1
|
Tan SY, Chen XZ, Cao A, Wang H. Biodistribution of Vanadium Dioxide Particles in Mice by Consecutive Gavage Administration: Effects of Particle Size, Dosage, and Health Condition of Mice. Biol Trace Elem Res 2023; 201:2917-2926. [PMID: 35984600 DOI: 10.1007/s12011-022-03395-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
The newly developed vanadium dioxide (VO2), a material with excellent reversible and multi-stimuli responsible phase transition property, has been widely used in high-performance and energy-saving smart devices. The rapid growth of the VO2-based emerging technologies and the complex biological effect of vanadium to organisms urge a better understanding of the behavior of VO2 in vivo for safety purpose. Herein, we study the absorption, distribution, and excretion of two commercial VO2 (nanoscale SVO2 and bulk MVO2) in mice after consecutive gavage administration for up to 28 days. The absorption of both types of VO2 is as low as less than 1.5% of the injected dose within 28 days, while MVO2 is several times more difficult to be absorbed than SVO2. Almost all unabsorbed VO2 is excreted through feces. For the absorbed vanadium, bone is the organ with the largest accumulation, followed by liver, kidney, and spleen. The vanadium content in organs shows a size-, dosage-, and animal health condition-dependent manner, and increases gradually to a saturation value along with the consecutive administration. Generally, smaller particle size and higher dosage lead to higher vanadium contents in organs, and more vanadium accumulates in bone and liver in diabetic mice than in normal mice. After the treatment is stopped, the accumulated vanadium in organs decreases a lot within 14 days, even reaches to the background level in some organs, but the content of vanadium in the bone remains high after 14 days post-exposure. These findings provide basic information for the safety assessment and safe applications of VO2-based materials.
Collapse
Affiliation(s)
- Shi-Ying Tan
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Xing-Zhu Chen
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Toxicity studies of sodium metavanadate and vanadyl sulfate administered in drinking water to Sprague Dawley (Hsd:Sprague Dawley SD) rats and B6C3F1/N mice. TOXICITY REPORT SERIES 2023:NTP-TOX-106. [PMID: 36749982 PMCID: PMC10201387 DOI: 10.22427/ntp-tox-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Oral human exposure to vanadium may occur due to its presence in food and drinking water and its use in dietary supplements. The most prevalent oxidation states of vanadium in food and drinking water have been characterized as tetravalent and pentavalent. Vanadyl sulfate and sodium metavanadate were selected as representative tetravalent (V4+) and pentavalent (V5+) test articles for these studies, respectively. To assess the potential for oral toxicity of vanadium compounds with differing oxidation states under similar test conditions, the 3-month National Toxicology Program (NTP) toxicity studies of sodium metavanadate and vanadyl sulfate were conducted in male and female Sprague Dawley (Hsd:Sprague Dawley SD) rats (including perinatal exposure) and in B6C3F1/N mice. Drinking water concentrations for sodium metavanadate (0, 31.3, 62.5, 125, 250, and 500 mg/L) and vanadyl sulfate (0, 21.0, 41.9, 83.8, 168, and 335 mg/L) were selected on the basis of previously published 14-day drinking water studies conducted as part of the NTP vanadium research program. (Abstract Abridged).
Collapse
|
3
|
Waidyanatha S, Weber FX, Fallacara DM, Harrington JM, Levine K, Robinson VG, Sparrow BR, Stout MD, Fernando R, Hooth MJ, Xie G, Roberts GK. Systemic exposure and urinary excretion of vanadium following perinatal subchronic exposure to vanadyl sulfate and sodium metavanadate via drinking water. Toxicol Lett 2022; 360:53-61. [PMID: 35331842 PMCID: PMC9036617 DOI: 10.1016/j.toxlet.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022]
Abstract
Vanadium is a ubiquitous environmental contaminant although there are limited data to assess potential adverse human health impact following oral exposure. In support of studies investigating the subchronic toxicity of vanadyl sulfate (V4+) and sodium metavanadate (V5+) following perinatal exposure via drinking water in male and female rats, we have determined the internal exposure and urinary excretion of total vanadium at the end of study. Water consumption decreased with increasing exposure concentration following exposure to both compounds. Plasma and urine vanadium concentration normalized to total vanadium consumed per day increased with the exposure concentration of vanadyl sulfate and sodium metavanadate suggesting absorption increased as the exposure concentration increased. Additionally, females had higher concentrations than males (in plasma only for vanadyl sulfate exposure). Animals exposed to sodium metavanadate had up to 3-fold higher vanadium concentration in plasma and urine compared to vanadyl sulfate exposed animals, when normalized to total vanadium consumed per day, demonstrating differential absorption, distribution, metabolism, and excretion properties between V5+ and V4+ compounds. These data will aid in the interpretation of animal toxicity data of V4+ and V5+ compounds and determine the relevance of animal toxicity findings to human exposures.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, NIEHS, Research Triangle Park, NC, United States.
