1
|
Wang J, Dong H, Ji Y, Li Y, Lee ST. Patterned graphene: An effective platform for adsorption, immobilization, and destruction of SARS-CoV-2 M pro. J Colloid Interface Sci 2024; 673:202-215. [PMID: 38875787 DOI: 10.1016/j.jcis.2024.06.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
To address the ongoing challenges posed by the SARS-CoV-2 and potentially stronger viruses in the future, the development of effective methods to fabricate patterned graphene (PG) and other precisely functional products has become a new research frontier. Herein, we modeled the "checkerboard" graphene (CG) and stripped graphene (SG) as representatives of PG, and studied their interaction mechanism with the target protein (Mpro) by molecular dynamics simulation. The calculation results on the binding strength and the root mean square deviation values of the active pocket revealed that PG is an effective platform for adsorption, immobilization, and destruction of Mpro. Specifically, CG is found to promote disruption of the active pocket for Mpro, but the presence of "checkerboard" oxidized regions inhibits the adsorption of Mpro. Meanwhile, the SG can effectively confine Mpro within the non-oxidized strips and enhances their binding strength, but doesn't play well on disrupting the active pocket. Our work not only elucidates the biological effects of PGs, but also provides guidance for their targeted and precise utilization in combating the SARS-CoV-2.
Collapse
Affiliation(s)
- Jiawen Wang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Youyong Li
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Shuit-Tong Lee
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
2
|
Yuan S, Meng F, Zhou S, Liu X, Liu X, Zhang L, Wang T. Predicting susceptibility to COVID-19 infection in patients on maintenance hemodialysis by cross-coupling soluble ACE2 concentration with lymphocyte count: an algorithmic approach. Front Med (Lausanne) 2024; 11:1444719. [PMID: 39540040 PMCID: PMC11558530 DOI: 10.3389/fmed.2024.1444719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Patients on maintenance hemodialysis (MHD) were more vulnerable to and had a higher mortality during the COVID-19 pandemic. As angiotensin converting enzyme 2 (ACE2) and transmembrane protease serine S1 member 2 (TMPRSS2) played crucial roles in viral entry into the human host cells, we therefore investigated in the MHD patients whether their plasma levels were associated with susceptibility to the COVID-19. Methods Blood samples were collected from the patients in our then COVID-19 free center immediately upon lifting of the stringent quarantine measures in early December of 2022 and infection situation was observed within the following 2 weeks. Plasma levels of the soluble ACE2 (sACE2), ACE (sACE) and TMPRSS2 (sTMPRSS2) were measured with ELISA method. Data were stepwisely tested for independent effect, relevant role and synergistic action on the susceptibility by multiple logistic regression, receiver operating characteristic curve and multiple dimensionality reduction (MDR) method, respectively. Results Among the 174 eligible patients, 95 (54.6%) turned COVID-19 positive with a male to female ratio of 1.57 during the observation period. Comparing with the uninfected, the infected had significantly higher sACE2 and lower sTMPRSS2 levels upon comparable sACE concentration. Besides the sACE2, factors associated with susceptibility were vintage and individual session time of the hemodialysis, smoking and comorbidity of hepatitis, whereas lymphocyte counts showed a tendency (p = 0.052). Patients simultaneously manifesting higher sACE2 level and lower lymphocyte counts had an increased infection risk as confirmed by the MDR method. Conclusion By sorting out the susceptible ones expeditiously, this algorithmic approach may help the otherwise vulnerable MHD patients weather over future wave of COVID-19 variants or outbreak of other viral diseases.
Collapse
Affiliation(s)
- Shuang Yuan
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - FuLei Meng
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuai Zhou
- Graduate School of Hebei Medical University, Shijiazhuang, China
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - XiaoYing Liu
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - XiaoMing Liu
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - LiHong Zhang
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tao Wang
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Chen BJ, Lin CH, Wu HY, Cai JJ, Chao DY. Experimental and analytical pipeline for sub-genomic RNA landscape of coronavirus by Nanopore sequencer. Microbiol Spectr 2024; 12:e0395423. [PMID: 38483513 PMCID: PMC10986531 DOI: 10.1128/spectrum.03954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Coronaviruses (CoVs), including severe acute respiratory syndrome coronavirus 2, can infect a variety of mammalian and avian hosts with significant medical and economic consequences. During the life cycle of CoV, a coordinated series of subgenomic RNAs, including canonical subgenomic messenger RNA and non-canonical defective viral genomes (DVGs), are generated with different biological implications. Studies that adopted the Nanopore sequencer (ONT) to investigate the landscape and dynamics of viral RNA subgenomic transcriptomes applied arbitrary bioinformatics parameters without justification or experimental validation. The current study used bovine coronavirus (BCoV), which can be performed under biosafety level 2 for library construction and experimental validation using traditional colony polymerase chain reaction and Sanger sequencing. Four different ONT protocols, including RNA direct and cDNA direct sequencing with or without exonuclease treatment, were used to generate RNA transcriptomic libraries from BCoV-infected cell lysates. Through rigorously examining the k-mer, gap size, segment size, and bin size, the optimal cutoffs for the bioinformatic pipeline were determined to remove the sequence noise while keeping the informative DVG reads. The sensitivity and specificity of identifying DVG reads using the proposed pipeline can reach 82.6% and 99.6% under the k-mer size cutoff of 15. Exonuclease treatment reduced the abundance of RNA transcripts; however, it was not necessary for future library preparation. Additional recovery of clipped BCoV nucleotide sequences with experimental validation expands the landscape of the CoV discontinuous RNA transcriptome, whose biological function requires future investigation. The results of this study provide the benchmarks for library construction and bioinformatic parameters for studying the discontinuous CoV RNA transcriptome.IMPORTANCEFunctional defective viral genomic RNA, containing all the cis-acting elements required for translation or replication, may play different roles in triggering cell innate immune signaling, interfering with the canonical subgenomic messenger RNA transcription/translation or assisting in establishing persistence infection. This study does not only provide benchmarks for library construction and bioinformatic parameters for studying the discontinuous coronavirus RNA transcriptome but also reveals the complexity of the bovine coronavirus transcriptome, whose functional assays will be critical in future studies.
Collapse
Affiliation(s)
- Bo-Jia Chen
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Day-Yu Chao
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Niu S, Zhao Z, Liu Z, Rong X, Chai Y, Bai B, Han P, Shang G, Ren J, Wang Y, Zhao X, Liu K, Tian WX, Wang Q, Gao GF. Structural basis and analysis of hamster ACE2 binding to different SARS-CoV-2 spike RBDs. J Virol 2024; 98:e0115723. [PMID: 38305152 PMCID: PMC10949455 DOI: 10.1128/jvi.01157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Pet golden hamsters were first identified being infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta variant of concern (VOC) and transmitted the virus back to humans in Hong Kong in January 2022. Here, we studied the binding of two hamster (golden hamster and Chinese hamster) angiotensin-converting enzyme 2 (ACE2) proteins to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants, including alpha, beta, gamma, delta, and four omicron sub-variants (BA.1, BA.2, BA.3, and BA.4/BA.5). We found that the two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2 (hACE2). Furthermore, the similar infectivity to host cells expressing hamster ACE2s and hACE2 was confirmed with the nine pseudotyped SARS-CoV-2 viruses. Additionally, we determined two cryo-electron microscopy (EM) complex structures of golden hamster ACE2 (ghACE2)/delta RBD and ghACE2/omicron BA.3 RBD. The residues Q34 and N82, which exist in many rodent ACE2s, are responsible for the lower binding affinity of ghACE2 compared to hACE2. These findings suggest that all SARS-CoV-2 VOCs may infect hamsters, highlighting the necessity of further surveillance of SARS-CoV-2 in these animals.IMPORTANCESARS-CoV-2 can infect many domestic animals, including hamsters. There is an urgent need to understand the binding mechanism of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to hamster receptors. Herein, we showed that two hamster angiotensin-converting enzyme 2s (ACE2s) (golden hamster ACE2 and Chinese hamster ACE2) can bind to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants and that pseudotyped SARS-CoV-2 viruses can infect hamster ACE2-expressing cells. The binding pattern of golden hamster ACE2 to SARS-CoV-2 RBDs is similar to that of Chinese hamster ACE2. The two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2. We solved the cryo-electron microscopy (EM) structures of golden hamster ACE2 in complex with delta RBD and omicron BA.3 RBD and found that residues Q34 and N82 are responsible for the lower binding affinity of ghACE2 compared to hACE2. Our work provides valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.
Collapse
Affiliation(s)
- Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhimin Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoyu Rong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Bai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Han
- School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Guijun Shang
- Cryo-EM Center, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Jianle Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Ying Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wen-xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Qihui Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George Fu Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Taylor JV, Callery EL, Rowbottom A. Optimisation of SARS-CoV-2 peptide stimulation and measurement of cytokine output by intracellular flow cytometry and bio-plex analysis. J Immunol Methods 2023; 522:113556. [PMID: 37683822 DOI: 10.1016/j.jim.2023.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Our study was conducted to optimise a peptide stimulation and an intracellular cytokine staining protocol, alongside Bio-Plex supernatant analysis, for use in patients who had previously contracted SARS-CoV-2 or received vaccination against this virus in a clinical laboratory setting. Peripheral Blood Mononuclear Cell extraction and cryopreservation allowed for cells to be stored long term and enhanced logistical processing of samples. Viability and functionality of cells were analysed by flow cytometric methodology using viability staining monoclonal antibodies conjugated to fluorochromes. Antibiotics and Benzonase Nuclease did not impact lymphocyte viability and so cell culture conditions were optimised in terms of retaining viability and functionality. Optimisation of peptide stimulation with Influenza and SARS-CoV-2 peptide pools was conducted through stimulation experiments assessing peptide concentration, peptide stimulation time and enrichment studies to increase precursor frequency. Cytokine output was measured by flow cytometry and Bio-Plex methodologies, with positive cytokine readings predominantly detected in the cell culture supernatant. Analysis of both intracellular and extracellular compartments allowed for detection of cytokines and established the retained cellular functionality post cryopreservation. These results also indicated that our peptide stimulation method can generate antigen-specific T lymphocytes upon exposure to SARS-CoV-2 peptide pools. Moreover, the measurement of specific cytokines could be applied to an array of conditions, such as chronic inflammatory diseases, but to also offer an alternative method of measuring vaccine responses. This platform is easily adaptable and can remain relevant alongside changing vaccine composition, thus ensuring its applicability to future vaccination programmes.
