two tasks, each on separate days in their homes: one simulating daily cat communication (Interaction condition) and another with no interactions (Rest condition). We quantified emotions (arousal level and pleasure level) before and after each condition using the Two-Dimensional Mood Scale Short-term as well as salivary cortisol and oxytocin levels of owners using enzyme-linked immune-sorbent assay. Autonomic nervous activity (sympathetic and parasympathetic) was also quantified by heart rate variability analysis. The free interaction with cats decreased emotional arousal and parasympathetic activity, and lead to increased heart rates in owners. There was a positive correlation between heart rate and cortisol concentration, and between cortisol and oxytocin concentration. Furthermore, the frequency of petting the cats was negatively correlated with the rate of change in the parasympathetic activity. In contrast, the parasympathetic nerves in the owners were activated under the Rest condition. Hence, the mechanism of health-enhancing effects of cat ownership includes an arousing effect, in contrast to the previously proposed stress-reduction effect. This result can aid in future developments in cat-human relationship studies. However, a detailed study with a larger sample size is needed to draw definite conclusions.
Collapse
Affiliation(s)
- Takumi Nagasawa
- Department of Human and Animal-Plant Relationships, Graduate School of Agriculture, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Yuichi Kimura
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Koji Masuda
- Department of Human and Animal-Plant Relationships, Graduate School of Agriculture, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Hidehiko Uchiyama
- Department of Human and Animal-Plant Relationships, Graduate School of Agriculture, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| |
Collapse
|
14
|
Kani AS, Çinçin A, Özercan A, Şenoğuz UD, Örnek E, Dokuz G, Topçuoğlu V, Sayar K. Exploring the role of adult attachment, major depression and childhood trauma in arterial stiffness: A preliminary study. J Psychosom Res 2023; 171:111386. [PMID: 37269643 DOI: 10.1016/j.jpsychores.2023.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Prior research indicates a noteworthy and intricate connection between depression and subclinical atherosclerosis. Nevertheless, the biological and psychological mechanisms that underlie this association are not yet fully understood. To address this gap, this exploratory study aimed to examine the relationship between active clinical depression and arterial stiffness (AS), with a particular focus on the potential mediating roles of attachment security and childhood trauma. METHODS In this cross-sectional study, we examined 38 patients with active major depression free of dyslipidemia, diabetes mellitus, hypertension, and obesity and 32 healthy controls. All participants underwent blood tests, psychometric assessments, and AS measurements using the Mobil-O-Graph arteriograph system. AS severity was evaluated using an augmentation index (AIx) normalized to 75 beats/min. RESULTS In the absence of defined clinical cardiovascular risk factors, there was no significant difference in AIx between individuals with depression and healthy controls (p = .75). Patients with longer intervals between depressive episodes had lower AIx (r = -0.44, p < .01). Insecure attachment and childhood trauma did not significantly associate with AIx in patients. Whereas insecure attachment was positively correlated with AIx only in healthy controls (r = 0.50, p = 01). CONCLUSIONS Our analysis of established risk factors for atherosclerosis revealed that depression and childhood trauma had no significant relationship with AS. However, we did identify a novel finding: insecure attachment was significantly associated with AS severity in healthy adults without defined cardiovascular risk factors for the first time. To our knowledge, this is the first study to demonstrate this relationship.
Collapse
Affiliation(s)
- Ayşe Sakallı Kani
- Department of Psychiatry, Marmara University, School of Medicine, Istanbul, Turkey.
| | - Altuğ Çinçin
- Department of Cardiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Ahmet Özercan
- Department of Psychiatry, Marmara University, School of Medicine, Istanbul, Turkey
| | - Uzay Dural Şenoğuz
- Department of Psychology, Istanbul Medeniyet University Faculty of Arts and Humanities, Istanbul, Turkey
| | - Erdem Örnek
- Department of Psychology, Istanbul Medeniyet University Faculty of Arts and Humanities, Istanbul, Turkey
| | - Gonca Dokuz
- Department of Psychiatry, Bezmialem Vakıf University, Istanbul, Turkey
| | - Volkan Topçuoğlu
- Department of Psychiatry, Marmara University, School of Medicine, Istanbul, Turkey
| | - Kemal Sayar
- Department of Psychiatry, Marmara University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
15
|
Moussa A, Moberg KU, Elgrahy I, Elsayied M, Abdel-Rasheed M, Farouk M, Saad H, Meshaal H. Effect of topical oxytocin gel on vaginal mucosa in postmenopausal Egyptian women: a clinical randomized trial. J Sex Med 2023; 20:177-183. [PMID: 36763919 DOI: 10.1093/jsxmed/qdac021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Vaginal atrophy is common after menopause and is often linked to sexual dysfunction, particularly dyspareunia. AIM The study aimed to investigate the effect of intravaginally applied oxytocin on expressions of vaginal atrophy. METHODS Fifty postmenopausal women aged 47 to 66 years with vaginal atrophy participated in this double-blinded placebo-controlled study. The women were randomized to intravaginal treatment with either gel with 600 IU/mL of oxytocin (oxytocin group) or gel alone (control group) once daily for 2 weeks. The gel consisted of hypromellose, pH 3.8 (Vagovital). OUTCOMES The color of the vaginal mucosa, the vaginal pH, and the cytology of vaginal epithelial cells were investigated before and after treatment. RESULTS The color of the vaginal mucosa shifted from pale to red in all 25 patients treated with oxytocin but only in 4 patients in the control group (P < .001). There was a significant decrease in intravaginal pH in the oxytocin group and the control group, with the delta value being significantly greater in the oxytocin group than in the control group (P < .001). The vaginal maturation index increased significantly (P < .001) in the oxytocin group but not in the control group. CLINICAL IMPLICATIONS Topical oxytocin gel offers an effective solution to the sexual dysfunction that is related to vaginal atrophy after menopause. STRENGTHS AND LIMITATIONS Strengths include studying different outcomes of applying the oxytocin gel for vaginal atrophy. Limitations include the small-scale population with a relatively short duration of treatment (2 weeks). CONCLUSION Intravaginal treatment with a gel containing 600 IU/mL of oxytocin effectively counteracts physical expressions of vaginal atrophy. TRIAL REGISTRATION ClinicalTrials.gov (NCT05275270; https://clinicaltrials.gov/ct2/show/NCT05275270).