| | - Frank X Weber
- RTI International, Research Triangle Park, NC, United States
| | | | | | - Keith Levine
- RTI International, Research Triangle Park, NC, United States
| | - Veronica G Robinson
- Division of the National Toxicology Program, NIEHS, Research Triangle Park, NC, United States
| | | | - Matthew D Stout
- Division of the National Toxicology Program, NIEHS, Research Triangle Park, NC, United States
| | - Reshan Fernando
- RTI International, Research Triangle Park, NC, United States
| | - Michelle J Hooth
- Division of the National Toxicology Program, NIEHS, Research Triangle Park, NC, United States
| | - Guanhua Xie
- Social and Scientific Systems, Durham, NC, United States
| | - Georgia K Roberts
- Division of the National Toxicology Program, NIEHS, Research Triangle Park, NC, United States
| |
Collapse
|
4
|
Tunali S, Bal-Demirci T, Ulkuseven B, Yanardag R. Protective effects of N(1)-2,4-dihydroxybenzylidene-N(4)-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium (IV) on oxidative brain injury in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 2022; 36:e22991. [PMID: 35235223 DOI: 10.1002/jbt.22991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 08/26/2021] [Accepted: 01/21/2022] [Indexed: 01/24/2023]
Abstract
Diabetes is usually accompanied by increased production of free radicals or impaired antioxidant defenses. The brain is a target tissue of the oxidative attacks caused by diabetes, and there are observed changes in the biochemical parameters of this tissue in the hyperglycemic state. In this study, we aimed to show the effect of N(1)-2,4-dihydroxybenzylidene-N(4)-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium (IV) (VOL) compound on diabetic damaged brain tissue, induced by streptozotocin (STZ) on 3.0-3.5-month-old male rats. Single dose of STZ at 65 mg/kg was used to make rats diabetic. Four groups were created randomly. Group (i): control (intact) animals; Group (ii): VOL given control animals; Group (iii): STZ-induced diabetic animals; and Group (iv): orally VOL administered STZ-induced diabetic rats. VOL (0.2 mM/kg/day) administration to control and diabetic animals was performed for a period of 12 days. At the end of day 12, the brain tissues were taken and homogenized. The clear supernatants were used for the determination of glutathione (GSH), lipid peroxidation (LPO), nonenzymatic glycosylation (NEG), and protein levels. Alanine and aspartate transaminases and acetylcholinesterase (AChE), myeloperoxidase (MPO), xanthine oxidase (XO), and oxidative stress marker enzymes activities were also estimated from the homogenates. According to the obtained results, there is found significant elevation of MDA and NEG levels and activities of transaminases, MPO and XO; whereas the GSH content and the activities of AChE and antioxidant enzymes were strongly decreased in the STZ-induced diabetic brain tissues in comparison to control group animals. Twelve days of administration of VOL complex to the diabetic animals reversed all biochemical parameters significantly in diabetic brain tissues. Our findings suggest that the VOL complex may be an ideal candidate to be used as an anti diabetic agent to improve oxidative injury and protect the brain tissue against damage caused by diabetes. This healing effect of the VOL complex may be due to its antioxidant activity and the insulin-mimetic effects of vanadium.