Collapse
Affiliation(s)
| | | | - Anthony Rowbottom
- Immunology Department at Lancashire Teaching Hospitals, United Kingdom
| |
Collapse
|
6
|
Štular D, de Velde NV, Drinčić A, Kogovšek P, Filipić A, Fric K, Simončič B, Tomšič B, Chouhan RS, Bohm S, Kr. Verma S, Panda PK, Jerman I. Boosting Copper Biocidal Activity by Silver Decoration and Few-Layer Graphene in Coatings on Textile Fibers. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300113. [PMID: 37829680 PMCID: PMC10566802 DOI: 10.1002/gch2.202300113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/26/2023] [Indexed: 10/14/2023]
Abstract
The outbreak of the Coronavirus disease 2019 (COVID-19) pandemic has highlighted the importance of developing antiviral surface coatings that are capable of repelling pathogens and neutralizing them through self-sanitizing properties. In this study, a novel coating design based on few-layer graphene (FLG) is proposed and silver-decorated micro copper flakes (CuMF) that exhibit both antibacterial and antiviral properties. The role of sacrificial anode surfaces and intrinsic graphene defects in enhancing the release of metal ions from CuMF embedded in water-based binders is investigated. In silico analysis is conducted to better understand the molecular interactions of pathogen-repelling species with bacterial or bacteriophage proteins. The results show that the optimal amount of CuMF/FLG in the coating leads to a significant reduction in bacterial growth, with reductions of 3.17 and 9.81 log for Staphylococcus aureus and Escherichia coli, respectively. The same coating also showed high antiviral efficacy, reducing bacteriophage phi6 by 5.53 log. The antiviral efficiency of the coating is find to be doubled compared to either micro copper flakes or few-layer graphene alone. This novel coating design is versatile and can be applied to various substrates, such as personal protective clothing and face masks, to provide biocidal activity against both bacterial and viral pathogens.
Collapse
Affiliation(s)
- Danaja Štular
- National Institute of ChemistryHajdrihova 19Ljubljana1001Slovenia
| | | | - Ana Drinčić
- National Institute of ChemistryHajdrihova 19Ljubljana1001Slovenia
| | - Polona Kogovšek
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Arijana Filipić
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Katja Fric
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Barbara Simončič
- Faculty of Natural Sciences and EngineeringUniversity of LjubljanaAškerčeva 12Ljubljana1000Slovenia
| | - Brigita Tomšič
- Faculty of Natural Sciences and EngineeringUniversity of LjubljanaAškerčeva 12Ljubljana1000Slovenia
| | - Raghuraj S. Chouhan
- Institute “Jožef Stefan”Department of Environmental SciencesJamova 39Ljubljana1000Slovenia
| | - Sivasambu Bohm
- Imperial College LondonSouth Kensington CampusLondonSW7 2AZUK
| | - Suresh Kr. Verma
- Ångströmlaboratoriet Lägerhyddsv1 Box 530Uppsala75121Sweden
- School of BiotechnologyKIIT UniversityBhubaneswar751024India
| | | | - Ivan Jerman
- National Institute of ChemistryHajdrihova 19Ljubljana1001Slovenia
| |
Collapse
|
7
|
Li X, Yan H, Wong G, Ouyang W, Cui J. Identifying featured indels associated with SARS-CoV-2 fitness. Microbiol Spectr 2023; 11:e0226923. [PMID: 37698427 PMCID: PMC10580940 DOI: 10.1128/spectrum.02269-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/14/2023] [Indexed: 09/13/2023] Open
Abstract
As an RNA virus, severe acute respiratory coronavirus 2 (SARS-CoV-2) is known for frequent substitution mutations, and substitutions in important genome regions are often associated with viral fitness. However, whether indel mutations are related to viral fitness is generally ignored. Here we developed a computational methodology to investigate indels linked to fitness occurring in over 9 million SARS-CoV-2 genomes. Remarkably, by analyzing 31,642,404 deletion records and 1,981,308 insertion records, our pipeline identified 26,765 deletion types and 21,054 insertion types and discovered 65 indel types with a significant association with Pango lineages. We proposed the concept of featured indels representing the population of specific Pango lineages and variants as substitution mutations and termed these 65 indels as featured indels. The selective pressure of all indel types is assessed using the Bayesian model to explore the importance of indels. Our results exhibited higher selective pressure of indels like substitution mutations, which are important for assessing viral fitness and consistent with previous studies in vitro. Evaluation of the growth rate of each viral lineage indicated that indels play key roles in SARS-CoV-2 evolution and deserve more attention as substitution mutations. IMPORTANCE The fitness of indels in pathogen genome evolution has rarely been studied. We developed a computational methodology to investigate the severe acute respiratory coronavirus 2 genomes and analyze over 33 million records of indels systematically, ultimately proposing the concept of featured indels that can represent specific Pango lineages and identifying 65 featured indels. Machine learning model based on Bayesian inference and viral lineage growth rate evaluation suggests that these featured indels exhibit selection pressure comparable to replacement mutations. In conclusion, indels are not negligible for evaluating viral fitness.
Collapse
Affiliation(s)
- Xiang Li
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- AI for Science, Shanghai Artificial Intelligence Laboratory, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongliang Yan
- AI for Science, Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Gary Wong
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Wanli Ouyang
- AI for Science, Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Raghav PK, Mann Z, Ahluwalia SK, Rajalingam R. Potential treatments of COVID-19: Drug repurposing and therapeutic interventions. J Pharmacol Sci 2023; 152:1-21. [PMID: 37059487 PMCID: PMC9930377 DOI: 10.1016/j.jphs.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection is caused when Spike-protein (S-protein) present on the surface of SARS-CoV-2 interacts with human cell surface receptor, Angiotensin-converting enzyme 2 (ACE2). This binding facilitates SARS-CoV-2 genome entry into the human cells, which in turn causes infection. Since the beginning of the pandemic, many different therapies have been developed to combat COVID-19, including treatment and prevention. This review is focused on the currently adapted and certain other potential therapies for COVID-19 treatment, which include drug repurposing, vaccines and drug-free therapies. The efficacy of various treatment options is constantly being tested through clinical trials and in vivo studies before they are made medically available to the public.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| | | | - Simran Kaur Ahluwalia
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Nauman Zahid M, Asif M, Sajid H, Kosar N, Akbar Shahid M, Allangawi A, Ayub K, Azeem M, Mahmood T. Therapeutic efficiency of B3O3 quantum dot as a targeted drug delivery system toward Foscarnet anti-HIV drug. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|
11
|
Gungordu Er S, Edirisinghe M, Tabish TA. Graphene-Based Nanocomposites as Antibacterial, Antiviral and Antifungal Agents. Adv Healthc Mater 2023; 12:e2201523. [PMID: 36511355 PMCID: PMC11468666 DOI: 10.1002/adhm.202201523] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Over the past decade, there have been many interesting studies in the scientific literature about the interaction of graphene-based polymeric nanocomposites with microorganisms to tackle antimicrobial resistance. These studies have reported variable intensities of biocompatibility and selectivity for the nanocomposites toward a specific strain, but it is widely believed that graphene nanocomposites have antibacterial, antiviral, and antifungal activities. Such antibacterial activity is due to several mechanisms by which graphene nanocomposites can act on cells including stimulating oxidative stress; disrupting membranes due to sharp edges; greatly changing core structure mechanical strength and coarseness. However, the underlying mechanisms of graphene nanocomposites as antiviral and antifungal agents remain relatively scarce. In this review, recent advances in the synthesis, functional tailoring, and antibacterial, antiviral, and antifungal applications of graphene nanocomposites are summarized. The synthesis of graphene materials and graphene-based polymeric nanocomposites with techniques such as pressurized gyration, electrospinning, chemical vapor deposition, and layer-by-layer self-assembly is first introduced. Then, the antimicrobial mechanisms of graphene membranes are presented and demonstrated typical in vitro and in vivo studies on the use of graphene nanocomposites for antibacterial, antiviral, and antifungal applications. Finally, the review describes the biosafety, current limitations, and potential of antimicrobial graphene-based nanocomposites.
Collapse
Affiliation(s)
- Seda Gungordu Er
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Mohan Edirisinghe
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Tanveer A. Tabish
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- Radcliffe Department of MedicineUniversity of OxfordOld RoadOxfordOX3 7BNUK
- Department of Engineering ScienceUniversity of OxfordBegbroke Science ParkOxfordOX5 1PFUK
| |
Collapse
|
12
|
Role of Nanomaterials in COVID-19 Prevention, Diagnostics, Therapeutics, and Vaccine Development. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Facing the deadly pandemic caused by the SARS-CoV-2 virus all over the globe, it is crucial to devote efforts to fighting and preventing this infectious virus. Nanomaterials have gained much attention after the approval of lipid nanoparticle-based COVID-19 vaccines by the United States Food and Drug Administration (USFDA). In light of increasing demands for utilizing nanomaterials in the management of COVID-19, this comprehensive review focuses on the role of nanomaterials in the prevention, diagnostics, therapeutics, and vaccine development of COVID-19. First, we highlight the variety of nanomaterials usage in the prevention of COVID-19. We discuss the advantages of nanomaterials as well as their uses in the production of diagnostic tools and treatment methods. Finally, we review the role of nanomaterials in COVID-19 vaccine development. This review offers direction for creating products based on nanomaterials to combat COVID-19.