Collapse
Affiliation(s)
- Asem Moussa
- Obstetrics and Gynecology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Kerstin Uvnäs Moberg
- Animal Environment and Health Department, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Ismael Elgrahy
- Obstetrics and Gynecology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohammad Elsayied
- Obstetrics and Gynecology Department, El Galaa Teaching Hospital, Cairo, Egypt
| | - Mazen Abdel-Rasheed
- Reproductive Health Research Department, National Research Centre, Cairo, Egypt
| | - Mohamed Farouk
- Clinical Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hany Saad
- Obstetrics and Gynecology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hadeer Meshaal
- Obstetrics and Gynecology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Tsingotjidou AS. Oxytocin: A Multi-Functional Biomolecule with Potential Actions in Dysfunctional Conditions; From Animal Studies and Beyond. Biomolecules 2022; 12:1603. [PMID: 36358953 PMCID: PMC9687803 DOI: 10.3390/biom12111603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 10/13/2023] Open
Abstract
Oxytocin is a hormone secreted from definite neuroendocrine neurons located in specific nuclei in the hypothalamus (mainly from paraventricular and supraoptic nuclei), and its main known function is the contraction of uterine and/or mammary gland cells responsible for parturition and breastfeeding. Among the actions of the peripherally secreted oxytocin is the prevention of different degenerative disorders. These actions have been proven in cell culture and in animal models or have been tested in humans based on hypotheses from previous studies. This review presents the knowledge gained from the previous studies, displays the results from oxytocin intervention and/or treatment and proposes that the well described actions of oxytocin might be connected to other numerous, diverse actions of the biomolecule.
Collapse
Affiliation(s)
- Anastasia S Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| |
Collapse
|
17
|
Carter CS, Kingsbury MA. Oxytocin and oxygen: the evolution of a solution to the ‘stress of life’. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210054. [PMID: 35856299 PMCID: PMC9272143 DOI: 10.1098/rstb.2021.0054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) and the OT receptor occupy essential roles in our current understanding of mammalian evolution, survival, sociality and reproduction. This narrative review examines the hypothesis that many functions attributed to OT can be traced back to conditions on early Earth, including challenges associated with managing life in the presence of oxygen and other basic elements, including sulfur. OT regulates oxidative stress and inflammation especially through effects on the mitochondria. A related nonapeptide, vasopressin, as well as molecules in the hypothalamic–pituitary–adrenal axis, including the corticotropin-releasing hormone family of molecules, have a broad set of functions that interact with OT. Interactions among these molecules have roles in the causes and consequence of social behaviour and the management of threat, fear and stress. Here, we discuss emerging evidence suggesting that unique properties of the OT system allowed vertebrates, and especially mammals, to manage over-reactivity to the ‘side effects’ of oxygen, including inflammation, oxidation and free radicals, while also supporting high levels of sociality and a perception of safety. This article is part of the theme issue ‘Interplays between oxytocin and other neuromodulators in shaping complex social behaviours’.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - Marcy A. Kingsbury
- Lurie Center for Autism, Mass General Hospital for Children, Harvard University Medical School, Charlestown, Boston, MA 02129, USA
| |
Collapse
|
18
|
Buemann B. Oxytocin Release: A Remedy for Cerebral Inflammaging. Curr Aging Sci 2022; 15:218-228. [PMID: 35431008 DOI: 10.2174/1874609815666220414104832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Oxytocin facilitates reproduction both by physiological and behavioral mechanisms. Oxytocinergic neurons emerging from the hypothalamus release oxytocin from the pituitary gland to the blood by axonal discharge to regulate reproductive organs. However, at the same time, oxytocin is secreted into neighboring areas of the hypothalamus from the dendrites of these neurons. Here, the peptide acts by autocrine and paracrine mechanisms to influence other neuroendocrine systems. Furthermore, oxytocinergic neurons project to many different locations in the brain, where they affect sensory processing, affective functions, and reward. Additional to its regulatory role, significant anti-inflammatory and restoring effects of oxytocin have been reported from many invivo and in-vitro studies. The pervasive property of the oxytocin system may enable it generally to dampen stress reactions both peripherally and centrally, and protect neurons and supportive cells from inadequate inflammation and malfunctioning. Animal experiments have documented the importance of preserving immune- and stem cell functions in the hypothalamus to impede age-related destructive processes of the body. Sexual reward has a profound stimulating impact on the oxytocinergic activity, and the present article therefore presents the hypothesis that frequent sexual activity and gratigying social experiance may postpone the onset of frailty and age-associated diseases by neural protection from the bursts of oxytocin. Furthermore, suggestions are given how the neuroplastic properties of oxytocin may be utilized to enhance sexual reward by learning processes in order to further reinforce the release of this peptide.
