1
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Mansoori S, Ho MYM, Ng KKW, Cheng KKY. Branched-chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev 2024:e13856. [PMID: 39455059 DOI: 10.1111/obr.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential for maintaining physiological functions and metabolic homeostasis. However, chronic elevation of BCAAs causes metabolic diseases such as obesity, type 2 diabetes (T2D), and metabolic-associated fatty liver disease (MAFLD). Adipose tissue, skeletal muscle, and the liver are the three major metabolic tissues not only responsible for controlling glucose, lipid, and energy balance but also for maintaining BCAA homeostasis. Under obese and diabetic conditions, different pathogenic factors like pro-inflammatory cytokines, lipotoxicity, and reduction of adiponectin and peroxisome proliferator-activated receptors γ (PPARγ) disrupt BCAA metabolism, leading to excessive accumulation of BCAAs and their downstream metabolites in metabolic tissues and circulation. Mechanistically, BCAAs and/or their downstream metabolites, such as branched-chain ketoacids (BCKAs) and 3-hydroxyisobutyrate (3-HIB), impair insulin signaling, inhibit adipogenesis, induce inflammatory responses, and cause lipotoxicity in the metabolic tissues, resulting in multiple metabolic disorders. In this review, we summarize the latest studies on the metabolic regulation of BCAA homeostasis by the three major metabolic tissues-adipose tissue, skeletal muscle, and liver-and how dysregulated BCAA metabolism affects glucose, lipid, and energy balance in these active metabolic tissues. We also summarize therapeutic approaches to restore normal BCAA metabolism as a treatment for metabolic diseases.
Collapse
Affiliation(s)
- Shama Mansoori
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Melody Yuen-Man Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kelvin Kwun-Wang Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
3
|
Jin Y, Liu Q, Wang Y, Wang B, An J, Chen Q, Wang T, Shang J. Propylthiouracil Induced Rat Model Reflects Heterogeneity Observed in Clinically Non-Obese Subjects with Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:10764. [PMID: 39409093 PMCID: PMC11477315 DOI: 10.3390/ijms251910764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing, affecting up to 30% of the population, with approximately 20% of cases occurring in non-obese individuals. The recent shift to the term metabolic dysfunction-associated steatosis liver disease (MASLD) highlights the disease's heterogeneity. However, there are no well-established animal models replicating non-obese NAFLD (NO-NAFLD). This study aimed to evaluate the relevance of the high-fat diet (HFD) combined with the propylthiouracil (PTU)-induced rat model in mimicking the histopathology and pathophysiology of NO-NAFLD. We first analyzed metabolic and clinical parameters between NO-NAFLD patients (Average BMI = 21.96 kg/m2) and obese NAFLD patients (Average BMI = 29.7 kg/m2). NO-NAFLD patients exhibited significantly higher levels of carnitines, phospholipids, and triglycerides. In the animal model, we examined serum lipid profiles, liver inflammation, histology, and transcriptomics. Hepatic steatosis in the HFD+PTU model at week 4 was comparable to that of the HFD model at week 8. The HFD+PTU model showed higher levels of carnitines, phospholipids, and triglycerides, supporting its relevance for NO-NAFLD. Additionally, the downregulation of lipid synthesis-related genes indicated differences in lipid accumulation between the two models. Overall, the HFD+PTU-induced rat model is a promising tool for studying the molecular mechanisms of NO-NAFLD.
Collapse
Affiliation(s)
- Yu Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA
| | - Qiuyan Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuqin Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bing Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jing An
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qimeng Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Nat Mural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Huang J, Lin H, Liu AN, Wu W, Alisi A, Loomba R, Xu C, Xiang W, Shao J, Dong G, Zheng MH, Fu J, Ni Y. Dynamic pattern of postprandial bile acids in paediatric non-alcoholic fatty liver disease. Liver Int 2024; 44:2793-2806. [PMID: 39082260 DOI: 10.1111/liv.16054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Dysregulation of bile acids (BAs), as important signalling molecules in regulating lipid and glucose metabolism, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, static BA profiles during fasting may obscure certain pathogenetic aspects. In this study, we investigate the dynamic alterations of BAs in response to an oral glucose tolerance test (OGTT) among children with NAFLD. METHODS We recruited 230 subjects, including children with overweight/obesity, or complicated with NAFLD, and healthy controls. Serum BAs, 7-hydroxy-4-cholesten-3-one (C4) and fibroblast growth factor 19 (FGF19) were quantified during OGTT. Clinical markers related to liver function, lipid metabolism and glucose metabolism were assessed at baseline or during OGTT. FINDINGS Conjugated BAs increased while unconjugated ones decreased after glucose uptake. Most BAs were blunted in response to glucose in NAFLD (p > .05); only glycine and taurine-conjugated chenodeoxycholic acid (CDCA) and cholic acid (CA) were responsive (p < .05). Primary BAs were significantly increased while secondary BAs were decreased in NAFLD. C4 and FGF19 were significantly increased while their ratio FGF19/C4 ratio was decreased in NAFLD. The dynamic pattern of CDCA and taurine-conjugated hyocholic acid (THCA) species was closely correlated with glucose (correlation coefficient r = .175 and -.233, p < .05), insulin (r = .327 and -.236, p < .05) and c-peptide (r = .318 and -.238, p < .05). Among which, CDCA was positively associated with liver fat content in NAFLD (r = .438, p < .05). Additionally, glycochenodeoxycholic acid (GCDCA), CDCA and THCA were potential biomarkers to discriminate paediatric NAFLD from healthy controls and children with obesity. INTERPRETATION This study provides novel insights into the dynamics of BAs during OGTT in paediatric NAFLD. The observed variations in CDCA and HCA species were associated with liver dysfunction, dyslipidaemia and dysglycaemia, highlighting their potential roles as promising diagnostic and therapeutic targets in NAFLD.
Collapse
Affiliation(s)
- Jiating Huang
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hu Lin
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - A-Na Liu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wei Wu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Cuifang Xu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wenqin Xiang
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Shao
- Department of Child Healthcare, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guanping Dong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Ni
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
5
|
Minetti ET, Hamburg NM, Matsui R. Drivers of cardiovascular disease in metabolic dysfunction-associated steatotic liver disease: the threats of oxidative stress. Front Cardiovasc Med 2024; 11:1469492. [PMID: 39411175 PMCID: PMC11473390 DOI: 10.3389/fcvm.2024.1469492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now known as metabolic-associated steatotic liver disease (MASLD), is the most common liver disease worldwide, with a prevalence of 38%. In these patients, cardiovascular disease (CVD) is the number one cause of mortality rather than liver disease. Liver abnormalities per se due to MASLD contribute to risk factors such as dyslipidemia and obesity and increase CVD incidents. In this review we discuss hepatic pathophysiological changes the liver of MASLD leading to cardiovascular risks, including liver sinusoidal endothelial cells, insulin resistance, and oxidative stress with a focus on glutathione metabolism and function. In an era where there is an increasingly robust recognition of what causes CVD, such as the factors included by the American Heart Association in the recently developed PREVENT equation, the inclusion of liver disease may open doors to how we approach treatment for MASLD patients who are at risk of CVD.
Collapse
Affiliation(s)
| | | | - Reiko Matsui
- Whitaker Cardiovascular Institute, Section of Vascular Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
6
|
Ran S, Zhang J, Tian F, Qian ZM, Wei S, Wang Y, Chen G, Zhang J, Arnold LD, McMillin SE, Lin H. Association of metabolic signatures of air pollution with MASLD: Observational and Mendelian randomization study. J Hepatol 2024:S0168-8278(24)02573-X. [PMID: 39349253 DOI: 10.1016/j.jhep.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND & AIMS Air pollution is a significant public health issue and an important risk factor for metabolic dysfunction-associated steatotic liver disease (MASLD), though the underlying mechanisms of this association are unknown. Herein, we aimed to identify metabolic signatures associated with exposure to ambient air pollution and to explore their associations with the risk of MASLD. METHODS We utilized data from the UK Biobank cohort. Annual mean concentrations of PM2.5, PM10, NO2 and NOx were assessed for each participant using bilinear interpolation. The elastic net regression model was used to identify metabolites associated with four air pollutants and to construct metabolic signatures. Associations between air pollutants, metabolic signatures and MASLD were analyzed using Cox models. Mendelian randomization (MR) analysis was used to examine potential causality. Mediation analysis was employed to examine the role of metabolic signatures in the association between air pollutants and MASLD. RESULTS A total of 244,842 participants from the UK Biobank were included in this analysis. We identified 87, 65, 76, and 71 metabolites as metabolic signatures of PM2.5, PM10, NO2, and NOx, respectively. Metabolic signatures were associated with risk of MASLD, with hazard ratios (HRs) and 95% CIs of 1.10 (1.06-1.14), 1.06 (1.02-1.10), 1.24 (1.20-1.29) and 1.14 (1.10-1.19), respectively. The four pollutants were associated with increased risk of MASLD, with HRs (95% CIs) of 1.03 (1.01-1.05), 1.02 (1.01-1.04), 1.01 (1.01-1.02) and 1.01 (1.00-1.01), respectively. MR analysis indicated an association between PM2.5, NO2 and NOx-related metabolic signatures and MASLD. Metabolic signatures mediated the association of PM2.5, PM10, NO2 and NOx with MASLD. CONCLUSION PM2.5, PM10, NO2 and NOx-related metabolic signatures appear to be associated with MASLD. These signatures mediated the increased risk of MASLD associated with PM2.5, PM10, NO2 and NOx. IMPACT AND IMPLICATIONS Air pollution is a significant public health issue and an important risk factor for metabolic dysfunction-associated steatotic liver disease (MASLD), however, the mechanism by which air pollution affects MASLD remains unclear. Our study used integrated serological metabolic data of 251 metabolites from a large-scale cohort study to demonstrate that metabolic signatures play a crucial role in the elevated risk of MASLD caused by air pollution. These results are relevant to patients and policymakers because they suggest that air pollution-related metabolic signatures are not only potentially associated with MASLD but also involved in mediating the process by which PM2.5, PM10, NO2, and NOx increase the risk of MASLD. Focusing on changes in air pollution-related metabolic signatures may offer a new perspective for preventing air pollution-induced MASLD and serve as protective measures to address this emerging public health challenge.
Collapse
Affiliation(s)
- Shanshan Ran
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingyi Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fei Tian
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, USA
| | - Shengtao Wei
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuhua Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lauren D Arnold
- Department of Epidemiology and Biostatistics College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, USA
| | | | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Björnson E, Samaras D, Levin M, Bäckhed F, Bergström G, Gummesson A. The impact of steatotic liver disease on coronary artery disease through changes in the plasma lipidome. Sci Rep 2024; 14:22307. [PMID: 39333359 PMCID: PMC11436983 DOI: 10.1038/s41598-024-73406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Steatotic liver disease has been shown to associate with cardiovascular disease independently of other risk factors. Lipoproteins have been shown to mediate some of this relationship but there remains unexplained variance. Here we investigate the plasma lipidomic changes associated with liver steatosis and the mediating effect of these lipids on coronary artery disease (CAD). In a population of 2579 Swedish participants of ages 50 to 65 years, lipids were measured by mass spectrometry, liver fat was measured using computed tomography (CT), and CAD status was defined as the presence of coronary artery calcification (CAC score > 0). Lipids associated with liver steatosis and CAD were identified and their mediating effects between the two conditions were investigated. Out of 458 lipids, 284 were found to associate with liver steatosis and 19 of them were found to also associate with CAD. Two fatty acids, docosatrienoate (22:3n6) and 2-hydroxyarachidate, presented the highest mediating effect between steatotic liver disease and CAD. Other mediators were also identified among sphingolipids and glycerophospholipids, although their mediating effects were attenuated when adjusting for circulating lipoproteins. Further research should investigate the role of docosatrienoate (22:3n6) and 2-hydroxyarachidate as mediators between steatotic liver disease and CAD alongside known risk factors.