Collapse
|
13
|
Rastogi A, Singh A, Naik K, Mishra A, Chaudhary S, Manohar R, Singh Parmar A. A systemic review on liquid crystals, nanoformulations and its application for detection and treatment of SARS - CoV- 2 (COVID - 19). J Mol Liq 2022; 362:119795. [PMID: 35832289 PMCID: PMC9265145 DOI: 10.1016/j.molliq.2022.119795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/31/2023]
Abstract
The COVID-19 is a pandemic caused by the SARS-CoV-2 virus, has instigated major health problems and prompted WHO to proclaim a worldwide medical emergency. The knowledge of SARS-CoV-2 fundamental structure, aetiology, its entrance mechanism, membrane hijacking and immune response against the virus, are important parameters to develop effective vaccines and medicines. Liquid crystals integrated nano-techniques and various nanoformulations were applied to tackle the severity of the virus. It was reported that nanoformulations have helped to enhance the effectiveness of presently accessible antiviral medicines or to elicit a fast immunological response against COVID-19 virus. Applications of liquid crystals, nanostructures, nanoformulations and nanotechnology in diagnosis, prevention, treatment and tailored vaccine administration against COVID-19 which will help in establishing the framework for a successful pandemic combat are reviewed. This review also focuses on limitations associated with liquid crystal-nanotechnology based systems and suggests the possible ways to address these limitations. Also, topical advancements in the ground of liquid crystals and nanostructures established diagnostics (nanosensor/biosensor) are discussed in detail.
Collapse
Affiliation(s)
- Ayushi Rastogi
- Liquid Crystal Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
- Department of Humanity and Applied Sciences (Physics), SMS College of Engineering, Institute of Technology, Lucknow 226001, Uttar Pradesh, India
| | - Abhilasha Singh
- Department of Physics, J.S.S Academy of Technical Education, Bangalore 560060, Karnataka, India
| | - Kaustubh Naik
- Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Archana Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay - 400085, Mumbai, India
| | - Shilpi Chaudhary
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh 160012, Punjab, India
| | - Rajiv Manohar
- Liquid Crystal Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | | |
Collapse
|
14
|
Patial S, Kumar A, Raizada P, Le QV, Nguyen VH, Selvasembian R, Singh P, Thakur S, Hussain CM. Potential of graphene based photocatalyst for antiviral activity with emphasis on COVID-19: A review. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107527. [PMID: 35280853 PMCID: PMC8902865 DOI: 10.1016/j.jece.2022.107527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/18/2022] [Accepted: 03/06/2022] [Indexed: 05/13/2023]
Abstract
Coronavirus disease-2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been one of the most challenging worldwide epidemics of recent times. Semiconducting materials (photocatalysts) could prove effectual solar-light-driven technology on account of variant reactive oxidative species (ROS), including superoxide (•O2 - ) and hydroxyl (•OH) radicals either by degradation of proteins, DNA, RNA, or preventing cell development by terminating cellular membrane. Graphene-based materials have been exquisitely explored for antiviral applications due to their extraordinary physicochemical features including large specific surface area, robust mechanical strength, tunable structural features, and high electrical conductivity. Considering that, the present study highlights a perspective on the potentials of graphene based materials for photocatalytic antiviral activity. The interaction of virus with the surface of graphene based nanomaterials and the consequent physical, as well as ROS induced inactivation process, has been highlighted and discussed. It is highly anticipated that the present review article emphasizing mechanistic antiviral insights could accelerate further research in this field.
Collapse
Affiliation(s)
- Shilpa Patial
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Abhinandan Kumar
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Van-Huy Nguyen
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
15
|
Shahabi M, Raissi H. A new insight into the transfer and delivery of anti-SARS-CoV-2 drug Carmofur with the assistance of graphene oxide quantum dot as a highly efficient nanovector toward COVID-19 by molecular dynamics simulation. RSC Adv 2022; 12:14167-14174. [PMID: 35558858 PMCID: PMC9092566 DOI: 10.1039/d2ra01420c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Currently, a preventive and curative treatment for COVID-19 is an urgent global issue. According to the fact that nanomaterial-based drug delivery systems as risk-free approaches for successful therapeutic strategies may led to immunization against COVID-19 pandemic, the delivery of Carmofur as a potential drug for the SARS-CoV-2 treatment via graphene oxide quantum dots (GOQDs) was investigated in silico using molecular dynamics (MD) simulation. MD simulation showed that π-π stacking together with hydrogen bonding played vital roles in the stability of the Carmofur-GOQD complex. Spontaneous attraction of GOQDs loaded with Carmofur toward the binding pocket of the main protease (Mpro) resulted in the penetration of Carmofur into the active catalytic region. It was found that the presence of GOQD as an effective carrier in the loading and delivery of Carmofur inhibitor affected the structural conformation of Mpro. Higher RMSF values of the key residues of the active site indicated their greater displacement to adopt Carmofur. These results suggested that the binding pocket of Mpro is not stable during the interaction with the Carmofur-GOQD complex. This study provided insights into the potential application of graphene oxide quantum dots as an effective Carmofur drug delivery system for the treatment of COVID-19.
Collapse
Affiliation(s)
- Mahnaz Shahabi
- Department of Chemistry, University of Birjand Birjand Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand Birjand Iran
| |
Collapse
|
16
|
Kumar A, Soni V, Singh P, Parwaz Khan AA, Nazim M, Mohapatra S, Saini V, Raizada P, Hussain CM, Shaban M, Marwani HM, Asiri AM. Green aspects of photocatalysts during corona pandemic: a promising role for the deactivation of COVID-19 virus. RSC Adv 2022; 12:13609-13627. [PMID: 35530385 PMCID: PMC9073611 DOI: 10.1039/d1ra08981a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
The selection of a facile, eco-friendly, and effective methodology is the need of the hour for efficient curing of the COVID-19 virus in air, water, and many food products. Recently, semiconductor-based photocatalytic methodologies have provided promising, green, and sustainable approaches to battle against viral activation via the oxidative capabilities of various photocatalysts with excellent performance under moderate conditions and negligible by-products generation as well. Considering this, recent advances in photocatalysis for combating the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are inclusively highlighted. Starting from the origin to the introduction of the coronavirus, the significant potential of photocatalysis against viral prevention and -disinfection is discussed thoroughly. Various photocatalytic material-based systems including metal-oxides, metal-free and advanced 2D materials (MXenes, MOFs and COFs) are systematically examined to understand the mechanistic insights of virus-disinfection in the human body to fight against COVID-19 disease. Also, a roadmap toward sustainable solutions for ongoing COVID-19 contagion is also presented. Finally, the challenges in this field and future perspectives are comprehensively discussed involving the bottlenecks of current photocatalytic systems along with potential recommendations to deal with upcoming pandemic situations in the future.
Collapse
Affiliation(s)
- Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | - Vatika Soni
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mohammed Nazim
- Department of Chemical Engineering, Kumoh National Institute of Technology 61 Daehak-ro Gumi-si Gyeongbuk-do 39177 Republic of Korea
| | - Satyabrata Mohapatra
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University Dwarka New Delhi 110078 India
| | - Vipin Saini
- Maharishi Markandeshwar Medical College Kumarhatti Solan Himachal Pradesh 173229 India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | | | - Mohamed Shaban
- Department of Physics, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Hadi M Marwani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
17
|
Xue Y, Liu C, Andrews G, Wang J, Ge Y. Recent advances in carbon quantum dots for virus detection, as well as inhibition and treatment of viral infection. NANO CONVERGENCE 2022; 9:15. [PMID: 35366117 PMCID: PMC8976173 DOI: 10.1186/s40580-022-00307-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/17/2022] [Indexed: 05/28/2023]
Abstract
In the last decade, carbon quantum dots (CQDs), as a novel class of carbon-based nanomaterials, have received increasing attention due to their distinct properties. CQDs are ultimately small nanoparticles with an average size below 10 nm, possessing high water solubility, alluring photoluminescence, photostability, excellent biocompatibility, low/none toxicity, environmental friendliness, and high sustainability, etc. In history, there are intermittent threats from viruses to humans, animals and plants worldwide, resulting in enormous crises and impacts on our life, environment, economy and society. Some recent studies have unveiled that certain types of CQDs exhibited high and potent antiviral activities against various viruses such as human coronavirus, arterivirus, norovirus and herpesvirus. Moreover, they have been successfully explored and developed for different virus detections including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This article exclusively overviews and discusses the recent progress of designing, synthesizing, modifying/functionalizing and developing CQDs towards effective virus detection as well as the inhibition and treatment of viral infection. Their mechanisms and applications against various pathogenic viruses are addressed. The latest outcomes for combating the coronavirus disease 2019 (COVID-19) utilizing CQDs are also highlighted. It can be envisaged that CQDs could further benefit the development of virus detectors and antiviral agents with added broad-spectrum activity and cost-effective production.
Collapse
Affiliation(s)
- Yuxiang Xue
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, EH9 3HL, UK
| | - Chenchen Liu
- Department of Metabolism, Digestion and Reproductive, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Gavin Andrews
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Jinyan Wang
- College of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Yi Ge
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK.
| |
Collapse
|
18
|
Aydogdu MO, Rohn JL, Jafari NV, Brako F, Homer‐Vanniasinkam S, Edirisinghe M. Severe Acute Respiratory Syndrome Type 2-Causing Coronavirus: Variants and Preventive Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104495. [PMID: 35037418 PMCID: PMC9008798 DOI: 10.1002/advs.202104495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/17/2021] [Indexed: 05/03/2023]
Abstract
COVID-19 vaccines have constituted a substantial scientific leap in countering severe acute respiratory syndrome type 2-causing coronavirus (SARS-CoV-2), and worldwide implementation of vaccination programs has significantly contributed to the global pandemic effort by saving many lives. However, the continuous evolution of the SARS-CoV-2 viral genome has resulted in different variants with a diverse range of mutations, some with enhanced virulence compared with previous lineages. Such variants are still a great concern as they have the potential to reduce vaccine efficacy and increase the viral transmission rate. This review summarizes the significant variants of SARS-CoV-2 encountered to date (December 2021) and discusses a spectrum of possible preventive strategies, with an emphasis on physical and materials science.
