1
|
Khamees Thabet H, Ammar YA, Imran M, Hamdy Helal M, Ibrahim Alaqel S, Alshehri A, Ash Mohd A, Abusaif MS, Ragab A. Unveiling anti-diabetic potential of new thiazole-sulfonamide derivatives: Design, synthesis, in vitro bio-evaluation targeting DPP-4, α-glucosidase, and α-amylase with in-silico ADMET and docking simulation. Bioorg Chem 2024; 151:107671. [PMID: 39067419 DOI: 10.1016/j.bioorg.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Diabetes mellitus type 2 (T2DM) can be managed by targeting dipeptidyl peptidase-4 (DPP-4), an enzyme that breaks down and deactivates peptides such as GIP and GLP-1. In this context, a new series of 2-(2-substituted hydrazineyl)thiazole derivatives 4, 5, 6, 8, 10, and 11 conjugated with the 2-hydroxy-5-(pyrrolidin-1-ylsulfonyl)benzylidene fragment were designed and synthesized. The virtual screening of the designed derivatives inside DPP-4 demonstrated good to moderate activity, with binding affinity ranging from -6.86 to -5.36 kcal/mol compared to Sitagliptin (S=-5.58 kcal/mol). These results encourage us to evaluate DPP-4 using in-vitro fluorescence-based assay. The in-vitro results exhibited inhibitory percentage (IP) values ranging from 40.66 to 75.62 % in comparison to Sitagliptin (IP=63.14 %) at 100 µM. Subsequently, the IC50 values were determined, and the 5-aryl thiazole derivatives 10 and 11 revealed strong potent IC50 values 2.75 ± 0.27 and 2.51 ± 0.27 µM, respectively, compared to Sitagliptin (3.32 ± 0.22 µM). The SAR study exhibited the importance of the substituents on the thiazole scaffold, especially with the hydrophobic fragment at C5 of the thiazole, which has a role in the activity. Compounds 10 and 11 were further assessed toward α-glucosidase and α-amylase enzymes and give promising results. Compound 10 showed good activity against α-glucosidase with IC50 value of 3.02 ± 0.23 µM compared to Acarbose 3.05 ± 0.22 µM and (11 = 3.34 ± 0.10 µM). On the other hand, for α-amylase, compound 11 was found to be most effective with IC50 value of 2.91 ± 0.23 µM compared to compound 10 = 3.30 ± 0.16 µM and Acarbose (2.99 ± 0.21 µM) indicating that these derivatives could reduce glucose by more than one target. The most active derivatives 10 and 11 attracted great interest as candidates for oral bioavailability and safe toxicity profiles compared to positive controls. The in-silico docking simulation was performed to understand the binding interactions inside the DPP-4, α-glucosidase, and α-amylase pockets, and it was found to be promising antidiabetic agents through a number of interactions.
Collapse
Affiliation(s)
- Hamdy Khamees Thabet
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia.
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohamed Hamdy Helal
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Saleh Ibrahim Alaqel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam 31441, Saudi Arabia
| | - Abida Ash Mohd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt.
| |
Collapse
|
2
|
Amin A, Ullah N, Khan MA, Elsadek MF, Elshikh MS, Hasnain SZU, Baloch R, Chaman S, Makhkamov T, Yuldashev A, Yunusov S, Biturku J. Mango peel extracts and mangiferin chromatographic Fourier-transform infrared correlation with antioxidant, antidiabetic, and advanced glycation end product inhibitory potentials using in silico modeling and in vitro assays. Biomed Chromatogr 2024; 38:e5936. [PMID: 38956791 DOI: 10.1002/bmc.5936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024]
Abstract
Mangifera indica peels are a rich source of diverse flavonoids and xanthonoids; however, generally these are discarded. Computational studies revealed that mangiferin significantly interacts with amino acid residues of transcriptional regulators 1IK3, 3TOP, and 4f5S. The methanolic extract of Langra variety of mangoes contained the least phenol concentrations (22.6 ± 0.32 mg/gGAE [gallic acid equivalent]) compared to the chloroform (214.8 ± 0.12 mg/gGAE) and ethyl acetate fractions (195.6 ± 0.14 mg/gGAE). Similarly, the methanolic extract of Sindhri variety contained lower phenol concentrations (42.3 ± 0.13 mg/gRUE [relative utilization efficiency]) compared with the chloroform (85.6 ± 0.15 mg/gGAE) and ethyl acetate (76.1 ± 0.32 mg/gGAE) fractions. Langra extract exhibited significant α-glucosidase inhibition (IC50 0.06 mg/mL), whereas the ethyl acetate fraction was highly active (IC50 0.12 mg/mL) in Sindhri variety. Mangiferin exhibited significant inhibition (IC50 0.026 mg/mL). A moderate inhibition of 15-LOX was observed in all samples, whereas mangiferin was least active. In advanced glycation end product inhibition assay, the chloroform fraction of Langra variety exhibited significant inhibition in nonoxidative (IC50 64.4 μg/mL) and oxidative modes (IC50 54.7 μg/mL). It was concluded that both Langra and Sindhri peel extracts and fractions possess significant antidiabetic activities. The results suggest the potential use of peel waste in the management and complications of diabetes.
Collapse
Affiliation(s)
- Adnan Amin
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Niamat Ullah
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Syed Zia Ul Hasnain
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakaraiya University, Multan, Pakistan
| | - Rabia Baloch
- Allama Iqbal Teaching Hospital, Dera Ghazi Khan, Punjab, Pakistan
| | - Sadia Chaman
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Trobjon Makhkamov
- Department of Forestry and Landscape Design, Tashkent State Agrarian University, Tashkent, Uzbekistan
| | - Akramjon Yuldashev
- Department of Ecology and Botany, Andijan State University, Andijan, Uzbekistan
| | - Salohiddinjon Yunusov
- Department of Horticulture and Viticulture, Tashkent State Agrarian University, Tashkent, Uzbekistan
| | - Jonida Biturku
- Department of Agronomy Sciences, Faculty of Agriculture and Environment, Agriculture University of Tirana, Tirana, Albania
| |
Collapse
|
3
|
Ojo OA, Gyebi GA, Ezenabor EH, Iyobhebhe M, Emmanuel DA, Adelowo OA, Olujinmi FE, Ogunwale TE, Babatunde DE, Ogunlakin AD, Ojo AB, Adeyemi OS. Exploring beetroot ( Beta vulgaris L.) for diabetes mellitus and Alzheimer's disease dual therapy: in vitro and computational studies. RSC Adv 2024; 14:19362-19380. [PMID: 38887650 PMCID: PMC11181461 DOI: 10.1039/d4ra03638g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
This study explored the flavonoid-rich extract of beetroot (Beta vulgaris L.) for type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD) dual therapy by using in vitro and molecular simulation studies. Flavonoid-rich extracts of B. vulgaris fruit were evaluated for their antidiabetic and anti-alzheimic activities. Molecular docking and dynamic simulation were performed to identify potential bioactive flavonoids with dual therapeutic effects on T2D and AD. Flavonoid-rich extracts of B. vulgaris fruit (IC50 = 73.062 ± 0.480 μg mL-1) had moderate activity against α-amylase compared to the standard acarbose (IC50 = 27.104 ± 0.270 μg mL-1). Compared with acarbose, flavonoid-rich extracts of B. vulgaris fruit had appreciable activity against α-glucosidase (IC50 = 17.389 ± 0.436 μg mL-1) (IC50 = 37.564 ± 0.620 μg mL-1). For AChE inhibition, flavonoid-rich extracts of B. vulgaris fruit exhibited (p < 0.0001) inhibitory activity (IC50 = 723.260 ± 5.466 μg mL-1), albeit weaker than that of the standard control, galantamine (IC50 = 27.950 ± 0.122 μg mL-1). Similarly, flavonoid-rich extracts of B. vulgaris fruit showed considerable (p < 0.0001) inhibitory effects on BChE (IC50 = 649.112 ± 0.683 μg mL-1). In contrast, galantamine (IC50 = 23.126 ± 0.683 μg mL-1) is more potent than the extracts of B. vulgaris fruit. Monoamine oxidase (MAO) activity increased in FeSO4-induced brain damage. In contrast, flavonoid-rich extracts of B. vulgaris fruit protected against Fe2+-mediated brain damage by suppressing MAO activity in a concentration-dependent manner. HPLC-DAD profiling of the extracts identified quercetrin, apigenin, rutin, myricetin, iso-quercetrin, p-coumaric acid, ferulic acid, caffeic acid, and gallic acid. Molecular docking studies revealed quercetrin, apigenin, rutin, iso-queretrin, and myricetin were the top docked bioactive flavonoids against the five top target proteins (α-amylase, α-glucosidase AchE, BchE, and MAO). Molecular dynamic simulations revealed that the complexes formed remained stable over the course of the simulation. Collectively, the findings support the prospect of flavonoid-rich extracts of B. vulgaris root functioning as a dual therapy for T2D and AD.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Biochemistry Programme, Bowen University Iwo 232102 Nigeria +2347037824647
- Good Health and Wellbeing Research Clusters (SDG 03) Bowen University Iwo 232102 Nigeria
| | - Gideon Ampoma Gyebi
- Natural Products and Structural (Bio-Chem)-Informatics Research Laboratory (NpsBC-RI), Department of Biochemistry, Bingham University Karu Nigeria
| | | | | | | | | | | | | | | | - Akingbolabo Daniel Ogunlakin
- Biochemistry Programme, Bowen University Iwo 232102 Nigeria +2347037824647
- Good Health and Wellbeing Research Clusters (SDG 03) Bowen University Iwo 232102 Nigeria
| | | | - Oluyomi Stephen Adeyemi
- Biochemistry Programme, Bowen University Iwo 232102 Nigeria +2347037824647
- Good Health and Wellbeing Research Clusters (SDG 03) Bowen University Iwo 232102 Nigeria
| |
Collapse
|
4
|
Hill J, Messina J, Jeremic A, Zderic V. Analyzing Gene Expression After Administration of Low-Intensity Therapeutic Ultrasound in Human Islet Cells. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:1131-1141. [PMID: 38414281 DOI: 10.1002/jum.16441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/01/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVES Diabetes mellitus is a complex heterogenous metabolic disease that significantly affects the world population. Although many treatments exist, including medications such as metformin, sulfonylureas, and glucagon-like peptide-1 (GLP) receptor agonist, there is growing interest in finding alternative methods to noninvasively treat this disease. It has been previously shown that low-intensity ultrasound stimulation of pancreatic β-cells in mice can elicit insulin secretion as a potential treatment for this disease. This is desirable as therapeutic ultrasound has the ability to induce bioeffects while selectively focusing deep within tissues, allowing for modulation of hormone secretion in the pancreas to mitigate insufficient levels of insulin. METHODS Exactly 800 kHz ultrasound with intensity 0.5 W/cm2 was administered 5 minutes continuously, that is, 100% duty cycle, to donor pancreatic human islets, followed by 1 hour incubation and RT-qPCR to assess the effect of ultrasound stimulation on gene expression. The genes were insulin (INS), glucagon (Glu), amylin (Amy), and binding immunoglobulin protein (BiP). Nine donor pancreatic human islets were used to assess insulin and glucagon secretion, while eight samples were used for amylin and BiP. Fold change (FC) was calculated to analyze the effect of ultrasound stimulation on the gene expression of the donor islet cells. High-glucose and thapsigargin-treated islets were utilized as positive controls. Cell viability testing was done using a Trypan Blue Exclusion Test. RESULTS Ultrasound stimulation did not cause a statistically significant upregulation in any of the tested genes (INS FC = 1.15, P-value = .5692; Glu FC = 1.60, P-value = .2231; Amy FC, P-value = .2863; BiP FC = 2.68, P-value = .3907). CONCLUSIONS The results of this study show that the proposed ultrasound treatment parameters do not appear to significantly affect gene expression of any gene tested.