Collapse
Affiliation(s)
- Elias Björnson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, 413 45, Sweden.
| | - Dimitrios Samaras
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, 413 45, Sweden
| | - Malin Levin
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, 413 45, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, 413 45, Sweden
- Region Västra Götaland, Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, 41345, Sweden
| | - Göran Bergström
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, 413 45, Sweden
- Region Västra Götaland, Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, 41345, Sweden
| | - Anders Gummesson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, 413 45, Sweden
- Region Västra Götaland, Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, 413 45, Sweden
| |
Collapse
|
8
|
Antony F, Brough Z, Orangi M, Al-Seragi M, Aoki H, Babu M, Duong van Hoa F. Sensitive Profiling of Mouse Liver Membrane Proteome Dysregulation Following a High-Fat and Alcohol Diet Treatment. Proteomics 2024:e202300599. [PMID: 39313981 DOI: 10.1002/pmic.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Alcohol consumption and high-fat (HF) diets often coincide in Western society, resulting in synergistic negative effects on liver function. Although studies have analyzed the global protein expression in the context of alcoholic liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), none has offered specific insights on liver dysregulation at the membrane proteome level. Membrane-specific profiling of metabolic and compensatory phenomena is usually overshadowed in conventional proteomic workflows. In this study, we use the Peptidisc method to isolate and compare the membrane protein (MP) content of the liver with its unique biological functions. From mice fed with an HF diet and ethanol in drinking water, we annotate over 1500 liver proteins with half predicted to have at least one transmembrane segment. Among them, we identify 106 integral MPs that are dysregulated compared to the untreated sample. Gene Ontology analysis reveals several dysregulated membrane-associated processes like lipid metabolism, cell adhesion, xenobiotic processing, and mitochondrial membrane formation. Pathways related to cholesterol and bile acid transport are also mutually affected, suggesting an adaptive mechanism to counter the upcoming steatosis of the liver model. Taken together, our Peptidisc-based profiling of the diet-dysregulated liver provides specific insights and hypotheses into the role of the transmembrane proteome in disease development, and flags desirable MPs for therapeutic and diagnostic targeting.
Collapse
Affiliation(s)
- Frank Antony
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zora Brough
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mona Orangi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammed Al-Seragi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Wang B, Zhang F, Qiu H, He Y, Shi H, Zhu Y. Analysis of Serum Bile Acid Profile Characteristics and Identification of New Biomarkers in Lean Metabolic Dysfunction-Associated Fatty Liver Disease Based on LC-MS/MS. Clin Med Insights Endocrinol Diabetes 2024; 17:11795514241282253. [PMID: 39328906 PMCID: PMC11425727 DOI: 10.1177/11795514241282253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Objectives Plasma bile acid (BA) has been widely studied as pathophysiological factors in chronic liver disease. But the changes of plasma BA level in lean metabolic dysfunction-associated fatty liver disease (MAFLD) remains unclear. Here, we clarified the BA metabolic characteristics of lean MAFLD and explored its significance and mechanism as a marker. Methods We employed ultra-performance liquid chromatography tandem mass spectrometry based on BA metabonomics to characterize circulating bile acid in lean MAFLD patients. Explore its significance as serum biomarkers by further cluster analysis, functional enrichment analysis, and serum concentration change analysis of differential BAs. Evaluation of diagnostic value of differential BAs by ROC analysis. Results A total of 65 BAs were detected and 17 BAs were identified which showed different expression in the lean-MAFLD group compared with the normal group. Functional annotation and enrichment analysis of KEGG and HMDB showed that differential BAs were mainly related to bile acid biosynthesis, bile secretion, cholesterol metabolism, and familial hypercholangitis, involving diseases including but not limited to cirrhosis, hepatocellular carcinoma, chronic active hepatitis, colorectal cancer, acute liver failure, and portal vein obstruction. ROC analysis displayed that the 6 BA metabolites (GCDCA-3S, GUDCA-3S, CDCA-3S, NCA, TCDCA, and HDCA) exhibited well differential diagnostic ability in discriminating between lean MAFLD patients and normal individuals with an area under the curve (AUC) ⩾0.85. Conclusions We delineated the characteristics of BA level in patients with lean MAFLD, and identified 6 potential plasma BA biomarkers of lean MAFLD.
Collapse
Affiliation(s)
- Bing Wang
- Department of Clinical Laboratory, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fei Zhang
- Department of Clinical Laboratory, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hong Qiu
- Department of Clinical Laboratory, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yujie He
- Department of Clinical Laboratory, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haotian Shi
- Department of Stomatology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Yuerong Zhu
- Department of Clinical Laboratory, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Bai J, Wang S, Pan H, Shi Z, Zhao M, Yue X, Yang K, Zhang X, Wang W, Liu C, Zhang T. Correlation analysis of dynamic changes of abdominal fat during rapid weight loss after bariatric surgery: A prospective magnetic resonance imaging study. Eur J Radiol 2024; 178:111630. [PMID: 39024662 DOI: 10.1016/j.ejrad.2024.111630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE The factors related to the changes in the liver and abdominal adipose tissue during the rapid weight loss after bariatric surgery remain uncertain. METHODS This study included 44 participants who had undergone sleeve gastrectomy. The study aimed to analyze changes and correlations of body weight (BW), laboratory tests, and magnetic resonance imaging (MRI) indicators of the liver and abdominal adipose tissue conducted before and after bariatric surgery at 1, 3, and 6 months. RESULTS Following a rapid weight loss within 6 months of surgery, there was a concurrent decrease in blood glucose, blood lipids, and fat content of the liver and abdomen and the changes showed a correlation. The change of BW (ΔBW) was positively correlated with the change of hepatic proton density fat fraction (ΔPDFF) in one and three months after surgery and was positively correlated with the change of abdominal visceral fat area (ΔAVFA) in six months after surgery, (P<0.05). In one month after surgery, ΔPDFF was positively correlated with the change of aspartate aminotransferase (ΔAST), change of alanine aminotransferase (ΔALT), and change of triglyceride glucose (ΔTYG) index (P<0.05). ΔPDFF was positively correlated with the change of hepatic native T1 values (P<0.001) and was moderately negatively correlated with the change of hepatic apparent diffusion coefficient (ΔADC) values in three months after surgery (P<0.05). CONCLUSION ΔBW can serve as an indirect indicator for evaluating changes in liver fat fraction at 1 and 3 months after bariatric surgery and indicative of changes in visceral fat 6 months after surgery. ΔPDFF was positively correlated with ΔAST, ΔALT and ΔTYG index in 1 months after surgery.
Collapse
Affiliation(s)
- Jinquan Bai
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Shuting Wang
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Hong Pan
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Zhenzhou Shi
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Min Zhao
- Pharmaceutical Diagnostics, GE Healthcare, No. 1, Tongji South Road, Daxing District, Beijing 100176, China
| | - Xiuzheng Yue
- Philips Healthcare, Tower No. 2, The World Profit Centre, No. 16, Tianze Road, Chaoyang District, Beijing 100600, China
| | - Kai Yang
- Department of Bariatric and Metabolic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Xia Zhang
- Department of Bariatric and Metabolic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Wei Wang
- The MRI Room, The First Affliated Hospital of Harbin Medical University, No. 23, YouZheng Street, NanGang District, Harbin 150001, Heilongjiang, China
| | - Chang Liu
- Department of Bariatric and Metabolic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China.
| | - Tong Zhang
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, YiYuan Street, NanGang District, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
11
|
Wang T, Zhang Y, Jia L, Li Y, Wang L, Zhu Y, Jiang Y, Zhao F, Wang S, Song D. LC-MS/MS-based bioanalysis of branched-chain and aromatic amino acids in human serum. Bioanalysis 2024; 16:693-704. [PMID: 39157863 PMCID: PMC11389736 DOI: 10.1080/17576180.2024.2387467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Aim: Branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) were suggested as potential biomarkers in liver disease. This study aimed to develop and validate a simple and rapid LC-MS/MS method to simultaneously measure serum BCAAs and AAAs levels in patients with liver injury, and further establish reference intervals of Chinese healthy adult populations.Patients & methods: Samples were prepared by a one-step protein precipitation and analysis time was 4 min per run.Results: The validation results showed good linearity (r2 >0.9969), satisfactory accuracy (94.44% - 107.75%) and precision (0.10% - 5.90%).Conclusion: This method proved to be suitable for high-throughput routine clinical use and could be a valuable adjunct diagnosis tool for liver injury and other clinical applications.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of GCP, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, P.R. China
| | - Yalian Zhang
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Luan Jia
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Ying Li
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Lu Wang
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Yanru Zhu
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Yuxin Jiang
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P.R. China
| | - Furong Zhao
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P.R. China
- Liaoning Provincial Key Laboratory of Clinical Oncology Metabonomics, Jinzhou Medical University, Jinzhou, P.R. China
| | - Shuang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, P.R. China
| | - Dan Song
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
- Liaoning Provincial Key Laboratory of Clinical Oncology Metabonomics, Jinzhou Medical University, Jinzhou, P.R. China
| |
Collapse
|
12
|
Wu H, Wei J, Wang S, Chen L, Zhang J, Wang N, Tan X. Dietary pattern modifies the risk of MASLD through metabolomic signature. JHEP Rep 2024; 6:101133. [PMID: 39081700 PMCID: PMC11286987 DOI: 10.1016/j.jhepr.2024.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 08/02/2024] Open
Abstract
Background & Aims The EAT-Lancet Commission in 2019 advocated a plant-centric diet for health and environmental benefits, but its relation to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. We aimed to discover the metabolite profile linked to the EAT-Lancet diet and its association with MASLD risk, considering genetic predisposition. Methods We analyzed data from 105,752 UK Biobank participants with detailed dietary and metabolomic information. We constructed an EAT-Lancet diet index and derived a corresponding metabolomic signature through elastic net regression. A weighted polygenic risk score for MASLD was computed from associated risk variants. The Cox proportional hazards model was employed to estimate hazard ratios (HRs) and 95% CIs for the risk of MASLD (defined as hospital admission or death). Results During a median follow-up period of 11.6 years, 1,138 cases of MASLD were documented. Participants in the highest group for the EAT-Lancet diet index had a multivariable HR of 0.79 (95% CI 0.66-0.95) for MASLD compared to the lowest group. The diet's impact was unaffected by genetic predisposition to MASLD (p = 0.42). Moreover, a robust correlation was found between the metabolomic signature and the EAT-Lancet diet index (Pearson r = 0.29; p <0.0001). Participants in the highest group for the metabolomic signature had a multivariable HR of 0.46 (95% CI 0.37-0.58) for MASLD, in comparison to those in the lowest group. Conclusions Higher intake of the EAT-Lancet diet and its associated metabolite signature are both linked to a reduced risk of MASLD, independently of traditional risk factors. Impact and implications Our analysis leveraging the UK Biobank study showed higher adherence to the EAT-Lancet diet was associated with a reduced risk of metabolic dysfunction-associated steatotic liver disease (MASLD). We identified a unique metabolite signature comprising 81 metabolites associated with the EAT-Lancet diet, potentially underlying the diet's protective mechanism against MASLD. These findings suggest the EAT-Lancet diet may offer substantial protective benefits against MASLD.
Collapse
Affiliation(s)
- Hanzhang Wu
- Department of Big Data in Health Science, Zhejiang University School of Public Health, Hangzhou, China. Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Jiahe Wei
- Department of Big Data in Health Science, Zhejiang University School of Public Health, Hangzhou, China. Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Shuai Wang
- Department of Big Data in Health Science, Zhejiang University School of Public Health, Hangzhou, China. Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihui Zhang
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Tan
- Department of Big Data in Health Science, Zhejiang University School of Public Health, Hangzhou, China. Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Myrmel LS, Fjære E, Han M, Jensen BAH, Rolle-Kampczyk U, Danneskiold-Samsøe NB, Ho QT, Smette A, von Bergen M, Xiao L, Kristiansen K, Madsen L. The Food Sources in Western Diets Modulate Obesity Development, Insulin Sensitivity, and the Plasma and Cecal Metabolome in Mice. Mol Nutr Food Res 2024; 68:e2400246. [PMID: 39107912 DOI: 10.1002/mnfr.202400246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/10/2024] [Indexed: 08/29/2024]
Abstract
SCOPE Dietary constituents modulate development of obesity and type 2 diabetes. The metabolic impact from different food sources in western diets (WD) on obesity development is not fully elucidated. This study aims to identify dietary sources that differentially affect obesity development and the metabolic processes involved. METHODS AND RESULTS Mice were fed isocaloric WDs with protein and fat from different food groups, including egg and dairy, terrestrial meat, game meat, marine, vegetarian, and a mixture of all. This study evaluates development of obesity, glucose tolerance, insulin sensitivity, and plasma and cecal metabolome. WD based on marine or vegetarian food sources protects male mice from obesity development and insulin resistance, whereas meat-based diets promote obesity. The intake of different food sources induces marked differences in the lipid-related plasma metabolome, particularly impacting phosphatidylcholines. Fifty-nine lipid-related plasma metabolites are positively associated with adiposity and a distinct cecal metabolome is found in mice fed a marine diet. CONCLUSION This study demonstrates differences in obesity development between the food groups. Diet specific metabolomic signatures in plasma and cecum associated with adiposity, where a marine based diet modulates the level of plasma and cecal phosphatidylcholines in addition to preventing obesity development.