Collapse
Affiliation(s)
- Mehmet Onur Aydogdu
- Department of Mechanical EngineeringUniversity College London (UCL)Torrington PlaceLondonWC1E 7JEUK
| | - Jennifer L. Rohn
- Department of Renal MedicineDivision of MedicineUniversity College LondonRowland Hill StreetLondonNW3 2PFUK
| | - Nazila V. Jafari
- Department of Renal MedicineDivision of MedicineUniversity College LondonRowland Hill StreetLondonNW3 2PFUK
| | - Francis Brako
- Medway School of PharmacyUniversities at MedwayChathamME4 4TBUK
| | | | - Mohan Edirisinghe
- Department of Mechanical EngineeringUniversity College London (UCL)Torrington PlaceLondonWC1E 7JEUK
| |
Collapse
|
19
|
Du J, Yang C, Ma X, Li Q. Insights into the conformation changes of SARS-CoV-2 spike receptor-binding domain on graphene. APPLIED SURFACE SCIENCE 2022; 578:151934. [PMID: 34866721 PMCID: PMC8627288 DOI: 10.1016/j.apsusc.2021.151934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 05/13/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely spread in the world, causing more than two million deaths and seriously threatening human life. Effective protection measures are important to prevent the infection and spreading of the virus. To explore the effects of graphene on the virus adsorption and its biological properties, the adsorption process of the receptor binding domain (RBD) of SARS-CoV-2 on graphene has been investigated by molecular dynamics simulations in this paper. The results show that RBD can be quickly adsorbed onto the surface of graphene due to π - π stacking and hydrophobic interactions. Residue PHE486 with benzene ring has stronger adsorption force and the maximum contact area with graphene. Graphene significantly affects the secondary structure of RBD area, especially on the three key sites of binding with human ACE2, GLY476, PHE486 and ASN487. The binding free energy of RBD and graphene shows that the adsorption is irreversible. Undoubtedly, these changes will inevitably affect the pathogenicity of the virus. Therefore, this study provides a theoretical basis for the application of graphene in the protection of SARS-CoV-2, and also provides a reference for the potential application of graphene in the biomedical field.
Collapse
Affiliation(s)
- Jianbin Du
- College of Science, Langfang Normal University, Langfang 065000, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Chunmei Yang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiangyun Ma
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Qifeng Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Shafiee A, Iravani S, Varma RS. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. MedComm (Beijing) 2022; 3:e118. [PMID: 35281783 PMCID: PMC8906468 DOI: 10.1002/mco2.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/22/2023] Open
Abstract
Graphene-based materials have shown immense pertinence for sensing/imaging, gene/drug delivery, cancer therapy/diagnosis, and tissue engineering/regenerative medicine. Indeed, the large surface area, ease of functionalization, high drug loading capacity, and reactive oxygen species induction potentials have rendered graphene- (G-) and graphene oxide (GO)-based (nano)structures promising candidates for cancer therapy applications. Various techniques namely liquid-phase exfoliation, Hummer's method, chemical vapor deposition, chemically reduced GO, mechanical cleavage of graphite, arc discharge of graphite, and thermal fusion have been deployed for the production of G-based materials. Additionally, important criteria such as biocompatibility, bio-toxicity, dispersibility, immunological compatibility, and inflammatory reactions of G-based structures need to be systematically assessed for additional clinical and biomedical appliances. Furthermore, surface properties (e.g., lateral dimension, charge, corona influence, surface structure, and oxygen content), concentration, detection strategies, and cell types are vital for anticancer activities of these structures. Notably, the efficient accumulation of anticancer drugs in tumor targets/tissues, controlled cellular uptake properties, tumor-targeted drug release behavior, and selective toxicity toward the cells are crucial criteria that need to be met for developing future anticancer G-based nanosystems. Herein, important challenges and future perspectives of cancer therapy using G- and GO-based nanosystems have been highlighted, and the recent advancements are deliberated.
Collapse
Affiliation(s)
- Ali Shafiee
- Department of ChemistryCape Breton UniversitySydneyCanada
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahanIran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research InstitutePalacky University in OlomoucOlomoucCzech Republic
| |
Collapse
|
21
|
Mallakpour S, Behranvand V, Hussain CM. Worldwide fight against COVID-19 using nanotechnology, polymer science, and 3D printing technology. Polym Bull (Berl) 2022; 80:165-183. [PMID: 35106016 PMCID: PMC8794596 DOI: 10.1007/s00289-021-04006-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/17/2023]
Abstract
One of the lethal illnesses that humanity has ever seen is COVID-19 irrefutably. The speed of virus spread is high and happens through polluted surfaces, respiratory droplets, and bodily fluids. It was found that without an efficient vaccine or specific treatment using personal protective equipment, preventing contamination of hands, and social distancing are the best ways to stay safe during the present pandemic. In this line, polymers, nanotechnology, and additive manufacturing, or 3D printing technology have been considered to probe, sense, and treat COVID-19. All aforementioned fields showed undeniable roles during the COVID-19 pandemic, which their contributions have been reviewed here. Finally, the effect of COVID-19 on the environment, alongside its positive and negative effects has been mentioned.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 Islamic Republic of Iran
| | - Vajiheh Behranvand
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 Islamic Republic of Iran
| | | |
Collapse
|
22
|
Fioranelli M, Ahmad H, Sepehri A, Roccia MG, Aziz F. A mathematical model for imaging and killing cancer cells by using concepts of the Warburg effect in designing a Graphene system. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2985-2995. [PMID: 35240816 DOI: 10.3934/mbe.2022137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
According to the Warburg effect, there are some significant differences between metabolisms, products and process of respirations of cancer cells and normal cells. For example, normal cells absorb oxygen and glucose and give water molecules, carbon dioxide, ATP molecules and some number of spinors; while cancer cells take glucose and give lactate, less number of ATP molecules and different number of spinors. Using this property, we can design a system from two graphene sheets that are connected by pairing the fourth free electrons of carbons. Then, we can break some pairs and produce some holes. The number of these holes should be equal to the number of radiated spinors by normal cells. Near a normal cell, all holes are filled and the graphene system doesn't emit any electrical current or wave. However, near a cancer cell, some extra holes or spinors remain that their motions produce some electrical currents. These currents force on cancer cell membranes and destroy them and consequently, cause the cell death. Also, these currents emit some electromagnetic waves which detectors could take them out of the human's body and consequently, they could play the main role in imaging.
Collapse
Affiliation(s)
- Massimo Fioranelli
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, Rome 00193, Italy
| | - Hijaz Ahmad
- Information Technology Application and Research Center, Istanbul Ticaret University, Istanbul 34445, Turkey
- Department of Mathematics, Faculty of Humanities and Social Sciences, Istanbul Ticaret University, Istanbul 34445, Turkey
| | - Alireza Sepehri
- Istituto Terapie Sistemiche Integrate, Via Flaminia 449, Rome 00181, Italy
| | - Maria Grazia Roccia
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, Rome 00193, Italy
| | - Faissal Aziz
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B. P. 2390, Marrakech 40000, Morocco
| |
Collapse
|
23
|
Oke AS, Bada OI, Rasaq G, Adodo V. Mathematical analysis of the dynamics of COVID-19 in Africa under the influence of asymptomatic cases and re-infection. MATHEMATICAL METHODS IN THE APPLIED SCIENCES 2022; 45:137-149. [PMID: 34908633 PMCID: PMC8661808 DOI: 10.1002/mma.7769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 07/26/2021] [Accepted: 08/07/2021] [Indexed: 06/14/2023]
Abstract
Coronavirus pandemic (COVID-19) hit the world in December 2019, and only less than 5% of the 15 million cases were recorded in Africa. A major call for concern was the significant rise from 2% in May 2020 to 4.67% by the end of July 15, 2020. This drastic increase calls for quick intervention in the transmission and control strategy of COVID-19 in Africa. A mathematical model to theoretically investigate the consequence of ignoring asymptomatic cases on COVID-19 spread in Africa is proposed in this study. A qualitative analysis of the model is carried out with and without re-infection, and the reproduction number is obtained under re-infection. The results indicate that increasing case detection to detect asymptomatically infected individuals will be very effective in containing and reducing the burden of COVID-19 in Africa. In addition, the fact that it has not been confirmed whether a recovered individual can be re-infected or not, then enforcing a living condition where recovered individuals are not allowed to mix with the susceptible or exposed individuals will help in containing the spread of COVID-19.
Collapse
Affiliation(s)
- Abayomi Samuel Oke
- Department of Mathematical SciencesAdekunle Ajasin UniversityAkungbaNigeria
- Department of Mathematical and Actuarial ScienceKenyatta UniversityNairobiKenya
| | | | - Ganiyu Rasaq
- Department of Mathematical SciencesAdekunle Ajasin UniversityAkungbaNigeria
| | - Victoria Adodo
- Department of Mathematical SciencesAdekunle Ajasin UniversityAkungbaNigeria
| |
Collapse
|
24
|
Wang J, Yu Y, Leng T, Li Y, Lee ST. The Inhibition of SARS-CoV-2 3CL M pro by Graphene and Its Derivatives from Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:191-200. [PMID: 34933561 PMCID: PMC8713398 DOI: 10.1021/acsami.1c18104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
At present, the most powerful new drugs for COVID-19 are antibody proteins. In addition, there are some star small molecule drugs. However, there are few studies on nanomaterials. Here, we study the intact graphene (IG), defective graphene (DG), and graphene oxide (GO) interacting with COVID-19 protein. We find that they show progressive inhibition of COVID-19 protein. By using molecular dynamics simulations, we study the interactions between SARS-CoV-2 3CL Mpro and graphene-related materials (GRMs): IG, DG, and GO. The results show that Mpro can be absorbed onto the surfaces of investigated materials. DG and GO interacted with Mpro more intensely, causing the decisive part of Mpro to become more flexible. Further analysis shows that compared to IG and GO, DG can inactivate Mpro and inhibit its expression effectively by destroying the active pocket of Mpro. Our work not only provides detailed and reliable theoretical guidance for the application of GRMs in treating with SARS-CoV-2 but also helps in developing new graphene-based anti-COVID-19 materials.