Collapse
Affiliation(s)
- John Hill
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - James Messina
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Aleksandar Jeremic
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Vesna Zderic
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| |
Collapse
|
5
|
Kongphet M, Hang HTX, Ngo TT, Le TKD, Chavasiri W. Structural modification of tanshinone IIA and their α-glucosidase inhibitory activity. Bioorg Med Chem Lett 2024; 105:129736. [PMID: 38599295 DOI: 10.1016/j.bmcl.2024.129736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
α-Glucosidase is one of the therapeutic approaches for treating type 2 diabetes mellitus. Almost 95 % of diabetes patients worldwide have been diagnosed with type 2 diabetes, resulting in 1.5 million fatalities each year. Newly synthesized oxazole-based tanshinone IIA derivatives (1a-n) were designed and evaluated for their inhibitory activity against α-glucosidase enzyme. Eight compounds (1a-d, 1f-g, 1j, and 1m) demonstrated excellent inhibition with IC50 values ranging from 0.73 ± 0.11 to 9.46 ± 0.57 μM as compared to tanshinone IIA (IC50 = 11.39 ± 0.77 μM) and standard acarbose (IC50 = 100.00 ± 0.95 μM). Among this series, 1j bearing two hydroxyls group over the phenyl ring was identified as the most potent α-glucosidase inhibitor with IC50 value of 0.73 ± 0.11 μM. Molecular docking simulations were done for the most active compound to identify important binding modes responsible for inhibition activity of α-glucosidase. In addition, the kinetic study was also performed to understand the mode of inhibition.
Collapse
Affiliation(s)
- Mutita Kongphet
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Hoa Tai Xuan Hang
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Thanh The Ngo
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Thi-Kim-Dung Le
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Shi Y, Yang X, Min J, Kong W, Hu X, Zhang J, Chen L. Advancements in culture technology of adipose-derived stromal/stem cells: implications for diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1343255. [PMID: 38681772 PMCID: PMC11045945 DOI: 10.3389/fendo.2024.1343255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Stem cell-based therapies exhibit considerable promise in the treatment of diabetes and its complications. Extensive research has been dedicated to elucidate the characteristics and potential applications of adipose-derived stromal/stem cells (ASCs). Three-dimensional (3D) culture, characterized by rapid advancements, holds promise for efficacious treatment of diabetes and its complications. Notably, 3D cultured ASCs manifest enhanced cellular properties and functions compared to traditional monolayer-culture. In this review, the factors influencing the biological functions of ASCs during culture are summarized. Additionally, the effects of 3D cultured techniques on cellular properties compared to two-dimensional culture is described. Furthermore, the therapeutic potential of 3D cultured ASCs in diabetes and its complications are discussed to provide insights for future research.
Collapse
Affiliation(s)
- Yinze Shi
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xueyang Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
7
|
Tanoğlu A, Özçelik F, Hacımustafaoğlu F, Coşkun G, Sapmaz T, Güzel Tanoğlu E. Resveratrol Has Histone 4 and Beta-Defensin 1-Mediated Favorable Biotherapeutic Effects on Liver and Other Target Organs in Diabetic Rats. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:223-231. [PMID: 39128051 PMCID: PMC11059984 DOI: 10.5152/tjg.2024.23068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 08/13/2024]
Abstract
BACKGROUND/AIMS It was aimed to investigate the biochemical and histopathological effects of resveratrol and melatonin, via histone H4 and β-defensin 1, in diabetic rats. MATERIALS AND METHODS Twenty-four Sprague-Dawley male rats were categorized into 4 groups, with 6 rats in each group (control, diabetes mellitus, melatonin - diabetes mellitus, and resveratrol+diabetes mellitus). Diabetes was formed by giving streptozotocin to all groups except the control group. Melatonin, 5 mg/kg/day, was given to the melatonin - diabetes mellitus group, and resveratrol, 5 mg/kg/day, was given to the resveratrol+diabetes mellitus group via intraperitoneally for 3 weeks. Interleukin-1 beta, tumor necrosis factor alpha, histone H4, and β-defensin 1 levels were measured in the blood of all rats. The lung, liver, and kidney tissue of all rats were performed as histopathological examinations. RESULTS Whereas there was no difference between the other groups (P >.05), interleukin-1 beta levels of the diabetes mellitus group were found to be significantly higher compared with the control group (5.02 ± 2.15 vs. 2.38 ± 0.72 ng/mL; P < .05). Whereas histone H4 levels of the diabetes mellitus group were higher compared with the control and resveratrol+diabetes mellitus groups (7.53 ± 3.30 vs. 2.97 ± 1.57 and 3.06 ± 1.57 ng/mL; P <.05), the β-defensin 1 levels of the diabetes mellitus group were lower compared with control and resveratrol+diabetes mellitus groups (7.6 ± 2.8 vs. 21.6 ± 5.5 and 18.8 ± 7.4 ng/mL; P <.05). β-Defensin 1 levels were moderately inversely correlated with interleukin-1 beta and histone H4 levels (rs > -0.50, P < .01). Histopathological changes found in favor of target cell damage in the diabetes mellitus group were not observed in resveratrol+diabetes mellitus group. CONCLUSION Resveratrol may be used as a biotherapeutic agent, which significantly reduces diabetes-induced histone H4 and interleukin-1 beta-mediated liver and other target organ damage.
Collapse
Affiliation(s)
- Alpaslan Tanoğlu
- Department of Gastroenterology, Bahçeşehir University Faculty of Medicine, Göztepe Medical Park Hospital, İstanbul, Turkey
| | - Fatih Özçelik
- Department of Medical Biochemistry, University of Health Sciences, Şişli Etfal Training and Research Hospital, İstanbul, Turkey
| | - Fatih Hacımustafaoğlu
- Department of Medical Biochemistry, University of Health Sciences Hamidiye Faculty of Medicine, İstanbul, Turkey
| | - Gülfidan Coşkun
- Department of Histology and Embryology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Tansel Sapmaz
- Department of Histology and Embryology, University of Health Sciences Hamidiye Faculty of Medicine, İstanbul, Turkey
| | - Esra Güzel Tanoğlu
- Department of Molecular Biology and Genetics, Institution of Hamidiye Health Sciences, University of Health Sciences, İstanbul, Turkey
| |
Collapse
|
8
|
Tasleem M, Ullah S, Halim SA, Urooj I, Ahmed N, Munir R, Khan A, El-Kott AF, Taslimi P, Negm S, Al-Harrasi A, Shafiq Z. Synthesis of 3-hydroxy-2-naphthohydrazide-based hydrazones and their implications in diabetic management via in vitro and in silico approaches. Arch Pharm (Weinheim) 2024; 357:e2300544. [PMID: 38013251 DOI: 10.1002/ardp.202300544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Diabetes mellitus (DM) has prevailed as a chronic health condition and has become a serious global health issue due to its numerous consequences and high prevalence. We have synthesized a series of hydrazone derivatives and tested their antidiabetic potential by inhibiting the essential carbohydrate catabolic enzyme, "α-glucosidase." Several approaches including fourier transform infrared, 1 H NMR, and 13 C NMR were utilized to confirm the structures of all the synthesized derivatives. In vitro analysis of compounds 3a-3p displayed more effective inhibitory activities against α-glucosidase with IC50 in a range of 2.80-29.66 µM as compared with the commercially available inhibitor, acarbose (IC50 = 873.34 ± 1.67 M). Compound 3h showed the highest inhibitory potential with an IC50 value of 2.80 ± 0.03 µM, followed by 3i (IC50 = 4.13 ± 0.06 µM), 3f (IC50 = 5.18 ± 0.10 µM), 3c (IC50 = 5.42 ± 0.11 µM), 3g (IC50 = 6.17 ± 0.15 µM), 3d (IC50 = 6.76 ± 0.20 µM), 3a (IC50 = 9.59 ± 0.14 µM), and 3n (IC50 = 10.01 ± 0.42 µM). Kinetics analysis of the most potent compound 3h revealed a concentration-dependent form of inhibition by 3h with Ki value = 4.76 ± 0.0068 µM. Additionally, an in silico docking approach was applied to predict the binding patterns of all the compounds, which indicates that the hydrazide and the naphthalene-ol groups play a vital role in the binding of the compounds with the essential residues (i.e., Glu277 and Gln279) of the α-glucosidase enzyme.
Collapse
Affiliation(s)
- Mussarat Tasleem
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Ifra Urooj
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Nadeem Ahmed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Rabia Munir
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Si Y, Zhu J, Xu X, Xu Y, Lee J, Park YD. Diphenolic boldine, an aporphine alkaloid: inhibitory effect evaluation on α-glucosidase by molecular dynamics integrating enzyme kinetics. J Biomol Struct Dyn 2024:1-13. [PMID: 38189319 DOI: 10.1080/07391102.2024.2301769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Screening α-glucosidase inhibitors with novel structures is an important field in the development of anti-diabetic drugs due to their application in postprandial hyperglycemia control. Boldine is one of the potent natural antioxidants with a wide range of pharmacological activities. Virtual screening and biochemical inhibition kinetics combined with molecular dynamics simulations were conducted to verify the inactivation function of boldine on α-glucosidase. A series of inhibition kinetics and spectrometry detections were conducted to analyze the α-glucosidase inhibition. Computational simulations of molecular dynamics/docking analyses were conducted to detect boldine docking sites' details and evaluate the key binding residues. Boldine displayed a typical reversible and mixed-type inhibition manner. Measurements of circular dichroism and fluorescence spectrum showed boldine changed the secondary structure and loosened the tertiary conformation of target α-glucosidase. The computational molecular dynamics showed that boldine could block the active pocket site through close interaction with binding key residues, and two phenolic hydroxyl groups of boldine play a core function in α-glucosidase inhibition via ligand binding. This investigation reveals the boldine function on interaction with the α-glucosidase active site, which provides a new inhibitor candidate.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
- Key Labortary of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, P.R. China
| | - Jiabo Zhu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Xia Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Yueyuan Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Jinhyuk Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P.R. China
- Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
| |
Collapse
|
10
|
da Costa LF, Sampaio TL, de Moura L, Rosa RDS, Iser BPM. Time trend and costs of hospitalizations with diabetes mellitus as main diagnosis in the Brazilian National Health System, 2011 to 2019. EPIDEMIOLOGIA E SERVIÇOS DE SAÚDE 2024; 32:e2023509. [PMID: 38198367 PMCID: PMC10768797 DOI: 10.1590/s2237-96222023000400006.en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/24/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVE To analyze the diabetes mellitus (DM) temporal trend and hospitalization costs in Brazil, by region, Federative Units (FUs) and population characteristics, from 2011 to 2019. METHODS This was an ecological study with data from the Hospital Information System, analyzing the annual trend in hospitalization rates for DM according to sex, age, race/skin color and region/FU by Prais-Winsten generalized linear regression. RESULTS A total of 1,239,574 DM hospitalizations were recorded in the country and the hospitalization rates was 6.77/10,000 inhabitants in the period. The DM hospitalization rates trend was falling for both sexes and in most regions, while it was rising in the younger population and for length of stay (average 6.17 days). Total expenditure was US$ 420,692.23 and it showed a rising trend. CONCLUSION The temporal trend of hospitalization rates due to DM was falling, with differences according to region/FU and age group. Average length of stay and expenditure showed a rising trend. MAIN RESULTS From 2011 to 2019, the diabetes mellitus hospitalization rate was 6.77 per 10,000 inhabitants, with a falling trend. Total expenditure was US$420,692.23 and it showed a rising trend. IMPLICATIONS FOR SERVICES The study warns of the increase in child and adolescent hospitalizations, which indicates the need to invest in preventive actions and early diagnosis. PERSPECTIVES The increase in length of hospital stay and related costs indicates a worrying scenario for the Brazilian National Health System and emphasizes the need to improve access to and quality of care, with a focus on diabetes education, so as to avoid complications and hospitalizations.
Collapse
Affiliation(s)
| | - Taisa Lara Sampaio
- Universidade do Sul de Santa Catarina, Curso de graduação em Medicina, Tubarão, SC, Brazil
| | - Lenildo de Moura
- Pan-American Health Organization, Coordenação de Doenças Crônicas Não Transmissíveis e Saúde Mental, Asunción, Departamento Central, Paraguay
| | - Roger dos Santos Rosa
- Universidade Federal do Rio Grande do Sul, Departamento de Medicina Social, Porto Alegre, RS, Brazil
| | | |
Collapse
|
11
|
Wang X, Xiao W, Liang Z, Li S, Tang Q. Efficacy and safety of once-weekly basal insulin versus once-daily basal insulin in patients with type 2 diabetes: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e36308. [PMID: 38206709 PMCID: PMC10754560 DOI: 10.1097/md.0000000000036308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/03/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Once-weekly insulin is expected to improve treatment compliance and durability and lead to better glycemic control. Several clinical trials on once-weekly insulin have recently been published. We conducted a systematic review and meta-analysis to investigate the efficacy and safety of once-weekly insulin versus once-daily insulin in type 2 diabetes (T2D). METHODS The following databases were searched for studies: PubMed, EMBASE, and Cochrane library (From January 1, 1946 to May 9, 2023). All randomized trials comparing weekly versus daily insulin in T2D were eligible for inclusion. Data analysis was performed using STATA 17.0 software (Stata Corporation, College Station, TX). The main outcomes and indexes included reduction in Hemoglobin A1c (HbA1c), fasting plasma glucose and bodyweight, proportion of patients achieving HbA1c < 7%, time-in-range 70 to 180 mg/dL and adverse events. RESULTS This systematic review and meta-analysis included 7 randomized controlled studies involving 2391 patients (1347 receiving 1-week insulin and 1044 receiving 1-day insulin). Once-weekly insulin was not inferior to once-daily insulin in HbA1c change [estimated treatment difference (ETD) = -0.05; 95% confidence intervals (CI): -0.14 to 0.04), HbA1c < 7% (odds ratio = 1.14; 95% CI: 0.87-1.50), fasting plasma glucose (ETD = 0.09; 95% CI: -0.19 to 0.36) and body weight loss (ETD = 0.27; 95% CI: -0.36 to 0.91). In terms of time-in-range 70 to 180 mg/dL, weekly insulin was superior to daily insulin (MTD = 3.84; 95% CI: 1.55-6.08). Icodec was associated with higher incidence of all adverse events (odds ratio = 1.20; 95% CI: 1.03-1.48; P = .024), but did not result in high risk of serious and severe adverse events. Moreover, icodec and Basal Insulin Fc did not result in higher incidence of hypoglycemia compared with insulin daily. CONCLUSION Our meta-analysis found that insulin weekly was well tolerated and effective for glycemic control. Once-weekly insulin was not inferior to once-daily insulin in both efficacy and safety in T2D.