Collapse
Affiliation(s)
| | - Even Fjære
- Institute of Marine Research, Bergen, 5817, Norway
| | - Mo Han
- BGI Research, Shenzhen, 518083, China
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | | | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, UFZ-Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
| | | | - Quang Tri Ho
- Institute of Marine Research, Bergen, 5817, Norway
| | - Anita Smette
- Institute of Marine Research, Bergen, 5817, Norway
| | - Martin von Bergen
- Department of Molecular Toxicology, UFZ-Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
- Institute of Biochemistry, University of Leipzig, 04103, Leipzig, Germany
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Karsten Kristiansen
- BGI Research, Shenzhen, 518083, China
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Lise Madsen
- Institute of Marine Research, Bergen, 5817, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, 5200, Norway
| |
Collapse
|
14
|
Thakral N, Desalegn H, Diaz LA, Cabrera D, Loomba R, Arrese M, Arab JP. A Precision Medicine Guided Approach to the Utilization of Biomarkers in MASLD. Semin Liver Dis 2024; 44:273-286. [PMID: 38991536 DOI: 10.1055/a-2364-2928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The new nomenclature of metabolic dysfunction-associated steatotic liver disease (MASLD) emphasizes a positive diagnosis based on cardiometabolic risk factors. This definition is not only less stigmatizing but also allows for subclassification and stratification, thereby addressing the heterogeneity of what was historically referred to as nonalcoholic fatty liver disease. The heterogeneity within this spectrum is influenced by several factors which include but are not limited to demographic/dietary factors, the amount of alcohol use and drinking patterns, metabolic status, gut microbiome, genetic predisposition together with epigenetic factors. The net effect of this dynamic and intricate system-level interaction is reflected in the phenotypic presentation of MASLD. Therefore, the application of precision medicine in this scenario aims at complex phenotyping with consequent individual risk prediction, development of individualized preventive strategies, and improvements in the clinical trial designs. In this review, we aim to highlight the importance of precision medicine approaches in MASLD, including the use of novel biomarkers of disease, and its subsequent utilization in future study designs.
Collapse
Affiliation(s)
- Nimish Thakral
- Division of Gastroenterology and Hepatology, University of Kentucky, Lexington, Kentucky
| | - Hailemichael Desalegn
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Luis Antonio Diaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Cabrera
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Escuela de Medicina, Facultad de Ciencias Medicas, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, MASLD Research Center, University of California San Diego, San Diego, California
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
15
|
Léger T, Alilat S, Ferron PJ, Dec L, Bouceba T, Lanceleur R, Huet S, Devriendt-Renault Y, Parinet J, Clément B, Fessard V, Le Hégarat L. Chlordecone-induced hepatotoxicity and fibrosis are mediated by the proteasomal degradation of septins. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135177. [PMID: 39018595 DOI: 10.1016/j.jhazmat.2024.135177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Chlordecone (CLD) is a pesticide persisting in soils and contaminating food webs. CLD is sequestered in the liver and poorly metabolized into chlordecol (CLDOH). In vitro liver cell models were used to investigate the fate and mechanistic effects of CLD and CLDOH using multiomics. A 3D-cell model was used to investigate whether CLD and CLDOH can affect susceptibility to the metabolic dysfunction-associated steatotic liver disease (MASLD). Hepatocytes were more sensitive to CLD than CLDOH. CLDOH was intensively metabolized into a glucuronide conjugate, whereas CLD was sequestered. CLD but not CLDOH induced a depletion of Septin-2,- 7,- 9,- 10,- 11 due to proteasomal degradation. Septin binding with CLD and CLDOH was confirmed by surface plasmon resonance. CLD disrupted lipid droplet size and increased saturated long-chain dicarboxylic acid production by inhibiting stearoyl-CoA desaturase (SCD) abundance. Neither CLD nor CLDOH induced steatosis, but CLD induced fibrosis in the 3D model of MASLD. To conclude, CLD hepatoxicity is specifically driven by the degradation of septins. CLDOH, was too rapidly metabolized to induce septin degradation. We show that the conversion of CLD to CLDOH reduced hepatotoxicity and fibrosis in liver organoids. This suggests that protective strategies could be explored to reduce the hepatotoxicity of CLD.
Collapse
Affiliation(s)
- Thibaut Léger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France.
| | - Sarah Alilat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Pierre-Jean Ferron
- INSERM, University of Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR_A 1317, UMR_S 1241, Previtox Network, 35000 Rennes, France
| | - Léonie Dec
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Tahar Bouceba
- Sorbonne University, CNRS, Institut de Biologie Paris-Seine (IBPS), Protein Engineering Platform, Molecular Interaction Service, Paris, France
| | - Rachelle Lanceleur
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Sylvie Huet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Yoann Devriendt-Renault
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Pesticides and Marine Biotoxins (PBM) unit, Maison-Alfort Laboratory, 94701 Maison-Alfort CEDEX, France
| | - Julien Parinet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Pesticides and Marine Biotoxins (PBM) unit, Maison-Alfort Laboratory, 94701 Maison-Alfort CEDEX, France
| | - Bruno Clément
- INSERM, University of Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR_A 1317, UMR_S 1241, Previtox Network, 35000 Rennes, France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Ludovic Le Hégarat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| |
Collapse
|
16
|
Hirata A, Harada S, Iida M, Kurihara A, Fukai K, Kuwabara K, Kato S, Matsumoto M, Sata M, Miyagawa N, Toki R, Edagawa S, Sugiyama D, Sato A, Hirayama A, Sugimoto M, Soga T, Tomita M, Okamura T, Takebayashi T. Association of Nonalcoholic Fatty Liver Disease with Arterial Stiffness and its Metabolomic Profiling in Japanese Community-Dwellers. J Atheroscler Thromb 2024; 31:1031-1047. [PMID: 38311416 PMCID: PMC11224684 DOI: 10.5551/jat.64616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024] Open
Abstract
AIMS Nonalcoholic fatty liver disease (NAFLD) is known to be associated with atherosclerosis. This study focused on upstream changes in the process by which NAFLD leads to atherosclerosis. The study aimed to confirm the association between NAFLD and the cardio-ankle vascular index (CAVI), an indicator of subclinical atherosclerosis, and explore metabolites involved in both by assessing 94 plasma polar metabolites. METHODS A total of 928 Japanese community-dwellers (306 men and 622 women) were included in this study. The association between NAFLD and CAVI was examined using a multivariable regression model adjusted for confounders. Metabolites commonly associated with NAFLD and CAVI were investigated using linear mixed-effects models in which batch numbers of metabolite measurements were used as a random-effects variable, and false discovery rate-adjusted p-values were calculated. To determine the extent to which these metabolites mediated the association between NAFLD and CAVI, mediation analysis was conducted. RESULTS NAFLD was positively associated with CAVI (coefficients [95% Confidence intervals (CI)]=0.23 [0.09-0.37]; p=0.001). A total of 10 metabolites were involved in NAFLD and CAVI, namely, branched-chain amino acids (BCAAs; valine, leucine, and isoleucine), aromatic amino acids (AAAs; tyrosine and tryptophan), alanine, proline, glutamic acid, glycerophosphorylcholine, and 4-methyl-2-oxopentanoate. Mediation analysis showed that BCAAs mediated more than 20% of the total effect in the association between NAFLD and CAVI. CONCLUSIONS NAFLD was associated with a marker of atherosclerosis, and several metabolites related to insulin resistance, including BCAAs and AAAs, could be involved in the process by which NAFLD leads to atherosclerosis.
Collapse
Affiliation(s)
- Aya Hirata
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Sei Harada
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Miho Iida
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Ayako Kurihara
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Kota Fukai
- Department of Preventive Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Kazuyo Kuwabara
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Suzuka Kato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Minako Matsumoto
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Mizuki Sata
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Naoko Miyagawa
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Ryota Toki
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Shun Edagawa
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Sugiyama
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
- Faculty of Nursing and Medical Care, Keio University, Kanagawa, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Faculty of Environment and Information Studies, Keio University, Kanagawa, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Faculty of Environment and Information Studies, Keio University, Kanagawa, Japan
| | - Tomonori Okamura
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Toru Takebayashi
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| |
Collapse
|
17
|
Semertzidis A, Mouskeftara T, Gika H, Pousinis P, Makedou K, Goulas A, Kountouras J, Polyzos SA. Effects of Combined Low-Dose Spironolactone Plus Vitamin E versus Vitamin E Monotherapy on Lipidomic Profile in Non-Alcoholic Fatty Liver Disease: A Post Hoc Analysis of a Randomized Controlled Trial. J Clin Med 2024; 13:3798. [PMID: 38999363 PMCID: PMC11242225 DOI: 10.3390/jcm13133798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Background/Objectives: Lipid dysmetabolism seems to contribute to the development and progression of nonalcoholic fatty liver disease (NAFLD). Our aim was to compare serum lipidomic profile between patients with NAFLD having received monotherapy with vitamin E (400 IU/d) and those having received combination therapy with vitamin E (400 IU/d) and low-dose spironolactone (25 mg/d) for 52 weeks. Methods: This was a post hoc study of a randomized controlled trial (NCT01147523). Serum lipidomic analysis was performed in vitamin E monotherapy group (n = 15) and spironolactone plus vitamin E combination therapy group (n = 12). We employed an untargeted liquid chromatography-mass spectrometry lipid profiling approach in positive and negative ionization mode. Results: Univariate analysis revealed 36 lipid molecules statistically different between groups in positive mode and seven molecules in negative mode. Multivariate analysis in negative mode identified six lipid molecules that remained robustly different between groups. After adjustment for potential confounders, including gender, omega-3 supplementation, leptin concentration and homeostasis model assessment-insulin resistance (HOMA-IR), four lipid molecules remained significant between groups: FA 20:5, SM 34:2;O2, SM 42:3;O2 and CE 22:6, all being higher in the combination treatment group. Conclusions: The combination of spironolactone with vitamin E led to higher circulating levels of four lipid molecules than vitamin E monotherapy, after adjustment for potential confounders. Owing to very limited relevant data, we could not support that these changes in lipid molecules may be beneficial or not for the progression of NAFLD. Thus, mechanistic studies are warranted to clarify the potential clinical significance of these findings.
Collapse
Affiliation(s)
- Anastasios Semertzidis
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Thomai Mouskeftara
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- BIOMIC AUTh, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 570 01 Thessaloniki, Greece
| | - Petros Pousinis
- BIOMIC AUTh, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 570 01 Thessaloniki, Greece
| | - Kali Makedou
- Laboratory of Biochemistry, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Antonis Goulas
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Jannis Kountouras
- Second Medical Clinic, Ippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, 546 42 Thessaloniki, Greece
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
18
|
Mouskeftara T, Kalopitas G, Liapikos T, Arvanitakis K, Germanidis G, Gika H. Predicting Non-Alcoholic Steatohepatitis: A Lipidomics-Driven Machine Learning Approach. Int J Mol Sci 2024; 25:5965. [PMID: 38892150 PMCID: PMC11172949 DOI: 10.3390/ijms25115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), nowadays the most prevalent chronic liver disease in Western countries, is characterized by a variable phenotype ranging from steatosis to nonalcoholic steatohepatitis (NASH). Intracellular lipid accumulation is considered the hallmark of NAFLD and is associated with lipotoxicity and inflammation, as well as increased oxidative stress levels. In this study, a lipidomic approach was used to investigate the plasma lipidome of 12 NASH patients, 10 Nonalcoholic Fatty Liver (NAFL) patients, and 15 healthy controls, revealing significant alterations in lipid classes, such as glycerolipids and glycerophospholipids, as well as fatty acid compositions in the context of steatosis and steatohepatitis. A machine learning XGBoost algorithm identified a panel of 15 plasma biomarkers, including HOMA-IR, BMI, platelets count, LDL-c, ferritin, AST, FA 12:0, FA 18:3 ω3, FA 20:4 ω6/FA 20:5 ω3, CAR 4:0, LPC 20:4, LPC O-16:1, LPE 18:0, DG 18:1_18:2, and CE 20:4 for predicting steatohepatitis. This research offers insights into the connection between imbalanced lipid metabolism and the formation and progression of NAFL D, while also supporting previous research findings. Future studies on lipid metabolism could lead to new therapeutic approaches and enhanced risk assessment methods, as the shift from isolated steatosis to NASH is currently poorly understood.