Collapse
Affiliation(s)
- Sevim Tunali
- Department of Chemistry, Biochemistry Division, Istanbul University-Cerrahpasa, Istanbul, Avcilar, Turkey
| | - Tulay Bal-Demirci
- Department of Chemistry, Inorganic Chemistry Division, Istanbul University-Cerrahpasa, Istanbul, Avcilar, Turkey
| | - Bahri Ulkuseven
- Department of Chemistry, Inorganic Chemistry Division, Istanbul University-Cerrahpasa, Istanbul, Avcilar, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Biochemistry Division, Istanbul University-Cerrahpasa, Istanbul, Avcilar, Turkey
| |
Collapse
|
5
|
Harrington JM, Haines LG, Levine KE, Liyanapatirana C, Essader AS, Fernando RA, Robinson VG, Roberts GK, Stout MD, Hooth MJ, Waidyanatha S. Internal dose of vanadium in rats following repeated exposure to vanadyl sulfate and sodium orthovanadate via drinking water. Toxicol Appl Pharmacol 2021; 412:115395. [PMID: 33421504 PMCID: PMC8631130 DOI: 10.1016/j.taap.2021.115395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022]
Abstract
Vanadium is a ubiquitous environmental contaminant that exists in multiple oxidation states. Humans are exposed to vanadyl (V4+) and vanadate (V5+) from dietary supplements, food, and drinking water and hence there is a concern for adverse human health. The current investigation is aimed at identifying vanadium oxidation states in vitro and in vivo and internal concentrations following exposure of rats to vanadyl sulfate (V4+) or sodium metavanadate (V5+) via drinking water for 14 d. Investigations in simulated gastric and intestinal fluids showed that V4+ was stable in gastric fluid while V5+ was stable in intestinal fluid. Analysis of rodent plasma showed that the only vanadium present was V4+, regardless of the exposed compound suggesting conversion of V5+ to V4+ in vivo and/or instability of V5+ species in biological matrices. Plasma, blood, and liver concentrations of total vanadium, after normalizing for vanadium dose consumed, were higher in male and female rats following exposure to V5+ than to V4+. Following exposure to either V4+ or V5+, the total vanadium concentration in plasma was 2- to 3-fold higher than in blood suggesting plasma as a better matrix than blood for measuring vanadium in future work. Liver to blood ratios were 4-7 demonstrating significant tissue retention following exposure to both compounds. In conclusion, these data point to potential differences in absorption and disposition properties of V4+ and V5+ salts and may explain the higher sensitivity in rats following drinking water exposure to V5+ than V4+ and highlights the importance of internal dose determination in toxicology studies.
Collapse
Affiliation(s)
| | - Laura G Haines
- RTI International, Research Triangle Park, NC, United States
| | - Keith E Levine
- RTI International, Research Triangle Park, NC, United States
| | | | - Amal S Essader
- RTI International, Research Triangle Park, NC, United States
| | | | - Veronica G Robinson
- Division of the National Toxicology Program, NIEHS, Research Triangle Park, NC, United States
| | - Georgia K Roberts
- Division of the National Toxicology Program, NIEHS, Research Triangle Park, NC, United States
| | - Matthew D Stout
- Division of the National Toxicology Program, NIEHS, Research Triangle Park, NC, United States
| | - Michelle J Hooth
- Division of the National Toxicology Program, NIEHS, Research Triangle Park, NC, United States
| | - Suramya Waidyanatha
- Division of the National Toxicology Program, NIEHS, Research Triangle Park, NC, United States.
| |
Collapse
|
6
|
Effects of vanadium (sodium metavanadate) and aflatoxin-B1 on cytochrome p450 activities, DNA damage and DNA methylation in human liver cell lines. Toxicol In Vitro 2020; 70:105036. [PMID: 33164849 DOI: 10.1016/j.tiv.2020.105036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/15/2023]
Abstract
Vanadium is considered as "possibly carcinogenic to humans" (V2O5, IARC Group 2B), yet uncertainties persist related to the toxicity mechanisms of the multiple forms of vanadium. Exposure to vanadium often co-occurs with other metals or with organic compounds that can be transformed by cytochrome p450 (CYP) enzymes into DNA-reactive carcinogens. Therefore, effects of a soluble form of vanadium (sodium metavanadate, NaVO3) and aflatoxin-B1 (AFB1) were tested separately and together, for induction of CYP activities, DNA damage (γH2AX and DNA alkaline unwinding assays), and DNA methylation changes (global genome and DNA repeats) in HepaRG or HepG2 liver cell lines. NaVO3 (≥ 2.3 μM) reduced CYP1A1 and CYP3A4 activities and induced DNA damage, butcaused important cell proliferation only in HepaRG cells. As a binary mixture, NaVO3 did not modify the effects of AFB1. There was no reproducible effect of NaVO3 (<21 μM) on DNA methylation in AluYb8, satellite-α, satellite-2, and by the luminometric methylation assay, but DNA methylation flow-cytometry signals in HepG2 cells (25-50 μM) increased at the G1 and G2 cell cycle phases. In conclusion, cell lines responded differently to NaVO3 supporting the importance of investigating more than one cell line, and a carcinogenic role of NaVO3 might reside at low concentrations by stimulating the proliferation of tumorigenic cells.
