1
|
Son SE, Im DS. Activation of G Protein-Coupled Estrogen Receptor 1 (GPER) Attenuates Obesity-Induced Asthma by Switching M1 Macrophages to M2 Macrophages. Int J Mol Sci 2024; 25:9532. [PMID: 39273478 PMCID: PMC11395149 DOI: 10.3390/ijms25179532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The prevalence of obesity-induced asthma increases in women after menopause. We hypothesized that the increase in obese asthma in middle-aged women results from estrogen loss. In particular, we focused on the acute action of estrogen through the G protein-coupled estrogen receptor 1 (GPER), previously known as GPR30. We investigated whether GPER activation ameliorates obesity-induced asthma with a high-fat diet (HFD) using G-1, the GPER agonist, and G-36, the GPER antagonist. Administration of G-1 (0.5 mg/kg) suppressed HFD-induced airway hypersensitivity (AHR), and increased immune cell infiltration, whereas G-36 co-treatment blocked it. Histological analysis showed that G-1 treatment inhibited HFD-induced inflammation, fibrosis, and mucus hypersecretion in a GPER-dependent manner. G-1 inhibited the HFD-induced rise in the mRNA levels of pro-inflammatory cytokines in the gonadal white adipose tissue and lungs, whereas G-36 co-treatment reversed this effect. G-1 increased anti-inflammatory M2 macrophages and inhibited the HFD-induced rise in pro-inflammatory M1 macrophages in the lungs. In addition, G-1 treatment reversed the HFD-induced increase in leptin expression and decrease in adiponectin expression in the lungs and gonadal white adipose tissue. The results suggest that activation of GPER could be a therapeutic option for obesity-induced asthma.
Collapse
Affiliation(s)
- So-Eun Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Lei B, Yang Y, Xu L, Zhang X, Yu M, Yu J, Li N, Yu Y. Molecular insights into the effects of tetrachlorobisphenol A on puberty initiation in Wistar rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168643. [PMID: 37992829 DOI: 10.1016/j.scitotenv.2023.168643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Tetrachlorobisphenol A (TCBPA) is the chlorinated derivative of bisphenol A (BPA). Several studies have found that BPA adversely affects the reproductive activity largely through binding to estrogen receptors and the critical period of BPA exposure advances the vaginal opening time in the female offspring via the kisspeptin/G protein-coupled receptor 54 (KGG) system. However, whether TCBPA can affect puberty initiation via KGG and the roles of estrogen receptors in this process remain unknown. Therefore, this study investigated the influence of TCBPA on the onset time of puberty in Wistar rats and the related molecular mechanisms by combing in vitro GT1-7 cells and molecular docking. In female Wistar rats, TCBPA at ≥100 mg/kg bw/day (49.2 μmol/L in rat body) markedly advanced vaginal opening time and increased serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and gonadotropin-releasing hormone (GnRH). It also increased the relative gene expression of LH receptor (LHR), GnRH1, and FSH receptor (FSHR) in hypothalamic-pituitary-gonadal (HPG) axis tissues. In GT1-7 cells, TCBPA increased genes and proteins associated with KGG pathway and activated the extracellular-regulated protein kinase 1/2 (Erk1/2) and phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathways via G protein-coupled estrogen membrane receptor 1 (GPER1) and estrogen receptor alpha (ERα). Docking analyses supported its interactions with GPER1 and ERα, and treatment with specific inhibitors of ERα- and GPER1-modulated PI3K/Akt and Erk1/2 signaling suppressed its effects. Taken together, TCBPA-induced advancement of puberty initiation in Wistar rats thus results primarily from increased LH, GnRH, and FSH secretion together with GnRH1, FSHR, and LHR upregulation driven by ERα- and GPER1-modulated Erk1/2 and PI3K/Akt signaling. Our results provide new molecular insights into the reproductive toxicity of EDCs.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lanbing Xu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Mak KWY, Mustafa AF, Belsham DD. Neuroendocrine microRNAs linked to energy homeostasis: future therapeutic potential. Pharmacol Rep 2022; 74:774-789. [PMID: 36083576 DOI: 10.1007/s43440-022-00409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023]
Abstract
The brain orchestrates whole-body metabolism through an intricate system involving interneuronal crosstalk and communication. Specifically, a key player in this complex circuitry is the hypothalamus that controls feeding behaviour, energy expenditure, body weight and metabolism, whereby hypothalamic neurons sense and respond to circulating hormones, nutrients, and chemicals. Dysregulation of these neurons contributes to the development of metabolic disorders, such as obesity and type 2 diabetes. The involvement of hypothalamic microRNAs, post-transcriptional regulators of gene expression, in the central regulation of energy homeostasis has become increasingly apparent, although not completely delineated. This review summarizes current evidence demonstrating the regulation of feeding-related neuropeptides by brain-derived microRNAs as well as the regulation of specific miRNAs by nutrients and other peripheral signals. Moreover, the involvement of microRNAs in the central nervous system control of insulin, leptin, and estrogen signal transduction is examined. Finally, the therapeutic and diagnostic potential of microRNAs for metabolic disorders will be discussed and the regulation of brain-derived microRNAs by nutrients and other peripheral signals is considered. Demonstrating a critical role of microRNAs in hypothalamic regulation of energy homeostasis is an innovative route to uncover novel biomarkers and therapeutic candidates for metabolic disorders.
