1
|
Feng L, Huang S, Heo TW, Biener J. Integrated Framework to Model Microstructure Evolution and Decipher the Microstructure-Property Relationship in Polymeric Porous Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38442-38457. [PMID: 39009042 DOI: 10.1021/acsami.4c03011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Unraveling the microstructure-property relationship is crucial for improving material performance and advancing the design of next-generation structural and functional materials. However, this is inherently challenging because it requires both the comprehensive quantification of microstructural features and the accurate assessment of corresponding properties. To meet these requirements, we developed an efficient and comprehensive integrated modeling framework, using polymeric porous materials as a representative model system. Our framework generates microstructures using a physics-based phase-field model, characterizes them using various average and localized microstructural features, and evaluates microstructure-aware properties, such as effective diffusivity, using an efficient Fourier-based perturbation numerical scheme. Additionally, the framework incorporates machine learning methods to decipher the intricate microstructure-property relationships. Our findings indicate that the connectivity of phase channels is the most critical microstructural descriptor for determining effective diffusivity, followed by the domain shape represented by curvature distribution, while the domain size has a minor impact. This comprehensive approach offers a novel framework for assessing microstructure-property relationships in polymer-based porous materials, paving the way for the development of advanced materials for diverse applications.
Collapse
Affiliation(s)
- Longsheng Feng
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Sijia Huang
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Tae Wook Heo
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Juergen Biener
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
2
|
Sharma R, Nath PC, Mohanta YK, Bhunia B, Mishra B, Sharma M, Suri S, Bhaswant M, Nayak PK, Sridhar K. Recent advances in cellulose-based sustainable materials for wastewater treatment: An overview. Int J Biol Macromol 2024; 256:128517. [PMID: 38040157 DOI: 10.1016/j.ijbiomac.2023.128517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Water pollution presents a significant challenge, impacting ecosystems and human health. The necessity for solutions to address water pollution arises from the critical need to preserve and protect the quality of water resources. Effective solutions are crucial to safeguarding ecosystems, human health, and ensuring sustainable access to clean water for current and future generations. Generally, cellulose and its derivatives are considered potential substrates for wastewater treatment. The various cellulose processing methods including acid, alkali, organic & inorganic components treatment, chemical treatment and spinning methods are highlighted. Additionally, we reviewed effective use of the cellulose derivatives (CD), including cellulose nanocrystals (CNCs), cellulose nano-fibrils (CNFs), CNPs, and bacterial nano-cellulose (BNC) on waste water (WW) treatment. The various cellulose processing methods, including spinning, mechanical, chemical, and biological approaches are also highlighted. Additionally, cellulose-based materials, including adsorbents, membranes and hydrogels are critically discussed. The review also highlighted the mechanism of adsorption, kinetics, thermodynamics, and sorption isotherm studies of adsorbents. The review concluded that the cellulose-derived materials are effective substrates for removing heavy metals, dyes, pathogenic microorganisms, and other pollutants from WW. Similarly, cellulose based materials are used for flocculants and water filtration membranes. Cellulose composites are widely used in the separation of oil and water emulsions as well as in removing dyes from wastewater. Cellulose's natural hydrophilicity makes it easier for it to interact with water molecules, making it appropriate for use in water treatment processes. Furthermore, the materials derived from cellulose have wider application in WW treatment due to their inexhaustible sources, low energy consumption, cost-effectiveness, sustainability, and renewable nature.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India
| | - Minaxi Sharma
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Shweta Suri
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980 8579, Japan
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
3
|
Shen Q, Wu T, Zhang GB, Ma HE, Wang W, Pan GX, Zhang YF. Synthesis of magnetic bentonite-gelatin hydrogel beads and their applications in Cu 2+ capturing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125702-125717. [PMID: 38001295 DOI: 10.1007/s11356-023-31112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Heavy metal ions that exist in groundwater and farmland jeopardize the ecological environment and are very difficult to remove because of the complicated actual environment. Raw bentonite-gelatin beads (RB-GT) and magnetic bentonite-gelatin beads (MB-GT) synthesized in this work would be an appropriate tool to solve this problem. Those beads are synthesized by a facile hybrid injection method. Their adsorption behaviors on Cu(II) ions were systematically investigated using the batch adsorption method. The beads were characterized by scan electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption isotherm and adsorption kinetic study showed that the Cu2+ adsorption by MB-GT beads fitted the Langmuir model and the pseudo-second model. The adsorption maximum capacities reached 192.5 mg/g and 236.5 mg/g with Cu concentration of 1000 mg/L for RB-GT and MB-GT beads, respectively. The competitive adsorption with other heavy metal ions (Ni(II), Pd(II) and Cd(II)) were compared. The adsorption of Cu(II) mechanisms is also further discussed.
Collapse
Affiliation(s)
- Qiang Shen
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| | - Tao Wu
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China.
| | - Guo-Bang Zhang
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| | - Hao-En Ma
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| | - Wei Wang
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| | - Guo-Xiang Pan
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| | - Yi-Fan Zhang
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| |
Collapse
|
4
|
Kokol V, Vivod V. Cation-exchange performance of a citric-acid esterified cellulose nanofibrous membrane for highly-selective proteins' permeability and adsorption capacity. Carbohydr Polym 2023; 318:121134. [PMID: 37479444 DOI: 10.1016/j.carbpol.2023.121134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023]
Abstract
The usage of low-cost, readily available, or even disposable, single-use membranes in macromolecules' purification and separation is still in the development phase. In this research, highly porous (>95 %), water- and compression stable cation-exchange membranes were prepared by freeze-casting using cellulose nanofibrils (CNF) and citric acid (CA) acting as a crosslinker and source of weak anionic (carboxylic) surface groups arising from the mono-esterified CA. The membranes were characterized by different analytical techniques, and evaluated for the ionic adsorption efficacy of different proteins in dead-end filtration mode using a Tri-buffer of pH 8. The membrane's internal microstructure (porosity and density) with the available (quantity and access) carboxylic groups was confirmed, to determine not only the proteins' specific (related to the net charged and molecular weight) adsorption dynamic (>52 % of positive Lysozyme/Cytochrome, <8 % of negative BSA/Myoglobin; ≤0.5 g/L) at extremely high flow rates (>3.000 hL/h*MPa*m2), but also their desorption (>97 %) and re-equilibration (using NaCl) with flux recovery (>80 %). Such efficiency was achieved with up to 5 consecutive filtering cycles. The high permeability (>87 %) of the spherical and negatively surface charged microparticles (used as models) also suggests the likelihood of removing larger microbial species, which, while retaining relatively smaller and positively charged proteins, further increases their potential in biopharma applications.
Collapse
Affiliation(s)
- Vanja Kokol
- University of Maribor, Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Vera Vivod
- University of Maribor, Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| |
Collapse
|
5
|
Las-Casas B, Dias IKR, Yupanqui-Mendoza SL, Pereira B, Costa GR, Rojas OJ, Arantes V. The emergence of hybrid cellulose nanomaterials as promising biomaterials. Int J Biol Macromol 2023; 250:126007. [PMID: 37524277 DOI: 10.1016/j.ijbiomac.2023.126007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Cellulose nanomaterials (CNs) are promising green materials due to their unique properties as well as their environmental benefits. Among these materials, cellulose nanofibrils (CNFs) and nanocrystals (CNCs) are the most extensively researched types of CNs. While they share some fundamental properties like low density, biodegradability, biocompatibility, and low toxicity, they also possess unique differentiating characteristics such as morphology, rheology, aspect ratio, crystallinity, mechanical and optical properties. Therefore, numerous comparative studies have been conducted, and recently, various studies have reported the synergetic advantages resulting from combining CNF and CNC. In this review, we initiate by addressing the terminology used to describe combinations of these and other types of CNs, proposing "hybrid cellulose nanomaterials" (HCNs) as the standardized classifictation for these materials. Subsequently, we briefly cover aspects of properties-driven applications and the performance of CNs, from both an individual and comparative perspective. Next, we comprehensively examine the potential of HCN-based materials, highlighting their performance for various applications. In conclusion, HCNs have demonstraded remarkable success in diverse areas, such as food packaging, electronic devices, 3D printing, biomedical and other fields, resulting in materials with superior performance when compared to neat CNF or CNC. Therefore, HCNs exhibit great potential for the development of environmentally friendly materials with enhanced properties.