Collapse
Affiliation(s)
- Benjamin Buemann
- Retired. Copenhagen, Denmark. Previous Affiliation: Research Department of Human Nutrition, The Royal Veterinary and Agricultural University, Copenhagen, Denmark
| |
Collapse
|
19
|
Marazziti D, Diep PT, Carter S, Carbone MG. Oxytocin: An Old Hormone, A Novel Psychotropic Drug And Possible Use In Treating Psychiatric Disorders. Curr Med Chem 2022; 29:5615-5687. [PMID: 35894453 DOI: 10.2174/0929867329666220727120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxytocin is a nonapeptide synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Historically, this molecule has been involved as a key factor in the formation of infant attachment, maternal behavior and pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. In the last decades, the whole oxytocin system has gained a growing interest as it was proposed to be implicated in etiopathogenesis of several neurodevelopmental and neuropsychiatric disorders. METHODS With the main goal of an in-depth understanding of the oxytocin role in the regulation of different functions and complex behaviors as well as its intriguing implications in different neuropsychiatric disorders, we performed a critical review of the current state of art. We carried out this work through PubMed database up to June 2021 with the search terms: 1) "oxytocin and neuropsychiatric disorders"; 2) "oxytocin and neurodevelopmental disorders"; 3) "oxytocin and anorexia"; 4) "oxytocin and eating disorders"; 5) "oxytocin and obsessive-compulsive disorder"; 6) "oxytocin and schizophrenia"; 7) "oxytocin and depression"; 8) "oxytocin and bipolar disorder"; 9) "oxytocin and psychosis"; 10) "oxytocin and anxiety"; 11) "oxytocin and personality disorder"; 12) "oxytocin and PTSD". RESULTS Biological, genetic, and epigenetic studies highlighted quality and quantity modifications in the expression of oxytocin peptide or in oxytocin receptor isoforms. These alterations would seem to be correlated with a higher risk of presenting several neuropsychiatric disorders belonging to different psychopathological spectra. Collaterally, the exogenous oxytocin administration has shown to ameliorate many neuropsychiatric clinical conditions. CONCLUSION Finally, we briefly analyzed the potential pharmacological use of oxytocin in patient with severe symptomatic SARS-CoV-2 infection due to its anti-inflammatory, anti-oxidative and immunoregulatory properties.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Phuoc-Tan Diep
- Department of Histopathology, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom
| | - Sue Carter
- Director Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
20
|
Reda M, Sehlo M, Youssef U, Elsayed M. Impact of "COVID-19" Lockdown on Male Sexual Behavior in Egyptian Sample. INTERNATIONAL JOURNAL OF SEXUAL HEALTH : OFFICIAL JOURNAL OF THE WORLD ASSOCIATION FOR SEXUAL HEALTH 2022; 34:366-376. [PMID: 38596282 PMCID: PMC10903560 DOI: 10.1080/19317611.2022.2058144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 04/11/2024]
Abstract
Objective To assess the changes in the sexual behavior of Egyptian married men during the COVID-19 lockdown period. Methods In a cross-sectional study, the sexual behavior of 164 Egyptian married men was examined through an online questionnaire, designed by the authors, and uploaded to strictly male social media groups using Google Forms. The questionnaire included demographic and clinical variables about age, stress level about COVID-19, fear of infection during sexual relations and also compared sexual behavior before the COVID-19 lockdown. Results 39.17% of the sample reported decrease in sexual desire, 28.05% reported decrease in sexual frequency, 17.68% reported decrease in sexual satisfaction and 22% reported fear of infection with COVID-19 during sexual relations. Severe stress about COVID-19, increased rate of marital conflicts and fear of infection with COVID-19 during sexual relations were significantly associated with decreased sexual desire, frequency and satisfaction. Conclusions This study demonstrated severe stress about COVID-19, increased rate of marital conflict and fear of infection with COVID-19 during sexual activity, all of which were significantly associated with decreased levels of sexual desire, frequency and satisfaction respectively among married Egyptian men during the COVID-19 lockdown period. Promoting education to manage stress, decreasing marital conflicts and the correction of the mistaken belief that COVID-19 is a sexually transmitted disease is highly important to promote healthy sexual relations during the COVID-19 pandemic and lockdown period.