Collapse
|
7
|
Irving E, Tagalakis AD, Maeshima R, Hart SL, Eaton S, Lehtonen A, Stoker AW. The liposomal delivery of hydrophobic oxidovanadium complexes imparts highly effective cytotoxicity and differentiating capacity in neuroblastoma tumour cells. Sci Rep 2020; 10:16660. [PMID: 33028860 PMCID: PMC7542164 DOI: 10.1038/s41598-020-73539-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022] Open
Abstract
Oxidovanadium complexes with organic ligands are well known to have cytotoxic or differentiating capabilities against a range of cancer cell types. Their limited use in clinical testing though has resulted largely from uncertainties about the long-term toxicities of such complexes, due in part to the speciation to vanadate ions in the circulation. We hypothesised that more highly stable complexes, delivered using liposomes, may provide improved opportunities for oxidovanadium applications against cancer. In this study we sourced specifically hydrophobic forms of oxidovanadium complexes with the explicit aim of demonstrating liposomal encapsulation, bioavailability in cultured neuroblastoma cells, and effective cytotoxic or differentiating activity. Our data show that four ethanol-solubilised complexes with amine bisphenol, aminoalcohol bisphenol or salan ligands are equally or more effective than a previously used complex bis(maltolato)oxovanadium(V) in neuroblastoma cell lines. Moreover, we show that one of these complexes can be stably incorporated into cationic liposomes where it retains very good bioavailability, apparently low speciation and enhanced efficacy compared to ethanol delivery. This study provides the first proof-of-concept that stable, hydrophobic oxidovanadium complexes retain excellent cellular activity when delivered effectively to cancer cells with nanotechnology. This offers the improved prospect of applying oxidovanadium-based drugs in vivo with increased stability and reduced off-target toxicity.
Collapse
Affiliation(s)
- Elsa Irving
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Aristides D Tagalakis
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Department of Biology, Edge Hill University, Ormskirk, L39 4QP, UK
| | - Ruhina Maeshima
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Stephen L Hart
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Ari Lehtonen
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Department of Chemistry, University of Turku, 20014, Turun yliopisto, Finland
| | - Andrew W Stoker
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
8
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
9
|
Gatiatulina ER, Nemereshina ON, Suliburska J, Nagaraja TP, Skalnaya AA, Nikonorov AA, Skalny AV, Tinkov AA. Comparative Analysis on the Effect of Plantago Species Aqueous Extracts on Tissue Trace Element Content in Rats. Biol Trace Elem Res 2017; 179:79-90. [PMID: 28093694 DOI: 10.1007/s12011-017-0940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/10/2017] [Indexed: 11/28/2022]
Abstract
The primary objective of this study is to assess the influence of water extracts of Plantago major L., Plantago lanceolata L., and Plantago maxima Juss. ex Jacq. leaves on tissue trace element content in healthy adult Wistar rats. Twenty-eight female Wistar rats consumed pure drinking water or one of the three aqueous extracts of Plantago for 1 month. The extracts and liver, serum, hair, and adipose tissue of the rats were examined for trace element contents using inductively coupled plasma mass spectrometry. The aqueous extracts of Plantago species contained significant levels of trace elements, which were highest in P. lanceolata and P. major. The administration of every extract led to an increase in V and Si levels in the rats. At the same time, the consumption of P. lanceolata aqueous extract resulted in the accumulation of toxic elements (As, Pb) in the rats' tissues. Despite the rather high concentration of heavy metals in the P. major leaf extract, its administration did not result in the accumulation of these elements. In turn, P. maxima extract induced a significant decrease in the tissue levels of Al, Cr, I, Li, and Mn in the rats. The beneficial effect of the P. major and P. maxima preparations may be at least partially associated with the increased supply of essential trace elements, whereas the use of P. lanceolata may be harmful due to the possibility of heavy metal overexposure.