Collapse
Affiliation(s)
- Bruno Las-Casas
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Isabella K R Dias
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Sergio Luis Yupanqui-Mendoza
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Bárbara Pereira
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Guilherme R Costa
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry, Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada
| | - Valdeir Arantes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil.
| |
Collapse
|
6
|
Raghav N, Vashisth C, Mor N, Arya P, Sharma MR, Kaur R, Bhatti SP, Kennedy JF. Recent advances in cellulose, pectin, carrageenan and alginate-based oral drug delivery systems. Int J Biol Macromol 2023:125357. [PMID: 37327920 DOI: 10.1016/j.ijbiomac.2023.125357] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Polymers-based drug delivery systems constitute one of the highly explored thrust areas in the field of the medicinal and pharmaceutical industries. In the past years, the properties of polymers have been modified in context to their solubility, release kinetics, targeted action site, absorption, and therapeutic efficacy. Despite the availability of diverse synthetic polymers for the bioavailability enhancement of drugs, the use of natural polymers is still highly recommended due to their easy availability, accessibility, and non-toxicity. The aim of the review is to provide the available literature of the last five years on oral drug delivery systems based on four natural polymers i.e., cellulose, pectin, carrageenan, and alginate in a concise and tabulated manner. In this review, most of the information is in tabulated form to provide easy accessibility to the reader. The data related to active pharmaceutical ingredients and supported components in different formulations of the mentioned polymers have been made available.
Collapse
Affiliation(s)
- Neera Raghav
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Chanchal Vashisth
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Nitika Mor
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Priyanka Arya
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Manishita R Sharma
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Ravinder Kaur
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | | | - John F Kennedy
- Chembiotech laboratories Ltd, Tenbury Wells, WR15 8FF, United Kingdom.
| |
Collapse
|
7
|
Li J, Mathew AP. Effect of decoration route on the nanomechanical, adhesive, and force response of nanocelluloses-An in situ force spectroscopy study. PLoS One 2023; 18:e0279919. [PMID: 36595547 PMCID: PMC9810197 DOI: 10.1371/journal.pone.0279919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
Although cellulose derivatives are widely applied in high-tech materials, the relation between their force responses and their surface chemical properties in a biological environment as a function of pH is unknown. Here, interaction forces of surface modified cellulose nanocrystals (CNCs), lignin residual cellulose nanocrystals (LCNCs), and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized cellulose nanofibres (TCNFs) with OSO3-, COO- and lignin chemical groups were measured using in situ peak force quantitative nanomechanical mapping and force spectroscopy in salt solution at two pH values. We found that the forces acting between the tip and CNC or LCNC are steric dominated showing long range and slow decay as a result of their low surface charge density. High Mw lignin contributed to the increased repulsion range for LCNCs compared to CNCs. The repulsion measured for TCNFs at the very short range was electrostatic force dominating showing a steep decay attributed to its high surface charge density. In the case of TCNFs, electrostatic double layer force was also evidenced by the attraction measured at secondary minima. In all the three cases the electro steric interactions are pH dependent. Dissipation maps verified that the force behavior for each material was related to structural conformation restriction of the groups at compression. The slow decayed repulsion of CNCs or LCNCs is related to a weak restriction of conformational change due to small surface groups or high molecular weight bound polymers forming flat layers, whereas the steep repulsion of TCNFs is attributed to a strong conformation restriction of carboxylic groups occurred by forming extended structure. Our results suggest that the force responses of the materials were dominated by surface charges and structural differences. TCNFs showed superior nanomechanical and repulsion properties over CNCs or LCNCs at neutral pH.
Collapse
Affiliation(s)
- Jing Li
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- * E-mail:
| | - Aji P. Mathew
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Fortea-Verdejo M, Jiang Q, Bismarck A, Mautner A. Foaming of oxidized nanocellulose for the preparation of high-flux water filters. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-03014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractTreatment of polluted water is an important task to secure access to clean water also for future generations. Filters are an efficient means to reject various pollutants on a wide range of size scales either by size-exclusion or electrostatic interaction, respectively. Commonly, filters and membranes from various synthetic materials are employed for these applications. Recently, filters based on renewable (nano) cellulose papers and coatings emerged as sustainable alternative to synthetic materials usually utilized. However, fabrication of such paper network structures from aqueous suspension by filtration processes is a time-consuming process caused by the high water holding capacity of highly hydrophilic and negatively charged nanocellulose fibrils. To optimize the preparation of nanocellulose coated filters, substitution of water by air and thus generating nanocellulose foams that are collapsed onto a substrate would be an appealing approach. Here we present the development of foams from negatively charged TEMPO-oxidized nanocellulose by screening various surfactants and concentrations to generate a foam stable enough to be transferred onto a viscose substrate. Foams were collapsed by oven consolidation, positive pressure filtration, or hot-pressing, respectively. Consolidated filters were tested for their water permeance and rejection of heavy metal ions using copper ions as model system. Very high permeances competitive to commercial filters based on synthetic polymers were achieved. Furthermore, adsorption capacities for copper of up to 70 mg/g were found. This is close to adsorption capacities reported for negatively charged TEMPO-oxidized nanocellulose in conventional batch-wise static adsorption. However, in the current process adsorption takes place during filtration of water through filters in a continuous process which constitutes a tremendous advantage.
Graphical Abstract
Collapse
|
9
|
Bai L, Ding A, Li G, Liang H. Application of cellulose nanocrystals in water treatment membranes: A review. CHEMOSPHERE 2022; 308:136426. [PMID: 36113655 DOI: 10.1016/j.chemosphere.2022.136426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Nanomaterials have brought great changes to human society, and development has gradually shifted the focus to environmentally friendly applications. Cellulose nanocrystals (CNCs) are new one-dimensional nanomaterials that exhibit environmental friendliness and ensure the biological safety of water environment. CNCs have excellent physical and chemical properties, such as simple preparation process, nanoscale size, high specific surface area, high mechanical strength, good biocompatibility, high hydrophilicity and antifouling ability. Because of these characteristics, CNCs are widely used in ultrafiltration membranes, nanofiltration membranes and reverse osmosis membranes to solve the problems hindering development of membrane technology, such as insufficient interception and separation efficiency, low mechanical strength and poor antifouling performance. This review summarizes recent developments and uses of CNCs in water treatment membranes and discusses the challenges and development prospects of CNCs materials from the perspectives of ecological safety and human health by comparing them with traditional one-dimensional nanomaterials.
Collapse
Affiliation(s)
- Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Aiming Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
10
|
Zuo Q, Shi H, Liu C, Peng M, Zhuang X, Geng Z, He S, Sheng X, Shao P, Yang L, Luo X. Integrated adsorptive/reductive PEDOT:PSS-based composite membranes for efficient Ag(I) rejection. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Li R, Liang F, Hu X, Bian H, Deng C, Seidi F, Zhang B, Xiao H, Liu Y. A versatile cellulose nanocrystal‑carbon dots architecture: Preparation and environmental/biological applications. Carbohydr Polym 2022; 298:120073. [DOI: 10.1016/j.carbpol.2022.120073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 12/31/2022]
|
12
|
Aoudi B, Boluk Y, Gamal El-Din M. Recent advances and future perspective on nanocellulose-based materials in diverse water treatment applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156903. [PMID: 35753453 DOI: 10.1016/j.scitotenv.2022.156903] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Over the past few years, nanocellulose and its derivatives have drawn attention as promising bio-based materials for water treatment applications due to their high surface area, high strength, and renewable, biocompatible nature. The abundance of hydroxyl functional groups on the surfaces of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) enables a broad range of surface modifications which results in propitious nanocomposites with tunable characteristics. In this context, this review describes the continuously developing applications of nanocellulose-based materials in the areas of adsorption, catalysis, filtration, and flocculation, with a special emphasis on the removal of contaminants such as heavy metals, dyes, and pharmaceutical compounds from diverse water systems. Recent progresses in the diverse forms of application of nanocellulose adsorbents (suspension, hydrogel, aerogel, and membrane) are also highlighted. Finally, challenges and future perspectives on emerging nanocellulose-based materials and their possible industrial applications are presented and discussed.