Collapse
Affiliation(s)
- Mona Reda
- Department of Psychiatry, Ain Shams University, Cairo, Egypt
| | - Mohammad Sehlo
- Department of Psychiatry, Zagazig University, Zagazig, Egypt
| | - Usama Youssef
- Department of Psychiatry, Zagazig University, Zagazig, Egypt
| | - Mervat Elsayed
- Department of Psychiatry, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Carter CS. Oxytocin and love: Myths, metaphors and mysteries. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 9:100107. [PMID: 35755926 PMCID: PMC9216351 DOI: 10.1016/j.cpnec.2021.100107] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Oxytocin is a peptide molecule with a multitude of physiological and behavioral functions. Based on its association with reproduction - including social bonding, sexual behavior, birth and maternal behavior - oxytocin also has been called "the love hormone." This essay specifically examines association and parallels between oxytocin and love. However, many myths and gaps in knowledge remain concerning both. A few of these are described here and we hypothesize that the potential benefits of both love and oxytocin may be better understood in light of interactions with more ancient systems, including specifically vasopressin and the immune system. Oxytocin is anti-inflammatory and is associated with recently evolved, social solutions to a variety of challenges necessary for mammalian survival and reproduction. The shared functions of oxytocin and love have profound implications for health and longevity, including the prevention and treatment of excess inflammation and related disorders, especially those occurring in early life and during periods of chronic threat or disease.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, USA
- Department of Psychology, University of Virginia, Charlottesville, USA
| |
Collapse
|
22
|
Mehdi SF, Pusapati S, Khenhrani RR, Farooqi MS, Sarwar S, Alnasarat A, Mathur N, Metz CN, LeRoith D, Tracey KJ, Yang H, Brownstein MJ, Roth J. Oxytocin and Related Peptide Hormones: Candidate Anti-Inflammatory Therapy in Early Stages of Sepsis. Front Immunol 2022; 13:864007. [PMID: 35572539 PMCID: PMC9102389 DOI: 10.3389/fimmu.2022.864007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Sepsis is a potentially life-threatening systemic inflammatory syndrome characterized by dysregulated host immunological responses to infection. Uncontrolled immune cell activation and exponential elevation in circulating cytokines can lead to sepsis, septic shock, multiple organ dysfunction syndrome, and death. Sepsis is associated with high re-hospitalization and recovery may be incomplete, with long term sequelae including post-sepsis syndrome. Consequently, sepsis continues to be a leading cause of morbidity and mortality across the world. In our recent review of human chorionic gonadotropin (hCG), we noted that its major properties including promotion of fertility, parturition, and lactation were described over a century ago. By contrast, the anti-inflammatory properties of this hormone have been recognized only more recently. Vasopressin, a hormone best known for its anti-diuretic effect, also has anti-inflammatory actions. Surprisingly, vasopressin's close cousin, oxytocin, has broader and more potent anti-inflammatory effects than vasopressin and a larger number of pre-clinical studies supporting its potential role in limiting sepsis-associated organ damage. This review explores possible links between oxytocin and related octapeptide hormones and sepsis-related modulation of pro-inflammatory and anti-inflammatory activities.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Raja Ram Khenhrani
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Muhammad Saad Farooqi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Sobia Sarwar
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Ahmad Alnasarat
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Nimisha Mathur
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Christine Noel Metz
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
- *Correspondence: Jesse Roth,
| |
Collapse
|
23
|
Friuli M, Eramo B, Valenza M, Scuderi C, Provensi G, Romano A. Targeting the Oxytocinergic System: A Possible Pharmacological Strategy for the Treatment of Inflammation Occurring in Different Chronic Diseases. Int J Mol Sci 2021; 22:10250. [PMID: 34638587 PMCID: PMC8508899 DOI: 10.3390/ijms221910250] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Unresolved inflammation represents a central feature of different human pathologies including neuropsychiatric, cardiovascular, and metabolic diseases. The epidemiologic relevance of such disorders justifies the increasing interest in further understanding the mechanisms underpinning the inflammatory process occurring in such chronic diseases to provide potential novel pharmacological approaches. The most common and effective therapies for controlling inflammation are glucocorticoids; however, a variety of other molecules have been demonstrated to have an anti-inflammatory potential, including neuropeptides. In recent years, the oxytocinergic system has seen an explosion of scientific studies, demonstrating its potential to contribute to a variety of physiological processes including inflammation. Therefore, the aim of the present review was to understand the role of oxytocin in the modulation of inflammation occurring in different chronic diseases. The criterion we used to select the diseases was based on the emerging literature showing a putative involvement of the oxytocinergic system in inflammatory processes in a variety of pathologies including neurological, gastrointestinal and cardiovascular disorders, diabetes and obesity. The evidence reviewed here supports a beneficial role of oxytocin in the control of both peripheral and central inflammatory response happening in the aforementioned pathologies. Although future studies are necessary to elucidate the mechanistic details underlying such regulation, this review supports the idea that the modulation of the endogenous oxytocinergic system might represent a new potential pharmacological approach for the treatment of inflammation.
Collapse
Affiliation(s)
- Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Barbara Eramo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Marta Valenza
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology of Toxicology, University of Florence, 50139 Florence, Italy;
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| |
Collapse
|
24
|
Aikins AO, Nguyen DH, Paundralingga O, Farmer GE, Shimoura CG, Brock C, Cunningham JT. Cardiovascular Neuroendocrinology: Emerging Role for Neurohypophyseal Hormones in Pathophysiology. Endocrinology 2021; 162:6247962. [PMID: 33891015 PMCID: PMC8234498 DOI: 10.1210/endocr/bqab082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/19/2022]
Abstract
Arginine vasopressin (AVP) and oxytocin (OXY) are released by magnocellular neurosecretory cells that project to the posterior pituitary. While AVP and OXY currently receive more attention for their contributions to affiliative behavior, this mini-review discusses their roles in cardiovascular function broadly defined to include indirect effects that influence cardiovascular function. The traditional view is that neither AVP nor OXY contributes to basal cardiovascular function, although some recent studies suggest that this position might be re-evaluated. More evidence indicates that adaptations and neuroplasticity of AVP and OXY neurons contribute to cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Ato O Aikins
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Dianna H Nguyen
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Obed Paundralingga
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - George E Farmer
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Caroline Gusson Shimoura
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Courtney Brock
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: J. Thomas Cunningham Department of Physiology & Anatomy CBH 338 UNT Health Science Center 3500 Camp Bowie Blvd Fort Worth, TX 76107, USA.
| |
Collapse
|
25
|
Nagasawa T, Ohta M, Uchiyama H. The Urinary Hormonal State of Cats Associated With Social Interaction With Humans. Front Vet Sci 2021; 8:680843. [PMID: 34381833 PMCID: PMC8350111 DOI: 10.3389/fvets.2021.680843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Research to assess the relationship between cats and humans is in a nascent stage. Some studies have assessed the stress status in cats using physiological indicators, such as the cortisol hormone, but have not focused on the social interaction with humans. Moreover, the role of oxytocin secretion in the relationship between cats and humans remains unclear. In this study, we determined the possibility of quantifying the urinary concentration of oxytocin in cats and assessed the effects of social contact with humans on the levels of urinary oxytocin and cortisol metabolite. Four cats were subjected to two conditions, namely, social (control), and non-social (no social contact with humans) conditions. The levels of cortisol and oxytocin metabolite in urine samples from the cats in both conditions were determined using enzyme-linked immunosorbent assays. The urinary concentrations of cortisol and oxytocin under the non-social condition were significantly higher than those under the social condition. In addition, the concentration of oxytocin significantly correlated with that of cortisol in cats under the non-social condition. In this study, it was possible to quantify the concentration of oxytocin in the urine of cats, and the obtained results suggest that cats recognize the social interaction with humans as important. This information might contribute to the establishment of an assessment method for the welfare of cats and might help in clarifying the relationship between cats and humans.