Collapse
Affiliation(s)
- Kimberly W Y Mak
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Aws F Mustafa
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Lei B, Xu L, Huang Y, Liu Y, Yu M, Tang Q. Chlorobisphenol A activated kisspeptin/GPR54-GnRH neuroendocrine signals through ERα and GPER pathway in neuronal GT1-7 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113290. [PMID: 35158255 DOI: 10.1016/j.ecoenv.2022.113290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Chlorobisphenol A (ClxBPA) is a kind of novel estrogenic compounds. The present study aims to investigate the effects of three ClxBPA compounds on the kisspeptin/G protein-coupled receptor 54 (GPR54, also named KissR1)-gonadotropin-releasing hormone (GnRH) (KGG) system in neuronal GT1-7 cells with mechanistic insights by estrogen receptor signaling pathways. The study demonstrated that low-concentration ClxBPA induced the cell proliferation, promoted GnRH secretion, upregulated the expression of KGG neuroendocrine signal-related proteins (KissR1, GnRH1 and kisspeptin) and genes including Kiss1, GnRH1, KissR1, luteinizing hormone receptor (Lhr) and follicle-stimulating hormone receptor (Fshr) in GT1-7 cells. Additionally, ClxBPA activated nuclear estrogen receptor alpha (ERα) and member estrogen receptor G protein-coupled estrogen receptor (GPER)-regulated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinase (Erk1/2) signaling pathways. Pretreatment of GT1-7 cells with GPER inhibitor G15 and ERα inhibitor ICI reduced the expression of KissR1, GnRH1 and kisspeptin proteins, attenuated mRNA levels of Kiss1, GnRH1, KissR1, Fshr and Lhr genes, and decreased ClxBPA-induced GT1-7 cell proliferation. The results suggested that ClxBPA activated the KGG neuroendocrine signals and induced the proliferation of GT1-7 cells via ERα and GPER signaling pathways. This study provides a new perspective to explore the neuroendocrine toxicity mechanism of ClxBPA. CAPSULE: ClxBPA activated KGG neuroendocrine signaling pathway via ERα and GPER and induced the proliferation of GT1-7 cells.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lanbing Xu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yaoyao Huang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yun Liu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection of the People's Republic of China, State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, Guangdong Province 510530, PR China.
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Qianqian Tang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
5
|
Ding P, Chen W, Yan X, Zhang J, Li C, Zhang G, Wang Y, Li Y. BMPER alleviates ischemic brain injury by protecting neurons and inhibiting neuroinflammation via Smad3-Akt-Nrf2 pathway. CNS Neurosci Ther 2021; 28:593-607. [PMID: 34904361 PMCID: PMC8928915 DOI: 10.1111/cns.13782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/16/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
Aims Bone morphogenetic proteins (BMPs) are a group of proteins related to bone morphogenesis. BMP‐binding endothelial regulator (BMPER), a secreted protein that interacts with BMPs, is known to be involved in ischemic injuries. Here, we explored the effects of BMPER on cerebral ischemia and its mechanism of action. Methods A mouse model of brain ischemia was induced by middle cerebral artery occlusion (MCAO). An in vitro ischemic model was established by subjecting primary cultured neurons to oxygen‐glucose deprivation/reperfusion (OGD/R). Serum levels of BMPs/BMPER were measured in MCAO mice and in patients with acute ischemic stroke (AIS). Brain damages were compared between BMPER‐ and vehicle‐treated mice. Quantitative polymerase chain reaction (qPCR), immunohistochemistry, and immunofluorescence staining were performed to examine neuroinflammation and cell death. BMPER‐related pathways were assessed by Western blotting. Results BMPER level was elevated in MCAO mice and AIS patients. BMPER administration reduced mortality, infarct size, brain edema, and neurological deficit after MCAO. Neuroinflammation and cell death after ischemia were alleviated by BMPER both in vivo and in vitro. BMPER activated the Smad3/Akt/Nrf2 pathway in OGD/R‐challenged neurons. Conclusion BMPER is a neuroprotective hormone that alleviates ischemic brain injury via activating the Smad3/Akt/Nrf2 pathway. These findings may provide potential therapeutic strategies for stroke.