Collapse
Affiliation(s)
- Bouthaina Aoudi
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Yaman Boluk
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
13
|
Zhang S, Vanessa C, Khan A, Ali N, Malik S, Shah S, Bilal M, Yang Y, Akhter MS, Iqbal HMN. Prospecting cellulose fibre-reinforced composite membranes for sustainable remediation and mitigation of emerging contaminants. CHEMOSPHERE 2022; 305:135291. [PMID: 35760128 DOI: 10.1016/j.chemosphere.2022.135291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Many environmental pollutants caused by uncontrolled urbanization and rapid industrial growth have provoked serious concerns worldwide. These pollutants, including toxic metals, dyes, pharmaceuticals, pesticides, volatile organic compounds, and petroleum hydrocarbons, unenviably compromise the water quality and manifest a severe menace to aquatic entities and human beings. Therefore, it is of utmost importance to acquaint bio-nanocomposites with the capability to remove and decontaminate this extensive range of emerging pollutants. Recently, considerable emphasis has been devoted to developing low-cost novel materials obtained from natural resources accompanied by minimal toxicity to the environment. One such component is cellulose, naturally the most abundant organic polymer found in nature. Given bio-renewable sources, natural abundance, and impressive nanofibril arrangement, cellulose-reinforced composites are widely engineered and utilized for multiple applications, such as wastewater decontamination, energy storage devices, drug delivery systems, paper and pulp industries, construction industries, and adhesives, etc. Environmental remediation prospective is among the fascinating application of these cellulose-reinforced composites. This review discusses the structural attributes of cellulose, types of cellulose fibrils-based nano-biocomposites, preparatory techniques, and the potential of cellulose-based composites to remediate a diverse array of organic and inorganic pollutants in wastewater.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - ChansaKayeye Vanessa
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Sumaira Shah
- Department of Botany, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Yong Yang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico.
| |
Collapse
|
14
|
Kian LK, Jawaid M, Mahmoud MH, Saba N, Fouad H, Alothman OY, Vaseashta A. Characterization and fabrication of poly(butylene adipate‐co‐terephthalate)/nanocrystalline cellulose composite membranes for heavy metal ion separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.53136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lau Kia Kian
- Laboratory of Biocomposite Technology Institute of Tropical Forestry and Forestry Products (INTROP) Universiti Putra Malaysia 43400 UPM Serdang, Selangor Malaysia
| | - Mohammad Jawaid
- Laboratory of Biocomposite Technology Institute of Tropical Forestry and Forestry Products (INTROP) Universiti Putra Malaysia 43400 UPM Serdang, Selangor Malaysia
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Naheed Saba
- Laboratory of Biocomposite Technology Institute of Tropical Forestry and Forestry Products (INTROP) Universiti Putra Malaysia 43400 UPM Serdang, Selangor Malaysia
| | - Hassan Fouad
- Biomedical Engineering Department, Faculty of Engineering Helwan University Helwan Egypt
| | - Othman Y. Alothman
- Chemical Engineering Department, College of Engineering King Saud University Riyadh Saudi Arabia
| | - Ashok Vaseashta
- Office of Applied Research International Clean Water Institute Manassas Virginia USA
| |
Collapse
|
15
|
Chen K, Qin F, Fang Z, Li G, Zhou J, Qiu X. Mechanically stable core-shell cellulose nanofibril/sodium alginate hydrogel beads with superior cu(II) removal capacity. Int J Biol Macromol 2022; 222:1353-1363. [PMID: 36150570 DOI: 10.1016/j.ijbiomac.2022.09.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/10/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
Abstract
Nanocellulose hydrogels are promising sustainable biosorbents for removing heavy metal ions for wastewater treatment. However, the nanocellulose hydrogels reported thus far typically suffer from inferior adsorption performance and/or poor mechanical stability, thus limiting their industrial applications. Achieving the goals of mechanical stability and high removal capability remains a crucial technical challenge, which may be addressed, as presented in this study, by developing novel core-shell carboxymethylated cellulose nanofibril (CMCNF)/sodium alginate (SA) hydrogel beads (CAbs). By immobilizing CMCNFs (shell) on the surface of the SA hydrogel bead (core) via electrostatic attractions and hydrogen bonding, a mechanically stable hydrogel bead with a core-shell configuration was constructed, which shows a Cu(II) removal capacity of up to 221 mg/g that exceeds that of CMCNFs and most other nanocellulose structural adsorbents. Furthermore, both the formation principle of the core-shell structure and the Cu(II) removal mechanism were explored in detail. Finally, we demonstrated a potential application of core-shell CAbs to treat drinking water with a low concentration of Cu(II) using a homemade column adsorption device. This work brings sustainable nanocellulose adsorbents a step closer to industrial applications for Cu(II) wastewater treatment.
Collapse
Affiliation(s)
- Kaihuang Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Famei Qin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China.
| | - Guanhui Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Jie Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road 100, Guangzhou 510006, China.
| |
Collapse
|
16
|
Zhang W, Che X, Pei D, Zhang X, Chen Y, Li M, Li C. Biofibrous nanomaterials for extracting strategic metal ions from water. EXPLORATION (BEIJING, CHINA) 2022; 2:20220050. [PMID: 37325606 PMCID: PMC10191039 DOI: 10.1002/exp.20220050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 06/17/2023]
Abstract
Strategic metals play an indispensable role in the related industries. Their extraction and recovery from water are of great significance due to both their rapid consumption and environmental concern. Biofibrous nanomaterials have shown great advantages in capturing metal ions from water. Recent progress in extraction of typical strategic metal ions such as noble metal ions, nuclear metal ions, and Li-battery related metal ions is reviewed here using typical biological nanofibrils like cellulose nanofibrils, chitin nanofibrils, and protein nanofibrils, as well as their assembly forms like fibers, aerogels/hydrogels, and membranes. An overview of advances in material design and preparation, extraction mechanism, dynamics/thermodynamics, and performance improvement in the last decade is provided. And at last, we propose the current challenges and future perspectives for promoting biological nanofibrous materials toward extracting strategic metal ions in practical conditions of natural seawater, brine, and wastewater.
Collapse
Affiliation(s)
- Weihua Zhang
- Group of Biomimetic Smart MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences & Shandong Energy InstituteQingdaoChina
| | - Xinpeng Che
- Group of Biomimetic Smart MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences & Shandong Energy InstituteQingdaoChina
- Center of Material and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Danfeng Pei
- Group of Biomimetic Smart MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences & Shandong Energy InstituteQingdaoChina
| | - Xiaofang Zhang
- Group of Biomimetic Smart MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences & Shandong Energy InstituteQingdaoChina
| | - Yijun Chen
- Group of Biomimetic Smart MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences & Shandong Energy InstituteQingdaoChina
| | - Mingjie Li
- Group of Biomimetic Smart MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences & Shandong Energy InstituteQingdaoChina
- Center of Material and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Chaoxu Li
- Group of Biomimetic Smart MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences & Shandong Energy InstituteQingdaoChina
- Center of Material and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
17
|
Wang Q, Liu S, Liu J, Sun J, Zhang Z, Zhu Q. Sustainable cellulose nanomaterials for environmental remediation - Achieving clean air, water, and energy: A review. Carbohydr Polym 2022; 285:119251. [DOI: 10.1016/j.carbpol.2022.119251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/09/2023]
|
18
|
Upscaled engineered functional microfibrillated cellulose flat sheet membranes for removing charged water pollutants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Varghese RT, Cherian RM, Antony T, Tharayil A, Das H, Kargarzadeh H, Chirayil CJ, Thomas S. A REVIEW ON THE APT BIOADSORBENT MEMBRANE- NANOCELLULOSE FOR EFFECTIVE REMOVAL OF POLLUTANTS FROM AQUEOUS SOLUTIONS. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Cherian RM, Tharayil A, Varghese RT, Antony T, Kargarzadeh H, Chirayil CJ, Thomas S. A review on the emerging applications of nano-cellulose as advanced coatings. Carbohydr Polym 2022; 282:119123. [DOI: 10.1016/j.carbpol.2022.119123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/26/2022]
|
21
|
Das R, Lindström T, Sharma PR, Chi K, Hsiao BS. Nanocellulose for Sustainable Water Purification. Chem Rev 2022; 122:8936-9031. [PMID: 35330990 DOI: 10.1021/acs.chemrev.1c00683] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanocelluloses (NC) are nature-based sustainable biomaterials, which not only possess cellulosic properties but also have the important hallmarks of nanomaterials, such as large surface area, versatile reactive sites or functionalities, and scaffolding stability to host inorganic nanoparticles. This class of nanomaterials offers new opportunities for a broad spectrum of applications for clean water production that were once thought impractical. This Review covers substantial discussions based on evaluative judgments of the recent literature and technical advancements in the fields of coagulation/flocculation, adsorption, photocatalysis, and membrane filtration for water decontamination through proper understanding of fundamental knowledge of NC, such as purity, crystallinity, surface chemistry and charge, suspension rheology, morphology, mechanical properties, and film stability. To supplement these, discussions on low-cost and scalable NC extraction, new characterizations including solution small-angle X-ray scattering evaluation, and structure-property relationships of NC are also reviewed. Identifying knowledge gaps and drawing perspectives could generate guidance to overcome uncertainties associated with the adaptation of NC-enabled water purification technologies. Furthermore, the topics of simultaneous removal of multipollutants disposal and proper handling of post/spent NC are discussed. We believe NC-enabled remediation nanomaterials can be integrated into a broad range of water treatments, greatly improving the cost-effectiveness and sustainability of water purification.