Collapse
Affiliation(s)
- Evgenia R Gatiatulina
- Orenburg State Medical University, Sovetskaya St., 6, Orenburg, 460000, Russia
- South Ural State Medical University, Vorovskogo St., 64, Chelyabinsk, 454048, Russia
| | - Olga N Nemereshina
- Orenburg State Medical University, Sovetskaya St., 6, Orenburg, 460000, Russia
| | - Joanna Suliburska
- Poznan University of Life Sciences, Wojska Polskiego St.28, Poznan, Poland
| | | | - Anastasia A Skalnaya
- Lomonosov Moscow State University, Lomonosovsky Prospekt, 31-5, Moscow, 117192, Russia
| | - Alexandr A Nikonorov
- Orenburg State Medical University, Sovetskaya St., 6, Orenburg, 460000, Russia
- Orenburg State University, Pobedy Avenue, 13, 460018, Orenburg, Russia
| | - Anatoly V Skalny
- Orenburg State University, Pobedy Avenue, 13, 460018, Orenburg, Russia
- RUDN University, Miklukho-Maklay St., 10/2, Moscow, 117198, Russia
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia
- All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Grina St., 7, Moscow, 117216, Russia
| | - Alexey A Tinkov
- Orenburg State Medical University, Sovetskaya St., 6, Orenburg, 460000, Russia.
- Orenburg State University, Pobedy Avenue, 13, 460018, Orenburg, Russia.
- RUDN University, Miklukho-Maklay St., 10/2, Moscow, 117198, Russia.
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia.
| |
Collapse
|
10
|
Wu T, Luo J, Xu B. In vitro antidiabetic effects of selected fruits and vegetables against glycosidase and aldose reductase. Food Sci Nutr 2015; 3:495-505. [PMID: 26788291 PMCID: PMC4708650 DOI: 10.1002/fsn3.243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/15/2015] [Accepted: 04/01/2015] [Indexed: 11/17/2022] Open
Abstract
In vitro antidiabetic effect of fruits and vegetables with reports as folk remedies were investigated. The antidiabetic effects were evaluated by comparing the inhibitory properties of α‐glycosidase, aldose reductase, and antioxidant activity. The results indicated that lychee extract exhibited the best dose‐dependent inhibitory activity against α‐glycosidase with IC50 of 10.4 mg/mL, and lemon peel extract exhibited aldose reductase inhibitory potential with IC50 value at 3.63 mg/mL. Besides, the result also showed that the inhibitory effects of blueberry and plum against α‐glycosidase were strong among the fruits samples. Bitter gourd and eggplant demonstrated significant inhibitory potential against aldose reductase, with IC50 values at 8.55 mg/mL and 8.06 mg/mL, respectively. The result from correlation analysis part showed that the antioxidant activities of selected fruits and vegetables were found related to their health beneficial effects, as there was positive correlations between total flavonoids content (TFC) and aldose reductase inhibitory activity (r2 = 0.556).
Collapse
Affiliation(s)
- Tong Wu
- Food Science and Technology Program Beijing Normal University-Hong Kong Baptist University United International College Zhuhai Guangdong 519085 China
| | - Jiaqiang Luo
- Food Science and Technology Program Beijing Normal University-Hong Kong Baptist University United International College Zhuhai Guangdong 519085 China
| | - Baojun Xu
- Food Science and Technology Program Beijing Normal University-Hong Kong Baptist University United International College Zhuhai Guangdong 519085 China
| |
Collapse
|
11
|
Clark TA, Deniset JF, Heyliger CE, Pierce GN. Alternative therapies for diabetes and its cardiac complications: role of vanadium. Heart Fail Rev 2014; 19:123-32. [PMID: 23430125 DOI: 10.1007/s10741-013-9380-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is now well known that a cardiomyopathic state accompanies diabetes mellitus. Although insulin injections and conventional hypoglycemic drug therapy have been of invaluable help in reducing cardiac damage and dysfunction in diabetes, cardiac failure continues to be a common cause of death in the diabetic population. The use of alternative medicine to maintain health and treat a variety of diseases has achieved increasing popularity in recent years. The goal of alternative therapies in diabetic patients has been to lower circulating blood glucose levels and thereby treat diabetic complications. This paper will focus its discussion on the role of vanadium on diabetes and the associated cardiac dysfunction. Careful administration of a variety of forms of vanadium has produced impressive long-lasting control of blood glucose levels in both Type 1 and Type 2 diabetes in animals. This has been accompanied by, in many cases, a complete correction of the diabetic cardiomyopathy. The oral delivery of vanadium as a vanadate salt in the presence of tea has produced particularly impressive hypoglycemic effects and a restoration of cardiac function. This intriguing approach to the treatment of diabetes and its complications, however, deserves further intense investigation prior to its use as a conventional therapy for diabetic complications due to the unknown long-term effects of vanadium accumulation in the heart and other organs of the body.