Collapse
Affiliation(s)
- Thomai Mouskeftara
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd., 57001 Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theodoros Liapikos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd., 57001 Thessaloniki, Greece
| |
Collapse
|
19
|
Boutari C, Stefanakis K, Simati S, Guatibonza-García V, Valenzuela-Vallejo L, Anastasiou IA, Connelly MA, Kokkinos A, Mantzoros CS. Circulating total and H-specific GDF15 levels are elevated in subjects with MASLD but not in hyperlipidemic but otherwise metabolically healthy subjects with obesity. Cardiovasc Diabetol 2024; 23:174. [PMID: 38762719 PMCID: PMC11102634 DOI: 10.1186/s12933-024-02264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Growth differentiation factor 15 (GDF15) is a mitokine, the role of which, total or H-specific, in modulating energy metabolism and homeostasis in obesity-related diseases, such as metabolic dysfunction associated steatotic liver disease (MASLD), has not been fully elucidated in adult humans. We aimed to investigate the fasting and stimulated levels of GDF15, total and H-specific, glucose-dependent insulinotropic polypeptide (GIP) and C-peptide, in two physiology interventional studies: one focusing on obesity, and the other on MASLD. METHODS Study 1 investigated individuals with normal weight or with obesity, undergoing a 3-h mixed meal test (MMT); and study 2, examined adults with MASLD and controls undergoing a 120-min oral glucose tolerance test (OGTT). Exploratory correlations of total and H-specific GDF15 with clinical, hormonal and metabolomic/lipidomic parameters were also performed. RESULTS In study 1, 15 individuals were included per weight group. Fasting and postprandial total and H-specific GDF15 were similar between groups, whereas GIP was markedly higher in leaner individuals and was upregulated following a MMT. Baseline and postprandial C-peptide were markedly elevated in people with obesity compared with lean subjects. GIP was higher in leaner individuals and was upregulated after a MMT, while C-peptide and its overall AUC after a MMT was markedly elevated in people with obesity compared with lean subjects. In study 2, 27 individuals were evaluated. Fasting total GDF15 was similar, but postprandial total GDF15 levels were significantly higher in MASLD patients compared to controls. GIP and C-peptide remained unaffected. The postprandial course of GDF15 was clustered among those of triglycerides and molecules of the alanine cycle, was robustly elevated under MASLD, and constituted the most notable differentiating molecule between healthy and MASLD status. We also present robust positive correlations of the incremental area under the curve of total and H-specific GDF15 with a plethora of lipid subspecies, which remained significant after adjusting for confounders. CONCLUSION Serum GDF15 levels do not differ in relation to weight status in hyperlipidemic but otherwise metabolically healthy individuals. In contrast, GDF15 levels are significantly increased in MASLD patients at baseline and they remain significantly higher compared to healthy participants during OGTT, pointing to a role for GDF15 as a mitokine with important roles in the pathophysiology and possibly therapeutics of MASLD. Trial registration ClinicalTrials.gov NCT03986684, NCT04430946.
Collapse
Affiliation(s)
- Chrysoula Boutari
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, SL418, Boston, MA, 02215, USA
| | - Konstantinos Stefanakis
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, SL418, Boston, MA, 02215, USA
| | - Stamatia Simati
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Valentina Guatibonza-García
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, SL418, Boston, MA, 02215, USA
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, SL418, Boston, MA, 02215, USA
| | - Ioanna A Anastasiou
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | | | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Christos S Mantzoros
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, SL418, Boston, MA, 02215, USA.
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, 02218, USA.
- Department of Medicine, Boston VA Healthcare System, Boston, MA, 02130, USA.
| |
Collapse
|
20
|
Cheng Z, Chen Y, Schnabl B, Chu H, Yang L. Bile acid and nonalcoholic steatohepatitis: Molecular insights and therapeutic targets. J Adv Res 2024; 59:173-187. [PMID: 37356804 PMCID: PMC11081971 DOI: 10.1016/j.jare.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) has been the second most common cause of liver transplantation in the United States. To date, NASH pathogenesis has not been fully elucidated but is multifactorial, involving insulin resistance, obesity, metabolic disorders, diet, dysbiosis, and gene polymorphism. An effective and approved therapy for NASH has also not been established. Bile acid is long known to have physiological detergent function in emulsifying and absorbing lipids and lipid-soluble molecules within the intestinal lumen. With more and more in-depth understandings of bile acid, it has been deemed to be a pivotal signaling molecule, which is capable of regulating lipid and glucose metabolism, liver inflammation, and fibrosis. In recent years, a plethora of studies have delineated that disrupted bile acid homeostasis is intimately correlated with NASH disease severity. AIMS The review aims to clarify the role of bile acid in hepatic lipid and glucose metabolism, liver inflammation, as well as liver fibrosis, and discusses the safety and efficacy of some pharmacological agents targeting bile acid and its associated pathways for NASH. KEY SCIENTIFIC CONCEPTS OF REVIEW Bile acid has a salutary effect on hepatic metabolic disorders, which can ameliorate liver fat accumulation and insulin resistance mainly through activating Takeda G-protein coupled receptor 5 and farnesoid X receptor. Moreover, bile acid also exerts anti-inflammation and anti-fibrosis properties. Furthermore, bile acid has great potential in nonalcoholic liver disease stratification and treatment of NASH.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Yixiong Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
21
|
Tinkov AA, Korobeinikova TV, Morozova GD, Aschner M, Mak DV, Santamaria A, Rocha JBT, Sotnikova TI, Tazina SI, Skalny AV. Association between serum trace element, mineral, and amino acid levels with non-alcoholic fatty liver disease (NAFLD) in adult women. J Trace Elem Med Biol 2024; 83:127397. [PMID: 38290269 DOI: 10.1016/j.jtemb.2024.127397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024]
Abstract
The objective of the present study is assessment of serum trace element and amino acid levels in non-alcoholic fatty liver disease (NAFLD) patients with subsequent evaluation of its independent associations with markers of liver injury and metabolic risk. MATERIALS AND METHODS 140 women aged 20-90 years old with diagnosed NAFLD and 140 healthy women with a respective age range were enrolled in the current study. Analysis of serum and hair levels of trace elements and minerals was performed with inductively-coupled plasma mass-spectrometry (ICP-MS). Serum amino acid concentrations were evaluated by high-pressure liquid chromatography (HPLC) with UV-detection. In addition, routine biochemical parameters including liver damage markers, alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT), were assessed spectrophotometrically. RESULTS The findings demonstrated that patients with NAFLD were characterized by higher ALT, GGT, lactate dehydrogenase (LDH) and cholinesterase (CE) activity, as well as increased levels of total cholesterol, low-density lipoprotein cholesterol, triglycerides, and uric acid. NAFLD patients were characterized by reduced serum and hair Co, Se, and Zn levels, as well as hair Cu content and serum Mn concentrations in comparison to controls. Circulating Ala, Cit, Glu, Gly, Ile, Leu, Phe, and Tyr levels in NAFLD patients exceeded those in the control group. Multiple linear regression demonstrated that serum and hair trace element levels were significantly associated with circulating amino acid levels after adjustment for age, BMI, and metabolic parameters including liver damage markers. CONCLUSION It is proposed that altered trace element handling may contribute to NAFLD pathogenesis through modulation of amino acid metabolism.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia.
| | - Tatiana V Korobeinikova
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Galina D Morozova
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10461 Bronx, NY, USA
| | - Daria V Mak
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Abel Santamaria
- Faculty of Sciencies, National Autonomous University of Mexico, 04510 Mexico City, Mexico
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria 97105-900 RS, Brazil
| | - Tatiana I Sotnikova
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Serafima Ia Tazina
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
22
|
Aizenshtadt A, Wang C, Abadpour S, Menezes PD, Wilhelmsen I, Dalmao‐Fernandez A, Stokowiec J, Golovin A, Johnsen M, Combriat TMD, Røberg‐Larsen H, Gadegaard N, Scholz H, Busek M, Krauss SJK. Pump-Less, Recirculating Organ-on-Chip (rOoC) Platform to Model the Metabolic Crosstalk between Islets and Liver. Adv Healthc Mater 2024; 13:e2303785. [PMID: 38221504 PMCID: PMC11468483 DOI: 10.1002/adhm.202303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Type 2 diabetes mellitus (T2DM), obesity, and metabolic dysfunction-associated steatotic liver disease (MASLD) are epidemiologically correlated disorders with a worldwide growing prevalence. While the mechanisms leading to the onset and development of these conditions are not fully understood, predictive tissue representations for studying the coordinated interactions between central organs that regulate energy metabolism, particularly the liver and pancreatic islets, are needed. Here, a dual pump-less recirculating organ-on-chip platform that combines human pluripotent stem cell (sc)-derived sc-liver and sc-islet organoids is presented. The platform reproduces key aspects of the metabolic cross-talk between both organs, including glucose levels and selected hormones, and supports the viability and functionality of both sc-islet and sc-liver organoids while preserving a reduced release of pro-inflammatory cytokines. In a model of metabolic disruption in response to treatment with high lipids and fructose, sc-liver organoids exhibit hallmarks of steatosis and insulin resistance, while sc-islets produce pro-inflammatory cytokines on-chip. Finally, the platform reproduces known effects of anti-diabetic drugs on-chip. Taken together, the platform provides a basis for functional studies of obesity, T2DM, and MASLD on-chip, as well as for testing potential therapeutic interventions.
Collapse
Affiliation(s)
- Aleksandra Aizenshtadt
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Chencheng Wang
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Shadab Abadpour
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
- Institute for Surgical ResearchOslo University HospitalOsloNorway
| | - Pedro Duarte Menezes
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Ingrid Wilhelmsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Andrea Dalmao‐Fernandez
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Department of PharmacyFaculty of Mathematics and Natural SciencesUniversity of OsloP.O. Box 1083Oslo0316Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Alexey Golovin
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mads Johnsen
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Thomas M. D. Combriat
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
| | - Hanne Røberg‐Larsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Nikolaj Gadegaard
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Hanne Scholz
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mathias Busek
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Stefan J. K. Krauss
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| |
Collapse
|
23
|
Chen ZF, Zhang L, Fei SK. Role of lactic acid and lactylation in nonalcoholic fatty liver disease. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:243-247. [DOI: 10.11569/wcjd.v32.i4.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
|
24
|
Baciu C, Ghosh S, Naimimohasses S, Rahmani A, Pasini E, Naghibzadeh M, Azhie A, Bhat M. Harnessing Metabolites as Serum Biomarkers for Liver Graft Pathology Prediction Using Machine Learning. Metabolites 2024; 14:254. [PMID: 38786731 PMCID: PMC11122840 DOI: 10.3390/metabo14050254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Graft injury affects over 50% of liver transplant (LT) recipients, but non-invasive biomarkers to diagnose and guide treatment are currently limited. We aimed to develop a biomarker of graft injury by integrating serum metabolomic profiles with clinical variables. Serum from 55 LT recipients with biopsy confirmed metabolic dysfunction-associated steatohepatitis (MASH), T-cell mediated rejection (TCMR) and biliary complications was collected and processed using a combination of LC-MS/MS assay. The metabolomic profiles were integrated with clinical information using a multi-class Machine Learning (ML) classifier. The model's efficacy was assessed through the Out-of-Bag (OOB) error estimate evaluation. Our ML model yielded an overall accuracy of 79.66% with an OOB estimate of the error rate at 19.75%. The model exhibited a maximum ability to distinguish MASH, with an OOB error estimate of 7.4% compared to 22.2% for biliary and 29.6% for TCMR. The metabolites serine and serotonin emerged as the topmost predictors. When predicting binary outcomes using three models: Biliary (biliary vs. rest), MASH (MASH vs. rest) and TCMR (TCMR vs. rest); the AUCs were 0.882, 0.972 and 0.896, respectively. Our ML tool integrating serum metabolites with clinical variables shows promise as a non-invasive, multi-class serum biomarker of graft pathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2C4, Canada; (C.B.); (S.G.); (S.N.); (A.R.); (E.P.); (M.N.); (A.A.)
| |
Collapse
|
25
|
Fotakis C, Amanatidou AI, Kafyra M, Andreou V, Kalafati IP, Zervou M, Dedoussis GV. Circulatory Metabolite Ratios as Indicators of Lifestyle Risk Factors Based on a Greek NAFLD Case-Control Study. Nutrients 2024; 16:1235. [PMID: 38674925 PMCID: PMC11055137 DOI: 10.3390/nu16081235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
An ensemble of confounding factors, such as an unhealthy diet, obesity, physical inactivity, and smoking, have been linked to a lifestyle that increases one's susceptibility to chronic diseases and early mortality. The circulatory metabolome may provide a rational means of pinpointing the advent of metabolite variations that reflect an adherence to a lifestyle and are associated with the occurrence of chronic diseases. Data related to four major modifiable lifestyle factors, including adherence to the Mediterranean diet (estimated on MedDietScore), body mass index (BMI), smoking, and physical activity level (PAL), were used to create the lifestyle risk score (LS). The LS was further categorized into four groups, where a higher score group indicates a less healthy lifestyle. Drawing on this, we analyzed 223 NMR serum spectra, 89 MASLD patients and 134 controls; these were coupled to chemometrics to identify "key" features and understand the biological processes involved in specific lifestyles. The unsupervised analysis verified that lifestyle was the factor influencing the samples' differentiation, while the supervised analysis highlighted metabolic signatures. Τhe metabolic ratios of alanine/formic acid and leucine/formic acid, with AUROC > 0.8, may constitute discriminant indexes of lifestyle. On these grounds, this research contributed to understanding the impact of lifestyle on the circulatory metabolome and highlighted "prudent lifestyle" biomarkers.