Collapse
Affiliation(s)
- Jiawen Wang
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
| | - Yi Yu
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
| | - Tianle Leng
- Dougherty Valley High School,
10550 Albion Rd, San Ramon, California 94582, United States
| | - Youyong Li
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
- Macao Institute of Materials Science and Engineering,
Macau University of Science and Technology, Taipa, 999078
Macau, SAR, China
| | - Shuit-Tong Lee
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
- Macao Institute of Materials Science and Engineering,
Macau University of Science and Technology, Taipa, 999078
Macau, SAR, China
| |
Collapse
|
25
|
Deng W, Sun Y, Yao X, Subramanian K, Ling C, Wang H, Chopra SS, Xu BB, Wang J, Chen J, Wang D, Amancio H, Pramana S, Ye R, Wang S. Masks for COVID-19. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102189. [PMID: 34825783 PMCID: PMC8787406 DOI: 10.1002/advs.202102189] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/18/2021] [Indexed: 05/08/2023]
Abstract
Sustainable solutions on fabricating and using a face mask to block the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread during this coronavirus pandemic of 2019 (COVID-19) are required as society is directed by the World Health Organization (WHO) toward wearing it, resulting in an increasingly huge demand with over 4 000 000 000 masks used per day globally. Herein, various new mask technologies and advanced materials are reviewed to deal with critical shortages, cross-infection, and secondary transmission risk of masks. A number of countries have used cloth masks and 3D-printed masks as substitutes, whose filtration efficiencies can be improved by using nanofibers or mixing other polymers into them. Since 2020, researchers continue to improve the performance of masks by adding various functionalities, for example using metal nanoparticles and herbal extracts to inactivate pathogens, using graphene to make masks photothermal and superhydrophobic, and using triboelectric nanogenerator (TENG) to prolong mask lifetime. The recent advances in material technology have led to the development of antimicrobial coatings, which are introduced in this review. When incorporated into masks, these advanced materials and technologies can aid in the prevention of secondary transmission of the virus.
Collapse
Affiliation(s)
- Wei Deng
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Yajun Sun
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Xiaoxue Yao
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Karpagam Subramanian
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| | - Chen Ling
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Hongbo Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Shauhrat S. Chopra
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| | - Ben Bin Xu
- Department of Mechanical and Construction EngineeringNorthumbria UniversityNewcastle upon TyneNE1 8STUK
| | - Jie‐Xin Wang
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Jian‐Feng Chen
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Dan Wang
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Honeyfer Amancio
- Department of Chemical Engineering and BiotechnologyCambridge UniversityCambridgeCB2 1TNUK
| | - Stevin Pramana
- School of EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ruquan Ye
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Steven Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| |
Collapse
|
26
|
Benková Z, Cordeiro MNDS. Structural behavior of monomer of SARS-CoV-2 spike protein during initial stage of adsorption on graphene. MATERIALS TODAY. CHEMISTRY 2021; 22:100572. [PMID: 34485782 PMCID: PMC8405511 DOI: 10.1016/j.mtchem.2021.100572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 05/14/2023]
Abstract
Spike glycoprotein of the SARS-CoV-2 virus and its structure play a crucial role in the infections of cells containing angiotensin-converting enzyme 2 (ACE2) as well as in the interactions of this virus with surfaces. Protection against viruses and often even their deactivation is one of the great varieties of graphene applications. The structural changes of the non-glycosylated monomer of the spike glycoprotein trimer (denoted as S-protein in this work) triggered by its adsorption onto graphene at the initial stage are investigated by means of atomistic molecular dynamics simulations. The adsorption of the S-protein happens readily during the first 10 ns. The shape of the S-protein becomes more prolate during the adsorption, but this trend, albeit less pronounced, is observed also for the freely relaxing S-protein in water. The receptor-binding domain (RBD) of the free and adsorbed S-protein manifests itself as the most rigid fragment of the whole S-protein. The adsorption even enhances the rigidity of the whole S-protein as well as its subunits. Only one residue of the RBD involved in the specific interactions with ACE2 during the cell infection is involved in the direct contact of the adsorbed S-protein with the graphene. The new intramolecular hydrogen bonds formed during the S-protein adsorption replace the S-protein-water hydrogen bonds; this trend, although less apparent, is observed also during the relaxation of the free S-protein in water. In the initial phase, the secondary structure of the RBD fragment specifically interacting with ACE2 receptor is not affected during the S-protein adsorption onto the graphene.
Collapse
Affiliation(s)
- Z Benková
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia
| | - M N D S Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, University of Porto, Rua Do Campo Alegre 687, 4168-007 Porto, Portugal
| |
Collapse
|
27
|
Ayub M, Othman MHD, Khan IU, Yusop MZM, Kurniawan TA. Graphene-based nanomaterials as antimicrobial surface coatings: A parallel approach to restrain the expansion of COVID-19. SURFACES AND INTERFACES 2021; 27:101460. [PMID: 34957347 PMCID: PMC8442307 DOI: 10.1016/j.surfin.2021.101460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 05/26/2023]
Abstract
The recently emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a significant and topmost global health challenge of today. SARS-CoV-2 can propagate through several direct or indirect means resulting in its exponential spread in short times. Consequently, finding new research based real-world and feasible solutions to interrupt the spread of pathogenic microorganisms is indispensable. It has been established that this virus can survive on a variety of available surfaces ranging from a few hours to a few days, which has increased the risk of COVID-19 spread to large populations. Currently, available surface disinfectant chemicals provide only a temporary solution and are not recommended to be used in the long run due to their toxicity and irritation. Apart from the urgent development of vaccine and antiviral drugs, there is also a need to design and develop surface disinfectant antiviral coatings for long-term applications even for new variants. The unique physicochemical properties of graphene-based nanomaterials (GBNs) have been widely investigated for antimicrobial applications. However, the research work for their use in antimicrobial surface coatings is minimal. This perspective enlightens the scope of using GBNs as antimicrobial/antiviral surface coatings to reduce the spread of transmittable microorganisms, precisely, SARS-CoV-2. This study attempts to demonstrate the synergistic effect of GBNs and metallic nanoparticles (MNPs), for their potential antiviral applications in the development of surface disinfectant coatings. Some proposed mechanisms for the antiviral activity of the graphene family against SARS-CoV-2 has also been explained. It is anticipated that this study will potentially lead to new insights and future trends to develop a framework for further investigation on this research area of pivotal importance to minimize the transmission of current and any future viral outbreaks.
Collapse
Affiliation(s)
- Muhammad Ayub
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Imran Ullah Khan
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule, Institute of Applied Sciences & Technology (PAF:IAST), Khanpur Road, Mang, Haripur 22650, Pakistan
| | - Mohd Zamri Mohd Yusop
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Tonni Agustiono Kurniawan
- Key Laboratory of Coastal and Wetland Ecosystems, College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
28
|
Pradhan A, Lahare P, Sinha P, Singh N, Gupta B, Kuca K, Ghosh KK, Krejcar O. Biosensors as Nano-Analytical Tools for COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:7823. [PMID: 34883826 PMCID: PMC8659776 DOI: 10.3390/s21237823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022]
Abstract
Selective, sensitive and affordable techniques to detect disease and underlying health issues have been developed recently. Biosensors as nanoanalytical tools have taken a front seat in this context. Nanotechnology-enabled progress in the health sector has aided in disease and pandemic management at a very early stage efficiently. This report reflects the state-of-the-art of nanobiosensor-based virus detection technology in terms of their detection methods, targets, limits of detection, range, sensitivity, assay time, etc. The article effectively summarizes the challenges with traditional technologies and newly emerging biosensors, including the nanotechnology-based detection kit for COVID-19; optically enhanced technology; and electrochemical, smart and wearable enabled nanobiosensors. The less explored but crucial piezoelectric nanobiosensor and the reverse transcription-loop mediated isothermal amplification (RT-LAMP)-based biosensor are also discussed here. The article could be of significance to researchers and doctors dedicated to developing potent, versatile biosensors for the rapid identification of COVID-19. This kind of report is needed for selecting suitable treatments and to avert epidemics.
Collapse
Affiliation(s)
- Anchal Pradhan
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Preeti Lahare
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Priyank Sinha
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University, Nerul, Navi Mumbai 400706, India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Bhanushree Gupta
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Kallol K. Ghosh
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India
| | - Ondrej Krejcar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
29
|
Wu X, Manickam S, Wu T, Pang CH. Insights into the Role of Graphene/Graphene‐hybrid Nanocomposites in Antiviral Therapy. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xinyun Wu
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
| | - Sivakumar Manickam
- University of Technology Brunei Department of Petroleum and Chemical Engineering BE1410 Bandar Seri Begawan Brunei Darussalam
| | - Tao Wu
- University of Nottingham Ningbo China Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province 315100 Ningbo China
- University of Nottingham Ningbo China New Materials Institute 315100 Ningbo China
| | - Cheng Heng Pang
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
- University of Nottingham Ningbo China Municipal Key Laboratory of Clean Energy Conversion Technologies 315100 Ningbo China
| |
Collapse
|
30
|
Albaz AA, Rafeeq MM, Sain ZM, Almutairi WA, Alamri AS, Aloufi AH, Almalki WH, Tarique M. Nanotechnology-based approaches in the fight against SARS-CoV-2. AIMS Microbiol 2021; 7:368-398. [PMID: 35071938 PMCID: PMC8712532 DOI: 10.3934/microbiol.2021023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic caused by highly-infectious virus namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in infection of millions of individuals and deaths across the world. The need of an hour is to find the innovative solution for diagnosis, prevention, and cure of the COVID-19 disease. Nanotechnology is emerging as one of the important tool for the same. In the present review we discuss the applications of nanotechnology-based approaches that are being implemented to speed up the development of diagnostic kits for SARS-CoV-2, development of personal protective equipments, and development of therapeutics of COVID-19 especially the vaccine development.
Collapse
Affiliation(s)
- Alrayan Abass Albaz
- Molecular Medicine Genetics, Department of Oncology and Human Metabolism, the Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh. King Abdulaziz University. Jeddah, 21589, KSA
| | - Ziaullah M Sain
- Department of Microbiology, Faculty of Medicine, Rabigh. King Abdulaziz University, Jeddah, KSA 21589
| | - Wael Abdullah Almutairi
- Department of Respiratory Services, Ministry of National Guard Hospital and Health Affairs (MNGHA) P.O. box 22490, kingdom of Saudi Arabia
| | - Ali Saeed Alamri
- Molecular Pathology Lab Department of Pathology and Laboratory Medicine, Ministry of National Guard Hospital and Health Affairs (MNGHA), P.O. box 22490, Kingdom of Saudi Arabia
| | - Ahmed Hamdan Aloufi
- Department of Pathology and Laboratory Medicine, Ministry of National Guard-Health Affairs P.O. box 22490, Kingdom of Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Mohammed Tarique
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025, India
| |
Collapse
|
31
|
Bhatti SA, Memon FH, Rehman F, Bhatti Z, Naqvi T, Thebo KH. Recent progress in decontamination system against chemical and biological materials: challenges and future perspectives. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Environmental contamination is one of the key issues of developing countries in recent days, and several types of methods and technologies have been developed to overcome these issues. This paper highlights the importance of decontamination in a contaminated environment that normally precedes protection, detection and identification followed by medical support. Further, this paper especially focuses on individual and collective NBC decontamination required on navy ships and correspondingly presents solutions (viable and economical) through the use of indigenously developed decontamination equipment. The paper also highlights the integration of various decontamination technologies with pre-existing ship decontamination systems, indicating the need for various decontaminants. Finally, we will also focus on new decontamination systems based on nanomaterials and enzymes and their utilization.