Collapse
Affiliation(s)
- Tod A Clark
- Department of Surgery, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
12
|
Abstract
It is now well known that a cardiomyopathic state accompanies diabetes mellitus. Although insulin injections and conventional hypoglycemic drug therapy have been of invaluable help in reducing cardiac damage and dysfunction in diabetes, cardiac failure continues to be a common cause of death in the diabetic population. The use of alternative medicine to maintain health and treat a variety of diseases has achieved increasing popularity in recent years. The goal of alternative therapies in diabetic patients has been to lower circulating blood glucose levels and thereby treat diabetic complications. This paper will focus its discussion on the role of vanadium on diabetes and the associated cardiac dysfunction. Careful administration of a variety of forms of vanadium has produced impressive long-lasting control of blood glucose levels in both Type 1 and Type 2 diabetes in animals. This has been accompanied by, in many cases, a complete correction of the diabetic cardiomyopathy. The oral delivery of vanadium as a vanadate salt in the presence of tea has produced particularly impressive hypoglycemic effects and a restoration of cardiac function. This intriguing approach to the treatment of diabetes and its complications, however, deserves further intense investigation prior to its use as a conventional therapy for diabetic complications due to the unknown long-term effects of vanadium accumulation in the heart and other organs of the body.
Collapse
Affiliation(s)
- Tod A Clark
- Department of Surgery, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
13
|
Xie M, Chen D, Zhang F, Willsky GR, Crans DC, Ding W. Effects of vanadium (III, IV, V)-chlorodipicolinate on glycolysis and antioxidant status in the liver of STZ-induced diabetic rats. J Inorg Biochem 2014; 136:47-56. [DOI: 10.1016/j.jinorgbio.2014.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 03/23/2014] [Accepted: 03/23/2014] [Indexed: 02/01/2023]
|
14
|
Krośniak M, Kowalska J, Francik R, Gryboś R, Blusz M, Kwiatek WM. Influence of vanadium-organic ligands treatment on selected metal levels in kidneys of STZ rats. Biol Trace Elem Res 2013; 153:319-28. [PMID: 23661329 PMCID: PMC3667367 DOI: 10.1007/s12011-013-9688-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/25/2013] [Indexed: 12/20/2022]
Abstract
The objective of the study was to investigate the effects of five organic vanadium complexes supplement and a small dose of insulin injection on V, Fe, Cu, Zn, Mn, Ca, and K level in the streptozotocin diabetic rat's kidney during a 5-week treatment with the tested complexes. In all groups of animals, metal level in the lyophilized kidney organs was investigated by means of the proton induced X-ray emission method. Tissue vanadium level was naturally higher in vanadium-treated rats. The maximum level of vanadium was observed in the kidney (x(mean) = 16.6 μg/g). The influence of vanadium administration on other metal level in rat's tissue was also investigated. Spectacular influence of vanadium action was observed on copper and zinc level in examined tissue.
Collapse
Affiliation(s)
- Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, 30-688 Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
15
|
Suwalsky M, Fierro P, Villena F, Gallardo MJ, Jemiola-Rzeminska M, Strzalka K, Gul-Hinc S, Ronowska A, Zysk M, Szutowicz A. Effects of sodium metavanadate on in vitro neuroblastoma and red blood cells. Arch Biochem Biophys 2013; 535:248-56. [PMID: 23608074 DOI: 10.1016/j.abb.2013.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
Abstract
Toxicity of vanadium on cells is one of the less studied effects. This prompted us to study the structural effects induced on neuroblastoma and erythrocytes by vanadium (V) sodium metavanadate. This salt was incubated with mice cholinergic neuroblastoma cells and intact human erythrocytes. To learn whether metavanadate interacts with membrane lipid bilayers it was incubated with bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). These are phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. Exposure of neuroblastoma cells to metavanadate showed significant decreases in cell viability as well as in cell number correlating with inhibition of aconitase activity. In scanning electron microscopy (SEM) and defocusing microscopy (DM) it was observed that induced on erythrocytes the formation of echinocytes. However, no effects were obtained when metavanadate was made to interact with DMPC and DMPE multibilayers and liposomes, assays performed by X-ray diffraction and differential scanning calorimetry (DSC), respectively. These results imply that the effects of metavanadate on erythrocytes are through interactions with proteins located in the membrane outer moiety, and could still involve other minor lipid components as well. Also, partly unsaturated lipids could interact differently the fully saturated chains in the model systems.