Collapse
Affiliation(s)
- Peng Ding
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China.,Department of Anesthesiology, PLA 983 Hospital, Tianjin, China
| | - Wei Chen
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaodi Yan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jinxiang Zhang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqiang Wang
- Department of Anesthesiology & Research Institute for Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Marraudino M, Carrillo B, Bonaldo B, Llorente R, Campioli E, Garate I, Pinos H, Garcia-Segura LM, Collado P, Grassi D. G Protein-Coupled Estrogen Receptor Immunoreactivity in the Rat Hypothalamus Is Widely Distributed in Neurons, Astrocytes, and Oligodendrocytes, Fluctuates during the Estrous Cycle, and Is Sexually Dimorphic. Neuroendocrinology 2021; 111:660-677. [PMID: 32570260 DOI: 10.1159/000509583] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/22/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The membrane-associated G protein-coupled estrogen receptor 1 (GPER) mediates the regulation by estradiol of arginine-vasopressin immunoreactivity in the supraoptic and paraventricular hypothalamic nuclei of female rats and is involved in the estrogenic control of hypothalamic regulated functions, such as food intake, sexual receptivity, and lordosis behavior. OBJECTIVE To assess GPER distribution in the rat hypothalamus. METHODS GPER immunoreactivity was assessed in different anatomical subdivisions of five selected hypothalamic regions of young adult male and cycling female rats: the arcuate nucleus, the lateral hypothalamus, the paraventricular nucleus, the supraoptic nucleus, and the ventromedial hypothalamic nucleus. GPER immunoreactivity was colocalized with NeuN as a marker of mature neurons, GFAP as a marker of astrocytes, and CC1 as a marker of mature oligodendrocytes. RESULTS GPER immunoreactivity was detected in hypothalamic neurons, astrocytes, and oligodendrocytes. Sex and regional differences and changes during the estrous cycle were detected in the total number of GPER-immunoreactive cells and in the proportion of neurons, astrocytes, and oligodendrocytes that were GPER-immunoreactive. CONCLUSIONS These findings suggest that estrogenic regulation of hypothalamic function through GPER may be different in males and females and may fluctuate during the estrous cycle in females.
Collapse
Affiliation(s)
- Marilena Marraudino
- Department of Neuroscience "Rita Levi Montalcini," Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Beatriz Carrillo
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Brigitta Bonaldo
- Department of Neuroscience "Rita Levi Montalcini," Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Ricardo Llorente
- Department of Preclinical Odontology, Universidad Europea de Madrid, Madrid, Spain
| | - Elia Campioli
- Department of Preclinical Odontology, Universidad Europea de Madrid, Madrid, Spain
| | - Iciar Garate
- Department of Physiotherapy, Podology, and Dance, Universidad Europea de Madrid, Madrid, Spain
| | - Helena Pinos
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - Paloma Collado
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Daniela Grassi
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain,
- Department of Preclinical Odontology, Universidad Europea de Madrid, Madrid, Spain,
- Instituto Cajal, CSIC, and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain,
| |
Collapse
|
7
|
Liu M, Shen L, Xu M, Wang DQH, Tso P. Estradiol Enhances Anorectic Effect of Apolipoprotein A-IV through ERα-PI3K Pathway in the Nucleus Tractus Solitarius. Genes (Basel) 2020; 11:E1494. [PMID: 33322656 PMCID: PMC7764025 DOI: 10.3390/genes11121494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/09/2023] Open
Abstract
Estradiol (E2) enhances the anorectic action of apolipoprotein A-IV (apoA-IV), however, the intracellular mechanisms are largely unclear. Here we reported that the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway was significantly activated by E2 and apoA-IV, respectively, in primary neuronal cells isolated from rat embryonic brainstem. Importantly, the combination of E2 and apoA-IV at their subthreshold doses synergistically activated the PI3K/Akt signaling pathway. These effects, however, were significantly diminished by the pretreatment with LY294002, a selective PI3K inhibitor. E2-induced activation of the PI3K/Akt pathway was through membrane-associated ERα, because the phosphorylation of Akt was significantly increased by PPT, an ERα agonist, and by E2-BSA (E2 conjugated to bovine serum albumin) which activates estrogen receptor on the membrane. Centrally administered apoA-IV at a low dose (0.5 µg) significantly suppressed food intake and increased the phosphorylation of Akt in the nucleus tractus solitarius (NTS) of ovariectomized (OVX) rats treated with E2, but not in OVX rats treated with vehicle. These effects were blunted by pretreatment with LY294002. These results indicate that E2's regulatory role in apoA-IV's anorectic action is through the ERα-PI3K pathway in the NTS. Manipulation of the PI3K/Akt signaling activation in the NTS may provide a novel therapeutic approach for the prevention and the treatment of obesity-related disorders in females.