Collapse
Affiliation(s)
- Charalambos Fotakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (C.F.); (V.A.)
| | - Athina I. Amanatidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (A.I.A.); (M.K.); (I.P.K.)
| | - Maria Kafyra
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (A.I.A.); (M.K.); (I.P.K.)
| | - Vasiliki Andreou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (C.F.); (V.A.)
| | - Ioanna Panagiota Kalafati
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (A.I.A.); (M.K.); (I.P.K.)
| | - Maria Zervou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (C.F.); (V.A.)
| | - George V. Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (A.I.A.); (M.K.); (I.P.K.)
| |
Collapse
|
26
|
Zazueta A, Valenzuela-Pérez L, Ortiz-López N, Pinto-León A, Torres V, Guiñez D, Aliaga N, Merino P, Sandoval A, Covarrubias N, Pérez de Arce E, Cattaneo M, Urzúa A, Roblero JP, Poniachik J, Gotteland M, Magne F, Beltrán CJ. Alteration of Gut Microbiota Composition in the Progression of Liver Damage in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Int J Mol Sci 2024; 25:4387. [PMID: 38673972 PMCID: PMC11050088 DOI: 10.3390/ijms25084387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a complex disorder whose prevalence is rapidly growing in South America. The disturbances in the microbiota-gut-liver axis impact the liver damaging processes toward fibrosis. Gut microbiota status is shaped by dietary and lifestyle factors, depending on geographic location. We aimed to identify microbial signatures in a group of Chilean MASLD patients. Forty subjects were recruited, including healthy controls (HCs), overweight/obese subjects (Ow/Ob), patients with MASLD without fibrosis (MASLD/F-), and MASLD with fibrosis (MASLD/F+). Both MASLD and fibrosis were detected through elastography and/or biopsy, and fecal microbiota were analyzed through deep sequencing. Despite no differences in α- and β-diversity among all groups, a higher abundance of Bilophila and a lower presence of Defluviitaleaceae, Lachnospiraceae ND3007, and Coprobacter was found in MASLD/F- and MASLD/F+, compared to HC. Ruminococcaceae UCG-013 and Sellimonas were more abundant in MASLD/F+ than in Ow/Ob; both significantly differed between MASLD/F- and MASLD/F+, compared to HC. Significant positive correlations were observed between liver stiffness and Bifidobacterium, Prevotella, Sarcina, and Acidaminococcus abundance. Our results show that MASLD is associated with changes in bacterial taxa that are known to be involved in bile acid metabolism and SCFA production, with some of them being more specifically linked to fibrosis.
Collapse
Affiliation(s)
- Alejandra Zazueta
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Lucía Valenzuela-Pérez
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Nicolás Ortiz-López
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Araceli Pinto-León
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Verónica Torres
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Danette Guiñez
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Nicolás Aliaga
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Pablo Merino
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Alexandra Sandoval
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Natalia Covarrubias
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Edith Pérez de Arce
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Máximo Cattaneo
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Alvaro Urzúa
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Juan Pablo Roblero
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Jaime Poniachik
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Martín Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Fabien Magne
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Caroll Jenny Beltrán
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| |
Collapse
|
27
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
28
|
Vairetti M, Colucci G, Ferrigno A. Innovative Molecular Targets and Therapeutic Approaches in Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis (NAFLD/NASH) 3.0. Int J Mol Sci 2024; 25:4010. [PMID: 38612820 PMCID: PMC11012541 DOI: 10.3390/ijms25074010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of this Special Issue is to provide an update on the diagnosis and treatment of nonalcoholic fatty liver disease (NAFLD), which is the most prevalent liver disease worldwide; however, there are still no specific treatment agents [...].
Collapse
Affiliation(s)
- Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giuseppe Colucci
- Division of Gastroenterology and Hepatology, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy;
| | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
29
|
Wang J, Li J, Fu Y, Zhu Y, Lin L, Li Y. Research progress, challenges and perspectives of phospholipids metabolism in the LXR‑LPCAT3 signaling pathway and its relation to NAFLD (Review). Int J Mol Med 2024; 53:32. [PMID: 38362962 PMCID: PMC10903931 DOI: 10.3892/ijmm.2024.5356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Phospholipids (PLs) are principle constituents of biofilms, with their fatty acyl chain composition significantly impacting the biophysical properties of membranes, thereby influencing biological processes. Recent studies have elucidated that fatty acyl chains, under the enzymatic action of lyso‑phosphatidyl‑choline acyltransferases (LPCATs), expedite incorporation into the sn‑2 site of phosphatidyl‑choline (PC), profoundly affecting pathophysiology. Accumulating evidence suggests that alterations in LPCAT activity are implicated in various diseases, including non‑alcoholic fatty liver disease (NAFLD), hepatitis C, atherosclerosis and cancer. Specifically, LPCAT3 is instrumental in maintaining systemic lipid homeostasis through its roles in hepatic lipogenesis, intestinal lipid absorption and lipoprotein secretion. The liver X receptor (LXR), pivotal in lipid homeostasis, modulates cholesterol, fatty acid (FA) and PL metabolism. LXR's capacity to modify PL composition in response to cellular sterol fluctuations is a vital mechanism for protecting biofilms against lipid stress. Concurrently, LXR activation enhances LPCAT3 expression on cell membranes and elevates polyunsaturated PL levels. This activation can ameliorate saturated free FA effects in vitro or endoplasmic reticulum stress in vivo due to lipid accumulation in hepatic cells. Pharmacological interventions targeting LXR, LPCAT and membrane PL components could offer novel therapeutic directions for NAFLD management. The present review primarily focused on recent advancements in understanding the LPCAT3 signaling pathway's role in lipid metabolism related to NAFLD, aiming to identify new treatment targets for the disease.
Collapse
Affiliation(s)
- Junmin Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jiacheng Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yugang Fu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yingying Zhu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Liubing Lin
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
30
|
Gopoju R, Wang J, Pan X, Hu S, Lin L, Clark A, Xu Y, Yin L, Wang X, Zhang Y. Hepatic FOXA3 overexpression prevents Western diet-induced obesity and MASH through TGR5. J Lipid Res 2024; 65:100527. [PMID: 38447926 PMCID: PMC10999823 DOI: 10.1016/j.jlr.2024.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Forkhead transcription factor 3 (FOXA3) has been shown to regulate metabolism and development. Hepatic FOXA3 is reduced in obesity and fatty liver disease. However, the role of hepatic FOXA3 in regulating obesity or steatohepatitis remains to be investigated. In this work, C57BL/6 mice were i.v. injected with AAV8-ALB-FOXA3 or the control virus. The mice were then fed a chow or Western diet for 16 weeks. The role of hepatic FOXA3 in energy metabolism and steatohepatitis was investigated. Plasma bile acid composition and the role of Takeda G protein-coupled receptor 5 (TGR5) in mediating the metabolic effects of FOXA3 were determined. Overexpression of hepatic FOXA3 reduced hepatic steatosis in chow-fed mice and attenuated Western diet-induced obesity and steatohepatitis. FOXA3 induced lipolysis and inhibited hepatic genes involved in bile acid uptake, resulting in elevated plasma bile acids. The beneficial effects of hepatic FOXA3 overexpression on Western diet-induced obesity and steatohepatitis were abolished in Tgr5-/- mice. Our data demonstrate that overexpression of hepatic FOXA3 prevents Western diet-induced obesity and steatohepatitis via activation of TGR5.
Collapse
Affiliation(s)
- Raja Gopoju
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jiayou Wang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Xiaoli Pan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Li Lin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Alyssa Clark
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
31
|
Zhang J, Wang X, Peng Y, Wei J, Luo Y, Luan F, Li H, Zhou Y, Wang C, Yu K. Combined metabolomic and proteomic analysis of sepsis related acute liver injury and its pathogenesis research. Int Immunopharmacol 2024; 130:111666. [PMID: 38412671 DOI: 10.1016/j.intimp.2024.111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Sepsis-induced acute liver injury is common in patients in intensive care units. However, the exact mechanism of this condition remains unclear. The purpose of this study was to investigate the roles and mechanisms of proteins and metabolites in the liver tissue of mice after sepsis and elucidate the molecular biological mechanisms of sepsis-related liver injury. METHODS First, a lipopolysaccharide (LPS)-induced sepsis mouse model was established. Then, according to alanine aminotransferase (ALT) and aspartate aminotransferase (AST) detection in mouse serum and liver histopathological examination (HE) staining, the septic mice were divided into two groups: acute liver injury after sepsis and nonacute liver injury after sepsis. Metabolomics and proteomic analyses were performed on the liver tissues of the two groups of mice to identify significantly different metabolites and proteins. The metabolomics and proteomics results were further analysed to identify the biological indicators and pathogenesis related to the occurrence and development of sepsis-related acute liver injury at the protein and metabolite levels. RESULTS A total of 14 differentially expressed proteins and 46 differentially expressed metabolites were identified. Recombinant Erythrocyte Membrane Protein Band 4.2 (Epb42) and adenosine diphosphate (ADP) may be the key proteins and metabolites responsible for sepsis-related acute liver injury, according to the correlation analysis of proteomics and metabolomics. The expression of the differential protein Epb42 was further verified by western blot (WB) detection. CONCLUSIONS Our study suggests that the differential protein Epb42 may be key proteins causing sepsis-associated acute liver injury, providing new and valuable information on the possible mechanism of sepsis-associated acute liver injury.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China; Department of Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 1 Jiaozhou Road, Shibei District, Qingdao 266011, Shandong, China
| | - Xibo Wang
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Yahui Peng
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Jieling Wei
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Yinghao Luo
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Feiyu Luan
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Hongxu Li
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Yang Zhou
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Changsong Wang
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China.
| | - Kaijiang Yu
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
32
|
Victor Oluwaloseyi A, Aduragbemi Noah O, Lydia Oluwatoyin A, Gaffar Y, Moses O, Oyedayo Phillips A, Comfort Onaolapo M, Sylvester Olateju B, Ademola Ayodele A, Mega Obukohwo O, Ayodeji Folorunsho A. Metabolomics of male infertility. Clin Chim Acta 2024; 556:117850. [PMID: 38431200 DOI: 10.1016/j.cca.2024.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
This review explores the use of metabolomics in male infertility. Metabolomics, an evolving omics technology that targets the products of cellular metabolism, is valuable for elucidating underlying pathophysiology of many disorders including male infertility. The identification of reliable biomarkers is essential for accurate diagnosis and for developing precision therapeutics for those afflicted by reproductive dysfunction. Unfortunately, despite significant progress to date, the intricate relationships between these metabolic pathways and male infertility remain elusive. It is clear, however, that additional research is required to more fully characterize the role of metabolomics in this disorder and in the potential development of targeted therapies for precision medicine.
Collapse
Affiliation(s)
- Amos Victor Oluwaloseyi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | - Odeyemi Aduragbemi Noah
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Ajayi Lydia Oluwatoyin
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Yusuff Gaffar
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olotu Moses
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | - Moyinoluwa Comfort Onaolapo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | | | - Adelakun Ademola Ayodele
- Department of Medical Laboratory Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | - Ajayi Ayodeji Folorunsho
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Adeleke University, Ede, Osun State, Nigeria.
| |
Collapse
|
33
|
Huang C, Yong Q, Lu Y, Wang L, Zheng Y, Zhao L, Li P, Peng C, Jia W, Liu F. Gentiopicroside improves non-alcoholic steatohepatitis by activating PPARα and suppressing HIF1. Front Pharmacol 2024; 15:1335814. [PMID: 38515850 PMCID: PMC10956515 DOI: 10.3389/fphar.2024.1335814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024] Open
Abstract
Gentiopicroside (GPS) is a highly water-soluble small-molecule drug and the main bioactive secoiridoid glycoside of Gentiana scabra that has been shown to have hepatoprotective effects against non-alcoholic steatohepatitis (NASH), a form of non-alcoholic fatty liver disease (NAFLD) that can progress to cirrhosis and hepatocellular carcinoma. However, the effects of GPS on NASH and the underlying mechanisms remain obscure. Firstly, a high-fat, high-cholesterol (HFHC) diet and a high-sugar solution containing d-fructose and d-glucose were used to establish a non-alcoholic steatohepatitis (NASH) mice model. Secondly, we confirmed GPS supplementation improve metabolic abnormalities and reduce inflammation in NASH mice induced by HFHC and high-sugar solution. Then we used metabolomics to investigate the mechanisms of GPS in NASH mice. Metabolomics analysis showed GPS may work through the Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathway and glycine, serine, and threonine metabolism. Functional metabolites restored by GPS included serine, glycine, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Western blot and qRT-PCR analysis confirmed GPS improve NASH by regulating PPARα and Hypoxia-Inducible Factor-1α (HIF-1α) signaling pathways. In vitro, studies further demonstrated EPA and DHA enhance fatty acid oxidation through the PPARα pathway, while serine and glycine inhibit oxidative stress through the HIF-1α pathway in palmitic acid-stimulated HepG2 cells. Our results suggest GPS's anti-inflammatory and anti-steatosis effects in NASH progression are related to the suppression of HIF-1α through the restoration of L-serine and glycine and the activation of PPARα through increased EPA and DHA.