Collapse
Affiliation(s)
- Mario Suwalsky
- Faculty of Chemical Sciences, University of Concepción, P.O. Box 160-C, Concepción, Chile.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu HC, Ting CH, Wen HL, Tsai LK, Hsieh-Li HM, Li H, Lin-Chao S. Sodium vanadate combined with L-ascorbic acid delays disease progression, enhances motor performance, and ameliorates muscle atrophy and weakness in mice with spinal muscular atrophy. BMC Med 2013; 11:38. [PMID: 23409868 PMCID: PMC3682891 DOI: 10.1186/1741-7015-11-38] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/14/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Proximal spinal muscular atrophy (SMA), a neurodegenerative disorder that causes infant mortality, has no effective treatment. Sodium vanadate has shown potential for the treatment of SMA; however, vanadate-induced toxicity in vivo remains an obstacle for its clinical application. We evaluated the therapeutic potential of sodium vanadate combined with a vanadium detoxification agent, L-ascorbic acid, in a SMA mouse model. METHODS Sodium vanadate (200 μM), L-ascorbic acid (400 μM), or sodium vanadate combined with L-ascorbic acid (combined treatment) were applied to motor neuron-like NSC34 cells and fibroblasts derived from a healthy donor and a type II SMA patient to evaluate the cellular viability and the efficacy of each treatment in vitro. For the in vivo studies, sodium vanadate (20 mg/kg once daily) and L-ascorbic acid (40 mg/kg once daily) alone or in combination were orally administered daily on postnatal days 1 to 30. Motor performance, pathological studies, and the effects of each treatment (vehicle, L-ascorbic acid, sodium vanadate, and combined treatment) were assessed and compared on postnatal days (PNDs) 30 and 90. The Kaplan-Meier method was used to evaluate the survival rate, with P < 0.05 indicating significance. For other studies, one-way analysis of variance (ANOVA) and Student's t test for paired variables were used to measure significant differences (P < 0.05) between values. RESULTS Combined treatment protected cells against vanadate-induced cell death with decreasing B cell lymphoma 2-associated X protein (Bax) levels. A month of combined treatment in mice with late-onset SMA beginning on postnatal day 1 delayed disease progression, improved motor performance in adulthood, enhanced survival motor neuron (SMN) levels and motor neuron numbers, reduced muscle atrophy, and decreased Bax levels in the spinal cord. Most importantly, combined treatment preserved hepatic and renal function and substantially decreased vanadium accumulation in these organs. CONCLUSIONS Combined treatment beginning at birth and continuing for 1 month conferred protection against neuromuscular damage in mice with milder types of SMA. Further, these mice exhibited enhanced motor performance in adulthood. Therefore, combined treatment could present a feasible treatment option for patients with late-onset SMA.
Collapse
Affiliation(s)
- Huei-Chun Liu
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
17
|
Clark TA, Heyliger CE, Kopilas M, Edel AL, Junaid A, Aguilar F, Smyth DD, Thliveris JA, Merchant M, Kim HK, Pierce GN. A tea/vanadate decoction delivered orally over 14 months to diabetic rats induces long-term glycemic stability without organ toxicity. Metabolism 2012; 61:742-53. [PMID: 22146096 DOI: 10.1016/j.metabol.2011.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/20/2011] [Accepted: 10/13/2011] [Indexed: 01/28/2023]
Abstract
Vanadium can induce potent hypoglycemic effects in type 1 and type 2 diabetes mellitus animals, but toxic adverse effects have inhibited the translation of these findings. Administration of vanadate in a black tea decoction has shown impressive hypoglycemic effects without evidence of toxicity in short-term studies. The purpose of this study was to investigate the hypoglycemic action and the toxic adverse effects of a tea/vanadate (T/V) decoction in diabetic rats over a 14-month treatment period. Streptozotocin-induced type 1 diabetes mellitus rats were orally gavaged with 40 mg sodium vanadate in a black tea decoction only when blood glucose levels were greater than 10 mmol/L. Glycemic status and liver and kidney function were monitored over 14 months. All of the diabetic rats in this treatment group (n = 25) required treatment with the T/V decoction at the start of the study to reduce blood glucose levels to less than 10 mmol/L. Diarrhea was uncommon among the T/V-treated animals during the first week of T/V treatment and was absent thereafter. There was no evidence of liver or kidney dysfunction or injury. From 2 to 6 months, fewer animals required the T/V treatment to maintain their blood glucose levels. After 9 months of treatment, none of the diabetic animals required any T/V to maintain their blood glucose levels at less than 10 mmol/L. Oral administration of a T/V decoction provides safe, long-acting hypoglycemic effects in type 1 diabetes mellitus rats. The typical glycemic signs of diabetes were absent for the last 5 months of the study.