Collapse
Affiliation(s)
- Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| | - Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| |
Collapse
|
8
|
Huang KP, Raybould HE. Estrogen and gut satiety hormones in vagus-hindbrain axis. Peptides 2020; 133:170389. [PMID: 32860834 PMCID: PMC8461656 DOI: 10.1016/j.peptides.2020.170389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/27/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
Estrogens modulate different physiological functions, including reproduction, inflammation, bone formation, energy expenditure, and food intake. In this review, we highlight the effect of estrogens on food intake regulation and the latest literature on intracellular estrogen signaling. In addition, gut satiety hormones, such as cholecystokinin, glucagon-like peptide 1 and leptin are essential to regulate ingestive behaviors in the postprandial period. These peripheral signals are sensed by vagal afferent terminals in the gut wall and transmitted to the hindbrain axis. Here we 1. review the role of the vagus-hindbrain axis in response to gut satiety signals and 2. consider the potential synergistic effects of estrogens on gut satiety signals at the level of vagal afferent neurons and nuclei located in the hindbrain. Understanding the action of estrogens in gut-brain axis provides a potential strategy to develop estrogen-based therapies for metabolic diseases and emphasizes the importance of sex difference in the treatment of obesity.
Collapse
Affiliation(s)
- Kuei-Pin Huang
- School of Veterinary Medicine, University of California Davis, CA, United States
| | - Helen E Raybould
- School of Veterinary Medicine, University of California Davis, CA, United States.
| |
Collapse
|
9
|
Ji X, Li N, Ma M, Rao K, Yang R, Wang Z. Tricresyl phosphate isomers exert estrogenic effects via G protein-coupled estrogen receptor-mediated pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114747. [PMID: 32559878 DOI: 10.1016/j.envpol.2020.114747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Tricresyl phosphates (TCPs), as representative aromatic organophosphate flame retardants (OPFRs), have received much attention due to their potential neurotoxicity and endocrine-disrupting effects. However, the role of estrogen receptor α (ERα) and G protein-coupled estrogen receptor (GPER) in their estrogen disrupting effects remains poorly understood. Therefore, in this study, three TCP isomers, tri-o-cresyl phosphate (ToCP), tri-m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP), were examined for their activities on ERα by using two-hybrid yeast assay, and action on GPER by using Boyden chamber assay, cAMP production assay, calcium mobilization assay and molecular docking analysis. The results showed that three TCP isomers were found to act as ERα antagonists. Conversely, they had agonistic activity on GPER to promote GPER-mediated cell migration of MCF7 cells and SKBR3 cells. Both ToCP and TpCP activated GPER-mediated cAMP production and calcium mobilization, whereas TmCP had different mode of action, it only triggered GPER-mediated calcium mobilization, as evidenced by using the specific GPER inhibitor (G15) and GPER overexpressing experiments. Molecular docking further revealed that the way of interaction of TmCP and TpCP with GPER was different from that of ToCP with GPER, and higher activity of ToCP in activating GPER-mediated pathways might be associated with the alkyl substitution at the ortho position of the aromatic ring. Our results, for the first time, found a new target, GPER, for TCPs exerting their estrogen-disrupting effects, and demonstrated complex estrogen-disrupting effects of three TCP isomers involved their opposite activities toward ERα and GPER.