Collapse
Affiliation(s)
- Xinxin Wang
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Nanhai District, Foshan City, Guangdong Province, China
| | - Wei Xiao
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Nanhai District, Foshan City, Guangdong Province, China
| | - Zhanpeng Liang
- Department of Oncology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Guangdong Province, China
| | - Shixiang Li
- School of Traditional Chinese Medicine, Jinan University, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Qizhi Tang
- . Department of Endocrinology, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan City, Guangdong Province, the People’s Republic of China
| |
Collapse
|
12
|
Poojari AS, Wairkar S, Kulkarni YA. Stem cells as a regenerative medicine approach in treatment of microvascular diabetic complications. Tissue Cell 2023; 85:102225. [PMID: 37801960 DOI: 10.1016/j.tice.2023.102225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood glucose and is associated with high morbidity and mortality among the diabetic population. Uncontrolled chronic hyperglycaemia causes increased formation and accumulation of different oxidative and nitrosative stress markers, resulting in microvascular and macrovascular complications, which might seriously affect the quality of a patient's life. Conventional treatment strategies are confined to controlling blood glucose by regulating the insulin level and are not involved in attenuating the life-threatening complications of diabetes mellitus. Thus, there is an unmet need to develop a viable treatment strategy that could target the multi-etiological factors involved in the pathogenesis of diabetic complications. Stem cell therapy, a regenerative medicine approach, has been investigated in diabetic complications owing to their unique characteristic features of self-renewal, multilineage differentiation and regeneration potential. The present review is focused on potential therapeutic applications of stem cells in the treatment of microvascular diabetic complications such as nephropathy, retinopathy, and polyneuropathy.
Collapse
Affiliation(s)
- Avinash S Poojari
- Shobhabhen Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sarika Wairkar
- Shobhabhen Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhabhen Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
13
|
Brown CL, Venetis MK. Communicative Pathways Predicting Adherence in Type II Diabetic Patients: A Mediation Analysis. HEALTH COMMUNICATION 2023; 38:3051-3068. [PMID: 36259091 DOI: 10.1080/10410236.2022.2131980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Type II diabetes is a chronic health condition and its successful management requires effective patient-provider communication. Responding to a call to model pathways between provider communication and patient health outcomes, this study tested four models of type II diabetic patient adherence with four mediators. Given the complex nature of type II diabetic care, patient adherence was conceptualized as wellness, screening, medication, and treatment adherence. Mediators included patient understanding, agreement, trust, and motivation. A sample of U.S. patients with type II diabetes patients who were both under the care of a medical provider and taking medication for their type II diabetes completed online surveys (n = 793). Findings indicated that the relationships between patient-centered communication and adherence outcomes were mediated by proximal outcomes. The results contribute to the understanding of patient-centered communication, adherence behaviors, and proximal outcomes of patient understanding, agreement, trust, and motivation. Findings indicate that relationships between patient-centered communication and wellness adherence is mediated by patient motivation, patient-centered communication and screening adherence is mediated by patient agreement, trust, and motivation, and patient-centered communication and treatment adherence is mediated by patient agreement, trust, and motivation. The discussion addresses theoretical and practical implications and directions for future research.
Collapse
|
14
|
Ojha MD, Yadav A, P H. Analyzing the potential of selected plant extracts and their structurally diverse secondary metabolites for α-glucosidase inhibitory activity: in vitro and in silico approach. J Biomol Struct Dyn 2023; 41:9523-9538. [PMID: 36345773 DOI: 10.1080/07391102.2022.2142847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Inhibiting α-glucosidase activity is a therapeutic method to regulate post-prandial hyperglycemia in humans. Here, in-vitro and in-silico studies were used to find α-glucosidase inhibitory plant secondary metabolites (PSM). Among 408 solvent extracts from 70 plants tested for α-glucosidase inhibition, 174 had IC50 ≤ 3 mg/ml. α-glucosidase inhibitory PSM is found in several plant species and solvent extracts, indicating their diversity. Further, ensemble molecular docking and structural activity relationship analysis supported this hypothesis where the top 100 PSM with the least binding energy (BE) among the 539 PSM belonged to sesquiterpenoids (34%), catechols (11%), flavonoids (9%) and steroidal lactones (8%). Shortlisted 11 PSM were subjected to molecular dynamic simulation. Withanolide J recorded the least BE of -66.424 ± 22.333 kJ/mol, followed by Withacoagulin I (-64.665 ± 24.030 kJ/mol). When different simulation frames were analyzed, PSM of withanolide groups was stabilized in the narrow entrance of the active pocket forming H-bond with LYS156, TYR158, PHE159, PHE303 PRO312, LEU313, ARG315 and PHE134. Similarly, Hydroxytuberosone and 1, 8-Dihydroxy-3-carboxy-9, 10-anthraquinone (DHCA) formed H-bond with ASP307 located on the loop at the entrance of the active pocket. In the case of Neoliquiritin and Kaempferol-3-o-alpha-L-rhamnoside (KALR), glucose moiety interacted with the GLU277 and ASP215 (catalytic amino acid residues) through H-bonds. In addition, these 11 PSM were found to fulfil the criteria of drug-likeness as per Lipinski's rule of five and pharmacokinetic profile. The present study strengthens the library of α-glucosidase inhibitory plants and PSM, providing valuable information for Type-II Diabetes mellitus management.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Monu Dinesh Ojha
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ajay Yadav
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Hariprasad P
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
15
|
LaMarca A, Tse I, Keysor J. Rehabilitation Technologies for Chronic Conditions: Will We Sink or Swim? Healthcare (Basel) 2023; 11:2751. [PMID: 37893825 PMCID: PMC10606667 DOI: 10.3390/healthcare11202751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
INTRODUCTION Chronic conditions such as stroke, Parkinson's disease, spinal cord injury, multiple sclerosis, vestibular disorders, chronic pain, arthritis, diabetes, chronic obstructive pulmonary disease (COPD), and heart disease are leading causes of disability among middle-aged and older adults. While evidence-based treatment can optimize clinical outcomes, few people with chronic conditions engage in the recommended levels of exercise for clinical improvement and successful management of their condition. Rehabilitation technologies that can augment therapeutic care-i.e., exoskeletons, virtual/augmented reality, and remote monitoring-offer the opportunity to bring evidence-based rehabilitation into homes. Successful integration of rehabilitation techniques at home could help recovery and access and foster long term self-management. However, widespread uptake of technology in rehabilitation is still limited, leaving many technologies developed but not adopted. METHODS In this narrative review, clinical need, efficacy, and obstacles and suggestions for implementation are discussed. The use of three technologies is reviewed in the management of the most prevalent chronic diseases that utilize rehabilitation services, including common neurological, musculoskeletal, metabolic, pulmonary, and cardiac conditions. The technologies are (i) exoskeletons, (ii) virtual and augmented reality, and (iii) remote monitoring. RESULTS Effectiveness evidence backing the use of technology in rehabilitation is growing but remains limited by high heterogeneity, lack of long-term outcomes, and lack of adoption outcomes. CONCLUSION While rehabilitation technologies bring opportunities to bridge the gap between clinics and homes, there are many challenges with adoption. Hybrid effectiveness and implementation trials are a possible path to successful technology development and adoption.
Collapse
Affiliation(s)
- Amber LaMarca
- Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA 02129, USA;
| | - Ivy Tse
- Doctor of Physical Therapy Program, MGH Institute of Health Professions, Boston, MA 02129, USA
| | - Julie Keysor
- School of Health Care Leadership, MGH Institute of Health Professions, Boston, MA 02129, USA
| |
Collapse
|
16
|
Luo Z, Xu J, Gao Q, Wang Z, Hou M, Liu Y. Study on the effect of licochalcone A on intestinal flora in type 2 diabetes mellitus mice based on 16S rRNA technology. Food Funct 2023; 14:8903-8921. [PMID: 37702574 DOI: 10.1039/d3fo00861d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Licorice, has a long history in China where it has various uses, including as a medicine, and is often widely consumed as a food ingredient. Licorice is rich in various active components, including polysaccharides, triterpenoids, alkaloids, and nucleosides, among which licochalcone A (LicA) is an active component with multiple physiological effects. Previous studies from our research group have shown that LicA can significantly improve glucose and lipid metabolism and related complications in Type 2 diabetes mellitus (T2DM) mice. However, research on the mechanism of LicA in T2DM mice based on intestinal flora has not been carried out in depth. Therefore, in this study, LicA was taken as the research object and the effects of LicA on glucose and lipid metabolism and intestinal flora in T2DM mice induced by streptozotocin (STZ)/high-fat feed (HFD) were explored. The results indicated that LicA could reduce serum TC, TG, and LDL-C levels, increase HDL-C levels, reduce blood glucose, and improve insulin resistance and glucose tolerance. LicA also alleviated pathological damage to the liver. The results also showed that LicA significantly affected the intestinal microbiota composition and increased the α diversity index. β Diversity analysis showed that after the intervention of LicA, the composition of intestinal flora was significantly different from that in the T2DM model group. Correlation analysis showed that the changes in glucose and lipid metabolism parameters in mice were significantly correlated with the relative abundance of Firmicutes, Bacteroidetes, Helicobacter, and Lachnospiraceae (p < 0.01). Analysis of key bacteria showed that LicA could significantly promote the growth of beneficial bacteria, such as Bifidobacterium, Turicibacter, Blautia, and Faecococcus, and inhibit the growth of harmful bacteria, such as Enterococcus, Dorea, and Arachnococcus. In conclusion, it was confirmed that LicA reversed the imbalanced intestinal flora, and increased the richness and diversity of the species in T2DM mice.
Collapse
Affiliation(s)
- Zhonghua Luo
- Shuren International College, Shenyang Medical College, Huanghe North Street, No. 146, Shenyang 110034, China.
| | - Jing Xu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingqing Gao
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhifang Wang
- College of physical education, Yanshan University, Qinhuangdao 066004, China
| | - Mingxiao Hou
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, No. 20 Beijiu Road, Heping District, Shenyang 110001, China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, Huanghe North Street, No. 146, Shenyang 110034, China.
| |
Collapse
|
17
|
Basri R, Ullah S, Khan A, Mali SN, Abchir O, Chtita S, El-Gokha A, Taslimi P, Binsaleh AY, El-Kott AF, Al-Harrasi A, Shafiq Z. Synthesis, biological evaluation and molecular modelling of 3-Formyl-6-isopropylchromone derived thiosemicarbazones as α-glucosidase inhibitors. Bioorg Chem 2023; 139:106739. [PMID: 37478545 DOI: 10.1016/j.bioorg.2023.106739] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Type-2 Diabetes Mellitus (T2DM) is one of the most common metabolic disorders in the world and over the past three decades its incidence has increased drastically. α-Glucosidase inhibitors are used to control the hyperglycemic affect of T2DM. Herein, we report the synthesis, α-glucosidase inhibition, structure activity relationship, pharmacokinetics and docking analysis of various novel chromone based thiosemicarbazones 3(a-r). The derivatives displayed potent activity against α-glucosidase with IC50 in range of 0.11 ± 0.01-79.37 ± 0.71 µM. Among all the synthesized compounds, 3a (IC50 = 0.17 ± 0.026 µM), 3 g (IC50 = 0.11 ± 0.01 µM), 3n (IC50 = 0.55 ± 0.02 µM), and 3p (IC50 = 0.43 ± 0.025 µM) displayed higher inhibitory activity as compared to the standard, acarbose. Moreover, we have developed a statistically significant 2D-QSAR model (R2tr:0.9693; F: 50.4647 and Q2LOO:0.9190), which can be used in future to further design potent thiosemicarbazones as inhibitors of α-glucosidase.