Collapse
Affiliation(s)
- Takumi Nagasawa
- Department of Human and Animal-Plant Relationships, Graduate School of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Mitsuaki Ohta
- Department of Human and Animal-Plant Relationships, Graduate School of Agriculture, Tokyo University of Agriculture, Atsugi, Japan.,Department of Animal Science and Biotechnology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Hidehiko Uchiyama
- Department of Human and Animal-Plant Relationships, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan.,Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| |
Collapse
|
26
|
Grahn P, Ottosson J, Uvnäs-Moberg K. The Oxytocinergic System as a Mediator of Anti-stress and Instorative Effects Induced by Nature: The Calm and Connection Theory. Front Psychol 2021; 12:617814. [PMID: 34290636 PMCID: PMC8286993 DOI: 10.3389/fpsyg.2021.617814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/27/2021] [Indexed: 12/04/2022] Open
Abstract
Ever more research results demonstrate that human health and wellbeing are positively affected by stays in and/or exposure to natural areas, which leads, among other things, to a reduction in high stress levels. However, according to the studies, these natural areas must meet certain qualities. The qualities that are considered to be most health promoting are those that humans perceive in a positive way. Theories about how natural areas can reduce people's stress levels and improve their coping skills have mainly focused on how certain natural areas that are perceived as safe reduce the activity of the hypothalamic-pituitary-adrenal axis and consequent reduction of cortisol levels. This article discusses studies containing descriptions of how participants in rehabilitation perceive and react to natural phenomena. The common core variable in the analyzed studies was the experience of calm and connection, and this experience was associated with a reduction in stress levels and with being able to develop health and coping skills. We suggest that this experience provides a possible role for the oxytocinergic system to act as a physiological mediator for the positive and health-promoting effects in humans caused by nature. The theory is mainly based on analogies framed by theories and data from the fields of environmental psychology, horticulture, landscape architecture, medicine, and neuroscience. Oxytocin promotes different kinds of social interaction and bonding and exerts stress-reducing and healing effects. We propose that oxytocin is released by certain natural phenomena experienced as positive to decrease the levels of fear and stress, increase levels of trust and wellbeing, and possibly develop attachment or bonding to nature. By these effects, oxytocin will induce health-promoting effects. In situations characterized by low levels of fear and stress in response to release of oxytocin, the capacity for "growth" or psychological development might also be promoted. Such an instorative effect of nature, i.e., the capacity of nature to promote reorientation and the creation of new coping strategies, might hence represent an additional aspect of the oxytocin-linked effect profile, triggered in connection with certain nature phenomena. We conclude by proposing that the stress-relieving, health-promoting, restorative, and instorative effects of nature may involve activation of the oxytocinergic system.
Collapse
Affiliation(s)
- Patrik Grahn
- Department of People and Society, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Johan Ottosson
- Department of People and Society, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Kerstin Uvnäs-Moberg
- Department of Animal Environment and Health, Section of Anthrozoology and Applied Ethology, Swedish University of Agricultural Sciences, Skara, Sweden
| |
Collapse
|
27
|
Buemann B, Marazziti D, Uvnäs-Moberg K. Can intravenous oxytocin infusion counteract hyperinflammation in COVID-19 infected patients? World J Biol Psychiatry 2021; 22:387-398. [PMID: 32914674 DOI: 10.1080/15622975.2020.1814408] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Based on its well-documented anti-inflammatory and restorative properties we propose trials with the natural hormone oxytocin for treatment of hospitalised Covid-19 patients. METHODS We searched for, retrieved, and commented on specific literature regarding multiple functions of oxytocin with a special focus on its modulation of inflammatory, immune, and restorative functions. RESULTS Available data gathered in animals and humans support the anti-inflammatory properties of oxytocin. The multiple anti-inflammatory effects of oxytocin have been demonstrated in vitro and in vivo in various animal models and also in humans in response to intravenous infusion of oxytocin. Furthermore, oxytocin has been documented to activate several types of protective and restorative mechanisms and to exert positive effects on the immune system. CONCLUSIONS In addition, to being anti-inflammatory, it may be hypothesised, that oxytocin may be less suppressive on adaptive immune systems, as compared with glucocorticoids. Finally, by its restorative effects coupled with its anti-stress and healing properties, oxytocin may shorten the recovery period of the Covid-19 patients.