Collapse
Affiliation(s)
- Rasel Das
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tom Lindström
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Priyanka R Sharma
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Kai Chi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
22
|
Sadare OO, Yoro KO, Moothi K, Daramola MO. Lignocellulosic Biomass-Derived Nanocellulose Crystals as Fillers in Membranes for Water and Wastewater Treatment: A Review. MEMBRANES 2022; 12:320. [PMID: 35323795 PMCID: PMC8951035 DOI: 10.3390/membranes12030320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022]
Abstract
The improvement of membrane applications for wastewater treatment has been a focal point of research in recent times, with a wide variety of efforts being made to enhance the performance, integrity and environmental friendliness of the existing membrane materials. Cellulose nanocrystals (CNCs) are sustainable nanomaterials derived from microorganisms and plants with promising potential in wastewater treatment. Cellulose nanomaterials offer a satisfactory alternative to other environmentally harmful nanomaterials. However, only a few review articles on this important field are available in the open literature, especially in membrane applications for wastewater treatment. This review briefly highlights the circular economy of waste lignocellulosic biomass and the isolation of CNCs from waste lignocellulosic biomass for membrane applications. The surface chemical functionalization technique for the preparation of CNC-based materials with the desired functional groups and properties is outlined. Recent uses of CNC-based materials in membrane applications for wastewater treatment are presented. In addition, the assessment of the environmental impacts of CNCs, cellulose extraction, the production techniques of cellulose products, cellulose product utilization, and their end-of-life disposal are briefly discussed. Furthermore, the challenges and prospects for the development of CNC from waste biomass for application in wastewater treatment are discussed extensively. Finally, this review unraveled some important perceptions on the prospects of CNC-based materials, especially in membrane applications for the treatment of wastewater.
Collapse
Affiliation(s)
- Olawumi O. Sadare
- Department of Chemical Engineering, Faculty of Engineering the Built Environment, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa;
| | - Kelvin O. Yoro
- Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA;
| | - Kapil Moothi
- Department of Chemical Engineering, Faculty of Engineering the Built Environment, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa;
| | - Michael O. Daramola
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria 0028, South Africa;
| |
Collapse
|
23
|
A Comprehensive Review of the Development of Carbohydrate Macromolecules and Copper Oxide Nanocomposite Films in Food Nanopackaging. Bioinorg Chem Appl 2022; 2022:7557825. [PMID: 35287316 PMCID: PMC8917952 DOI: 10.1155/2022/7557825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 02/08/2023] Open
Abstract
Background. Food nanopackaging helps maintain food quality against physical, chemical, and storage instability factors. Copper oxide nanoparticles (CuONPs) can improve biopolymers’ mechanical features and barrier properties. This will lead to antimicrobial and antioxidant activities in food packaging to extend the shelf life. Scope and Approach. Edible coatings based on carbohydrate biopolymers have improved the quality of packaging. Several studies have addressed the role of carbohydrate biopolymers and incorporated nanoparticles to enhance food packets’ quality as active nanopackaging. Combined with nanoparticles, these biopolymers create film coatings with an excellent barrier property against transmissions of gases such as O2 and CO2. Key Findings and Conclusions. This review describes the CuO-biopolymer composites, including chitosan, agar, cellulose, carboxymethylcellulose, cellulose nanowhiskers, carrageenan, alginate, starch, and polylactic acid, as food packaging films. Here, we reviewed different fabrication techniques of CuO biocomposites and the impact of CuONPs on the physical, mechanical, barrier, thermal stability, antioxidant, and antimicrobial properties of carbohydrate-based films.
Collapse
|
24
|
Ji YL, Yin MJ, An QF, Gao CJ. Recent developments in polymeric nano-based separation membranes. FUNDAMENTAL RESEARCH 2022; 2:254-267. [PMID: 38933154 PMCID: PMC11197816 DOI: 10.1016/j.fmre.2021.11.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022] Open
Abstract
Polymeric nanomaterials, which have tuneable chemical structures, versatile functionalities, and good compatibility with polymeric matrices, have attracted increasing interest from researchers for the construction of polymeric nano-based separation membranes. With their distinctive nanofeatures, polymeric nano-based membranes show great promise in overcoming bottlenecks in polymer membranes, namely, the trade-off between permeability and selectivity, low stability, and fouling issues. Accordingly, recent studies have focused on tuning the structures and tailoring the surface properties of polymeric nano-based membranes via exploitation of membrane fabrication techniques and surface modification strategies, with the objective of pushing the performance of polymeric nano-based membranes to a new level. In this review, first, the approaches for fabricating polymeric nano-based mixed matrix membranes and homogeneous membranes are summarized, such as surface coating, phase inversion, interfacial polymerization, and self-assembly methods. Next, the manipulation strategies of membrane surface properties, namely, the hydrophilicity/hydrophobicity, charge characteristics, and surface roughness, and interior microstructural properties, namely, the pore size and content, channel construction and regulation, are comprehensively discussed. Subsequently, the separation performances of liquid ions/molecules and gas molecules through polymeric nano-based membranes are systematically reported. Finally, we conclude this review with an overview of various unsolved scientific and technical challenges that are associated with new opportunities in the development of advanced polymeric nano-based membranes.
Collapse
Affiliation(s)
- Yan-Li Ji
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ming-Jie Yin
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Cong-Jie Gao
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
25
|
Pöhler T, Mautner A, Aguilar-Sanchez A, Hansmann B, Kunnari V, Grönroos A, Rissanen V, Siqueira G, Mathew AP, Tammelin T. Pilot-scale modification of polyethersulfone membrane with a size and charge selective nanocellulose layer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Asad M, Asiri AM, Azum N, Monti S, Karim Z. Chemo-enzymatic functionalized sustainable cellulosic membranes: Impact of regional selectivity on ions capture and antifouling behavior. Carbohydr Polym 2022; 278:118937. [PMID: 34973755 DOI: 10.1016/j.carbpol.2021.118937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
Most of the polymeric membranes synthesized for decentralization of polluted water use fossil-based components. Thus, there is an urgent need to create robust and tunable nano/micro materials for confidently designing efficient and selective polymeric water filters with guaranteed sustainability. We have chosen a robust high-grade microfibrillated cellulose (MFC) as the functional material and selectively tuned it via enzymatic catalysis, which led to the attachment of phosphate group at the C6 position, followed by esterification (fatty acid attachment at C2 and C3 carbon), which led to the increase in its antifouling properties. We have demonstrated the robustness of the functionalization by measuring the separation of various metal ions, and the antifouling properties by adding foulants, such as Bovine Serum Albumin (BSA) and cancerous cells to the test solutions. These prototype affinity MFC membranes represent the most promising type of next-generation high-performance filtration devices for a more sustainable society.
Collapse
Affiliation(s)
- Mohammad Asad
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Centre of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Naved Azum
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Susanna Monti
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - Zoheb Karim
- MoRe Research Örnsköldsvik AB, SE-891 22 Örnsköldsvik, Sweden; Institute of Architecture and Civil Engineering, South Ural State University, Chelyabinsk 454080, Russia.
| |
Collapse
|
27
|
Hosseini H, Pirahmadi P, Shakeri SE, Khoshbakhti E, Sharafkhani S, Fakhri V, Saeidi A, McClements DJ, Chen WH, Su CH, Goodarzi V. A novel environmentally friendly nanocomposite aerogel based on the semi-interpenetrating network of polyacrylic acid into Xanthan gum containing hydroxyapatite for efficient removal of methylene blue from wastewater. Int J Biol Macromol 2022; 201:133-142. [PMID: 34998876 DOI: 10.1016/j.ijbiomac.2021.12.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 11/05/2022]
Abstract
Eco-friendly nanocomposite aerogels were prepared as adsorbents for the removal of a model pollutant (methylene blue, MB) from water. These aerogels were comprised of hydroxyapatite (HA) nanoparticles embedded within a polymer matrix consisting of a semi-interpenetrating network of xanthan gum (XG) and polyacrylic acid (PAA). Microscopy and BET analysis showed that the aerogels formed had a nanofibrous porous microstructure with a surface area of 89 m2/g. Rheological analysis showed that the aerogels were viscoelastic materials whose elasticity increased with increasing HA concentration (up to 5 w/w%). The aerogels were effective at removing MB from water, exhibiting an adsorption capacity of 130 mg/g after 200 min. The binding of the MB to the aerogels was mainly attributed to hydrogen bonding and electrostatic attraction. A reusability test showed that the MB removal efficiency of over 86% was preserved after 10 cycles of adsorption-desorption. These results suggest that our nanocomposite aerogels may be useful for the efficient removal of anionic pollutants from wastewater and water supplies due to their ease of synthesis, cost-effectiveness, good mechanical properties, high thermal stability, and good adsorption performance.