Collapse
Affiliation(s)
- Chaoyuan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuhong Yong
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihui Lu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Wang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Zhao
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Peiwu Li
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Chong Peng
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fengbin Liu
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Institute of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
34
|
Huang K, Li Z, He X, Dai J, Huang B, Shi Y, Fan D, Zhang Z, Liu Y, Li N, Zhang Z, Peng J, Liu C, Zeng R, Cen Z, Wang T, Yang W, Cen M, Li J, Yuan S, Zhang L, Hu D, Huang S, Chen P, Lai P, Lin L, Wen J, Zhao Z, Huang X, Yuan L, Zhou L, Wu H, Huang L, Feng K, Wang J, Liao B, Cai W, Deng X, Li Y, Li J, Hu Z, Yang L, Li J, Zhuo Y, Zhang F, Lin L, Luo Y, Zhang W, Ni Q, Hong X, Chang G, Zhang Y, Guan D, Cai W, Lu Y, Li F, Yan L, Ren M, Li L, Chen S. Gut microbial co-metabolite 2-methylbutyrylcarnitine exacerbates thrombosis via binding to and activating integrin α2β1. Cell Metab 2024; 36:598-616.e9. [PMID: 38401546 DOI: 10.1016/j.cmet.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/08/2023] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Thrombosis represents the leading cause of death and disability upon major adverse cardiovascular events (MACEs). Numerous pathological conditions such as COVID-19 and metabolic disorders can lead to a heightened thrombotic risk; however, the underlying mechanisms remain poorly understood. Our study illustrates that 2-methylbutyrylcarnitine (2MBC), a branched-chain acylcarnitine, is accumulated in patients with COVID-19 and in patients with MACEs. 2MBC enhances platelet hyperreactivity and thrombus formation in mice. Mechanistically, 2MBC binds to integrin α2β1 in platelets, potentiating cytosolic phospholipase A2 (cPLA2) activation and platelet hyperresponsiveness. Genetic depletion or pharmacological inhibition of integrin α2β1 largely reverses the pro-thrombotic effects of 2MBC. Notably, 2MBC can be generated in a gut-microbiota-dependent manner, whereas the accumulation of plasma 2MBC and its thrombosis-aggravating effect are largely ameliorated following antibiotic-induced microbial depletion. Our study implicates 2MBC as a metabolite that links gut microbiota dysbiosis to elevated thrombotic risk, providing mechanistic insight and a potential therapeutic strategy for thrombosis.
Collapse
Affiliation(s)
- Kan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China; Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xi He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Yongxia Shi
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zefeng Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Yunchong Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Na Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zhongyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Renli Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Wenchao Yang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Meifeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jingyu Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Shuai Yuan
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Lu Zhang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Dandan Hu
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Shuxiang Huang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Liyan Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Zhengde Zhao
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lining Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Lifang Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Haoliang Wu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lihua Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Kai Feng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jian Wang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Baolin Liao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Xilong Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Yueping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jianping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Zhongwei Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Li Yang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jiaojiao Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Youguang Zhuo
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Lin Lin
- Department of Respiratory Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yifeng Luo
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Zhang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Qianlin Ni
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Xiqiang Hong
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Guangqi Chang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yang Zhang
- School of Public Health, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Yutong Lu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Fang Li
- Department of Obstetrics and Gynecology, Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510620, China
| | - Li Yan
- Guangdong Clinical Research Center for Metabolic Diseases (Diabetes), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Meng Ren
- Guangdong Clinical Research Center for Metabolic Diseases (Diabetes), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China.
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China.
| |
Collapse
|
35
|
Murphy WA, Diehl AM, Loop MS, Fu D, Guy CD, Abdelmalek MF, Karachaliou GS, Sjöstedt N, Neuhoff S, Honkakoski P, Brouwer KLR. Alterations in zonal distribution and plasma membrane localization of hepatocyte bile acid transporters in patients with NAFLD. Hepatol Commun 2024; 8:e0377. [PMID: 38381537 PMCID: PMC10871794 DOI: 10.1097/hc9.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/16/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND NAFLD is highly prevalent with limited treatment options. Bile acids (BAs) increase in the systemic circulation and liver during NAFLD progression. Changes in plasma membrane localization and zonal distribution of BA transporters can influence transport function and BA homeostasis. However, a thorough characterization of how NAFLD influences these factors is currently lacking. This study aimed to evaluate the impact of NAFLD and the accompanying histologic features on the functional capacity of key hepatocyte BA transporters across zonal regions in human liver biopsies. METHODS A novel machine learning image classification approach was used to quantify relative zonal abundance and plasma membrane localization of BA transporters (bile salt export pump [BSEP], sodium-taurocholate cotransporting polypeptide, organic anion transporting polypeptide [OATP] 1B1 and OATP1B3) in non-diseased (n = 10), NAFL (n = 9), and NASH (n = 11) liver biopsies. Based on these data, membrane-localized zonal abundance (MZA) measures were developed to estimate transporter functional capacity. RESULTS NAFLD diagnosis and histologic scoring were associated with changes in transporter membrane localization and zonation. Increased periportal BSEPMZA (mean proportional difference compared to non-diseased liver of 0.090) and decreased pericentral BSEPMZA (-0.065) were observed with NASH and also in biopsies with higher histologic scores. Compared to Non-diseased Liver, periportal OATP1B3MZA was increased in NAFL (0.041) and NASH (0.047). Grade 2 steatosis (mean proportional difference of 0.043 when compared to grade 0) and grade 1 lobular inflammation (0.043) were associated with increased periportal OATP1B3MZA. CONCLUSIONS These findings provide novel mechanistic insight into specific transporter alterations that impact BA homeostasis in NAFLD. Changes in BSEPMZA likely contribute to altered BA disposition and pericentral microcholestasis previously reported in some patients with NAFLD. BSEPMZA assessment could inform future development and optimization of NASH-related pharmacotherapies.
Collapse
Affiliation(s)
- William A. Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna Mae Diehl
- Division of Gastroenterology and Hepatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew Shane Loop
- Department of Health Outcomes Research and Policy, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Dong Fu
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cynthia D. Guy
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Manal F. Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Georgia Sofia Karachaliou
- Division of Gastroenterology and Hepatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Paavo Honkakoski
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kim L. R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
36
|
Cai T, Song X, Xu X, Dong L, Liang S, Xin M, Huang Y, Zhu L, Li T, Wang X, Fang Y, Xu Z, Wang C, Wang M, Li J, Zheng Y, Sun W, Li L. Effects of plant natural products on metabolic-associated fatty liver disease and the underlying mechanisms: a narrative review with a focus on the modulation of the gut microbiota. Front Cell Infect Microbiol 2024; 14:1323261. [PMID: 38444539 PMCID: PMC10912229 DOI: 10.3389/fcimb.2024.1323261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by the excessive accumulation of fat in hepatocytes. However, due to the complex pathogenesis of MAFLD, there are no officially approved drugs for treatment. Therefore, there is an urgent need to find safe and effective anti-MAFLD drugs. Recently, the relationship between the gut microbiota and MAFLD has been widely recognized, and treating MAFLD by regulating the gut microbiota may be a new therapeutic strategy. Natural products, especially plant natural products, have attracted much attention in the treatment of MAFLD due to their multiple targets and pathways and few side effects. Moreover, the structure and function of the gut microbiota can be influenced by exposure to plant natural products. However, the effects of plant natural products on MAFLD through targeting of the gut microbiota and the underlying mechanisms are poorly understood. Based on the above information and to address the potential therapeutic role of plant natural products in MAFLD, we systematically summarize the effects and mechanisms of action of plant natural products in the prevention and treatment of MAFLD through targeting of the gut microbiota. This narrative review provides feasible ideas for further exploration of safer and more effective natural drugs for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Linghui Zhu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
37
|
Li HJ, Wang YS, Wang YN, Liu AR, Su XH, Ma ZA, Wang LX, Zhang ZY, Lv SQ, Miao J, Cui HT. Mechanical study of alisol B 23-acetate on methionine and choline deficient diet-induced nonalcoholic steatohepatitis based on untargeted metabolomics. Biomed Chromatogr 2024; 38:e5763. [PMID: 37858975 DOI: 10.1002/bmc.5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Alisol B 23-acetate (AB23A) has been demonstrated to have beneficial effects on nonalcoholic steatohepatitis (NASH). However, the mechanisms of AB23A on NASH remain unclear. This study aimed to investigate the mechanisms underlying the metabolic regulatory effects of AB23A on NASH. We used AB23A to treat mice with NASH, which was induced by a methionine and choline deficient (MCD) diet. We initially investigated therapeutic effect and resistance to oxidation and inflammation of AB23A on NASH. Subsequently, we performed untargeted metabolomic analyses and relative validation assessments to evaluate the metabolic regulatory effects of AB23A. AB23A reduced lipid accumulation, ameliorated oxidative stress and decreased pro-inflammatory cytokines in the liver. Untargeted metabolomic analysis found that AB23A altered the metabolites of liver. A total of 55 differential metabolites and three common changed pathways were screened among the control, model and AB23A treatment groups. Further tests validated the effects of AB23A on modulating common changed pathway-involved factors. AB23A treatment can ameliorate NASH by inhibiting oxidative stress and inflammation. The mechanism of AB23A on NASH may be related to the regulation of alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, and arginine biosynthesis pathways.
Collapse
Affiliation(s)
- Hua-Jun Li
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Yuan-Song Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Ya-Nan Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Ai-Ru Liu
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Xiu-Hai Su
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Zi-Ang Ma
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li-Xin Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Zhong-Yong Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Shu-Quan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Jing Miao
- Tianjin Second People's Hospital, Tianjin, China
| | - Huan-Tian Cui
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
38
|
Reghupaty SC, Dall NR, Svensson KJ. Hallmarks of the metabolic secretome. Trends Endocrinol Metab 2024; 35:49-61. [PMID: 37845120 PMCID: PMC10841501 DOI: 10.1016/j.tem.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
The identification of novel secreted factors is advancing at an unprecedented pace. However, there is a critical need to consolidate and integrate this knowledge to provide a framework of their diverse mechanisms, functional significance, and inter-relationships. Complicating this effort are challenges related to nonstandardized methods, discrepancies in sample handling, and inconsistencies in the annotation of unknown molecules. This Review aims to synthesize the rapidly expanding field of the metabolic secretome, encompassing the five major types of secreted factors: proteins, peptides, metabolites, lipids, and extracellular vesicles. By systematically defining the functions and detection of the components within the metabolic secretome, this Review provides a primer into the advances of the field, and how integration of the techniques discussed can provide a deeper understanding of the mechanisms underlying metabolic homeostasis and its disorders.
Collapse
Affiliation(s)
- Saranya C Reghupaty
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Nicholas R Dall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
39
|
Hu JY, Lv M, Zhang KL, Qiao XY, Wang YX, Wang FY. Evaluating the causal relationship between human blood metabolites and gastroesophageal reflux disease. World J Gastrointest Oncol 2023; 15:2169-2184. [PMID: 38173433 PMCID: PMC10758654 DOI: 10.4251/wjgo.v15.i12.2169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/01/2023] [Accepted: 10/30/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND Gastroesophageal reflux disease (GERD) affects approximately 13% of the global population. However, the pathogenesis of GERD has not been fully elucidated. The development of metabolomics as a branch of systems biology in recent years has opened up new avenues for the investigation of disease processes. As a powerful statistical tool, Mendelian randomization (MR) is widely used to explore the causal relationship between exposure and outcome. AIM To analyze of the relationship between 486 blood metabolites and GERD. METHODS Two-sample MR analysis was used to assess the causal relationship between blood metabolites and GERD. A genome-wide association study (GWAS) of 486 metabolites was the exposure, and two different GWAS datasets of GERD were used as endpoints for the base analysis and replication and meta-analysis. Bonferroni correction is used to determine causal correlation features (P < 1.03 × 10-4). The results were subjected to sensitivity analysis to assess heterogeneity and pleiotropy. Using the MR Steiger filtration method to detect whether there is a reverse causal relationship between metabolites and GERD. In addition, metabolic pathway analysis was conducted using the online database based MetaboAnalyst 5.0 software. RESULTS In MR analysis, four blood metabolites are negatively correlated with GERD: Levulinate (4-oxovalerate), stearate (18:0), adrenate (22:4n6) and p-acetamidophenylglucuronide. However, we also found a positive correlation between four blood metabolites and GERD: Kynurenine, 1-linoleoylglycerophosphoethanolamine, butyrylcarnitine and guanosine. And bonferroni correction showed that butyrylcarnitine (odd ratio 1.10, 95% confidence interval: 1.05-1.16, P = 7.71 × 10-5) was the most reliable causal metabolite. In addition, one significant pathways, the "glycerophospholipid metabolism" pathway, can be involved in the pathogenesis of GERD. CONCLUSION Our study found through the integration of genomics and metabolomics that butyrylcarnitine may be a potential biomarker for GERD, which will help further elucidate the pathogenesis of GERD and better guide its treatment. At the same time, this also contributes to early screening and prevention of GERD. However, the results of this study require further confirmation from both basic and clinical real-world studies.