Collapse
Affiliation(s)
- Saeed Akhtar Bhatti
- Department of Defence & Strategic Studies , Quaid-i-Azam University , Islamabad , 45320 , Pakistan
| | - Fida Hussain Memon
- Department of Electrical Engineering , Sukkur IBA University , Sukkur , Sindh , Pakistan
| | - Faisal Rehman
- Department of Mechatronics Engineering , College of EME, National University of Sciences and Technology (NUST) , Peshawar Road , Rawalpindi , Pakistan
| | - Zubeda Bhatti
- Department of Physics and Electronics , Shah Abdul Latif University , Khairpur Mirs , 66020 , Pakistan
| | - Tehsin Naqvi
- Department of Defence & Strategic Studies , Quaid-i-Azam University , Islamabad , 45320 , Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (UCAS) , Shenyang , China
| |
Collapse
|
32
|
Rhazouani A, Aziz K, Gamrani H, Gebrati L, Uddin MS, Faissal A. Can the application of graphene oxide contribute to the fight against COVID-19? Antiviral activity, diagnosis and prevention. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100062. [PMID: 34870157 PMCID: PMC8491929 DOI: 10.1016/j.crphar.2021.100062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/20/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is an infectious disease that affects the respiratory system and is caused by the novel coronavirus SARS-CoV-2. It was first reported in Wuhan, China, on December 31, 2019, and has affected the entire world. This pandemic has caused serious health, economic and social problems. In this situation, the only solution to combat COVID-19 is to accelerate the development of antiviral drugs and vaccines to mitigate the virus and develop better antiviral methods and excellent diagnostic and prevention techniques. With the development of nanotechnology, nanoparticles are being introduced to control COVID-19. Graphene oxide (GO), an oxidized derivative of graphene, is currently used in the medical field to treat certain diseases such as cancer. It is characterized by very important antiviral properties that allow its use in treating certain infectious diseases. The GO antiviral mechanism is discussed by the virus inactivation and/or the host cell receptor or by the physicochemical destruction of viral species. Moreover, the very high surface/volume ratio of GO allows the fixation of biomolecules by simple absorption. This paper summarizes the different studies performed on GO's antiviral activities and discusses GO-based biosensors for virus detection and approaches for prevention.
Collapse
Affiliation(s)
- Asmaa Rhazouani
- Laboratory of Water, Biodiversity & Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
- Team of Neurosciences, Pharmacology and Environment (ENPE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
- National Centre for Studies and Research on Water and Energy (CNEREE), Faculty of Technical Sciences, Cadi Ayyad University, B.P 511, 40000, Marrakech, Morocco
| | - Khalid Aziz
- Materials, Catalysis and Valorization of Natural Resources, Faculty of Sciences, University Ibn Zohr, BP 8106, Agadir, Morocco
| | - Halima Gamrani
- Team of Neurosciences, Pharmacology and Environment (ENPE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Lhoucine Gebrati
- Laboratory of Materials, Processes, Environment and Quality, Cadi Ayyad University, BP 63, 46000, Safi, Morocco
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Aziz Faissal
- Laboratory of Water, Biodiversity & Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
- National Centre for Studies and Research on Water and Energy (CNEREE), Faculty of Technical Sciences, Cadi Ayyad University, B.P 511, 40000, Marrakech, Morocco
| |
Collapse
|
33
|
Ramakrishnan SG, Robert B, Salim A, Ananthan P, Sivaramakrishnan M, Subramaniam S, Natesan S, Suresh R, Rajeshkumar G, Maran JP, Al-Dhabi NA, Karuppiah P, Valan Arasu M. Nanotechnology based solutions to combat zoonotic viruses with special attention to SARS, MERS, and COVID 19: Detection, protection and medication. Microb Pathog 2021; 159:105133. [PMID: 34390768 PMCID: PMC8358084 DOI: 10.1016/j.micpath.2021.105133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/01/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
Zoonotic viruses originate from birds or animal sources and responsible for disease transmission from animals to people through zoonotic spill over and presents a significant global health concern due to lack of rapid diagnostics and therapeutics. The Corona viruses (CoV) were known to be transmitted in mammals. Early this year, SARS-CoV-2, a novel strain of corona virus, was identified as the causative pathogen of an outbreak of viral pneumonia in Wuhan, China. The disease later named corona virus disease 2019 (COVID-19), subsequently spread across the globe rapidly. Nano-particles and viruses are comparable in size, which serves to be a major advantage of using nano-material in clinical strategy to combat viruses. Nanotechnology provides novel solutions against zoonotic viruses by providing cheap and efficient detection methods, novel, and new effective rapid diagnostics and therapeutics. The prospective of nanotechnology in COVID 19 is exceptionally high due to their small size, large surface-to-volume ratio, susceptibility to modification, intrinsic viricidal activity. The nano-based strategies address the COVID 19 by extending their role in i) designing nano-materials for drug/vaccine delivery, ii) developing nano-based diagnostic approaches like nano-sensors iii) novel nano-based personal protection equipment to be used in prevention strategies.This review aims to bring attention to the significant contribution of nanotechnology to mitigate against zoonotic viral pandemics by prevention, faster diagnosis and medication point of view.
Collapse
Affiliation(s)
- Sankar Ganesh Ramakrishnan
- Bioprocess and Biomaterials laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Becky Robert
- Bioprocess and Biomaterials laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Anisha Salim
- Bioprocess and Biomaterials laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Padma Ananthan
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | - Sadhasivam Subramaniam
- Bioprocess and Biomaterials laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore, India.
| | - Sivarajasekar Natesan
- Unit Operations laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Rahul Suresh
- Department of Physics, Bharathiar University, Coimbatore, India
| | - G Rajeshkumar
- Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore, Tamilnadu, India
| | - J Prakash Maran
- Department of Food Science and Nutrition, Periyar University, Salem, Tamilnadu, India.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ponmurugan Karuppiah
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
34
|
Pilaquinga F, Morey J, Torres M, Seqqat R, Piña MDLN. Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1707. [PMID: 33638618 PMCID: PMC7995207 DOI: 10.1002/wnan.1707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Several human coronaviruses (HCoVs) are distinguished by the ability to generate epidemics or pandemics, with their corresponding diseases characterized by severe respiratory illness, such as that which occurs in severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and, today, in SARS-CoV-2, an outbreak that has struck explosively and uncontrollably beginning in December 2019 and has claimed the lives of more than 1.9 M people worldwide as of January 2021. The development of vaccines has taken one year, which is why it is necessary to investigate whether some already-existing alternatives that have been successfully developed in recent years can mitigate the pandemic's advance. Silver nanoparticles (AgNPs) have proved effective in antiviral action. Thus, in this review, several in vitro and in vivo studies of the effect of AgNPs on viruses that cause respiratory diseases are analyzed and discussed to promote an understanding of the possible interaction of AgNPs with SARS-CoV-2. The study focuses on several in vivo toxicological studies of AgNPs and a dose extrapolation to humans to determine the chief avenue of exposure. It can be concluded that the use of AgNPs as a possible treatment for SARS-CoV-2 could be viable, based on comparing the virus' behavior to that of similar viruses in in vivo studies, and that the suggested route of administration in terms of least degree of adverse effects is inhalation. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- School of Chemistry SciencesPontificia Universidad Católica del EcuadorQuitoEcuador
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Jeroni Morey
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Marbel Torres
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | - Rachid Seqqat
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | | |
Collapse
|
35
|
Seifi T, Reza Kamali A. Antiviral performance of graphene-based materials with emphasis on COVID-19: A review. MEDICINE IN DRUG DISCOVERY 2021; 11:100099. [PMID: 34056572 PMCID: PMC8151376 DOI: 10.1016/j.medidd.2021.100099] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease-2019 has been one of the most challenging global epidemics of modern times with a large number of casualties combined with economic hardships across the world. Considering that there is still no definitive cure for the recent viral crisis, this article provides a review of nanomaterials with antiviral activity, with an emphasis on graphene and its derivatives, including graphene oxide, reduced graphene oxide and graphene quantum dots. The possible interactions between surfaces of such nanostructured materials with coronaviruses are discussed. The antiviral mechanisms of graphene materials can be related to events such as the inactivation of virus and/or the host cell receptor, electrostatic trapping and physico-chemical destruction of viral species. These effects can be enhanced by functionalization and/or decoration of carbons with species that enhances graphene-virus interactions. The low-cost and large-scale preparation of graphene materials with enhanced antiviral performances is an interesting research direction to be explored.