Collapse
Affiliation(s)
- Rabia Basri
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Suraj N Mali
- Department of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesra 835215, India
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Ahmed El-Gokha
- Chemistry Department, Faculty of Science, Menoufia University Menoufia, Egypt
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Ammena Y Binsaleh
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia; Department of Zoology, College of Science, Damanhour University, Damanhour 22511, Egypt
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan; Department of Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
18
|
Guarnotta V, Emanuele F, Salzillo R, Bonsangue M, Amato C, Mineo MI, Giordano C. Practical therapeutic approach in the management of diabetes mellitus secondary to Cushing's syndrome, acromegaly and neuroendocrine tumours. Front Endocrinol (Lausanne) 2023; 14:1248985. [PMID: 37842314 PMCID: PMC10569460 DOI: 10.3389/fendo.2023.1248985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023] Open
Abstract
Cushing's syndrome, acromegaly and neuroendocrine disorders are characterized by an excess of counterregulatory hormones, able to induce insulin resistance and glucose metabolism disorders at variable degrees and requiring immediate treatment, until patients are ready to undergo surgery. This review focuses on the management of diabetes mellitus in endocrine disorders related to an excess of counterregulatory hormones. Currently, the landscape of approved agents for treatment of diabetes is dynamic and is mainly patient-centred and not glycaemia-centred. In addition, personalized medicine is more and more required to provide a precise approach to the patient's disease. For this reason, we aimed to define a practical therapeutic algorithm for management of diabetes mellitus in patients with glucagonoma, pheochromocytoma, Cushing's syndrome and acromegaly, based on our practical experience and on the physiopathology of the specific endocrine disease taken into account. This document is addressed to all specialists who approach patients with diabetes mellitus secondary to endocrine disorders characterized by an excess of counterregulatory hormones, in order to take better care of these patients. Care and control of diabetes mellitus should be one of the primary goals in patients with an excess of counterregulatory hormones requiring immediate and aggressive treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carla Giordano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, Palermo, Italy
| |
Collapse
|
19
|
Halayal RY, Bagewadi ZK, Maliger RB, Al Jadidi S, Deshpande SH. Network pharmacology based anti-diabetic attributes of bioactive compounds from Ocimum gratissimum L . through computational approach. Saudi J Biol Sci 2023; 30:103766. [PMID: 37588570 PMCID: PMC10425415 DOI: 10.1016/j.sjbs.2023.103766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023] Open
Abstract
The present research was framed to determine the key compounds present in the plant Ocimum gratissimum L. targeting protein molecules of Diabetes Mellitus (DM) by employing In-silico approaches. Phytochemicals previously reported to be present in this herb were collated through literature survey and public phytochemical databases, and their probable targets were anticipated using BindingDB (p ≥ 0.7). STRING and KEGG pathway databases were employed for pathway enrichment analysis. Homology modelling was executed to elucidate the structures of therapeutic targets. Further, Phytocompounds from O. gratissimum were subjected for docking with four therapeutic targets of DM by using AutoDock vina through POAP pipeline implementation. 30 compounds were predicted to target 136 protein molecules including aldose reductase, DPP4, alpha-amylase, and alpha-glucosidase. Neuroactive ligand-receptor interaction, MAPK, PI3K-Akt, starch and insulin resistance were predicted to have potentially modulation by phytocompounds. Based on the phytocompound's binding score with the four targets of DM, Rutin scored the lowest binding energy (-11 kcal/mol) with Aldose reductase by forming 17 intermolecular interactions. In conclusion, based on the network and binding score, phytocompounds from O. gratissimum have a synergistic and considerable effect in the management of DM via multi-compound, multi-target, and multi-pathway mechanisms.
Collapse
Affiliation(s)
- Rekha Y. Halayal
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Raju B. Maliger
- Department of Mechanical and Industrial Engineering (MIE), University of Technology & Applied Sciences, Muscat, Oman
| | - Salim Al Jadidi
- Department of Mechanical and Industrial Engineering (MIE), University of Technology & Applied Sciences, Muscat, Oman
| | | |
Collapse
|
20
|
Iheanacho CO, Akhumi TF, Eze UIH, Ojieabu WA. Prevalence and predictors of type 2 diabetes complications: a single centre observation. Afr Health Sci 2023; 23:308-317. [PMID: 38357114 PMCID: PMC10862620 DOI: 10.4314/ahs.v23i3.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background Diabetes complications are a major burden on persons living with diabetes and the health care systems. Objectives The study assessed the glycemic control, prevalence and predictors of type 2 diabetes complications among patients in a healthcare centre. Methods Two hundred adults who had type 2 diabetes in a general hospital were recruited for the study. Cross-sectional and retrospective surveys were used to determine prevalence, number and types of complications in the patients. SPSS version 21 was used for descriptive analysis and Chi-square (p<0.05). Results A total of 200 (100%) respondents participated in the study and 97 (48.5%) had poor glycemic control. Mean number of complications per patient was 2.48 ± 1.22. Number of complications per person and type of complications were significantly associated with Age (p = 0.000 and p = 0.000, respectively), Gender (p = 0.008 and p = 0.031, respectively) and Occupation (p=0.000 and p=0.006, respectively). Marital status (p = 0.032) and years of diagnosis (p=0.021) were also associated with type of complications. The majority of patients 64 (32.0%) were admitted in the previous year for diabetes-related complications. Majority 159 (79.5%) had ≥ 2 number of complications from the observed 497 complications. Conclusions Poor glycemic control and high prevalence of complications were observed. Also, socio-demographic characteristics were likely predictors of number and type of complications. These findings are essential for improved planning and prioritizing of diabetes care.
Collapse
Affiliation(s)
- Chinonyerem O Iheanacho
- Department of Clinical Pharmacy and Public Health, Faculty of Pharmacy, University of Calabar, Calabar, Nigeria
| | - Tolulope Folashade Akhumi
- Department of Clinical Pharmacy and Biopharmacy, Faculty of Pharmacy, Olabisi Onabanjo University, Sagamu, Nigeria
| | - Uchenna I H Eze
- Department of Clinical Pharmacy and Biopharmacy, Faculty of Pharmacy, Olabisi Onabanjo University, Sagamu, Nigeria
| | - Winifred A Ojieabu
- Department of Clinical Pharmacy and Biopharmacy, Faculty of Pharmacy, Olabisi Onabanjo University, Sagamu, Nigeria
| |
Collapse
|
21
|
Philis-Tsimikas A, Asong M, Franek E, Jia T, Rosenstock J, Stachlewska K, Watada H, Kellerer M. Switching to once-weekly insulin icodec versus once-daily insulin degludec in individuals with basal insulin-treated type 2 diabetes (ONWARDS 2): a phase 3a, randomised, open label, multicentre, treat-to-target trial. Lancet Diabetes Endocrinol 2023; 11:414-425. [PMID: 37148899 DOI: 10.1016/s2213-8587(23)00093-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Insulin icodec (icodec) is a once-weekly basal insulin currently under development. ONWARDS 2 aimed to assess the efficacy and safety of once-weekly icodec versus once-daily insulin degludec (degludec) in basal insulin-treated type 2 diabetes. METHODS This 26-week, randomised, open-label, active-controlled, multicentre, treat-to-target phase 3a trial was conducted in 71 sites in nine countries. Eligible participants with type 2 diabetes inadequately controlled on once-daily or twice-daily basal insulin, with or without non-insulin glucose-lowering agents, were randomly assigned (1:1) to once-weekly icodec or once-daily degludec. The primary outcome was change from baseline to week 26 in HbA1c; the margin used to establish non-inferiority of icodec compared with degludec was 0·3 percentage points. Safety outcomes (hypoglycaemic episodes and adverse events) and patient-reported outcomes were also assessed. The primary outcome was evaluated in all randomly assigned participants; safety outcomes were evaluated descriptively based on all randomly assigned participants who received at least one dose of trial product, with statistical analyses based on all randomly assigned participants. This trial is registered with ClinicalTrials.gov, NCT04770532, and is now complete. FINDINGS Between March 5 and July 19, 2021, 635 participants were screened, of whom 109 were ineligible or withdrew, and 526 were randomly assigned to icodec (n=263) or degludec (n=263). From a mean baseline of 8·17% (icodec; 65·8 mmol/mol) and 8·10% (degludec; 65·0 mmol/mol), HbA1c was reduced to a greater extent with icodec than degludec (7·20% vs 7·42% [55·2 vs 57·6 mmol/mol], respectively) at week 26. This translates to an estimated treatment difference (ETD) of -0·22 percentage points (95% CI -0·37 to -0·08) or -2·4 mmol/mol (95% CI -4·1 to -0·8), demonstrating non-inferiority (p<0·0001) and superiority (p=0·0028). The estimated mean change from baseline to week 26 in bodyweight was +1·40 kg for icodec and -0·30 kg for degludec (ETD 1·70 [95% CI 0·76 to 2·63]). Overall rates of combined level 2 or level 3 hypoglycaemia were less than one event per patient-year of exposure for both groups (0·73 [icodec] vs 0·27 [degludec]; estimated rate ratio 1·93 [95% CI 0·93 to 4·02]). Overall, 161 (61%) of 262 participants receiving icodec and 134 (51%) of 263 participants receiving degludec experienced an adverse event; 22 (8%) and 16 (6%), respectively, experienced a serious adverse event. One serious adverse event (degludec) was assessed as being possibly related to treatment. No new safety issues were identified in relation to icodec compared with degludec in this trial. INTERPRETATION Among adults with basal insulin-treated type 2 diabetes, treatment with once-weekly icodec versus once-daily degludec demonstrated non-inferiority and statistical superiority in HbA1c reduction after 26 weeks, associated with modest weight gain. Overall rates of hypoglycaemia were low, with numerically but not statistically significantly higher event rates of level 2 or level 3 hypoglycaemia with icodec versus degludec. FUNDING Novo Nordisk.
Collapse
Affiliation(s)
| | | | - Edward Franek
- National Medical Institute of the Ministry of Interior and Administration and Mossakowski Clinical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Monika Kellerer
- Diabetology and Endocrinology, Clinic for Internal Medicine, Marienhospital Stuttgart, Germany
| |
Collapse
|
22
|
Synthesis and biological evaluation of 2,5-disubstituted furan derivatives containing 1,3-thiazole moiety as potential α-glucosidase inhibitors. Bioorg Med Chem Lett 2023; 83:129173. [PMID: 36764471 DOI: 10.1016/j.bmcl.2023.129173] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
α-Glucosidase, which is involved in the hydrolysis of carbohydrates to glucose and directly mediates blood glucose elevation, is a crucial therapeutic target for type 2 diabetes. In this work, 2,5-disubstituted furan derivatives containing 1,3-thiazole-2-amino or 1,3-thiazole-2-thiol moiety (III-01 ∼ III-30) were synthesized and screened for their inhibitory activity against α-glucosidase. α-Glucosidase inhibition assay demonstrated that all compounds had IC50 in the range of 0.645-94.033 μM and more potent than standard inhibitor acarbose (IC50 = 452.243 ± 54.142 µM). The most promising inhibitors of the two series were compound III-10 (IC50 = 4.120 ± 0.764 μM) and III-24 (IC50 = 0.645 ± 0.052 μM), respectively. Kinetic study and molecular docking simulation revealed that compound III-10 (Ki = 2.04 ± 0.72 μM) is a competitive inhibitor and III-24 (Ki = 0.44 ± 0.53 μM) is a noncompetitive inhibitor against α-glucosidase. Significantly, these two compounds showed nontoxicity towards HEK293, RAW264.7 and HepG2 cells, suggesting that compounds may be considered as a class of potential candidates for further developing novel antidiabetic drugs.