Collapse
Affiliation(s)
| | - Donatella Marazziti
- Department of Experimental and Clinical Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Kerstin Uvnäs-Moberg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| |
Collapse
|
28
|
Norholt H. Delivering Clinically on Our Knowledge of Oxytocin and Sensory Stimulation: The Potential of Infant Carrying in Primary Prevention. Front Psychol 2021; 11:590051. [PMID: 33995157 PMCID: PMC8116555 DOI: 10.3389/fpsyg.2020.590051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022] Open
Abstract
Oxytocin (OT) is one of the most intensively researched neuropeptides during the three past decades. In benign social contexts, OT exerts a range of desirable socioemotional, stress-reducing, and immunoregulatory effects in mammals and humans and influences mammalian parenting. Consequentially, research in potential pharmacological applications of OT toward human social deficits/disorders and physical illness has increased substantially. Regrettably, the results from the administration of exogenous OT are still relatively inconclusive. Research in rodent maternal developmental programming has demonstrated the susceptibility of offspring endogenous OT systems to maternal somatosensory stimulation, with consequences for behavioral, epigenetic, cognitive, and neurological outcomes. A translation of this animal research into practically feasible human parenting recommendations has yet to happen, despite the significant prevention potential implied by the maternal developmental programming research. Extended physical contact with full-term healthy infants in the months following birth (infant carrying) might constitute the human equivalent of those specific rodent maternal behaviors, found to positively influence emerging OT systems. Findings from both OT and maternal programming research parallel those found for infants exposed to such extended parental physical contact, whether through skin-to-skin contact or infant carrying. Clinical support of parents to engage in extended physical contact represents a feasible intervention to create optimum conditions for the development of infant OT systems, with potential beneficial long-term health effects.
Collapse
Affiliation(s)
- Henrik Norholt
- SomAffect - The Somatosensory & Affective Neuroscience Group, Liverpool, United Kingdom
| |
Collapse
|
29
|
Affiliation(s)
- Tarek Benameur
- College of Medicine, Department of Biomedical Sciences, King Faisal University Al-Ahsa, Kingdom of Saudi Arabia
| | - Maria A Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
30
|
Uvnäs-Moberg K, Gross MM, Agius A, Downe S, Calleja-Agius J. Are There Epigenetic Oxytocin-Mediated Effects on the Mother and Infant during Physiological Childbirth? Int J Mol Sci 2020; 21:ijms21249503. [PMID: 33327490 PMCID: PMC7765000 DOI: 10.3390/ijms21249503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Studies have shown that long-term positive behavioural and physiological changes are induced in connection with vaginal, physiological birth, and skin-to-skin contact after birth in mothers and babies. Some of these effects are consistent with the effect profile of oxytocin. This scoping review explores whether epigenetic changes of the oxytocin gene and of the oxytocin receptor gene (OTR) are involved in these effects. METHODS We searched Pubmed, Medline, BioMed Central, Cochrane Library, OVID, and Web of Science for evidence of epigenetic changes in connection with childbirth in humans, with a particular focus on the oxytocin system. RESULTS There were no published studies identified that were related to epigenetic changes of oxytocin and its receptor in connection with labour, birth, and skin-to-skin contact after birth in mothers and babies. However, some studies were identified that showed polymorphisms of the oxytocin receptor influenced the progress of labour. We also identified studies in which the level of global methylation was measured in vaginal birth and caesarean section, with conflicting results. Some studies identified differences in the level of methylation of single genes linked to various effects, for example, immune response, metabolism, and inflammation. In some of these cases, the level of methylation was associated with the duration of labour or mode of birth. We also identified some studies that demonstrated long-term effects of mode of birth and of skin-to-skin contact linked to changes in oxytocin function. CONCLUSION There were no studies identified that showed epigenetic changes of the oxytocin system in connection with physiological birth. The lack of evidence, so far, regarding epigenetic changes did not exclude future demonstrations of such effects, as there was a definite role of oxytocin in creating long-term effects during the perinatal period. Such studies may not have been performed. Alternatively, the oxytocin linked effects might be indirectly mediated via other receptors and signalling systems. We conclude that there is a significant lack of research examining long-term changes of oxytocin function and long-term oxytocin mediated adaptive effects induced during physiological birth and skin-to-skin contact after birth in mothers and their infants.
Collapse
Affiliation(s)
- Kerstin Uvnäs-Moberg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 53223 Skara, Sweden;
| | - Mechthild M. Gross
- Midwifery Research and Education Unit, Hannover Medical School, 30625 Hanover, Germany;
| | - Andee Agius
- Department of Obstetrics and Gynaecology, Mater Dei Hospital, MSD2090 Msida, Malta;
| | - Soo Downe
- School of Community Health and Midwifery, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Correspondence:
| |
Collapse
|
31
|
Carter CS, Kenkel WM, MacLean EL, Wilson SR, Perkeybile AM, Yee JR, Ferris CF, Nazarloo HP, Porges SW, Davis JM, Connelly JJ, Kingsbury MA. Is Oxytocin "Nature's Medicine"? Pharmacol Rev 2020; 72:829-861. [PMID: 32912963 PMCID: PMC7495339 DOI: 10.1124/pr.120.019398] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxytocin is a pleiotropic, peptide hormone with broad implications for general health, adaptation, development, reproduction, and social behavior. Endogenous oxytocin and stimulation of the oxytocin receptor support patterns of growth, resilience, and healing. Oxytocin can function as a stress-coping molecule, an anti-inflammatory, and an antioxidant, with protective effects especially in the face of adversity or trauma. Oxytocin influences the autonomic nervous system and the immune system. These properties of oxytocin may help explain the benefits of positive social experiences and have drawn attention to this molecule as a possible therapeutic in a host of disorders. However, as detailed here, the unique chemical properties of oxytocin, including active disulfide bonds, and its capacity to shift chemical forms and bind to other molecules make this molecule difficult to work with and to measure. The effects of oxytocin also are context-dependent, sexually dimorphic, and altered by experience. In part, this is because many of the actions of oxytocin rely on its capacity to interact with the more ancient peptide molecule, vasopressin, and the vasopressin receptors. In addition, oxytocin receptor(s) are epigenetically tuned by experience, especially in early life. Stimulation of G-protein-coupled receptors triggers subcellular cascades allowing these neuropeptides to have multiple functions. The adaptive properties of oxytocin make this ancient molecule of special importance to human evolution as well as modern medicine and health; these same characteristics also present challenges to the use of oxytocin-like molecules as drugs that are only now being recognized. SIGNIFICANCE STATEMENT: Oxytocin is an ancient molecule with a major role in mammalian behavior and health. Although oxytocin has the capacity to act as a "natural medicine" protecting against stress and illness, the unique characteristics of the oxytocin molecule and its receptors and its relationship to a related hormone, vasopressin, have created challenges for its use as a therapeutic drug.