Collapse
Affiliation(s)
- Tod A Clark
- Department of Surgery, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E OW3
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Suwalsky M, Fierro P, Villena F, Aguilar LF, Sotomayor CP, Jemiola-Rzeminska M, Strzalka K, Gul-Hinc S, Ronowska A, Szutowicz A. Human erythrocytes and neuroblastoma cells are in vitro affected by sodium orthovanadate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2260-70. [PMID: 22546530 DOI: 10.1016/j.bbamem.2012.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/29/2012] [Accepted: 04/16/2012] [Indexed: 11/25/2022]
Abstract
Research on biological influence of vanadium has gained major importance because it exerts potent toxic, mutagenic, and genotoxic effects on a wide variety of biological systems. However, hematological toxicity is one of the less studied effects. The lack of information on this issue prompted us to study the structural effects induced on the human erythrocyte membrane by vanadium (V). Sodium orthovanadate was incubated with intact erythrocytes, isolated unsealed human erythrocyte membranes (IUM) and molecular models of the erythrocyte membrane. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. This report presents evidence in order that orthovanadate interacted with red cell membranes as follows: a) in scanning electron microscopy (SEM) studies it was observed that morphological changes on human erythrocytes were induced; b) fluorescence spectroscopy experiments in isolated unsealed human erythrocyte membranes (IUM) showed that an increase in the molecular dynamics and/or water content at the shallow depth of the lipids glycerol backbone at concentrations as low as 50μM was produced; c) X-ray diffraction studies showed that orthovanadate 0.25-1mM range induced increasing structural perturbation to DMPE; d) somewhat similar effects were observed by differential scanning calorimetry (DSC) with the exception of the fact that DMPC pretransition was shown to be affected; and e) fluorescence spectroscopy experiments performed in DMPC large unilamellar vesicles (LUV) showed that at very low concentrations induced changes in DPH fluorescence anisotropy at 18°C. Additional experiments were performed in mice cholinergic neuroblastoma SN56 cells; a statistically significant decrease of cell viability was observed on orthovanadate in low or moderate concentrations.
Collapse
Affiliation(s)
- M Suwalsky
- Faculty of Chemical Sciences, University of Concepción, Concepción, Chile.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dembitsky VM, Poovarodom S, Leontowicz H, Leontowicz M, Vearasilp S, Trakhtenberg S, Gorinstein S. The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.03.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Speciation in aqueous vanadate–ligand and peroxovanadate–ligand systems. J Inorg Biochem 2009; 103:517-26. [DOI: 10.1016/j.jinorgbio.2008.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 11/21/2022]
|
21
|
Effective control of blood glucose status and toxicity in streptozotocin-induced diabetic rats by orally administration of vanadate in an herbal decoction. Food Chem Toxicol 2008; 46:2996-3002. [DOI: 10.1016/j.fct.2008.05.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 11/20/2022]
|
22
|
Affiliation(s)
- András Gorzsás
- Department of Chemistry, Inorganic Chemistry, Umeå University, 90187 Umeå, Sweden, Fax: +46‐90‐786‐9195
- Present address: Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, 90183 Umeå, Sweden
| | - Ingegärd Andersson
- Department of Chemistry, Inorganic Chemistry, Umeå University, 90187 Umeå, Sweden, Fax: +46‐90‐786‐9195
| | - Lage Pettersson
- Department of Chemistry, Inorganic Chemistry, Umeå University, 90187 Umeå, Sweden, Fax: +46‐90‐786‐9195
| |
Collapse
|