Collapse
|
23
|
Zhu YX, Li Y, Ma Y, Zhang X, Du X, Gao J, Ding NH, Wang L, Chen N, Luo M, Wu J, Li R. Liraglutide Accelerates Ischemia-Induced Angiogenesis in a Murine Diabetic Model. J Am Heart Assoc 2023; 12:e026586. [PMID: 36789853 PMCID: PMC10111486 DOI: 10.1161/jaha.122.026586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background Severe hindlimb ischemia is a chronic disease with poor prognosis that can lead to amputation or even death. This study aimed to assess the therapeutic effect of liraglutide on hind-limb ischemia in type 2 diabetic mice and to elucidate the underlying mechanism. Methods and Results Blood flow reperfusion and capillary densities after treatment with liraglutide or vehicle were evaluated in a mouse model of lower-limb ischemia in a normal background or a background of streptozotocin-induced diabetes. The proliferation, migration, and tube formation of human umbilical vein endothelial cells were analyzed in vitro upon treatment with liraglutide under normal-glucose and high-glucose conditions. Levels of phospho-Akt, phospho-endothelial nitric oxide synthase, and phospho-extracellular signal-related kinases 1 and 2 under different conditions in human umbilical vein endothelial cells and in ischemic muscle were determined by western blotting. Liraglutide significantly improved perfusion recovery and capillary density in both nondiabetic and diabetic mice. Liraglutide also promoted, in a concentration-dependent manner, the proliferation, migration, and tube formation of normal glucose- and high glucose-treated human umbilical vein endothelial cells, as well as the phosphorylation of Akt, endothelial nitric oxide synthase, and extracellular signal-related kinases 1 and 2 both in vitro and in vivo. The liraglutide antagonist exendin (9-39) reversed the promoting effects of liraglutide on human umbilical vein endothelial cell functions. Furthermore, exendin (9-39), LY294002, and PD98059 blocked the liraglutide-induced activation of Akt/endothelial nitric oxide synthase and extracellular signal-related kinases 1 and 2 signaling pathways. Conclusions These studies identified a novel role of liraglutide in modulating ischemia-induced angiogenesis, possibly through effects on endothelial cell function and activation of Akt/endothelial nitric oxide synthase and extracellular signal-related kinases 1 and 2 signaling, and suggested the glucagon-like peptide-1 receptor may be an important therapeutic target in diabetic hind-limb ischemia.
Collapse
Affiliation(s)
- Yu-Xin Zhu
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Yi Li
- Department of Endocrinology The Affiliated Hospital of Southwest Medical University, Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Yu Ma
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Xiao Zhang
- School of Basic Medicine Southwest Medical University Luzhou Sichuan China
| | - Xingrong Du
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Jiali Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China.,Nucleic Acid Medicine of Luzhou Key Laboratory Southwest Medical University Luzhou Sichuan China
| | - Nian Hui Ding
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China.,Nucleic Acid Medicine of Luzhou Key Laboratory Southwest Medical University Luzhou Sichuan China
| | - Liqun Wang
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Ni Chen
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Mao Luo
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Jianbo Wu
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China
| | - Rong Li
- Drug Discovery Research Center Southwest Medical University Luzhou Sichuan China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research, Southwest Medical University Luzhou Sichuan China.,Nucleic Acid Medicine of Luzhou Key Laboratory Southwest Medical University Luzhou Sichuan China
| |
Collapse
|
24
|
The Role of Gut Microbiota in High-Fat-Diet-Induced Diabetes: Lessons from Animal Models and Humans. Nutrients 2023; 15:nu15040922. [PMID: 36839280 PMCID: PMC9963658 DOI: 10.3390/nu15040922] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The number of diabetes mellitus patients is increasing rapidly worldwide. Diet and nutrition are strongly believed to play a significant role in the development of diabetes mellitus. However, the specific dietary factors and detailed mechanisms of its development have not been clearly elucidated. Increasing evidence indicates the intestinal microbiota is becoming abundantly apparent in the progression and prevention of insulin resistance in diabetes. Differences in gut microbiota composition, particularly butyrate-producing bacteria, have been observed in preclinical animal models as well as human patients compared to healthy controls. Gut microbiota dysbiosis may disrupt intestinal barrier functions and alter host metabolic pathways, directly or indirectly relating to insulin resistance. In this article, we focus on dietary fat, diabetes, and gut microbiome characterization. The promising probiotic and prebiotic approaches to diabetes, by favorably modifying the composition of the gut microbial community, warrant further investigation through well-designed human clinical studies.
Collapse
|
25
|
Sanjeevi N, Freeland-Graves JH. Low diet quality is associated with adverse levels of metabolic health markers and clustering of risk factors in adults with type 2 diabetes. J Hum Nutr Diet 2023; 36:31-39. [PMID: 35442546 DOI: 10.1111/jhn.13020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/15/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Nutritional recommendations for diabetes management emphasise an overall, healthful diet consistent with the guidelines for the general population. The present study assessed the relationship of diet quality, as measured by Healthy Eating Index-2015 (HEI-2015), with metabolic health markers and risk factor clustering in type 2 diabetes patients using National Health and Nutrition Examination Survey 2011-2016 data. METHODS HEI-2015 diet quality scores were calculated using 24-h dietary recalls. Adults with type 2 diabetes (n = 2220) were assessed for: (1) hyperglycaemia; (2) overweight/obesity; (3) dyslipidaemia; and (4) hypertension. Logistic regression examined associations of diet quality quartiles with odds of hyperglycaemia, overweight/obesity, dyslipidaemia and hypertension, as well as odds of clustering of these risk factors. RESULTS Odds of overweight/obesity and hyperglycaemia were significantly greater for participants in the lowest HEI-2015 quartile compared to those in the highest quartile. Furthermore, individuals in the bottom two HEI-2015 quartiles had increased odds of dyslipidaemia. Those in the lowest quartile also had significantly higher odds of having ≥ 2, ≥ 3 and 4 risk factors (vs. having ≤ 1 risk factor). CONCLUSIONS Low diet quality was related to increased odds of hyperglycaemia, dyslipidaemia, overweight/obesity and risk factor clustering. Findings imply poorer prognosis of diabetes in individuals with low diet quality.
Collapse
Affiliation(s)
- Namrata Sanjeevi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeanne H Freeland-Graves
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
26
|
Philis-Tsimikas A, Bajaj HS, Begtrup K, Cailleteau R, Gowda A, Lingvay I, Mathieu C, Russell-Jones D, Rosenstock J. Rationale and design of the phase 3a development programme (ONWARDS 1-6 trials) investigating once-weekly insulin icodec in diabetes. Diabetes Obes Metab 2023; 25:331-341. [PMID: 36106652 PMCID: PMC10092674 DOI: 10.1111/dom.14871] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 02/02/2023]
Abstract
AIM To describe the phase 3a ONWARDS clinical development programme investigating insulin icodec (icodec), a once-weekly basal insulin, including the design and rationale for each of the ONWARDS 1-6 trials. MATERIALS AND METHODS Six randomized controlled trials have been initiated in adults with type 2 diabetes (T2D) (insulin-naive: ONWARDS 1, 3 and 5; previously insulin-treated: ONWARDS 2 and 4) and type 1 diabetes (T1D) (ONWARDS 6). Each trial will investigate icodec use in a unique clinical scenario, with consideration of long-term safety and varied comparator treatments (insulin glargine U100 or U300 or insulin degludec). ONWARDS 5 will incorporate real-world elements and a digital dose titration solution to guide icodec dosing. The primary objective for each of the trials is to compare the change in HbA1c from baseline to week 26 or week 52 between icodec and comparator arms. Secondary objectives include investigating other glycaemic control and safety parameters, such as fasting glucose, time in glycaemic range and hypoglycaemia. Patient-reported outcomes will assess treatment satisfaction. CONCLUSIONS The ONWARDS 1-6 trials will evaluate the efficacy and safety of once-weekly icodec compared with currently available daily basal insulin analogues in T2D and T1D. These trials will generate comprehensive evidence of icodec use in diverse populations across the spectrum of diabetes progression and treatment experience.
Collapse
Affiliation(s)
| | - Harpreet S Bajaj
- LMC Diabetes and Endocrinology, Brampton, Ontario, Canada
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | - Ildiko Lingvay
- Endocrinology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, University of Leuven, Leuven, Belgium
| | - David Russell-Jones
- Department of Diabetes and Endocrinology, Royal Surrey County Hospital NHS Foundation Trust, Surrey, UK
- University of Surrey, Surrey, UK
| | | |
Collapse
|
27
|
Shati AA, Maarouf A, Dawood AF, Bayoumy NM, Alqahtani YA, A. Eid R, Alqahtani SM, Abd Ellatif M, Al-Ani B, Albawardi A. Lower Extremity Arterial Disease in Type 2 Diabetes Mellitus: Metformin Inhibits Femoral Artery Ultrastructural Alterations as well as Vascular Tissue Levels of AGEs/ET-1 Axis-Mediated Inflammation and Modulation of Vascular iNOS and eNOS Expression. Biomedicines 2023; 11:biomedicines11020361. [PMID: 36830898 PMCID: PMC9953164 DOI: 10.3390/biomedicines11020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Lower extremity arterial disease (LEAD) is a major risk factor for amputation in diabetic patients. The advanced glycation end products (AGEs)/endothelin-1 (ET-1)/nitric oxide synthase (NOS) axis-mediated femoral artery injury with and without metformin has not been previously investigated. Type 2 diabetes mellitus (T2DM) was established in rats, with another group of rats treated for two weeks with 200 mg/kg metformin, before being induced with T2DM. The latter cohort were continued on metformin until they were sacrificed at week 12. Femoral artery injury was established in the diabetic group as demonstrated by substantial alterations to the femoral artery ultrastructure, which importantly were ameliorated by metformin. In addition, diabetes caused a significant (p < 0.0001) upregulation of vascular tissue levels of AGEs, ET-1, and iNOS, as well as high blood levels of glycated haemoglobin, TNF-α, and dyslipidemia. All of these parameters were also significantly inhibited by metformin. Moreover, metformin treatment augmented arterial eNOS expression which had been inhibited by diabetes progression. Furthermore, a significant correlation was observed between femoral artery endothelial tissue damage and glycemia, AGEs, ET-1, TNF-α, and dyslipidemia. Thus, in a rat model of T2DM-induced LEAD, an association between femoral artery tissue damage and the AGEs/ET-1/inflammation/NOS/dyslipidemia axis was demonstrated, with metformin treatment demonstrating beneficial vascular protective effects.
Collapse
Affiliation(s)
- Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Amro Maarouf
- Department of Clinical Biochemistry, Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B9 5SS, UK
| | - Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nervana M. Bayoumy
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Saeed M. Alqahtani
- Department of Surgery, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohamed Abd Ellatif
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
- Department of Medical Biochemistry, College of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Alia Albawardi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
28
|
Stentz FB, Lawson D, Tucker S, Christman J, Sands C. Decreased cardiovascular risk factors and inflammation with remission of type 2 diabetes in adults with obesity using a high protein diet: Randomized control trial. OBESITY PILLARS (ONLINE) 2022; 4:100047. [PMID: 37990670 PMCID: PMC10661976 DOI: 10.1016/j.obpill.2022.100047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 11/23/2023]
Abstract
Objective The study objective was to determine the effects a high protein (HP) vs. a high carbohydrate (HC) diet on cardiovascular risk factors (CVR), inflammation, metabolic parameters, oxidative stress, weight loss, lean and fat body mass, and remission of Type 2 Diabetes (T2DM) in subjects with obesity. Research design and methods Twelve women and men with T2D were recruited and randomized to either a HP (30%protein, 30%fat, 40%carbohydrate) (n = 6) or HC (15%protein, 30%fat, 55%carbohydrate) (n = 6) diet feeding study for 6 months in this randomized controlled trial. All meals were purchased at local grocery stores and provided to subjects for 6 months with daily food menus for HP or HC compliance with weekly food pick-up and weight measurements. Oral glucose tolerance and meal tolerance tests with glucose and insulin measurements and DXA scans were done at baseline and after 6 months on the respective diets. Results After 6 months on the HP diet, 100% of the subjects had remission of their T2DM to Normal Glucose Tolerance (NGT), whereas only 16.6% of subjects on the HC diet had remission of their T2DM. The HP diet group exhibited significant improvement in a) cardiovascular risk factors (p = 0.004, b) inflammatory cytokines(p = 0.001), c) insulin sensitivity(p = 0.001), d) oxidative stress(p = 0.001), e) increased %lean body mass(p = 0.001) compared to the HC diet group at 6 months. Conclusions A significant improvement in cardiovascular risk factors, inflammation, metabolic parameters and 100% remission of T2DM to NGT was achieved with a HP diet compared to a HC diet at 6 months. Clinicaltrialsgov identifier NCT01642849.