Collapse
Affiliation(s)
- Hadi Hosseini
- Faculty of Engineering & Technology, University of Mazandaran, Babolsar, Iran
| | - Pegah Pirahmadi
- Polymer Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran
| | - Seyed Emadodin Shakeri
- Department of Engineering, Iran Polymer and Petrochemical Institute (IPPI), PO Box 14965/115, Tehran, Iran
| | - Ehsan Khoshbakhti
- Polymer Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran
| | - Sobhan Sharafkhani
- Department of Chemical Engineering, Jundi-Shapur University of Technology, Dezful, Iran
| | - Vafa Fakhri
- Department of Polymer Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Ardeshir Saeidi
- Department of Polymer Engineering, Islamic Azad University Tehran Science and Research Branch, Tehran, Iran
| | | | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19945-546, Tehran, Iran.
| |
Collapse
|
28
|
Poly(lactic acid)/poly(butylene succinate) dual-layer membranes with cellulose nanowhisker for heavy metal ion separation. Int J Biol Macromol 2021; 192:654-664. [PMID: 34655581 DOI: 10.1016/j.ijbiomac.2021.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022]
Abstract
In this study, poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) dual-layer membranes filled with 0-3 wt% cellulose nanowhisker (CNWs) were fabricated with aim to remove metal ions from wastewater. An integrated method was employed in the membrane fabrication process by combining water vapor-induced and crystallization-induced phase inversions. The membrane thickness was measured in between 11 and 13 μm, which did not pose significant flux deviation during filtration process. The 3% CNW filled membrane showed prominent and well-laminated two layers structure. Meanwhile, the increase in CNWs from 0 to 3% loadings could improve the membrane porosity (43-74%) but reducing pore size (2.45-0.54 μm). The heat resistance of neat membrane enhanced by 1% CNW but decreased with loadings of 2-3% CNWs due to flaming behavior of sulphated nanocellulose. Membrane with 3% CNW displayed the tensile strength (23.5 MPa), elongation at break (7.1%), and Young's modulus (0.75 GPa) as compared to other samples. For wastewater filtration performance, the continuous operation test showed that 3% CNW filled membrane exhibited the highest removal efficiency for both cobalt and nickel metal ions reaching to 83% and 84%, respectively. We concluded that CNWs filled dual-layer membranes have potential for future development in the removal of heavy metal ions from wastewater streams.
Collapse
|
29
|
Yang F, Yang P. Biopolymer-Based Membrane Adsorber for Removing Contaminants from Aqueous Solution: Progress and Prospects. Macromol Rapid Commun 2021; 43:e2100669. [PMID: 34816531 DOI: 10.1002/marc.202100669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Indexed: 12/21/2022]
Abstract
The demand for energy-efficient water treatment as well as the limitation in adsorption of existing membranes has motivated the pursuit of membranes that can break the selectivity-permeability trade-off and provide high selective adsorption for chemicals of interest. The membrane adsorbers have received a lot of attention for removing contaminants from aqueous solution due to combine both advantages of adsorption and membrane separation. Membrane adsorbers constructed by biopolymer with many functional groups are widely used in water purification, because the biopolymers are easily available from biomass materials in nature, degradable, and low-cost. This paper summarizes the characteristics and important development direction of these types of biomass-based membrane adsorption materials to adsorb organic/inorganic contaminants of water and analyzes the preparation methods of natural biomacromolecule cellulose, chitosan, sodium alginate, and protein to construct the membrane adsorption materials, as well as the application of pollutant removal from aqueous solutions. According to the current problems and shortcomings in the research of biopolymer-based membrane adsorbers, it is proposed to improve the understanding of the adsorption mechanism of biopolymer-based membrane adsorbers and accelerate the development of practical applications as the focus of future research.
Collapse
Affiliation(s)
- Facui Yang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
30
|
Salama A, Abouzeid R, Leong WS, Jeevanandam J, Samyn P, Dufresne A, Bechelany M, Barhoum A. Nanocellulose-Based Materials for Water Treatment: Adsorption, Photocatalytic Degradation, Disinfection, Antifouling, and Nanofiltration. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3008. [PMID: 34835769 PMCID: PMC8620168 DOI: 10.3390/nano11113008] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Nanocelluloses are promising bio-nano-materials for use as water treatment materials in environmental protection and remediation. Over the past decades, they have been integrated via novel nanoengineering approaches for water treatment processes. This review aims at giving an overview of nanocellulose requirements concerning emerging nanotechnologies of waster treatments and purification, i.e., adsorption, absorption, flocculation, photocatalytic degradation, disinfection, antifouling, ultrafiltration, nanofiltration, and reverse osmosis. Firstly, the nanocellulose synthesis methods (mechanical, physical, chemical, and biological), unique properties (sizes, geometries, and surface chemistry) were presented and their use for capturing and removal of wastewater pollutants was explained. Secondly, different chemical modification approaches surface functionalization (with functional groups, polymers, and nanoparticles) for enhancing the surface chemistry of the nanocellulose for enabling the effective removal of specific pollutants (suspended particles, microorganisms, hazardous metals ions, organic dyes, drugs, pesticides fertilizers, and oils) were highlighted. Thirdly, new fabrication approaches (solution casting, thermal treatment, electrospinning, 3D printing) that integrated nanocelluloses (spherical nanoparticles, nanowhiskers, nanofibers) to produce water treatment materials (individual composite nanoparticles, hydrogels, aerogels, sponges, membranes, and nanopapers) were covered. Finally, the major challenges and future perspectives concerning the applications of nanocellulose based materials in water treatment and purification were highlighted.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (A.S.); (R.A.)
| | - Ragab Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (A.S.); (R.A.)
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France;
| | - Wei Sun Leong
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore;
| | - Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Pieter Samyn
- Institute for Materials Research (MO-IMOMEC), Applied and Analytical Chemistry, University of Hasselt, B-3590 Diepenbeek, Belgium;
| | - Alain Dufresne
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Helwan 11795, Egypt
- School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland
| |
Collapse
|
31
|
Huang Y, Yang P, Yang F, Chang C. Self-supported nanoporous lysozyme/nanocellulose membranes for multifunctional wastewater purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119537] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Qian H. Major Factors Influencing the Size Distribution Analysis of Cellulose Nanocrystals Imaged in Transmission Electron Microscopy. Polymers (Basel) 2021; 13:3318. [PMID: 34641134 PMCID: PMC8513063 DOI: 10.3390/polym13193318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022] Open
Abstract
Size distributions of cellulose nanocrystals (CNCs), extracted from softwood pulp via strong sulfuric acid hydrolysis, exhibit large variability when analyzed from transmission electron microscopy (TEM) images. In this article, the causes of this variability are studied and discussed. In order to obtain results comparable with those reported, a reference material of CNCs (CNCD-1) was used to evaluate size distribution. CNC TEM specimens were prepared as-stained and dried with a rapid-flushing staining method or hydrated and embedded in vitreous ice with the plunge-freezing method. Several sets of bright-field TEM (BF-TEM), annular dark-field scanning TEM (ADF-STEM) and cryogenic-TEM (cryo-TEM) images were acquired for size distribution analysis to study the contributing factors. The rapid-flushing staining method was found to be the most effective for contrast enhancement of CNCs, not only revealing the helical structure of single CNCs but also resolving the laterally jointed CNCs. During TEM specimen preparation, CNCs were fractionated on TEM grids driven by the coffee-ring effect, as observed from contrast variation of CNCs with a stain-depth gradient. From the edge to the center of the TEM grids, the width of CNCs increases, while the aspect ratio (length to width) decreases. This fractionated dispersion of CNCs suggests that images taken near the center of a droplet would give a larger mean width. In addition to particle fractionation driven by the coffee-ring effect, the arrangement and orientation of CNC particles on the substrate significantly affect the size measurement when CNC aggregation cannot be resolved in images. The coexistence of asymmetric cross-section CNC particles introduces a large variation in size measurement, as TEM images of CNCs are mixed projections of the width and height of particles. As a demonstration of how this contributes to inflated size measurement, twisted CNC particles, rectangular cross-section particles and end-to-end jointed CNCs were revealed in reconstructed three-dimensional (3D) micrographs by electron tomography (ET).