Collapse
Affiliation(s)
- Jia-Yan Hu
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mi Lv
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Kun-Li Zhang
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xi-Yun Qiao
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu-Xi Wang
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Feng-Yun Wang
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
40
|
Song K, Kim HS, Chae HW. Nonalcoholic fatty liver disease and insulin resistance in children. Clin Exp Pediatr 2023; 66:512-519. [PMID: 36634667 PMCID: PMC10694550 DOI: 10.3345/cep.2022.01312] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a spectrum of liver diseases characterized by excessive fat accumulation, is the leading cause of chronic liver disease. The global prevalence of NAFLD is increasing in both adults and children. In Korea, the prevalence of pediatric NAFLD increased from 8.2% in 2009 to 12.1% in 2018 according to a national surveillance study. For early screening of pediatric NAFLD, laboratory tests including aspartate aminotransferase and alanine aminotransferase; biomarkers including hepatic steatosis index, triglyceride glucose index, and fibrosis-4 index; and imaging studies including ultrasonography and magnetic resonance imaging are required. Insulin resistance plays a major role in the pathogenesis of NAFLD, which promotes insulin resistance. Thus, the association between NAFLD and insulin resistance, diabetes mellitus, and metabolic syndrome has been reported in many studies. This review addresses issues related to the epidemiology and investigation of NAFLD as well as the association between NAFLD and insulin resistance and metabolic syndrome with focus on pediatric NAFLD.
Collapse
Affiliation(s)
- Kyungchul Song
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Ho-Seong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Wook Chae
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Boeriu A, Dobru D, Fofiu C. Non-Invasive Diagnostic of NAFLD in Type 2 Diabetes Mellitus and Risk Stratification: Strengths and Limitations. Life (Basel) 2023; 13:2262. [PMID: 38137863 PMCID: PMC10744403 DOI: 10.3390/life13122262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/26/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
The progressive potential of liver damage in type 2 diabetes mellitus (T2DM) towards advanced fibrosis, end-stage liver disease, and hepatocarcinoma has led to increased concern for quantifying liver injury and individual risk assessment. The combination of blood-based markers and imaging techniques is recommended for the initial evaluation in NAFLD and for regular monitoring to evaluate disease progression. Continued development of ultrasonographic and magnetic resonance imaging methods for accurate quantification of liver steatosis and fibrosis, as well as promising tools for the detection of high-risk NASH, have been noted. In this review, we aim to summarize available evidence regarding the usefulness of non-invasive methods for the assessment of NAFLD in T2DM. We focus on the power and limitations of various methods for diagnosis, risk stratification, and patient monitoring that support their implementation in clinical setting or in research field.
Collapse
Affiliation(s)
- Alina Boeriu
- Gastroenterology Department, University of Medicine Pharmacy, Sciences, and Technology “George Emil Palade” Targu Mures, 540142 Targu Mures, Romania;
- Gastroenterology Department, Mures County Clinical Hospital, 540103 Targu Mures, Romania
| | - Daniela Dobru
- Gastroenterology Department, University of Medicine Pharmacy, Sciences, and Technology “George Emil Palade” Targu Mures, 540142 Targu Mures, Romania;
- Gastroenterology Department, Mures County Clinical Hospital, 540103 Targu Mures, Romania
| | - Crina Fofiu
- Gastroenterology Department, University of Medicine Pharmacy, Sciences, and Technology “George Emil Palade” Targu Mures, 540142 Targu Mures, Romania;
- Internal Medicine Department, Bistrita County Clinical Hospital, 420094 Bistrita, Romania
| |
Collapse
|
42
|
Iwaki M, Kessoku T, Tanaka K, Ozaki A, Kasai Y, Kobayashi T, Nogami A, Honda Y, Ogawa Y, Imajo K, Usuda H, Wada K, Kobayashi N, Saito S, Nakajima A, Yoneda M. Combined, elobixibat, and colestyramine reduced cholesterol toxicity in a mouse model of metabolic dysfunction-associated steatotic liver disease. Hepatol Commun 2023; 7:e0285. [PMID: 37902528 PMCID: PMC10617934 DOI: 10.1097/hc9.0000000000000285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/04/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Cholesterol levels and bile acid metabolism are important drivers of metabolic dysfunction-associated steatohepatitis (MASH) progression. Using a mouse model, we investigated the mechanism by which cholesterol exacerbates MASH and the effect of colestyramine (a bile acid adsorption resin) and elobixibat (an apical sodium-dependent bile acid transporter inhibitor) concomitant administration on bile acid adsorption and MASH status. METHODS Mice were fed a high-fat high-fructose diet with varying concentrations of cholesterol to determine changes in fatty liver according to liver status, water intake, defecation status, insulin resistance, bile acid levels, intestinal permeability, atherosclerosis (in apolipoprotein E knockout mice), and carcinogenesis (in diethylnitrosamine mice). Using small interfering ribonucleic acid (siRNA), we evaluated the effect of sterol regulatory element binding protein 1c (SREBP1c) knockdown on triglyceride synthesis and fatty liver status following the administration of elobixibat (group E), colestyramine (group C), or both (group EC). RESULTS We found greater reductions in serum alanine aminotransferase levels, serum lipid parameters, serum primary bile acid concentrations, hepatic lipid levels, and fibrosis area in EC group than in the monotherapy groups. Increased intestinal permeability and watery diarrhea caused by elobixibat were completely ameliorated in group EC. Group EC showed reduced plaque formation rates in the entire aorta and aortic valve of the atherosclerosis model, and reduced tumor counts and tumor burden in the carcinogenesis model. CONCLUSIONS Excessive free cholesterol in the liver can promote fatty liver disease. Herein, combination therapy with EC effectively reduced free cholesterol levels in MASH model mice. Our study provides strong evidence for combination therapy as an effective treatment for MASH.
Collapse
Affiliation(s)
- Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takaomi Kessoku
- Department of Palliative Medicine, International University Health and Welfare, Narita Hospital, Narita, Japan
| | - Kosuke Tanaka
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Anna Ozaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Kasai
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Honda
- Department of Internal Medicine, Asakura Hospital, Konan-ku, Yokohama, Japan
| | - Yuji Ogawa
- Department of Gastroenterology, National Hospital Organization Yokohama Medical Center, Totsuka-ku, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology, Shinyurigaoka General Hospital, Kawasaki, Japan
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Koichiro Wada
- Department of Pharmacology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Noritoshi Kobayashi
- Department of Oncology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
43
|
Lee DH, Jee JJ, Lee YS, Kim DY, Bang JY, Lee HW, Koh H, Bae SH. Fecal microbiota transplantation improves hepatic fibro-inflammation via regulating oxidative stress in experimental NASH. Dig Liver Dis 2023; 55:1521-1532. [PMID: 37380586 DOI: 10.1016/j.dld.2023.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is associated with imbalance of gut microbiome, indicating participation of gut environment in hepatic health status. Therefore, modulating gut environment via fecal microbiota transplantation (FMT) is a promising therapeutic procedure for NASH patients. However, the effect and mechanism of the FMT remains largely unknown. Here, we investigated the gut-liver axis to understand the FMT-mediated hepatic improvement in NASH. Feces from specific pathogen free mice were infused allogeneically into gastrointestinal tract of mice fed with high fat, high cholesterol and fructose (HFHCF), resulting in suppressing hepatic pathogenic events, featured by decreasing inflammatory and fibrotic mediators. The FMT elevated NF-E2-related factor 2 (NRF2), a key transcription factor that regulates antioxidant enzymes, in livers. The HFHCF-induced NASH increased intestinal permeability with abundant Facklamia and Aerococcus, an imbalanced gut environment that was significantly improved by the FMT, characterized with restoration of intestinal barrier function and an enrichment of Clostridium. Notably, the gut environment created by FMT was inferred to produce metabolites from the aromatic biogenic amine degradation pathway, specifically 4-hydroxyphenylacetic acid (4-HPA), which is known to ameliorate liver injury. We suggest that gut-derived molecules, related to hepatic improvement such as 4-HPA are the potential therapeutic agents for preventing and treating NASH.
Collapse
Affiliation(s)
- Da Hyun Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jai J Jee
- Department of Pediatrics, Yonsei University College of Medicine, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Seoul, Republic of Korea
| | - Yu Seol Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Republic of Korea
| | - Da Ye Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Republic of Korea
| | - Ji Yun Bang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Republic of Korea
| | - Hye Won Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hong Koh
- Department of Pediatrics, Yonsei University College of Medicine, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Seoul, Republic of Korea.
| | - Soo Han Bae
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Republic of Korea.
| |
Collapse
|
44
|
Gîlcă-Blanariu GE, Budur DS, Mitrică DE, Gologan E, Timofte O, Bălan GG, Olteanu VA, Ștefănescu G. Advances in Noninvasive Biomarkers for Nonalcoholic Fatty Liver Disease. Metabolites 2023; 13:1115. [PMID: 37999211 PMCID: PMC10672868 DOI: 10.3390/metabo13111115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) currently represents one of the most common liver diseases worldwide. Early diagnosis and disease staging is crucial, since it is mainly asymptomatic, but can progress to nonalcoholic steatohepatitis (NASH) or cirrhosis or even lead to the development of hepatocellular carcinoma. Over time, efforts have been put into developing noninvasive diagnostic and staging methods in order to replace the use of a liver biopsy. The noninvasive methods used include imaging techniques that measure liver stiffness and biological markers, with a focus on serum biomarkers. Due to the impressive complexity of the NAFLD's pathophysiology, biomarkers are able to assay different processes involved, such as apoptosis, fibrogenesis, and inflammation, or even address the genetic background and "omics" technologies. This article reviews not only the currently validated noninvasive methods to investigate NAFLD but also the promising results regarding recently discovered biomarkers, including biomarker panels and the combination of the currently validated evaluation methods and serum markers.
Collapse
Affiliation(s)
- Georgiana-Emmanuela Gîlcă-Blanariu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Daniela Simona Budur
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Dana Elena Mitrică
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Elena Gologan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Oana Timofte
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gheorghe Gh Bălan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Vasile Andrei Olteanu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gabriela Ștefănescu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| |
Collapse
|
45
|
Yan W, Jiang M, Hu W, Zhan X, Liu Y, Zhou J, Ji J, Wang S, Tai J. Causality Investigation between Gut Microbiota, Derived Metabolites, and Obstructive Sleep Apnea: A Bidirectional Mendelian Randomization Study. Nutrients 2023; 15:4544. [PMID: 37960197 PMCID: PMC10648878 DOI: 10.3390/nu15214544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Various studies have highlighted the important associations between obstructive sleep apnea (OSA) and gut microbiota and related metabolites. Nevertheless, the establishment of causal relationships between these associations remains to be determined. Multiple mendelian randomization (MR) analyses were performed to genetically predict the causative impact of 196 gut microbiota and 83 metabolites on OSA. Two-sample MR was used to assess the potential association, and causality was evaluated using inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods. Multivariable MR (MVMR) was employed to ascertain the causal independence between gut microbiota and the metabolites linked to OSA. Additionally, Cochran's Q test, the MR Egger intercept test and the MR Steiger test were used for the sensitivity analyses. The analysis of the 196 gut microbiota revealed that genus_Ruminococcaceae (UCG009) (PIVW = 0.010) and genus_Subdoligranulum (PIVW = 0.041) were associated with an increased risk of OSA onset. Conversely, Family_Ruminococcaceae (PIVW = 0.030), genus_Coprococcus2 (PWM = 0.025), genus_Eggerthella (PIVW = 0.011), and genus_Eubacterium (xylanophilum_group) (PIVW = 0.001) were negatively related to the risk of OSA. Among the 83 metabolites evaluated, 3-dehydrocarnitine, epiandrosterone sulfate, and leucine were determined to be potential independent risk factors associated with OSA. Moreover, the reverse MR analysis demonstrated a suggestive association between OSA exposure and six microbiota taxa. This study offers compelling evidence regarding the potential beneficial or detrimental causative impact of the gut microbiota and its associated metabolites on OSA risk, thereby providing new insights into the mechanisms of gut microbiome-mediated OSA development.