Collapse
Affiliation(s)
- Frankie B. Stentz
- Departments of Medicine, Endocrinology, Diabetes and Metabolism Division, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Damon Lawson
- Departments of Medicine, Endocrinology, Diabetes and Metabolism Division, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sidney Tucker
- Departments of Medicine, Endocrinology, Diabetes and Metabolism Division, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - John Christman
- Departments of Medicine, Endocrinology, Diabetes and Metabolism Division, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chris Sands
- Departments of Medicine, Endocrinology, Diabetes and Metabolism Division, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
29
|
Thanaskody K, Jusop AS, Tye GJ, Wan Kamarul Zaman WS, Dass SA, Nordin F. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol 2022; 10:1005926. [PMID: 36407112 PMCID: PMC9666898 DOI: 10.3389/fcell.2022.1005926] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
Over the past 2 decades, mesenchymal stem cells (MSCs) have attracted a lot of interest as a unique therapeutic approach for a variety of diseases. MSCs are capable of self-renewal and multilineage differentiation capacity, immunomodulatory, and anti-inflammatory properties allowing it to play a role in regenerative medicine. Furthermore, MSCs are low in tumorigenicity and immune privileged, which permits the use of allogeneic MSCs for therapies that eliminate the need to collect MSCs directly from patients. Induced pluripotent stem cells (iPSCs) can be generated from adult cells through gene reprogramming with ectopic expression of specific pluripotency factors. Advancement in iPS technology avoids the destruction of embryos to make pluripotent cells, making it free of ethical concerns. iPSCs can self-renew and develop into a plethora of specialized cells making it a useful resource for regenerative medicine as they may be created from any human source. MSCs have also been used to treat individuals infected with the SARS-CoV-2 virus. MSCs have undergone more clinical trials than iPSCs due to high tumorigenicity, which can trigger oncogenic transformation. In this review, we discussed the overview of mesenchymal stem cells and induced pluripotent stem cells. We briefly present therapeutic approaches and COVID-19-related diseases using MSCs and iPSCs.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia,Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia,*Correspondence: Fazlina Nordin,
| |
Collapse
|
30
|
Mor S, Khatri M, Sindhu S, Punia R, Nagoria S, Kumar A, Kumar A. Synthesis, Antimicrobial Activity, α-Amylase Inhibitory Tests and Molecular Docking Studies of Thiazole Based Hydrazones Derived from 2-acyl-(1H)-indene-1,3(2H)-diones. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Mehmood R, Mughal EU, Elkaeed EB, Obaid RJ, Nazir Y, Al-Ghulikah HA, Naeem N, Al-Rooqi MM, Ahmed SA, Shah SWA, Sadiq A. Synthesis of Novel 2,3-Dihydro-1,5-Benzothiazepines as α-Glucosidase Inhibitors: In Vitro, In Vivo, Kinetic, SAR, Molecular Docking, and QSAR Studies. ACS OMEGA 2022; 7:30215-30232. [PMID: 36061741 PMCID: PMC9435035 DOI: 10.1021/acsomega.2c03328] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/08/2022] [Indexed: 05/29/2023]
Abstract
In the present study, a series of 2,3-dihydro-1,5-benzothiazepine derivatives 1B-14B has been synthesized sand characterized by various spectroscopic techniques. The enzyme inhibitory activities of the target analogues were assessed using in vitro and in vivo mechanism-based assays. The tested compounds 1B-14B exhibited in vitro inhibitory potential against α-glucosidase with IC50 = 2.62 ± 0.16 to 10.11 ± 0.32 μM as compared to the standard drug acarbose (IC50 = 37.38 ± 1.37 μM). Kinetic studies of the most active derivatives 2B and 3B illustrated competitive inhibitions. Based on the α-glucosidase inhibitory effect, the compounds 2B, 3B, 6B, 7B, 12B, 13B, and 14B were chosen in vivo for further evaluation of antidiabetic activity in streptozotocin-induced diabetic Wistar rats. All these evaluated compounds demonstrated significant antidiabetic activity and were found to be nontoxic in nature. Moreover, the molecular docking study was performed to elucidate the binding interactions of most active analogues with the various sites of the α-glucosidase enzyme (PDB ID 3AJ7). Additionally, quantitative structure-activity relationship (QSAR) studies were performed based on the α-glucosidase inhibitory assay. The value of correlation coefficient (r) 0.9553 shows that there was a good correlation between the 1B-14B structures and selected properties. There is a correlation between the experimental and theoretical results. Thus, these novel compounds could serve as potential candidates to become leads for the development of new drugs provoking an anti-hyperglycemic effect.
Collapse
Affiliation(s)
- Rabia Mehmood
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| | | | - Eslam B. Elkaeed
- Department
of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Rami J. Obaid
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Yasir Nazir
- Department
of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
- Department
of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Hanan A. Al-Ghulikah
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nafeesa Naeem
- Department
of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Munirah M. Al-Rooqi
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A. Ahmed
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Assiut
University, Assiut 71516, Egypt
| | - Syed Wadood Ali Shah
- Department
of Pharmacy, University of Malakand, Chakdara Dir, Khyber Pakhtunkhwa 18800, Pakistan
| | - Amina Sadiq
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| |
Collapse
|
32
|
Elaidy SM, Tawfik MM, Ameen AM, Hassan WA, El Sherif I, Amin MK, Elkholy SE. Metformin alleviates the dysregulated testicular steroidogenesis and spermatogenesis induced by carbimazole in levothyroxine-primed rats. Life Sci 2022; 307:120904. [PMID: 36029850 DOI: 10.1016/j.lfs.2022.120904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
Most of the published experiments about carbimazole (CMZ)-induced testicular injury are constructed in normal healthy animals, which lakes the translational identification. Despite metformin (MET) having advantageous effects on injured testicles, its impact on thyroid function is arguable. In the current levothyroxine (LT4)/CMZ model, Wistar rats were primed by LT4 for sixty days. CMZ was then given individually or simultaneously with different doses of MET, 100, 200, and 400 mg, daily for thirty days. Serum was assessed for thyroid profile panel, sex hormones, and gonadotropin levels. Testicular tissues were examined for steroidogenesis, spermatogenesis, inflammation, and apoptosis. Histopathology of thyroid and testes were examined, besides thyroidal nuclear factor (NF)-kB expression. MET in a dose-response manner improved the LT4/CMZ-induced testicular toxicity by increasing the steroidogenic acute regulatory protein (StAR), and 17-β-hydroxysteroid dehydrogenase (17βHSD) activities, the proliferating cell nuclear antigen (PCNA), sperm count and motility, sex hormones, and gonadotropin levels. MET-400 mg markedly decreased the elevated NF-kB expressions, tumour necrosis factor (TNF)-α, caspase-3, and BAX, and increased BCL-2. LT4/CMZ could be used as translational animal modelling. MET displayed a dose-dependent ameliorative effect on the LT4/CMZ model without significant harmful effects on thyroid functions. MET-testicular protective roles in diabetics with thyroidal diseases should be explored.
Collapse
Affiliation(s)
- Samah M Elaidy
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mohamed M Tawfik
- Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Angie M Ameen
- Department of Physiology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Wael Abdou Hassan
- Department of Pathology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt; Department of Basic Sciences, College of Medicine, Suliman Al Rajhi University, the Kingdom of Saudi Arabia
| | - Iman El Sherif
- Department of Internal Medicine, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Mona Karem Amin
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Shereen E Elkholy
- Department of Clinical Pharmacology, Faculty of Medicine, Portsaid University, Portsaid, Egypt
| |
Collapse
|
33
|
Fan X, Li X, Liu H, Xu F, Ji X, Chen Y, Li C. A ROCK1 Inhibitior Fasudil Alleviates Cardiomyocyte Apoptosis in Diabetic Cardiomyopathy by Inhibiting Mitochondrial Fission in a Type 2 Diabetes Mouse Model. Front Pharmacol 2022; 13:892643. [PMID: 35865967 PMCID: PMC9294374 DOI: 10.3389/fphar.2022.892643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus (DM) often involves cardiovascular complications; however, treatment regimens are limited. ROCK1 (rho-associated coiled-coil containing protein kinase 1) serves as a pathological factor in several diabetic complications. Herein, we aimed to explore the effect of Fasudil (a ROCK1 inhibitor) on the progress of cardiac dysfunction in type 2 DM (T2DM), and to explore the possible mechanisms. Type II diabetic mice models were established by inducing insulin resistance through a high-fat diet combined with low-dose streptozotocin (STZ) injection. NMCMs (neonatal mouse ventricular cardiac myocytes) in the control group were treated with 5.5 mM glucose, while those in the High Glucose (HG) group were treated with 33 mM glucose and 10 nmol/L insulin. In vivo, we found that type 2 diabetes enhanced the expression and activation of ROCK1 (p < 0.05). The ROCK1 inhibitor, Fasudil, prevented cardiac dysfunction, fibrosis, oxidative stress and myocardial ultrastructural disorders (p < 0.05) in the diabetic mice. In vitro, ROCK1 was upregulated in HG-induced cardiomyocytes, and ROCK1 inhibition using Fasudil reversed the increased apoptosis, consistent with in vivo results. Mechanistically, ROCK1 inhibition abrogated apoptosis, relieved mitochondrial fission, and efficiently attenuated the escalated production of reactive oxygen species in vitro and in vivo. The content of Ser616-phosphorylated dynamin-related protein 1 (Drp1) increased while ROCK1 led to apoptosis in HG-treated cardiomyocytes, which could be partly neutralized by ROCK1 inhibition with Fasudil, consistent with the in vivo results. Fasudil attenuated the cardiac dysfunction in diabetes by decreasing excessive mitochondrial fission via inhibiting Drp1 phosphorylation at serine 616.
Collapse
Affiliation(s)
- Xinhui Fan
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaoxing Li
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Huiruo Liu
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaoping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Yuguo Chen, ; Chuanbao Li,
| | - Chuanbao Li
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Yuguo Chen, ; Chuanbao Li,
| |
Collapse
|
34
|
Gashghaee M, Azizian H, Adib M, Mohammadi-Khanaposhtani M, Mojtabavi S, Faramarzi MA, Rezaei Y, Biglar M, Larijani B, Rastegar H, Mahdavi M. Synthesis, molecular dynamic, and in silico study of new ethyl 4-arylpyrimido[1,2-b]indazole-2-carboxylate: Potential inhibitors of α-glucosidase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
35
|
Liu H, Zhang Z, Li J, Liu W, Warda M, Cui B, Abd El-Aty AM. Oligosaccharides derived from Lycium barbarum ameliorate glycolipid metabolism and modulate the gut microbiota community and the faecal metabolites in a type 2 diabetes mouse model: metabolomic bioinformatic analysis. Food Funct 2022; 13:5416-5429. [PMID: 35475434 DOI: 10.1039/d1fo02667d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we assessed the effects of Lycium barbarum oligosaccharides (LBO) on the intestinal microenvironment of a type 2 diabetes (T2D) mouse model through gut microbiome and metabolomics analysis. We set high (300 mg kg-1), medium (200 mg kg-1), and low (100 mg kg-1) doses of LBO for intervention once a day for 4 weeks. The results showed that the intervention effect of the medium-dose group was the most significant. It reduced the symptoms of hyperglycemia, inflammation, insulin resistance, and lipid accumulation in the T2D mouse model. It restored the structure of damaged tissues and cells, such as the pancreas, liver, and kidneys. LBO increased the relative abundance of beneficial bacteria, such as Lactobacillus, Bacteroides, Prevotella, and Akkermansia, and maintained intestinal barrier integrity. The faecal metabolic map showed that the contents of glycogen amino acids, such as proline, serine, and leucine, increased. The contents of cholic, capric, and dodecanoic acid decreased. In summary, we may suggest that LBO can be used as a prebiotic for treating T2D.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Wei Liu
- Yucheng People's Hospital, Dezhou, 251200, China
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
36
|
Han Y, Yun CC. Metformin Inhibits Na +/H + Exchanger NHE3 Resulting in Intestinal Water Loss. Front Physiol 2022; 13:867244. [PMID: 35444557 PMCID: PMC9014215 DOI: 10.3389/fphys.2022.867244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Glycemic control is the key to the management of type 2 diabetes. Metformin is an effective, widely used drug for controlling plasma glucose levels in diabetes, but it is often the culprit of gastrointestinal adverse effects such as abdominal pain, nausea, indigestion, vomiting, and diarrhea. Diarrhea is a complex disease and altered intestinal transport of electrolytes and fluid is a common cause of diarrhea. Na+/H+ exchanger 3 (NHE3, SLC9A3) is the major Na+ absorptive mechanism in the intestine and our previous study has demonstrated that decreased NHE3 contributes to diarrhea associated with type 1 diabetes. The goal of this study is to investigate whether metformin regulates NHE3 and inhibition of NHE3 contributes to metformin-induced diarrhea. We first determined whether metformin alters intestinal water loss, the hallmark of diarrhea, in type 2 diabetic db/db mice. We found that metformin decreased intestinal water absorption mediated by NHE3. Metformin increased fecal water content although mice did not develop watery diarrhea. To determine the mechanism of metformin-mediated regulation of NHE3, we used intestinal epithelial cells. Metformin inhibited NHE3 activity and the effect of metformin on NHE3 was mimicked by a 5'-AMP-activated protein kinase (AMPK) activator and blocked by pharmacological inhibition of AMPK. Metformin increased phosphorylation and ubiquitination of NHE3, resulting in retrieval of NHE3 from the plasma membrane. Previous studies have demonstrated the role of neural precursor cell expressed, developmentally down-regulated 4-2 (Nedd4-2) in regulation of human NHE3. Silencing of Nedd4-2 mitigated NHE3 inhibition and ubiquitination by metformin. Our findings suggest that metformin-induced diarrhea in type 2 diabetes is in part caused by reduced Na+ and water absorption that is associated with NHE3 inhibition, probably by AMPK.