Collapse
Affiliation(s)
- Tahereh Seifi
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
36
|
De Maio F, Palmieri V, Babini G, Augello A, Palucci I, Perini G, Salustri A, Spilman P, De Spirito M, Sanguinetti M, Delogu G, Rizzi LG, Cesareo G, Soon-Shiong P, Sali M, Papi M. Graphene nanoplatelet and graphene oxide functionalization of face mask materials inhibits infectivity of trapped SARS-CoV-2. iScience 2021; 24:102788. [PMID: 34222841 PMCID: PMC8233064 DOI: 10.1016/j.isci.2021.102788] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advancements in bidimensional nanoparticles production such as graphene (G) and graphene oxide (GO) have the potential to meet the need for highly functional personal protective equipment (PPE) against SARS-CoV-2 infection. The ability of G and GO to interact with microorganisms provides an opportunity to develop engineered textiles for use in PPE and limit the spread of COVID-19. PPE in current use in high-risk settings for COVID transmission provides only a physical barrier that decreases infection likelihood and does not inactivate the virus. Here, we show that virus pre-incubation with soluble GO inhibits SARS-CoV-2 infection of VERO cells. Furthermore, when G/GO-functionalized polyurethane or cotton was in contact SARS-CoV-2, the infectivity of the fabric was nearly completely inhibited. The findings presented here constitute an important innovative nanomaterial-based strategy to significantly increase PPE efficacy in protection against the SARS-CoV-2 virus that may implement water filtration, air purification, and diagnostics methods.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Valentina Palmieri
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Gabriele Babini
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario "A. Gemelli", Largo A. Gemelli, 8 00168 Rome, Italy
| | - Alberto Augello
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| | - Ivana Palucci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| | - Alessandro Salustri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Patricia Spilman
- ImmunityBio, LLC, Culver City, 440 Duley Road, El Segundo, California, CA 90245, USA
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Mater Olbia Hospital, Strada Statale 125 Orientale Sarda, 07026 Olbia SS, Italy
| | - Laura Giorgia Rizzi
- Directa Plus S.p.A. c/o ComoNExT - Science and Technology Park, 22074 Lomazzo, Como, Italy
| | - Giulio Cesareo
- Directa Plus S.p.A. c/o ComoNExT - Science and Technology Park, 22074 Lomazzo, Como, Italy
| | - Patrick Soon-Shiong
- Nantworks LLC, Culver City, 9920 Jefferson Boulevard, California, CA 90230, USA
| | - Michela Sali
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| |
Collapse
|
37
|
De Maio F, Palmieri V, Babini G, Augello A, Palucci I, Perini G, Salustri A, Spilman P, De Spirito M, Sanguinetti M, Delogu G, Rizzi LG, Cesareo G, Soon-Shiong P, Sali M, Papi M. Graphene nanoplatelet and graphene oxide functionalization of face mask materials inhibits infectivity of trapped SARS-CoV-2. iScience 2021; 24:102788. [PMID: 34222841 DOI: 10.1101/2020.09.16.20194316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 05/19/2023] Open
Abstract
Recent advancements in bidimensional nanoparticles production such as graphene (G) and graphene oxide (GO) have the potential to meet the need for highly functional personal protective equipment (PPE) against SARS-CoV-2 infection. The ability of G and GO to interact with microorganisms provides an opportunity to develop engineered textiles for use in PPE and limit the spread of COVID-19. PPE in current use in high-risk settings for COVID transmission provides only a physical barrier that decreases infection likelihood and does not inactivate the virus. Here, we show that virus pre-incubation with soluble GO inhibits SARS-CoV-2 infection of VERO cells. Furthermore, when G/GO-functionalized polyurethane or cotton was in contact SARS-CoV-2, the infectivity of the fabric was nearly completely inhibited. The findings presented here constitute an important innovative nanomaterial-based strategy to significantly increase PPE efficacy in protection against the SARS-CoV-2 virus that may implement water filtration, air purification, and diagnostics methods.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Valentina Palmieri
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Gabriele Babini
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario "A. Gemelli", Largo A. Gemelli, 8 00168 Rome, Italy
| | - Alberto Augello
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| | - Ivana Palucci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| | - Alessandro Salustri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Patricia Spilman
- ImmunityBio, LLC, Culver City, 440 Duley Road, El Segundo, California, CA 90245, USA
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Mater Olbia Hospital, Strada Statale 125 Orientale Sarda, 07026 Olbia SS, Italy
| | - Laura Giorgia Rizzi
- Directa Plus S.p.A. c/o ComoNExT - Science and Technology Park, 22074 Lomazzo, Como, Italy
| | - Giulio Cesareo
- Directa Plus S.p.A. c/o ComoNExT - Science and Technology Park, 22074 Lomazzo, Como, Italy
| | - Patrick Soon-Shiong
- Nantworks LLC, Culver City, 9920 Jefferson Boulevard, California, CA 90230, USA
| | - Michela Sali
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168 Rome, Italy
| |
Collapse
|
38
|
Dhama K, Patel SK, Kumar R, Masand R, Rana J, Yatoo MI, Tiwari R, Sharun K, Mohapatra RK, Natesan S, Dhawan M, Ahmad T, Emran TB, Malik YS, Harapan H. The role of disinfectants and sanitizers during COVID-19 pandemic: advantages and deleterious effects on humans and the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34211-34228. [PMID: 33991301 PMCID: PMC8122186 DOI: 10.1007/s11356-021-14429-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 04/16/2023]
Abstract
Disinfectants and sanitizers are essential preventive agents against the coronavirus disease 2019 (COVID-19) pandemic; however, the pandemic crisis was marred by undue hype, which led to the indiscriminate use of disinfectants and sanitizers. Despite demonstrating a beneficial role in the control and prevention of COVID-19, there are crucial concerns regarding the large-scale use of disinfectants and sanitizers, including the side effects on human and animal health along with harmful impacts exerted on the environment and ecological balance. This article discusses the roles of disinfectants and sanitizers in the control and prevention of the current pandemic and highlights updated disinfection techniques against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This article provides evidence of the deleterious effects of disinfectants and sanitizers exerted on humans, animals, and the environment as well as suggests mitigation strategies to reduce these effects. Additionally, potential technologies and approaches for the reduction of these effects and the development of safe, affordable, and effective disinfectants are discussed, particularly, eco-friendly technologies using nanotechnology and nanomedicine.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Rakesh Kumar
- Department of Veterinary Pathology, Dr. G.C Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - Rupali Masand
- Department of Veterinary Pathology, Dr. G.C Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - Jigyasa Rana
- Department of Veterinary Anatomy, Faculty of Veterinary and Animal Sciences, Rajeev Gandhi South Campus, Banaras Hindu University, Barkachha, Mirzapur, Uttar Pradesh, 231001, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190006, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, 758002, India
| | - Senthilkumar Natesan
- Indian Institute of Public Health Gandhinagar, Lekawada, Gandhinagar, Gujarat, 382042, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, India
- The Trafford Group of Colleges, Manchester, WA14 5PQ, UK
| | - Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
| |
Collapse
|
39
|
Maqbool I, Rehman F, Soomro F, Bhatti Z, Ali U, Jatoi AH, Lal B, Iqbal M, Phulpoto S, Ali A, Thebo KH. Graphene‐based Materials for Fighting Coronavirus Disease 2019: Challenges and Opportunities. CHEMBIOENG REVIEWS 2021. [PMCID: PMC8250942 DOI: 10.1002/cben.202000039] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is considered as serious global threat of this time and greatest challenge for recent days. Several approaches have been carried out in this direction to fight against COVID‐19. Among these, nanotechnology is one of the promising approach to face these challenges in the current situation. Recently, graphene‐based nanomaterials have been explored for COVID‐19 due to its unique physicochemical properties. This mini review provides a recent progress in graphene‐based nanomaterials and its applications for diagnosis, detection, decontamination, and protection against COVID‐19. Further, main challenges and perspective for fundamental design and development of technologies based on graphene‐based materials are discussed and suitable directions to improve these technologies are suggested. This article will provide timely knowledge and future direction about this wonder materials in various biological applications.
Collapse
Affiliation(s)
- Imran Maqbool
- The University of International Business and Economics (UIBE) School of International Trade and Economics Beijing China
| | - Faisal Rehman
- The Sukkur IBA University Department of Electrical Engineering Sukkur Sindh Pakistan
| | - Faheeda Soomro
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Science Karachi Pakistan
| | - Zubeda Bhatti
- Shah Abdul Latif University Department of Physics and Electronics 66020 Khairpur Mirs Pakistan
| | - Umeed Ali
- Shah Abdul Latif University Department of Physics and Electronics 66020 Khairpur Mirs Pakistan
| | - Ashique Hussain Jatoi
- Shaheed Benazir Bhutto University Department of Chemistry Shaheed Benazirabad Pakistan
| | - Bhajan Lal
- Shah Abdul Latif University Institute of Chemistry 66020 Khairpur Mirs Pakistan
| | - Muzaffar Iqbal
- The University of Haripur Kpk Department of Chemistry Faculty of Natural Science Haripur 22620 Pakistan
| | - Shahnawaz Phulpoto
- Shaheed Benazir Bhutto University Department of Chemistry Shaheed Benazirabad Pakistan
| | - Akbar Ali
- University of Chinese Academy of Sciences (UCAS) 100190 Beijing China
| | | |
Collapse
|
40
|
Arifin NFT, Yusof N, Nordin NAHM, Jaafar J, Ismail AF, Aziz F, Salleh WNW. Potential application of biomass derived graphene for COVID-19 pandemic. ACTA ACUST UNITED AC 2021; 46:1959-1962. [PMID: 33680866 PMCID: PMC7914015 DOI: 10.1016/j.matpr.2021.02.379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/06/2021] [Accepted: 02/02/2021] [Indexed: 11/02/2022]
Abstract
Since the emergence of the novel coronavirus disease (COVID-19) pandemic, intense research has been carried out to find the effective vaccine. However, this issue remains as a global challenge. Graphene has captured various attention due to promising antimicrobial and antiviral applications, hydrophobic characteristic and superior electrical conductivity. Recently, biomass derived graphene also promises great opportunity to combat the spread COVID-19. In this paper, we demonstrated the ability and role of biomass derived graphene as superhydrophobic coating, biosensors and disinfectant in the fight against COVID-19.