Collapse
Affiliation(s)
- Weiheng Yan
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China; (W.Y.); (J.Z.)
| | - Miaomiao Jiang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100091, China;
| | - Wen Hu
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing 100020, China; (W.H.); (X.Z.); (Y.L.)
| | - Xiaojun Zhan
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing 100020, China; (W.H.); (X.Z.); (Y.L.)
| | - Yifan Liu
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing 100020, China; (W.H.); (X.Z.); (Y.L.)
| | - Jiayi Zhou
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China; (W.Y.); (J.Z.)
| | - Jie Ji
- Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing 100020, China; (W.H.); (X.Z.); (Y.L.)
| |
Collapse
|
46
|
Wang C, Ma Q, Yu X. Bile Acid Network and Vascular Calcification-Associated Diseases: Unraveling the Intricate Connections and Therapeutic Potential. Clin Interv Aging 2023; 18:1749-1767. [PMID: 37885621 PMCID: PMC10599251 DOI: 10.2147/cia.s431220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Bile acids play a crucial role in promoting intestinal nutrient absorption and biliary cholesterol excretion, thereby protecting the liver from cholesterol accumulation and bile acid toxicity. Additionally, bile acids can bind to specific nuclear and membrane receptors to regulate energy expenditure and specific functions of particular tissues. Vascular calcification refers to the pathological process of calcium-phosphate deposition in blood vessel walls, which serves as an independent predictor for cardiovascular adverse events. In addition to aging, this pathological change is associated with aging-related diseases such as atherosclerosis, hypertension, chronic kidney disease, diabetes mellitus, and osteoporosis. Emerging evidence suggests a close association between the bile acid network and these aforementioned vascular calcification-associated conditions. Several bile acids have been proven to participate in calcium-phosphate metabolism, affecting the transdifferentiation of vascular smooth muscle cells and thus influencing vascular calcification. Targeting the bile acid network shows potential for ameliorating these diseases and their concomitant vascular calcification by regulating pathways such as energy metabolism, inflammatory response, oxidative stress, and cell differentiation. Here, we present a summary of the metabolism and functions of the bile acid network and aim to provide insights into the current research on the profound connections between the bile acid network and these vascular calcification-associated diseases, as well as the therapeutic potential.
Collapse
Affiliation(s)
- Cui Wang
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Xijie Yu
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| |
Collapse
|
47
|
Malesci R, Lombardi M, Abenante V, Fratestefano F, Del Vecchio V, Fetoni AR, Troisi J. A Systematic Review on Metabolomics Analysis in Hearing Impairment: Is It a Possible Tool in Understanding Auditory Pathologies? Int J Mol Sci 2023; 24:15188. [PMID: 37894867 PMCID: PMC10607298 DOI: 10.3390/ijms242015188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
With more than 466 million people affected, hearing loss represents the most common sensory pathology worldwide. Despite its widespread occurrence, much remains to be explored, particularly concerning the intricate pathogenic mechanisms underlying its diverse phenotypes. In this context, metabolomics emerges as a promising approach. Indeed, lying downstream from molecular biology's central dogma, the metabolome reflects both genetic traits and environmental influences. Furthermore, its dynamic nature facilitates well-defined changes during disease states, making metabolomic analysis a unique lens into the mechanisms underpinning various hearing impairment forms. Hence, these investigations may pave the way for improved diagnostic strategies, personalized interventions and targeted treatments, ultimately enhancing the clinical management of affected individuals. In this comprehensive review, we discuss findings from 20 original articles, including human and animal studies. Existing literature highlights specific metabolic changes associated with hearing loss and ototoxicity of certain compounds. Nevertheless, numerous critical issues have emerged from the study of the current state of the art, with the lack of standardization of methods, significant heterogeneity in the studies and often small sample sizes being the main limiting factors for the reliability of these findings. Therefore, these results should serve as a stepping stone for future research aimed at addressing the aforementioned challenges.
Collapse
Affiliation(s)
- Rita Malesci
- Department of Neuroscience, Reproductive Sciences and Dentistry (Audiology and Vestibology Service), University of Naples Federico II, 80138 Napoli, Italy; (V.D.V.); (A.R.F.)
| | - Martina Lombardi
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
- European Institute of Metabolomics (EIM) Foundation ETS, G. Puccini, 2, 84081 Baronissi, Italy
| | - Vera Abenante
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
| | - Federica Fratestefano
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
| | - Valeria Del Vecchio
- Department of Neuroscience, Reproductive Sciences and Dentistry (Audiology and Vestibology Service), University of Naples Federico II, 80138 Napoli, Italy; (V.D.V.); (A.R.F.)
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry (Audiology and Vestibology Service), University of Naples Federico II, 80138 Napoli, Italy; (V.D.V.); (A.R.F.)
| | - Jacopo Troisi
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
- European Institute of Metabolomics (EIM) Foundation ETS, G. Puccini, 2, 84081 Baronissi, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
48
|
Zhang T, Nie Y, Wang J. The emerging significance of mitochondrial targeted strategies in NAFLD treatment. Life Sci 2023; 329:121943. [PMID: 37454757 DOI: 10.1016/j.lfs.2023.121943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide, ranging from liver steatosis to nonalcoholic steatohepatitis, which ultimately progresses to fibrosis, cirrhosis, and hepatocellular carcinoma. Individuals with NAFLD have a higher risk of developing cardiovascular and extrahepatic cancers. Despite the great progress being made in understanding the pathogenesis and the introduction of new pharmacological targets for NAFLD, no drug or intervention has been accepted for its management. Recent evidence suggests that NAFLD may be a mitochondrial disease, as mitochondrial dysfunction is involved in the pathological processes that lead to NAFLD. In this review, we describe the recent advances in our understanding of the mechanisms associated with mitochondrial dysfunction in NAFLD progression. Moreover, we discuss recent advances in the efficacy of mitochondria-targeted compounds (e.g., Mito-Q, MitoVit-E, MitoTEMPO, SS-31, mitochondrial uncouplers, and mitochondrial pyruvate carrier inhibitors) for treating NAFLD. Furthermore, we present some medications currently being tested in clinical trials for NAFLD treatment, such as exercise, mesenchymal stem cells, bile acids and their analogs, and antidiabetic drugs, with a focus on their efficacy in improving mitochondrial function. Based on this evidence, further investigations into the development of mitochondria-based agents may provide new and promising alternatives for NAFLD management.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yingli Nie
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
49
|
Andújar-Vera F, Alés-Palmer ML, Muñoz-de-Rueda P, Iglesias-Baena I, Ocete-Hita E. Metabolomic Analysis of Pediatric Patients with Idiosyncratic Drug-Induced Liver Injury According to the Updated RUCAM. Int J Mol Sci 2023; 24:13562. [PMID: 37686369 PMCID: PMC10487599 DOI: 10.3390/ijms241713562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Hepatotoxicity, a common adverse drug effect, has been extensively studied in adult patients. However, it is equally important to investigate this condition in pediatric patients to develop personalized treatment strategies for children. This study aimed to identify plasma biomarkers that characterize hepatotoxicity in pediatric patients through an observational case-control study. Metabolomic analysis was conducted on 55 pediatric patients with xenobiotic liver toxicity and 88 healthy controls. The results revealed clear differences between the two groups. Several metabolites, including hydroxydecanoylcarnitine, octanoylcarnitine, lysophosphatidylcholine, glycocholic acid, and taurocholic acid, were identified as potential biomarkers (area under the curve: 0.817; 95% confidence interval: 0.696-0.913). Pathway analysis indicated involvement of primary bile acid biosynthesis and the metabolism of taurine and hypotaurine (p < 0.05). The findings from untargeted metabolomic analysis demonstrated an increase in bile acids in children with hepatotoxicity. The accumulation of cytotoxic bile acids should be further investigated to elucidate the role of these metabolites in drug-induced liver injury.
Collapse
Affiliation(s)
| | - María Luisa Alés-Palmer
- Department of Pediatrics, University of Granada, 18016 Granada, Spain;
- Department of Pediatrics, “Virgen de las Nieves” University Hospital, 18014 Granada, Spain
| | - Paloma Muñoz-de-Rueda
- Research Support Unit, Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain;
| | | | - Esther Ocete-Hita
- Department of Pediatrics, University of Granada, 18016 Granada, Spain;
- Department of Pediatrics, “Virgen de las Nieves” University Hospital, 18014 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
50
|
Amanatidou AI, Mikropoulou EV, Amerikanou C, Milanovic M, Stojanoski S, Bjelan M, Cesarini L, Campolo J, Thanopoulou A, Banerjee R, Kurth MJ, Milic N, Medic-Stojanoska M, Trivella MG, Visvikis-Siest S, Gastaldelli A, Halabalaki M, Kaliora AC, Dedoussis GV. Plasma Amino Acids in NAFLD Patients with Obesity Are Associated with Steatosis and Fibrosis: Results from the MAST4HEALTH Study. Metabolites 2023; 13:959. [PMID: 37623902 PMCID: PMC10456787 DOI: 10.3390/metabo13080959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have been linked to changes in amino acid (AA) levels. The objective of the current study was to examine the relationship between MRI parameters that reflect inflammation and fibrosis and plasma AA concentrations in NAFLD patients. Plasma AA levels of 97 NAFLD patients from the MAST4HEALTH study were quantified with liquid chromatography. Medical, anthropometric and lifestyle characteristics were collected and biochemical parameters, as well as inflammatory and oxidative stress biomarkers, were measured. In total, subjects with a higher MRI-proton density fat fraction (MRI-PDFF) exhibited higher plasma AA levels compared to subjects with lower PDFF. The concentrations of BCAAs (p-Value: 0.03), AAAs (p-Value: 0.039), L-valine (p-Value: 0.029), L-tyrosine (p-Value: 0.039) and L-isoleucine (p-Value: 0.032) were found to be significantly higher in the higher PDFF group compared to lower group. Plasma AA levels varied according to MRI-PDFF. Significant associations were also demonstrated between AAs and MRI-PDFF and MRI-cT1, showing the potential utility of circulating AAs as diagnostic markers of NAFLD.
Collapse
Affiliation(s)
- Athina I. Amanatidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece; (C.A.); (G.V.D.)
| | - Eleni V. Mikropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.V.M.); (M.H.)
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece; (C.A.); (G.V.D.)
| | - Maja Milanovic
- Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (M.M.); (S.S.); (M.B.); (N.M.); (M.M.-S.)
| | - Stefan Stojanoski
- Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (M.M.); (S.S.); (M.B.); (N.M.); (M.M.-S.)
- Center for Diagnostic Imaging, Oncology Institute of Vojvodine, 21204 Sremska Kamenica, Serbia
| | - Mladen Bjelan
- Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (M.M.); (S.S.); (M.B.); (N.M.); (M.M.-S.)
| | - Lucia Cesarini
- Division of Hepatology and Gastroenterology, ASST Grande Ospedale Metropolitano, 20162 Milan, Italy;
| | - Jonica Campolo
- Institute of Clinical Physiology, CNR, 56124 Milan, Italy;
| | - Anastasia Thanopoulou
- Diabetes Center, 2nd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, 15772 Athens, Greece;
| | | | - Mary Jo Kurth
- Clinical Studies Group, Randox Laboratories Ltd., Crumlin BT29 4RN, UK;
| | - Natasa Milic
- Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (M.M.); (S.S.); (M.B.); (N.M.); (M.M.-S.)
| | - Milica Medic-Stojanoska
- Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (M.M.); (S.S.); (M.B.); (N.M.); (M.M.-S.)
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Vojvodina, 21000 Novi Sad, Serbia
| | - Maria Giovanna Trivella
- Institute of Clinical Physiology National Research Council, 56124 Pisa, Italy; (M.G.T.); (A.G.)
- ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Sophie Visvikis-Siest
- INSERM UMR U1122, IGE-PCV, Faculté de Pharmacie, Université de Lorraine, 30 Rue Lionnois, 54000 Nancy, France;
| | - Amalia Gastaldelli
- Institute of Clinical Physiology National Research Council, 56124 Pisa, Italy; (M.G.T.); (A.G.)
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.V.M.); (M.H.)
| | - Andriana C. Kaliora
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece; (C.A.); (G.V.D.)
| | - George V. Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece; (C.A.); (G.V.D.)
| | | |
Collapse
|