Collapse
Affiliation(s)
- Yiran Han
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, GA, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - C. Chris Yun
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, GA, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
37
|
Shanak S, Bassalat N, Barghash A, Kadan S, Ardah M, Zaid H. Drug Discovery of Plausible Lead Natural Compounds That Target the Insulin Signaling Pathway: Bioinformatics Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2832889. [PMID: 35356248 PMCID: PMC8958086 DOI: 10.1155/2022/2832889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
The growing smooth talk in the field of natural compounds is due to the ancient and current interest in herbal medicine and their potentially positive effects on health. Dozens of antidiabetic natural compounds were reported and tested in vivo, in silico, and in vitro. The role of these natural compounds, their actions on the insulin signaling pathway, and the stimulation of the glucose transporter-4 (GLUT4) insulin-responsive translocation to the plasma membrane (PM) are all crucial in the treatment of diabetes and insulin resistance. In this review, we collected and summarized a group of available in vivo and in vitro studies which targeted isolated phytochemicals with possible antidiabetic activity. Moreover, the in silico docking of natural compounds with some of the insulin signaling cascade key proteins is also summarized based on the current literature. In this review, hundreds of recent studies on pure natural compounds that alleviate type II diabetes mellitus (type II DM) were revised. We focused on natural compounds that could potentially regulate blood glucose and stimulate GLUT4 translocation through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. On attempt to point out potential new natural antidiabetic compounds, this review also focuses on natural ingredients that were shown to interact with proteins in the insulin signaling pathway in silico, regardless of their in vitro/in vivo antidiabetic activity. We invite interested researchers to test these compounds as potential novel type II DM drugs and explore their therapeutic mechanisms.
Collapse
Affiliation(s)
- Siba Shanak
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Najlaa Bassalat
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Ahmad Barghash
- Computer Science Department, German Jordanian University, Madaba Street. P.O. Box 35247, Amman 11180, Jordan
| | - Sleman Kadan
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| | - Mahmoud Ardah
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Hilal Zaid
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| |
Collapse
|
38
|
Agarwal S, Singh V, Chauhan K. Antidiabetic potential of seaweed and their bioactive compounds: a review of developments in last decade. Crit Rev Food Sci Nutr 2022; 63:5739-5770. [PMID: 35048763 DOI: 10.1080/10408398.2021.2024130] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes Mellitus is a public health problem worldwide due to high morbidity and mortality rate associated with it. Diabetes can be managed by synthetic hypoglycemic drugs, although their persistent uses have several side effects. Hence, there is a paradigm shift toward the use of natural products having antidiabetic potential. Seaweeds, large marine benthic algae, are an affluent source of various bioactive compounds, including phytochemicals and antioxidants thus exhibiting various health promoting properties. Seaweed extracts and its bioactive compounds have antidiabetic potential as they inhibit carbohydrate hydrolyzing enzymes in vitro and exhibit blood glucose lowering effect in random and post prandial blood glucose tests in vivo. In addition, they have been associated with reduced weight gain in animals probably by decreasing mRNA expression of pro-inflammatory cytokines with concomitant increase in mRNA expression levels of anti-inflammatory cytokines. Their beneficial effect has been seen in serum and hepatic lipid profile and antioxidant enzymes indicating the protective role of seaweeds against free radicals mediated oxidative stress induced hyperglycemia and associated hyperlipidemia. However, the detailed and in-depth studies of seaweeds as whole, their bioactive isolates and their extracts need to be explored further for their health benefits and wide application in food, nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Surbhi Agarwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipet, India
| | - Vikas Singh
- Department of Food Business Management and Entrepreneurship Development, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Komal Chauhan
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipet, India
| |
Collapse
|
39
|
Albadr Y, Crowe A, Caccetta R. Teucrium polium: Potential Drug Source for Type 2 Diabetes Mellitus. BIOLOGY 2022; 11:biology11010128. [PMID: 35053127 PMCID: PMC8772689 DOI: 10.3390/biology11010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Teucrium polium (also known as Golden Germander) is a herb brewed and drunk as a tea by the locals of the Mediterranean region, used mostly to treat a number of illnesses including diabetes. When consumed regularly, the tea can be problematic since some of its ingredients can be toxic or interfere with other medications taken by the patient. Current anti-diabetic medications are not always suitable nor optimal for all patients living with diabetes and therefore new drugs are constantly being sought after which may be more useful and/or present less side effects. Therefore, identifying the specific constituents that give the desired anti-diabetic effect, isolating them and developing them further may provide new useful anti-diabetic drugs. This paper discusses some key compounds found in Golden Germander that might be valuable for developing a new medication for type 2 diabetics whilst outlining some issues with the research conducted thus far. Abstract The prevalence of type 2 diabetes mellitus is rising globally and this disease is proposed to be the next pandemic after COVID-19. Although the cause of type 2 diabetes mellitus is unknown, it is believed to involve a complex array of genetic defects that affect metabolic pathways which eventually lead to hyperglycaemia. This hyperglycaemia arises from an inability of the insulin-sensitive cells to sufficiently respond to the secreted insulin, which eventually results in the inadequate secretion of insulin from pancreatic β-cells. Several treatments, utilising a variety of mechanisms, are available for type 2 diabetes mellitus. However, more medications are needed to assist with the optimal management of the different stages of the disease in patients of varying ages with the diverse combinations of other medications co-administered. Throughout modern history, some lead constituents from ancient medicinal plants have been investigated extensively and helped in developing synthetic antidiabetic drugs, such as metformin. Teucrium polium L. (Tp) is a herb that has a folk reputation for its antidiabetic potential. Previous studies indicate that Tp extracts significantly decrease blood glucose levels r and induce insulin secretion from pancreatic β-cells in vitro. Nonetheless, the constituent/s responsible for this action have not yet been elucidated. The effects appear to be, at least in part, attributable to the presence of selected flavonoids (apigenin, quercetin, and rutin). This review aims to examine the reported glucose-lowering effect of the herb, with a keen focus on insulin secretion, specifically related to type 2 diabetes mellitus. An analysis of the contribution of the key constituent flavonoids of Tp extracts will also be discussed.
Collapse
|
40
|
Kinetic control of Phytic acid/Lixisenatide/Fe (III) ternary nanoparticles assembly process for sustained peptide release. Int J Pharm 2022; 611:121317. [PMID: 34838624 DOI: 10.1016/j.ijpharm.2021.121317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
The preferable choice of sustained peptide delivery systems is generally polymer-based microspheres in which their large particle size, wide size distribution, low drug encapsulation efficacy, poor colloidal stability, and undesirable burst release eventually hinder their clinical translation. In this study, a nanoscale ternary Lixisenatide (Lix) sustained delivery system based on strong multivalent interactions (electrostatic and coordination complexation) among small molecular phytic acid (PA), Lix and Fe3+ was developed. Flash nanocomplexation (FNC) was utilized to facilitate the rapid and efficient mixing of the three components and kinetically control the assembly process that enabled dynamic balance of two competitive chemical reactions with different kinetic rates (slow chemical reaction of PA/Lix and fast chemical reaction of PA/Fe3+) to generate structural uniform ternary nanoparticles and avoid heterogeneous complexes. By tuning the mixing conditions (i.e., flow rate, mass ratio, concentration, pH value, etc.), the ternary PA/Lix/Fe3+ nanoparticles were assembled with reproducible production in a manner of high uniformity and scalability, achieving small size (∼50 nm), uniform composition (PDI: ∼0.12), favourable colloidal stability, high encapsulation efficiency (∼100%), and tunable drug release kinetics. The optimized formulation exhibited a minor Lix release (<20%) in the first day and extended peptide release period over 8 days. Unexpectedly, upon a single injection administration, the as-prepared formulation (600 μg/kg) rapidly brought the high BGL (∼30 mmol/L) back to normal range (<10 mmol/L) within the initial 6 h and achieved a 180 h glycemic control in T2D mouse model. Moreover, this sustained peptide delivery system demonstrated a repeatable hypoglycemic effects and significantly suppressed the pathological damage of major organs following multiple injection. This sustained peptide delivery system with aqueous, facile and reproducible preparation process possesses good biocompatibility, tunable release kinetics, and prolonged hypoglycemic effects, portending its great translational potential in the chronic disease treatment.
Collapse
|
41
|
Yang M, Chen J, Chen L. The roles of mesenchymal stem cell-derived exosomes in diabetes mellitus and its related complications. Front Endocrinol (Lausanne) 2022; 13:1027686. [PMID: 36339446 PMCID: PMC9633677 DOI: 10.3389/fendo.2022.1027686] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is a type of metabolic disease characterized by hyperglycemia, primarily caused by defects in insulin secretion, insulin action, or both. Long-term chronic hyperglycemia can lead to diabetes-related complications, causing damage, dysfunction, and failure of different organs. However, traditional insulin and oral drug therapy can only treat the symptoms but not delay the progressive failure of pancreatic beta cells or prevent the emergence of diabetic complications. Mesenchymal stem cells have received extensive attention due to their strong immunoregulatory functions and regeneration effects. Mesenchymal stem cell-derived exosomes (MSC-Exos) have been proposed as a novel treatment for diabetic patients as they have demonstrated superior efficiency to mesenchymal stem cells. This review summarizes the therapeutic effects, mechanisms, challenges, and future prospects of MSC-Exos in treating diabetes mellitus and its related complications. This review supports the potential use of MSC-Exos in future regenerative medicine to overcome the current difficulties in clinical treatment, particularly in treating diabetes.
Collapse
Affiliation(s)
- Mengmeng Yang
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
- *Correspondence: Jun Chen, ; Li Chen,
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
- *Correspondence: Jun Chen, ; Li Chen,
| |
Collapse
|
42
|
Synthesis, crystal structure, spectroscopic characterization, α-glucosidase inhibition and computational studies of (E)-5-methyl-N′-(pyridin-2-ylmethylene)-1H-pyrazole-3-carbohydrazide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Ramírez-Rincón A, Builes-Montaño CE, Hincapié-García JA, Blanco VM, Botero-Arango JF. Short-Term Effectiveness and Reduction in Insulin Requirements in Patients With Type 2 Diabetes Treated With IdegLira in a Real-World Setting. Front Endocrinol (Lausanne) 2022; 13:828607. [PMID: 35573995 PMCID: PMC9097264 DOI: 10.3389/fendo.2022.828607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic, highly prevalent disease with a significant impact on health. Appropriate treatment requires effective and timely escalation to achieve metabolic control. To evaluate the effectiveness and safety of IDegLira on adults with T2DM previously treated with oral antidiabetics and/or insulin in a real-life setting. METHODS An observational study in a real-world setting was conducted. Patients were selected from the outpatient clinic of two centers dedicated to specialized diabetes care. Main outcomes were HbA1c, body weight, insulin dose changes, hypoglycemia, and other adverse events. RESULTS 67 T2DM patients treated with IDegLira were monitored between 3 and 7 months. At the end of foll ow-up, the median change in HbA1c was -1.05% (CI95% -1.45, -0.65), and a decrease in insulin requirement was also observed (mean difference -10 TDD units (CI95% - 17 to -2.5). No treatment discontinuation was reported, hypoglycemia events were reported in 3 patients at the end of follow-up versus 8 patients at baseline. CONCLUSIONS This real-life study shows the effectiveness in glycemic control of IDegLira use in T2DM patients who do not achieve goals with other therapies, with an adequate safety profile. The findings need to be confirmed with evaluation of therapeutic results in larger cohorts.