Collapse
Affiliation(s)
- Hui Qian
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| |
Collapse
|
33
|
Sethi J, Liimatainen H, Sirviö JA. Fast and Filtration-Free Method to Prepare Lactic Acid-Modified Cellulose Nanopaper. ACS OMEGA 2021; 6:19038-19044. [PMID: 34337242 PMCID: PMC8320081 DOI: 10.1021/acsomega.1c02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/01/2021] [Indexed: 05/07/2023]
Abstract
Dewatering in the preparation of cellulose nanopapers can take up to a few hours, which is a notable bottleneck in the commercialization of nanopapers. As a solution, we report a filtration-free method that is capable of preparing lactic acid-modified cellulose nanopapers within a few minutes. The bleached cellulose nanofibers (CNFs), obtained using a Masuko grinder, were functionalized by sonication-assisted lactic acid modification and centrifuged at 14 000 rpm to achieve a doughlike, concentrated mass. The concentrated CNFs were rolled into a wet sheet and dried in a vacuum drier to obtain nanopapers. The nanopaper preparation time was 10 min, which is significantly faster than the earlier time period reported in the literature (up to a few hours of preparation time). The mechanical properties of nanopaper were comparable to the previous values reported for nanopapers. In addition, the method was successfully used to prepare highly conductive functional nanopapers containing carboxylated multiwalled carbon nanotubes.
Collapse
Affiliation(s)
- Jatin Sethi
- Fibre
and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
- Fibre
Technology Division, KTH Royal Institute
of Technology, Teknikringen
58, SE-100 44 Stockholm, Sweden
| | - Henrikki Liimatainen
- Fibre
and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| | - Juho Antti Sirviö
- Fibre
and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| |
Collapse
|
34
|
Chen X, Zhu X, He S, Hu L, Ren ZJ. Advanced Nanowood Materials for the Water-Energy Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001240. [PMID: 32725940 DOI: 10.1002/adma.202001240] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/25/2020] [Indexed: 05/16/2023]
Abstract
Wood materials are being reinvented to carry superior properties for a variety of new applications. Cutting-edge nanomanufacturing transforms traditional bulky and low-value woods into advanced materials that have desired structures, durability, and functions to replace nonrenewable plastics, polymers, and metals. Here, a first prospect report on how novel nanowood materials have been developed and applied in water and associated industries is provided, wherein their unique features and promises are discussed. First, the unique hierarchical structure and associated properties of the material are introduced, and then how such features can be harnessed and modified by either bottom-up or top-down manufacturing to enable different functions for water filtration, chemical adsorption and catalysis, energy and resource recovery, as well as energy-efficient desalination and environmental cleanup are discussed. The study recognizes that this is a nascent but very promising field; therefore, insights are offered to encourage more research and development. Trees harness solar energy and CO2 and provide abundant carbon-negative materials. Once harvested and utilized, it is believed that advanced wood materials will play a vital role in enabling a circular water economy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
| | - Xiaobo Zhu
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
| | - Shuaiming He
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
35
|
Georgouvelas D, Abdelhamid HN, Li J, Edlund U, Mathew AP. All-cellulose functional membranes for water treatment: Adsorption of metal ions and catalytic decolorization of dyes. Carbohydr Polym 2021; 264:118044. [PMID: 33910746 DOI: 10.1016/j.carbpol.2021.118044] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/24/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
In this study, we present a facile, one-step method for the manufacturing of all-cellulose, layered membranes containing cellulose nanocrystals (CNC), TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidized cellulose nanofibers (TO-CNF), or zwitterionic polymer grafted cellulose nanocrystals (CNC-g-PCysMA) as functional entities in combination with cellulose fibers and commercial grade microfibrillated cellulose. The presence of active sites such as hydroxyl, carbonyl, thioethers, and amines, gave the membranes high adsorption capacities for the metal ions Au (III), Co (II), and Fe (III), as well as the cationic organic dye methylene blue (MB). Furthermore, the membranes served as excellent metal-free catalysts for the decolorization of dyes via hydrogenation. A 3-fold increase of the hydrogenation efficiency for cationic dyes such as rhodamine B (RhB) and methylene blue was obtained in the presence of membranes compared to NaBH4 alone. Water-based processing, the abundance of the component materials, and the multifunctional characteristics of the membranes ensure their potential as excellent candidates for water purification systems.
Collapse
Affiliation(s)
- Dimitrios Georgouvelas
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden
| | - Hani Nasser Abdelhamid
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden; Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Jing Li
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden
| | - Ulrica Edlund
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, SE-10044, Sweden.
| | - Aji P Mathew
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden.
| |
Collapse
|
36
|
Recent Advances in the Synthesis of Nanocellulose Functionalized–Hybrid Membranes and Application in Water Quality Improvement. Processes (Basel) 2021. [DOI: 10.3390/pr9040611] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The increasing discharge of voluminous non or partially treated wastewaters characterized by complex contaminants poses significant ecological and health risks. Particularly, this practice impacts negatively on socio-economic, technological, industrial, and agricultural development. Therefore, effective control of water pollution is imperative. Over the past decade, membrane filtration has been established as an effective and commercially attractive technology for the separation and purification of water. The performance of membrane-based technologies relies on the intrinsic properties of the membrane barrier itself. As a result, the development of innovative techniques for the preparation of highly efficient membranes has received remarkable attention. Moreover, growing concerns related to cost-effective and greener technologies have induced the need for eco-friendly, renewable, biodegradable, and sustainable source materials for membrane fabrication. Recently, advances in nanotechnology have led to the development of new high-tech nanomaterials from natural polymers (e.g., cellulose) for the preparation of environmentally benign nanocomposite membranes. The synthesis of nanocomposite membranes using nanocelluloses (NCs) has become a prominent research field. This is attributed to the exceptional characteristics of these nanomaterials (NMs) namely; excellent and tuneable surface chemistry, high mechanical strength, low-cost, biodegradability, biocompatibility, and renewability. For this purpose, the current paper opens with a comprehensive yet concise description of the various types of NCs and their most broadly utilized production techniques. This is closely followed by a critical review of how NC substrates and their surface-modified versions affect the performance of the fabricated NC-based membranes in various filtration processes. Finally, the most recent processing technologies for the preparation of functionalized NCs-based composite membranes are discussed in detail and their hybrid characteristics relevant to membrane filtration processes are highlighted.
Collapse
|
37
|
Liu S, Cui S, Guo H, Wang Y, Zheng Y. Adsorption of Lead Ion from Wastewater Using Non-Crystal Hydrated Calcium Silicate Gel. MATERIALS (BASEL, SWITZERLAND) 2021; 14:842. [PMID: 33578734 PMCID: PMC7916452 DOI: 10.3390/ma14040842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022]
Abstract
In order to obtain low-cost and excellent adsorption materials, this paper used calcium acetate and water glass as raw materials to synthesis hydrated calcium silicate gel by precipitation method. The performance and structure of hydrated calcium silicate gel were systematically studied by X-ray photoelectron spectroscopy, fourier transform infrared spectroscopy, specific surface area analyzer and scanning electron microscope. Studies have shown that, non-crystal hydrated calcium silicate gel (CSH) were successfully prepared, and the removal rate of lead ion using CSH reached more than 90%. The adsorption process is consistent with the pseudo-second-order kinetic model and Langmuir adsorption isotherm model, and the limit adsorption capacity reaches 263.17 mg·g-1. The acid treatment experiment proved that the adsorption capacity of lead ion using CSH was satisfactory, and the adsorption rate remained at >60% after 5 cycles. The research may provide a low-cost, high-efficiency and high stability adsorbent.