Collapse
Affiliation(s)
- N F T Arifin
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310, Malaysia.,School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310, Malaysia
| | - N Yusof
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310, Malaysia.,School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310, Malaysia
| | - N A H M Nordin
- Department of Chemical Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar Perak 32610, Malaysia
| | - J Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310, Malaysia.,School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310, Malaysia
| | - A F Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310, Malaysia.,School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310, Malaysia
| | - F Aziz
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310, Malaysia.,School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310, Malaysia
| | - W N W Salleh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310, Malaysia.,School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310, Malaysia
| |
Collapse
|
41
|
Erdem Ö, Derin E, Sagdic K, Yilmaz EG, Inci F. Smart materials-integrated sensor technologies for COVID-19 diagnosis. EMERGENT MATERIALS 2021; 4:169-185. [PMID: 33495747 PMCID: PMC7817967 DOI: 10.1007/s42247-020-00150-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/01/2020] [Indexed: 05/05/2023]
Abstract
After the first case has appeared in China, the COVID-19 pandemic continues to pose an omnipresent threat to global health, affecting more than 70 million patients and leading to around 1.6 million deaths. To implement rapid and effective clinical management, early diagnosis is the mainstay. Today, real-time reverse transcriptase (RT)-PCR test is the major diagnostic practice as a gold standard method for accurate diagnosis of this disease. On the other side, serological assays are easy to be implemented for the disease screening. Considering the limitations of today's tests including lengthy assay time, cost, the need for skilled personnel, and specialized infrastructure, both strategies, however, have impediments to be applied to the resource-scarce settings. Therefore, there is an urgent need to democratize all these practices to be applicable across the globe, specifically to the locations comprising of very limited infrastructure. In this regard, sensor systems have been utilized in clinical diagnostics largely, holding great potential to have pivotal roles as an alternative or complementary options to these current tests, providing crucial fashions such as being suitable for point-of-care settings, cost-effective, and having short turnover time. In particular, the integration of smart materials into sensor technologies leverages their analytical performances, including sensitivity, linear dynamic range, and specificity. Herein, we comprehensively review major smart materials such as nanomaterials, photosensitive materials, electrically sensitive materials, their integration with sensor platforms, and applications as wearable tools within the scope of the COVID-19 diagnosis.
Collapse
Affiliation(s)
- Özgecan Erdem
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Esma Derin
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Kutay Sagdic
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Eylul Gulsen Yilmaz
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
42
|
Ghaffari M, Mollazadeh-Bajestani M, Moztarzadeh F, Uludağ H, Hardy JG, Mozafari M. An overview of the use of biomaterials, nanotechnology, and stem cells for detection and treatment of COVID-19: towards a framework to address future global pandemics. EMERGENT MATERIALS 2021; 4:19-34. [PMID: 33426467 PMCID: PMC7783485 DOI: 10.1007/s42247-020-00143-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 05/03/2023]
Abstract
A novel SARS-like coronavirus (severe acute respiratory syndrome-related coronavirus-2, SARS-CoV-2) outbreak has recently become a worldwide pandemic. Researchers from various disciplinary backgrounds (social to natural science, health and medicine, etc.) have studied different aspects of the pandemic. The current situation has revealed how the ongoing development of nanotechnology and nanomedicine can accelerate the fight against the novel viruses. A comprehensive solution to this and future pandemic outbreaks includes preventing the spread of the virus through anti-viral personal protective equipment (PPE) and anti-viral surfaces, plus efforts to encourage behavior to minimize risks. Studies of previously introduced anti-viral biomaterials and their optimization to fight against SARS-CoV-2 is the foundation of most of the recent progress. The identification of non-symptomatic patients and symptomatic patients is vital. Reviewing published research highlights the pivotal roles of nanotechnology and biomaterials in the development and efficiency of detection techniques, e.g., by applying nanotechnology and nanomedicine as part of the road map in the treatment of coronavirus disease 2019 (COVID-19) patients. In this review, we discuss efforts to deploy nanotechnology, biomaterials, and stem cells in each step of the fight against SARS-CoV-2, which may provide a framework for future efforts in combating global pandemics.
Collapse
Affiliation(s)
- Maryam Ghaffari
- Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
| | | | - Fathollah Moztarzadeh
- Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
| | - Hasan Uludağ
- Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1 Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3 Canada
| | - John G. Hardy
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Lancaster, LA1 4YB UK
- Materials Science Institute, Lancaster University, Lancaster, LA1 4YB UK
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Present Address: Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
43
|
Mallakpour S, Azadi E, Hussain CM. Fight against COVID-19 pandemic with the help of carbon-based nanomaterials. NEW J CHEM 2021. [DOI: 10.1039/d1nj01333e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have considered the newest momentous outcomes in carbon-based nanomaterials for utility in controlling and fighting the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|
44
|
Singh V, Batoo KM, Singh M. Fabrication of chitosan-coated mixed spinel ferrite integrated with graphene oxide (GO) for magnetic extraction of viral RNA for potential detection of SARS-CoV-2. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2021; 127:960. [PMID: 34866806 PMCID: PMC8627170 DOI: 10.1007/s00339-021-05067-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/04/2021] [Indexed: 05/13/2023]
Abstract
Genetic variants of the COVID-19 causative virus have been arising and circulating globally. In many countries, especially in developing ones with a huge population, vaccination has become one of the major challenges. SARS-CoV-2 variants' fast transmission rate has an upsurge in the COVID cases, leading to more stress on health systems. In the current COVID-19 scenario, there is the requirement of more adequate diagnostic approaches to check the COVID-19 spread. Out of many diagnostic approaches, a magnetic nanoparticle-based reverse transcription polymerase chain reaction could be nontrivial. The use of magnetic nanoparticles is to separate nucleic acid of SARS-CoV-2 from the patient samples and apply for SARS-CoV-2 detection in an easy and more effective way. Herein, the magnetic nanoparticles are synthesized using the solgel autocombustion methods and then successfully coated with biopolymer (chitosan) using ultrasonication. Chitosan-coated nanoparticles are successfully integrated into the graphene oxide sheets to introduce carboxyl groups. Crystallite size calculation, morphological and magnetic studies of synthesized magnetic nanoparticles, and multifunctional magnetic nanoparticles are done using XRD, SEM, TEM, and VSM, respectively. Besides, the potentiality of the fabricated nanocomposites in RNA extraction protocol is also discussed with schematic representation.
Collapse
Affiliation(s)
- Vijay Singh
- Department of Physics, Himachal Pradesh University, Shimla, 171005 India
| | - Khalid Mujasam Batoo
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box-2455, Riyadh, 11451 Saudi Arabia
| | - Mahavir Singh
- Department of Physics, Himachal Pradesh University, Shimla, 171005 India
| |
Collapse
|
45
|
Aydogdu MO, Altun E, Chung E, Ren G, Homer-Vanniasinkam S, Chen B, Edirisinghe M. Surface interactions and viability of coronaviruses. J R Soc Interface 2021; 18:20200798. [PMID: 33402019 PMCID: PMC7879773 DOI: 10.1098/rsif.2020.0798] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
The recently emerged coronavirus pandemic (COVID-19) has become a worldwide threat affecting millions of people, causing respiratory system related problems that can end up with extremely serious consequences. As the infection rate rises significantly and this is followed by a dramatic increase in mortality, the whole world is struggling to accommodate change and is trying to adapt to new conditions. While a significant amount of effort is focused on developing a vaccine in order to make a game-changing anti-COVID-19 breakthrough, novel coronavirus (SARS-CoV-2) is also developing mutations rapidly as it transmits just like any other virus and there is always a substantial chance of the invented antibodies becoming ineffective as a function of time, thus failing to inhibit virus-to-cell binding efficiency as the spiked protein keeps evolving. Hence, controlling the transmission of the virus is crucial. Therefore, this review summarizes the viability of coronaviruses on inanimate surfaces under different conditions while addressing the current state of known chemical disinfectants for deactivation of the coronaviruses. The review attempts to bring together a wide spectrum of surface-virus-cleaning agent interactions to help identify material selection for inanimate surfaces that have frequent human contact and cleaning procedures for effective prevention of COVID-19 transmission.
Collapse
Affiliation(s)
- Mehmet Onur Aydogdu
- Department of Mechanical Engineering, University College London (UCL), Torrington Place, London WC1E 7JE, UK
| | - Esra Altun
- Department of Mechanical Engineering, University College London (UCL), Torrington Place, London WC1E 7JE, UK
| | - Etelka Chung
- Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Guogang Ren
- Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB, UK
| | | | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London (UCL), Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
46
|
Sarikavak-Lisesivdin B, Lisesivdin SB, Ozbay E, Jelezko F. Structural parameters and electronic properties of 2D carbon allotrope: Graphene with a kagome lattice structure. Chem Phys Lett 2020; 760:138006. [PMID: 32958962 PMCID: PMC7494512 DOI: 10.1016/j.cplett.2020.138006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/21/2022]
Abstract
In this paper, the electronic properties of a carbon allotrope, graphene with a kagome lattice structure, are investigated. Spin-polarized density functional theory (DFT) calculations with Grimme dispersion corrections were done. Bond lengths, electronic band structure, and projected density of states were calculated. Electronic band structure calculations show kagome flat-band formation with higher d-orbital contributed bonding behavior than the pristine graphene structure. The structural parameters and electronic band results of this 2D carbon allotrope show wider possible usage in many applications from desalination membranes to possible high-temperature superconductors.
Collapse
Affiliation(s)
- B Sarikavak-Lisesivdin
- Gazi University, Faculty of Science, Department of Physics, 06500, Teknikokullar, Ankara, Turkey
- Institute for Quantum Optics, Ulm University, D-89081, Germany
| | - S B Lisesivdin
- Gazi University, Faculty of Science, Department of Physics, 06500, Teknikokullar, Ankara, Turkey
- Institute for Quantum Optics, Ulm University, D-89081, Germany
| | - E Ozbay
- Nanotechnology Research Center, Bilkent University, Ankara, Turkey
- Department of Physics, Bilkent University, Ankara, Turkey
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| | - F Jelezko
- Institute for Quantum Optics, Ulm University, D-89081, Germany
- Center for Integrated Quantum Science and Technology (IQst), Ulm University, D-89081, Germany
| |
Collapse
|
47
|
Kumar A, Sharma K, Dixit AR. Role of graphene in biosensor and protective textile against viruses. Med Hypotheses 2020; 144:110253. [PMID: 33254558 PMCID: PMC7481315 DOI: 10.1016/j.mehy.2020.110253] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Coronavirus disease (COVID-19) is a recently discovered infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Graphene is an emerging material due to its extraordinary performance in the field of electronics and antimicrobial textiles. Special attention devoted to graphene oxide-based materials due to its surface to volume ratio is very high which make it easy to attach biomolecules by simple adsorption or by crosslinking between reactive groups and the graphene surface. In response to the COVID-19 pandemic, we have summarized the recent developments of graphene and its derivatives with possible virus detection and textile applications. Moreover, graphene strain sensors can be executed on high-performance textiles and high-throughput drug efficacy screening.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India; Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University, Mathura 281406, India.
| | - Kamal Sharma
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University, Mathura 281406, India
| | - Amit Rai Dixit
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|