Collapse
Affiliation(s)
- C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - William M Kenkel
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Evan L MacLean
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Steven R Wilson
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Allison M Perkeybile
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Jason R Yee
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Craig F Ferris
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Hossein P Nazarloo
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Stephen W Porges
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - John M Davis
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Jessica J Connelly
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Marcy A Kingsbury
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| |
Collapse
|
32
|
Harvey AR. Links Between the Neurobiology of Oxytocin and Human Musicality. Front Hum Neurosci 2020; 14:350. [PMID: 33005139 PMCID: PMC7479205 DOI: 10.3389/fnhum.2020.00350] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
The human species possesses two complementary, yet distinct, universal communication systems—language and music. Functional imaging studies have revealed that some core elements of these two systems are processed in closely related brain regions, but there are also clear differences in brain circuitry that likely underlie differences in functionality. Music affects many aspects of human behavior, especially in encouraging prosocial interactions and promoting trust and cooperation within groups of culturally compatible but not necessarily genetically related individuals. Music, presumably via its impact on the limbic system, is also rewarding and motivating, and music can facilitate aspects of learning and memory. In this review these special characteristics of music are considered in light of recent research on the neuroscience of the peptide oxytocin, a hormone that has both peripheral and central actions, that plays a role in many complex human behaviors, and whose expression has recently been reported to be affected by music-related activities. I will first briefly discuss what is currently known about the peptide’s physiological actions on neurons and its interactions with other neuromodulator systems, then summarize recent advances in our knowledge of the distribution of oxytocin and its receptor (OXTR) in the human brain. Next, the complex links between oxytocin and various social behaviors in humans are considered. First, how endogenous oxytocin levels relate to individual personality traits, and then how exogenous, intranasal application of oxytocin affects behaviors such as trust, empathy, reciprocity, group conformity, anxiety, and overall social decision making under different environmental conditions. It is argued that many of these characteristics of oxytocin biology closely mirror the diverse effects that music has on human cognition and emotion, providing a link to the important role music has played throughout human evolutionary history and helping to explain why music remains a special prosocial human asset. Finally, it is suggested that there is a potential synergy in combining oxytocin- and music-based strategies to improve general health and aid in the treatment of various neurological dysfunctions.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Human Sciences, The University of Western Australia, Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| |
Collapse
|
33
|
Jankowski M, Broderick TL, Gutkowska J. The Role of Oxytocin in Cardiovascular Protection. Front Psychol 2020; 11:2139. [PMID: 32982875 PMCID: PMC7477297 DOI: 10.3389/fpsyg.2020.02139] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The beneficial effects of oxytocin on infarct size and functional recovery of the ischemic reperfused heart are well documented. The mechanisms for this cardioprotection are not well defined. Evidence indicates that oxytocin treatment improves cardiac work, reduces apoptosis and inflammation, and increases scar vascularization. Oxytocin-mediated cytoprotection involves the production of cGMP stimulated by local release of atrial natriuretic peptide and synthesis of nitric oxide. Treatment with oxytocin reduces the expression of proinflammatory cytokines and reduces immune cell infiltration. Oxytocin also stimulates differentiation stem cells to cardiomyocyte lineages as well as generation of endothelial and smooth muscle cells, promoting angiogenesis. The beneficial actions of oxytocin may include the increase in glucose uptake by cardiomyocytes, reduction in cardiomyocyte hypertrophy, decrease in oxidative stress, and mitochondrial protection of several cell types. In cardiac and cellular models of ischemia and reperfusion, acute administration of oxytocin at the onset of reperfusion enhances cardiomyocyte viability and function by activating Pi3K and Akt phosphorylation and downstream cellular signaling. Reperfusion injury salvage kinase and signal transducer and activator of transcription proteins cardioprotective pathways are involved. Oxytocin is cardioprotective by reducing the inflammatory response and improving cardiovascular and metabolic function. Because of its pleiotropic nature, this peptide demonstrates a clear potential for the treatment of cardiovascular pathologies. In this review, we discuss the possible cellular mechanisms of action of oxytocin involved in cardioprotection.
Collapse
Affiliation(s)
- Marek Jankowski
- Cardiovascular Biochemistry Laboratory, University of Montreal Hospital Centre, Montreal, QC, Canada.,Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Tom L Broderick
- Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Jolanta Gutkowska
- Cardiovascular Biochemistry Laboratory, University of Montreal Hospital Centre, Montreal, QC, Canada.,Department of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
34
|
Denoix N, McCook O, Ecker S, Wang R, Waller C, Radermacher P, Merz T. The Interaction of the Endogenous Hydrogen Sulfide and Oxytocin Systems in Fluid Regulation and the Cardiovascular System. Antioxidants (Basel) 2020; 9:E748. [PMID: 32823845 PMCID: PMC7465147 DOI: 10.3390/antiox9080748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
The purpose of this review is to explore the parallel roles and interaction of hydrogen sulfide (H2S) and oxytocin (OT) in cardiovascular regulation and fluid homeostasis. Their interaction has been recently reported to be relevant during physical and psychological trauma. However, literature reports on H2S in physical trauma and OT in psychological trauma are abundant, whereas available information regarding H2S in psychological trauma and OT in physical trauma is much more limited. This review summarizes recent direct and indirect evidence of the interaction of the two systems and their convergence in downstream nitric oxide-dependent signaling pathways during various types of trauma, in an effort to better understand biological correlates of psychosomatic interdependencies.