Collapse
Affiliation(s)
| | - Suping Cui
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China; (S.L.); (H.G.); (Y.W.); (Y.Z.)
| | | | | | | |
Collapse
|
38
|
Aguilar-Sanchez A, Jalvo B, Mautner A, Rissanen V, Kontturi KS, Abdelhamid HN, Tammelin T, Mathew AP. Charged ultrafiltration membranes based on TEMPO-oxidized cellulose nanofibrils/poly(vinyl alcohol) antifouling coating. RSC Adv 2021; 11:6859-6868. [PMID: 35423201 PMCID: PMC8694930 DOI: 10.1039/d0ra10220b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
This study reports the potential of TEMPO-oxidized cellulose nanofibrils (T-CNF)/poly(vinyl alcohol) (PVA) coatings to develop functionalized membranes in the ultrafiltration regime with outstanding antifouling performance and dimensional/pH stability. PVA acts as an anchoring phase interacting with the polyethersulfone (PES) substrate and stabilizing for the hygroscopic T-CNF via crosslinking. The T-CNF/PVA coated PES membranes showed a nano-textured surface, a change in the surface charge, and improved mechanical properties compared to the original PES substrate. A low reduction (4%) in permeance was observed for the coated membranes, attributable to the nanometric coating thickness, surface charge, and hydrophilic nature of the coated layer. The coated membranes exhibited charge specific adsorption driven by electrostatic interaction combined with rejection due to size exclusion (MWCO 530 kDa that correspond to a size of ∼35-40 nm). Furthermore, a significant reduction in organic fouling and biofouling was found for T-CNF/PVA coated membranes when exposed to BSA and E. coli. The results demonstrate the potential of simple modifications using nanocellulose to manipulate the pore structure and surface chemistry of commercially available membranes without compromising on permeability and mechanical stability.
Collapse
Affiliation(s)
- Andrea Aguilar-Sanchez
- Division of Materials and Environmental Chemistry, Stockholm University Frescativägen 8 10691 Stockholm Sweden
| | - Blanca Jalvo
- Division of Materials and Environmental Chemistry, Stockholm University Frescativägen 8 10691 Stockholm Sweden
| | - Andreas Mautner
- Polymer and Composite Engineering (PaCE) Group, Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna Währinger Str. 42 1090 Wien Austria
| | - Ville Rissanen
- VTT Technical Research Centre of Finland, Solutions for Natural Resources and Environment P. O. Box 1000 FI-02044 VTT Finland
| | - Katri S Kontturi
- VTT Technical Research Centre of Finland, Solutions for Natural Resources and Environment P. O. Box 1000 FI-02044 VTT Finland
| | - Hani Nasser Abdelhamid
- Division of Materials and Environmental Chemistry, Stockholm University Frescativägen 8 10691 Stockholm Sweden
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland, Solutions for Natural Resources and Environment P. O. Box 1000 FI-02044 VTT Finland
| | - Aji P Mathew
- Division of Materials and Environmental Chemistry, Stockholm University Frescativägen 8 10691 Stockholm Sweden
| |
Collapse
|
39
|
Yousefi N, Jones M, Bismarck A, Mautner A. Fungal chitin-glucan nanopapers with heavy metal adsorption properties for ultrafiltration of organic solvents and water. Carbohydr Polym 2021; 253:117273. [PMID: 33278945 DOI: 10.1016/j.carbpol.2020.117273] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Membranes and filters are essential devices, both in the laboratory for separation of media, solvent recovery, organic solvent and water filtration purposes, and in industrial scale applications, such as the removal of industrial pollutants, e.g. heavy metal ions, from water. Due to their solvent stability, biologically sourced and renewable membrane or filter materials, such as cellulose or chitin, provide a low-cost, sustainable alternative to synthetic materials for organic solvent filtration and water treatment. Here, we investigated the potential of fungal chitin nanopapers derived from A. bisporus (common white-button mushrooms) as ultrafiltration membranes for organic solvents and aqueous solutions and hybrid chitin-cellulose microfibril papers as high permeance adsorptive filters. Fungal chitin constitutes a renewable, easily isolated, and abundant alternative to crustacean chitin. It can be fashioned into solvent stable nanopapers with pore sizes of 10-12 nm, as determined by molecular weight cut-off and rejection of gold nanoparticles, that exhibit high organic solvent permeance, making them a valuable material for organic solvent filtration applications. Addition of cellulose fibres to produce chitin-cellulose hybrid papers extended membrane functionality to water treatment applications, with considerable static and dynamic copper ion adsorption capacities and high permeances that outperformed other biologically derived membranes, while being simpler to produce, naturally porous, and not requiring crosslinking. The simple nanopaper production process coupled with the remarkable filtration properties of the papers for both organic solvent filtration and water treatment applications designates them an environmentally benign alternative to traditional membrane and filter materials.
Collapse
Affiliation(s)
- Neptun Yousefi
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Mitchell Jones
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria; School of Engineering, RMIT University, Bundoora East Campus, PO Box 71, Bundoora 3083, VIC, Australia
| | - Alexander Bismarck
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria; Department of Mechanical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, South Africa; Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Andreas Mautner
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
| |
Collapse
|
40
|
Adsorption of lead ions from aqueous solutions by porous cellulose nanofiber–sodium alginate hydrogel beads. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115122] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Yang M, Hadi P, Yin X, Yu J, Huang X, Ma H, Walker H, Hsiao BS. Antifouling nanocellulose membranes: How subtle adjustment of surface charge lead to self-cleaning property. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118739] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Lehtonen J, Chen X, Beaumont M, Hassinen J, Orelma H, Dumée LF, Tardy BL, Rojas OJ. Impact of incubation conditions and post-treatment on the properties of bacterial cellulose membranes for pressure-driven filtration. Carbohydr Polym 2021; 251:117073. [PMID: 33142618 DOI: 10.1016/j.carbpol.2020.117073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/13/2020] [Accepted: 09/05/2020] [Indexed: 12/17/2022]
Abstract
Bacterial cellulose (BC) has shown potential as a separation material. Herein, the performance of BC in pressure-driven separation is investigated as a function of incubation conditions and post-culture treatment. The pure water flux of never-dried BC (NDBC), was found to be 9 to 16 times higher than that for dried BC (DBC), in a pressure range of 0.25 to 2.5 bar. The difference in pressure response of NDBC and DBC was observed both in cross-flow filtration and capillary flow porometry experiments. DBC and NDBC were permeable to polymers with a hydrodynamic radius of ∼60 nm while protein retention was possible by introducing anionic surface charges on BC. The results of this work are expected to expand the development of BC-based filtration membranes, for instance towards the processing of biological fluids.
Collapse
Affiliation(s)
- Janika Lehtonen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Xiao Chen
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds, Victoria 3216, Australia
| | - Marco Beaumont
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Jukka Hassinen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Hannes Orelma
- VTT - Technical Research Centre of Finland, Tietotie 4E, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Ludovic F Dumée
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds, Victoria 3216, Australia; Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FI-00076 Aalto, Espoo, Finland.
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FI-00076 Aalto, Espoo, Finland; Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
43
|
Mautner A, Bismarck A. Bacterial nanocellulose papers with high porosity for optimized permeance and rejection of nm-sized pollutants. Carbohydr Polym 2021; 251:117130. [PMID: 33142661 DOI: 10.1016/j.carbpol.2020.117130] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 09/16/2020] [Indexed: 11/25/2022]
Abstract
Access to clean potable water is increasingly becoming a struggle for whole humankind, thus water treatment to remediate wastewater and fresh water sources is an important task. Pollutants in the nanoscale, such as viruses and macromolecules, are usually removed by means of membrane filtration processes, predominantly nanofiltration or ultrafiltration. Cellulose nanopapers, prepared from renewable resources and manufactured by papermaking, have recently been demonstrated to be versatile alternatives to polymer membranes in this domain. Unfortunately, so far nanopaper filters suffer from limited permeance and thus efficiency. We here present nanopapers made from bacterial cellulose dispersed in water or different types of low surface tension organic liquids (alcohol, ketone, ether) through a simple papermaking process. Nanopapers prepared from organic liquids (BC-org) exhibited 40 times higher permeance, caused by a lower paper density hence increased porosity, compared to conventional nanopapers produced from aqueous dispersions, ultimately enhancing the efficiency of bacterial cellulose nanopaper membranes. Despite their higher porosity, BC-org nanopapers still have pore sizes of 15-20 nm similar to BC nanopapers made from aqueous dispersions, thus enabling removal of contaminants the size of viruses by a size-exclusion mechanism at high permeance.