Collapse
Affiliation(s)
- Alex Ramírez-Rincón
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
- Endocrinology Department, Clínica Integral de Diabetes, Medellín, Colombia
- *Correspondence: Alex Ramírez-Rincón,
| | - Carlos E. Builes-Montaño
- School of Medicine, Universidad de Antioquia, Medellín, Colombia
- Endocrinology Department, Hospital Pablo Tobón Uribe, Medellín, Colombia
| | - Jaime A. Hincapié-García
- Clinical Pharmacology, Pharmaceutical Promotion and Prevention Group, Faculty of Pharmaceutical and Food Sciences, Universidad de Antioquia, Medellín, Colombia
| | - Victor M. Blanco
- School Medicine, Pontificia Universidad Bolivariana, Medellín, Colombia
| | - José F. Botero-Arango
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
- Endocrinology Department, Clínica Integral de Diabetes, Medellín, Colombia
| |
Collapse
|
44
|
Khamseh ME, Abbasi Ranjbar Z, Banazadeh Z, Mirfeizi M, Mohammadbeiki M, Mozafari Z, Razazian K, Malek M. The Impact of Adding Prandial Insulin to a Basal Based Regimen with Insulin Glargine in Type 2 Diabetic Patients. Med J Islam Repub Iran 2021; 35:177. [PMID: 35685198 PMCID: PMC9127776 DOI: 10.47176/mjiri.35.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Indexed: 11/29/2022] Open
Abstract
Background: Type 2 diabetes (T2D) is a progressive disease that should be managed with insulin in case of oral glucose lowering drugs (OGLDs) failure. If basal insulin is not sufficient, rapid acting insulin will be added before the largest meal. We assessed the impact of adding one prandial insulin to a basal based regimen and insulin glargine in patients with type 2 diabetes to measure the percentage of subjects achieving the HbA1c target by the end of 24 weeks of treatment in routine clinical practice. Methods: This study was a 24-week observational study of patients with T2D not adequately controlled with OGLDs and basal insulin, for whom the physician had decided to initiate prandial insulin. The study endpoint was assessed at visit 1 (baseline), visit 2 at week 12 (±1 week) and visit 3 at week 24 (±1 week). The percentage of patients who achieved HbA1c targets was assessed at week 24. Statistical analyses were performed using IBM SPSS for Windows v 19 (IBM, Armonk, New York, USA). Logistic regression analysis was used to detect predicting factors of achieving the HbA1c target by week 24. P<0.05 was considered as significant level. Results : Four hundred and eighteen patients with a mean±SD age of 56.24±9.85 years and a mean±SD duration of diabetes of 12.50±7.16 years were included. The median total daily dose of basal insulin was 24 units, while prandial insulin was started with 6 (4, 10) U/day, titrating up to 10 (8, 18) U/day at week 24. The daily dose of prandial insulin was the only factor that could significantly predict achieving targeted HbA1c by week 24 [OR: 1.04; 95% CI: 1.007,1.079; p-value: 0.019]. At week 24, 96 (22.9%) subjects achieved the HbA1c target with one prandial insulin. Conclusion : The results of our study suggest that "basal plus therapy" can lead to good glycemic control with a low risk of hypoglycemia and weight gain in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Mohammad Ebrahim Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Banazadeh
- Lolagar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mani Mirfeizi
- Department of Midwifery, College of Nursing & Midwifery, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Manouchehr Mohammadbeiki
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Mojtaba Malek
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
BENKHERARA S, BORDJIBA O, HARRAT S, DJAHRA AB. Antidiabetic Potential and Chemical Constituents of Haloxylon scoparium Aerial Part, An Endemic Plant from Southeastern Algeria. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2021. [DOI: 10.21448/ijsm.990569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
46
|
Al Zahabi KH, Ben tkhayat H, Abu-Basha E, Sallam AS, Younes HM. Formulation of Lipid-Based Tableted Spray-Congealed Microparticles for Sustained Release of Vildagliptin: In Vitro and In Vivo Studies. Pharmaceutics 2021; 13:2158. [PMID: 34959439 PMCID: PMC8709051 DOI: 10.3390/pharmaceutics13122158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022] Open
Abstract
Spray-congealing (SPC) technology was utilized to prepare lipid-based microparticles (MP) capable of sustaining the release of Vildagliptin (VG) for use as a once-daily treatment for type 2 diabetes mellitus. VG microparticles were prepared using Compritol® and Gelucire®50/13 as lipid carriers in the presence of various amounts of Carbomer 934 NF. The lipid carriers were heated to 10 °C above their melting points, and VG was dispersed in the lipid melt and sprayed through the heated two-fluid nozzle of the spray congealer to prepare the VG-loaded MP (VGMP). The microparticles produced were then compressed into tablets and characterized for their morphological and physicochemical characteristics, content analysis, in vitro dissolution, and in vivo bioavailability studies in mixed-breed dogs. The VGMP were spherical with a yield of 76% of the total amount. VG was found to be in its semicrystalline form, with a drug content of 11.11% per tablet and a percentage drug recovery reaching 98.8%. The in vitro dissolution studies showed that VG was released from the tableted particles in a sustained-release fashion for up to 24 h compared with the immediate-release marketed tablets from which VG was completely released within 30 min. The in vivo pharmacokinetics studies reported a Cmax, Tmax, T1/2, and MRT of 118 ng/mL, 3.4 h, 5.27 h, and 9.8 h, respectively, for the SPC formulations, showing a significant difference (p < 0.05)) from the pk parameters of the immediate-release marketed drug (147 ng/mL, 1 h, 2.16 h, and 2.8 h, respectively). The area under the peak (AUC) of both the reference and tested formulations was comparable to indicate similar bioavailabilities. The in vitro-in vivo correlation (IVIVC) studies using multiple level C correlations showed a linear correlation between in vivo pharmacokinetics and dissolution parameters. In conclusion, SPC was successfully utilized to prepare a once-daily sustained-release VG oral drug delivery system.
Collapse
Affiliation(s)
- Khaled H. Al Zahabi
- Tissue Engineering & Nanopharmaceuticals Research Laboratory, Qatar University, Doha P.O. Box 2713, Qatar; (K.H.A.Z.); (H.B.t.)
| | - Hind Ben tkhayat
- Tissue Engineering & Nanopharmaceuticals Research Laboratory, Qatar University, Doha P.O. Box 2713, Qatar; (K.H.A.Z.); (H.B.t.)
| | - Ehab Abu-Basha
- Department of Veterinary Basic Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | | | - Husam M. Younes
- Tissue Engineering & Nanopharmaceuticals Research Laboratory, Qatar University, Doha P.O. Box 2713, Qatar; (K.H.A.Z.); (H.B.t.)
- Office of Vice President for Research and Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
47
|
Chen X, Gao F, Lin C, Chen A, Deng J, Chen P, Lin M, Xie B, Liao Y, Gong C, Zheng X. mTOR-mediated autophagy in the hippocampus is involved in perioperative neurocognitive disorders in diabetic rats. CNS Neurosci Ther 2021; 28:540-553. [PMID: 34784444 PMCID: PMC8928925 DOI: 10.1111/cns.13762] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction Perioperative neurocognitive disorders (PND) are common neurological complications after surgery. Diabetes mellitus (DM) has been reported to be an independent risk factor for PND, but little is known about its mechanism of action. Mammalian target of rapamycin (mTOR) signaling is crucial for neuronal growth, development, apoptosis, and autophagy, but the dysregulation of mTOR signaling leads to neurological disorders. The present study investigated whether rapamycin can attenuate PND by inhibiting mTOR and activating autophagy in diabetic rats. Methods Male diabetic Sprague‐Dawley rats underwent tibial fracture surgery under isoflurane anesthesia to establish a PND model. Cognitive functions were examined using the Morris water maze test. The levels of phosphorylated mTOR (p‐mTOR), phosphorylated tau (p‐tau), autophagy‐related proteins (Beclin‐1, LC3), and apoptosis‐related proteins (Bax, Bcl‐2, cleaved caspase‐3) in the hippocampus were examined on postoperative days 3, 7, and 14 by Western blot. Hippocampal amyloid β (Aβ) levels were examined by immunohistochemistry. Results The data showed that surgical trauma and/or DM impaired cognitive function, induced mTOR activation, and decreased Beclin‐1 levels and the LC3‐II/I ratio. The levels of Aβ and p‐tau and the hippocampal apoptotic responses were significantly higher in diabetic or surgery‐treated rats than in control rats and were further increased in diabetic rats subjected to surgery. Pretreatment of rats with rapamycin inhibited mTOR hyperactivation and restored autophagic function, effectively decreasing tau hyperphosphorylation, Aβ deposition, and apoptosis in the hippocampus. Furthermore, surgical trauma‐induced neurocognitive disorders were also reversed by pretreatment of diabetic rats with rapamycin. Conclusion The results demonstrate that mTOR hyperactivation regulates autophagy, playing a critical role in the mechanism underlying PND, and reveal that the modulation of mTOR signaling could be a promising therapeutic strategy for PND in patients with diabetes.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Fei Gao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Cuicui Lin
- Department of Anesthesiology, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Andi Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Jianhui Deng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Pinzhong Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Mingxue Lin
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Bingxin Xie
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Yanling Liao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Cansheng Gong
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.,Fujian Provincial Institute of Emergency Medicine, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, China
| |
Collapse
|
48
|
Wu J, Hu B, Lu S, Duan R, Deng H, Li L, He L, Zhao Y, Wang J, Yu Z. Identification of raloxifene as a novel α-glucosidase inhibitor using a systematic drug repurposing approach in combination with cross molecular docking-based virtual screening and experimental verification. Carbohydr Res 2021; 511:108478. [PMID: 34801925 DOI: 10.1016/j.carres.2021.108478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/14/2023]
Abstract
α-Glucosidase is a promising target for the treatment of diabetes. Drug repurposing can increase the chances of discovering an active inhibitor. Therefore, this study aimed to identify potential α-glucosidase inhibitor using drug repurposing and in silico strategies. We identified critical amino acid residues of the three α-glucosidase proteins. Based on cross molecular docking studies of three α-glucosidase proteins and drugs in the FDA database, we screened hits with the favorable binding affinities and modes targeting the three proteins. Subsequently, an in vitro activity assay showed that raloxifene was an excellent inhibitor of α-glucosidase. Moreover, molecular dynamics simulations of raloxifene and three proteins were performed to assess the stability of the protein-hit systems in physiological conditions and clarify protein-hit interactions. We also performed the binding free energy calculation, Hirshfeld surface and alanine scanning mutagenesis analyses. These results demonstrated that binding between raloxifene and the three proteins was stable, and the critical amino acid residues of the three proteins formed stable contacts with raloxifene. The molecular mechanisms agree well with its activity, reinforcing that raloxifene is a candidate α-glucosidase inhibitor. Our study smoothes the path for the development of novel a-glucosidase inhibitors with high efficacy and low toxicity for the treatment of diabetes.
Collapse
Affiliation(s)
- Jiaofeng Wu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Baichun Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Shuaizhong Lu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Rong Duan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Haoran Deng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lele Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lijuan He
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yunli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Jian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Zhiguo Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
49
|
Teng D, Gong Y, Wu Z, Li W, Tang Y, Liu G. In Silico Prediction of Potential Drug Combinations for Type 2 Diabetes Mellitus by an Integrated Network and Transcriptome Analysis. ChemMedChem 2021; 17:e202100620. [PMID: 34755485 DOI: 10.1002/cmdc.202100620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/26/2021] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a heterogeneous disorder, so achieving the desired therapeutic efficacy through monotherapy is tricky. Drug combinations play a vital role in treating multiple complex diseases by providing increased efficacy and reduced toxicity. Here, we adopted a computational framework to discover potential drugs and drug pairs for T2DM. Firstly, we collected T2DM-associated genes and constructed the disease module for T2DM. Then, by quantifying the proximity between drugs and the disease module, we found out potential drugs. Based on the drug-induced gene expression profiles, we further performed Gene Set Enrichment Analysis (GSEA) on these drugs and identified several potential candidates. In addition, through network-based separation, potential drug combinations for T2DM were predicted. Results from this study could provide insights for anti-T2DM drug discovery and rational drug use of existing agents. As a useful computational framework, our approach could also be applied in drug research for other complex diseases.
Collapse
Affiliation(s)
- Dan Teng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuning Gong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
50
|
Wangnoo S, Shunmugavelu M, Reddy SVB, Negalur V, Godbole S, Dhandhania VK, Krishna N, Gaurav K. Role of Gliclazide in safely navigating type 2 diabetes mellitus patients towards euglycemia: Expert opinion from India. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2021.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|