Collapse
Affiliation(s)
- Nicole Denoix
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081 Ulm, Germany;
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (S.E.); (P.R.); (T.M.)
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (S.E.); (P.R.); (T.M.)
| | - Sarah Ecker
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (S.E.); (P.R.); (T.M.)
| | - Rui Wang
- Faculty of Science, York University, Toronto, ON M3J 1P3, Canada;
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany;
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (S.E.); (P.R.); (T.M.)
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (S.E.); (P.R.); (T.M.)
| |
Collapse
|
35
|
Cabello F, Sánchez F, Farré JM, Montejo AL. Consensus on Recommendations for Safe Sexual Activity during the COVID-19 Coronavirus Pandemic. J Clin Med 2020; 9:E2297. [PMID: 32698369 PMCID: PMC7408907 DOI: 10.3390/jcm9072297] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 01/17/2023] Open
Abstract
Sexual activity offers numerous advantages for physical and mental health but maintains inherent risks in a pandemic situation, such as the current one caused by SARS-CoV-2. A group of experts from the Spanish Association of Sexuality and Mental Health (AESexSAME) has reached a consensus on recommendations to maintain lower-risk sexual activity, depending on one's clinical and partner situations, based on the current knowledge of SARS-CoV-2. Different situations are included in the recommendations: a sexual partner passing quarantine without any symptoms, a sexual partner that has not passed quarantine, a sexual partner with some suspicious symptoms of COVID-19, a positive sexual partner with COVID-19, a pregnant sexual partner, a health professional partner in contact with COVID-19 patients, and people without a sexual partner. The main recommendations include returning to engaging in safe sex after quarantine is over (28 days based on the duration one can carry SARS-CoV-2, or 33 days for those who are >60 years old) and all parties are asymptomatic. In all other cases (for those under quarantine, those with some clinical symptoms, health professionals in contact with COVID-19 patients, and during pregnancy), abstaining from coital/oral/anal sex, substituting it with masturbatory or virtual sexual activity to provide maximum protection from the contagion, and increasing the benefits inherent to sexual activity are recommended. For persons without a partner, not initiating sexual activity with a sporadic partner is strongly recommended.
Collapse
Affiliation(s)
- Francisco Cabello
- Instituto Andaluz de Sexología y Psicología, Alameda Principal 21, 5º, 29001 Malaga, Spain;
| | - Froilán Sánchez
- Centro de Salud de Xàtiva, Avenida de Ausìas March s/n. Xàtiva, 46800 Valencia, Spain;
| | - Josep M. Farré
- Department of Psychiatry, Psychology and Psychosomatics, Dexeus University Hospital, Carrer de Sabino Arana, 5, 08028 Barcelona, Spain;
| | - Angel L. Montejo
- Hospital Universitario Psychiatry Department, University of Salamanca Nursing School, Institute of Biomedical Research (IBSAL). Av., Donantes de Sangre SN, 37007 Salamanca, Spain
| |
Collapse
|
36
|
Oxytocin ameliorates ischemia/reperfusion-induced injury by inhibiting mast cell degranulation and inflammation in the rat heart. Biomed Pharmacother 2020; 128:110358. [PMID: 32526456 DOI: 10.1016/j.biopha.2020.110358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Oxytocin (OT) has shown a cardioprotective effect on myocardial ischemia/reperfusion injury (MIRI). This study aimed to investigate whether the cardioprotective effect of OT is associated with the inhibition of mast cell degranulation and inflammation. METHODS The left anterior descending coronary artery of rats was ligated for 30 min and reperfused for 120 min to establish an ischemia and reperfusion (I/R) injury model. A preliminary experiment was conducted to evaluate the optimal dose of OT (0.01, 0.1, 1 μg/kg via intraperitoneal). The mast cell secretagogue compound 48/80 (C48/80) was used to promote the degranulation of mast cells with or without I/R injury, while rats were pretreated with OT to determine whether this compound suppresses mast cell degranulation. The expression of the inflammatory factors HMGB1 and NF-κB p65 was evaluated. A cell experiment was performed for verification. RESULTS C48/80 (0.5 mg/kg, intravenous) increased mast cell degranulation and tryptase release compared with I/R-treated alone (27.12 ± 3.52 % vs. 16.57 ± 2.23 %; 8.34 ± 1.66 ng/mL vs. 3.63 ± 0.63 ng/mL), but these effects could be decreased by OT (0.1 μg/kg, intraperitoneal) preconditioning (19.29 ± 0.74 %; 5.37 ± 0.73 ng/mL). Besides that, hemodynamic disorders, arrhythmias, cardiac edema, infarct size, histopathological damage, and the levels of cTnI, HMGB1 and NF-κB p65 were significantly increased in I/R-treated group compared with corresponding observations in the control group, and C48/80 exacerbated these injuries, but pretreatment with OT could ameliorate these effects. Furthermore, C48/80 (10 μg/mL) inhibited the viability and promoted the apoptosis of H9C2(2-1) and RBL-2H3 cells, and increased the release of cTnI and tryptase, all of which were reversed by prophylactic OT (0.01 ng/mL) treatment. CONCLUSION We concluded that OT pretreatment inhibits the degranulation of cardiac mast cells induced by I/R injury and downregulates the expression of the inflammatory factors HMGB1 and NF-κB p65.
Collapse
|