Collapse
Affiliation(s)
- Andreas Mautner
- Institute of Materials Chemistry, Polymer & Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währingerstr. 42, A-1090 Vienna, Austria; Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Alexander Bismarck
- Institute of Materials Chemistry, Polymer & Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währingerstr. 42, A-1090 Vienna, Austria; Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK; Department of Mechanical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, South Africa
| |
Collapse
|
44
|
Grishkewich N, Mohammed N, Wei S, Vasudev M, Shi Z, Berry RM, Tam KC. Dye Removal Using Sustainable Membrane Adsorbents Produced from Melamine Formaldehyde−Cellulose Nanocrystals and Hard Wood Pulp. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nathan Grishkewich
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Nishil Mohammed
- Energy and Environment Division, Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Stephen Wei
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Madhav Vasudev
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Zengqian Shi
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Richard M. Berry
- CelluForce Inc., 625, Président-Kennedy Avenue, Montreal, Quebec H3A 1K2, Canada
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
45
|
Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Bin Johan MR, Fen LB. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. J Mech Behav Biomed Mater 2020; 110:103884. [DOI: 10.1016/j.jmbbm.2020.103884] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 01/26/2023]
|
46
|
Zhang F, Li Y, Cai H, Liu Q, Tong G. Processing nanocellulose foam into high-performance membranes for harvesting energy from nature. Carbohydr Polym 2020; 241:116253. [PMID: 32507217 DOI: 10.1016/j.carbpol.2020.116253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022]
Abstract
Nanocellulose membranes exhibit good stability and high strength. However, the conventional synthetic routes rely on solvent volatilization of a nanocellulose suspension or solution. The complete hydrogen bonding that occurs in this process leads to a dense structure and poor strength in water. Hereby, lignosulfonate and polycation were mixed to form a complex and then attached to cellulose. The freeze-dried nanocellulose foam was hot-pressed to membrane, resulting in simultaneous co-crosslinking and membrane formation. The membrane had a porous structure with a high mechanical performance, excellent stability and a fast shape recovery. This also represents a method for processing functional nanocellulose membranes, as further demonstrated by the hybrid membrane with exceptional solar-driven seawater desalination and water-flow electricity generation properties. This work established facile methods for tackling the structural weakness of the conventional nanocellulose membrane, and opens the door to the application of nanocellulose membrane with a combination of mechanical stability and functionality.
Collapse
Affiliation(s)
- Fang Zhang
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yuchen Li
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Hui Cai
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Qi Liu
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Guolin Tong
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
47
|
Karim Z, Svedberg A, Ayub S. Role of functional groups in the production of self-assembled microfibrillated cellulose hybrid frameworks and influence on separation mechanisms of dye from aqueous medium. Int J Biol Macromol 2020; 155:1541-1552. [PMID: 31743720 DOI: 10.1016/j.ijbiomac.2019.11.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/23/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022]
Abstract
In this article, the role of surface ζ-potential, surface charge density of functional groups and available surface functional groups (-OH and -COO-) of microfibrillated cellulose (MFC) was explored in the production of self-assembled dimensional frameworks. Furthermore, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) oxidation of MFC and in situ TEMPO functionalization of produced frameworks were performed. The effect of increased charge density of carboxylic groups (-COO-) and decrease in surface ζ-potential on binding of titanium dioxide (TiO2) and horseradish peroxidase (HRP) was investigated further. High binding of TiO2 and HRP was reported due to high density of carboxylic group (-COO-) on produced functional frameworks. Thereafter, a model water of Irgalite Violet NZ dye was targeted to understand the behavior of available functional groups and introduced surface ζ-potential of frameworks towards adsorption of dye. Possible size-exclusion of dye aggregates was also explored using neat-MFC frameworks. Photo-oxidation (TiO2) and enzymatic catalysis (HRP) were studied further and highly effective system towards dye degradation was reported. Lastly, this study has shown a well deliberated quantitative understanding of functional groups/their density responsible for the production of frameworks and separation of dye.
Collapse
Affiliation(s)
- Zoheb Karim
- MoRe Research Örnsköldsvik AB, SE-891 22 Örnsköldsvik, Sweden.
| | - Anna Svedberg
- MoRe Research Örnsköldsvik AB, SE-891 22 Örnsköldsvik, Sweden
| | - Shahanaz Ayub
- Department of Electronics and Communication Engineering, Bundelkhand Institute of Engineering and Technology (BIET), Jhansi 284128, UP, India
| |
Collapse
|
48
|
Hassan ML, Fadel SM, Abouzeid RE, Abou Elseoud WS, Hassan EA, Berglund L, Oksman K. Water purification ultrafiltration membranes using nanofibers from unbleached and bleached rice straw. Sci Rep 2020; 10:11278. [PMID: 32647119 PMCID: PMC7347555 DOI: 10.1038/s41598-020-67909-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022] Open
Abstract
There has been an increasing interest in recent years in isolating cellulose nanofibers from unbleached cellulose pulps for economic, environmental, and functional reasons. In the current work, cellulose nanofibers isolated from high-lignin unbleached neutral sulfite pulp were compared to those isolated from bleached rice straw pulp in making thin-film ultrafiltration membranes by vacuum filtration on hardened filter paper. The prepared membranes were characterized in terms of their microscopic structure, hydrophilicity, pure water flux, protein fouling, and ability to remove lime nanoparticles and purify papermaking wastewater effluent. Using cellulose nanofibers isolated from unbleached pulp facilitated the formation of a thin-film membrane (with a shorter filtration time for thin-film formation) and resulted in higher water flux than that obtained using nanofibers isolated from bleached fibers, without sacrificing its ability to remove the different pollutants.
Collapse
Affiliation(s)
- Mohammad L Hassan
- Cellulose and Paper Department and Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth street, Dokki, 12622, Giza, Egypt.
| | - Shaimaa M Fadel
- Cellulose and Paper Department and Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth street, Dokki, 12622, Giza, Egypt
| | - Ragab E Abouzeid
- Cellulose and Paper Department and Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth street, Dokki, 12622, Giza, Egypt
| | - Wafaa S Abou Elseoud
- Cellulose and Paper Department and Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth street, Dokki, 12622, Giza, Egypt
| | - Enas A Hassan
- Cellulose and Paper Department and Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth street, Dokki, 12622, Giza, Egypt
| | - Linn Berglund
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187, Luleå, SE, Sweden
| | - Kristiina Oksman
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187, Luleå, SE, Sweden. .,Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada.
| |
Collapse
|
49
|
Sriruangrungkamol A, Chonkaew W. Modification of nanocellulose membrane by impregnation method with sulfosuccinic acid for direct methanol fuel cell applications. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03289-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Sun X, Huang H, Zhao D, Lin J, Gao P, Yao L. Adsorption of Pb 2+ onto freeze-dried microalgae and environmental risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110472. [PMID: 32421550 DOI: 10.1016/j.jenvman.2020.110472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/11/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Dry microalgae Spirulina platensis shows a high capacity for heavy metal uptake, but there is a concern about dissolved organic carbon (DOC) residue, which is the precursor of disinfection by-products (DBPs). Vsp, a kind of Spirulina platensis powder prepared by vacuum freeze-drying, and Osp, a kind of Spirulina platensis powder prepared by the conventional oven drying-pulverization method, were subjected to assessments of their adsorption potential for Pb2+ and DOC residue. The adsorption mechanism of Pb2+ by the two adsorbents was studied by SEM, FT-IR, EDX and N2-BET. The effects of pH, adsorbent dosage, initial Pb2+ concentration and contact time on the biosorption process were investigated. The results showed that Pb2+ biosorption by Vsp and Osp were fit well by a pseudo-second-order kinetic model and the Langmuir model. The maximum amount of Pb2+ biosorption by Vsp was 253 mg/g, which was 33 mg/g greater than that of Osp. In comparison with Osp, Vsp reached adsorption saturation 8 h earlier and had a remarkable effect on the control of DOC residue in water. When both adsorption capacity and environmental risks were considered, it was determined that the dosage of 0.5 g/L Vsp for 2 h of contact time was the best method, with 85.89 mg/g of Pb2+ removal and 3.45 mg/L of DOC residue. In summary, Vsp is a highly efficient and environmentally friendly biosorbent that can be used for heavy metal removal from water.
Collapse
Affiliation(s)
- Xiaolu Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haiyan Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Duolin Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Jie Lin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Pengcheng Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China.
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China; Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang, 473061, China
| |
Collapse
|