Collapse
Affiliation(s)
- Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Rong Yang
- Beijing Water Quality Monitoring Center for South-to-North Water Diversion, Beijing, 100093, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
10
|
Peng J, Zuo Y, Huang L, Okada T, Liu S, Zuo G, Zhang G, Tang J, Xia Y, Zhang JH. Activation of GPR30 with G1 attenuates neuronal apoptosis via src/EGFR/stat3 signaling pathway after subarachnoid hemorrhage in male rats. Exp Neurol 2019; 320:113008. [DOI: 10.1016/j.expneurol.2019.113008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 07/05/2019] [Indexed: 12/21/2022]
|
11
|
Hudon Thibeault AA, Sanderson JT, Vaillancourt C. Serotonin-estrogen interactions: What can we learn from pregnancy? Biochimie 2019; 161:88-108. [PMID: 30946949 DOI: 10.1016/j.biochi.2019.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
We have reviewed the scientific literature related to four diseases in which to serotonin (5-HT) is involved in the etiology, herein named 5-HT-linked diseases, and whose prevalence is influenced by estrogenic status: depression, migraine, irritable bowel syndrome and eating disorders. These diseases all have in common a sex-dimorphic prevalence, with women more frequently affected than men. The co-occurrence between these 5-HT-linked diseases suggests that they have common physiopathological mechanisms. In most 5-HT-linked diseases (except for anorexia nervosa and irritable bowel syndrome), a decrease in the serotonergic tone is observed and estrogens are thought to contribute to the improvement of symptoms by stimulating the serotonergic system. Human pregnancy is characterized by a unique 5-HT and estrogen synthesis by the placenta. Pregnancy-specific disorders, such as hyperemesis gravidarum, gestational diabetes mellitus and pre-eclampsia, are associated with a hyperserotonergic state and decreased estrogen levels. Fetal programming of 5-HT-linked diseases is a complex phenomenon that involves notably fetal-sex differences, which suggest the implication of sex steroids. From a mechanistic point of view, we hypothesize that estrogens regulate the serotonergic system, resulting in a protective effect against 5-HT-linked diseases, but that, in turn, 5-HT affects estrogen synthesis in an attempt to retrieve homeostasis. These two processes (5-HT and estrogen biosynthesis) are crucial for successful pregnancy outcomes, and thus, a disruption of this 5-HT-estrogen relationship may explain pregnancy-specific pathologies or pregnancy complications associated with 5-HT-linked diseases.
Collapse
Affiliation(s)
- Andrée-Anne Hudon Thibeault
- INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval, QC, H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (Cinbiose), Université du Québec à Montréal, C.P.8888, succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| | - J Thomas Sanderson
- INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval, QC, H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (Cinbiose), Université du Québec à Montréal, C.P.8888, succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| |
Collapse
|
12
|
Côté I, Green SM, Yarrow JF, Conover CF, Toklu HZ, Morgan D, Carter CS, Tümer N, Scarpace PJ. Oestradiol and leptin have separate but additive anorexigenic effects and differentially target fat mass in rats. J Neuroendocrinol 2018; 30:e12646. [PMID: 30246441 PMCID: PMC6251747 DOI: 10.1111/jne.12646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
We recently showed that male rats exhibit lower hypophagia and body weight loss compared to female rats following central leptin delivery, suggesting a role for oestradiol in leptin responsiveness. Accordingly, we delivered Ob (leptin) or GFP (control) gene into the brain of male rats that were simultaneously treated with oestradiol or vehicle. In a reciprocal approach, we compared oestradiol-deficient (OVX) with intact females (sham) that received leptin or control vector. Changes in food intake), body weight and body composition were examined. In males, oestradiol and leptin resulted in lower cumulative food intake (15%) and endpoint body weight (5%), although rats receiving dual treatment (oestradiol-leptin) ate 28% less and weighed 22% less than vehicle-control. Changes in food intake were unique to each treatment, with a rapid decrease in vehicle-leptin followed by gradual renormalisation. By contrast, hypophagia in oestradiol-control was of lower amplitude and sporadic. Leptin selectively targeted fat mass and endpoint abdominal fat mass was 65%-80% lower compared to their respective control groups. In females, both leptin groups had lower body weight (endpoint values 20% lower than control groups) with the highest extent in sham animals (endpoint value was 28% less in sham-leptin than in sham-control). OVX rats rapidly started regaining their lost body weight reminiscent of the pattern in males. Leptin rapidly and robustly reduced fat mass with endpoint values 30%-35% less than control treated animals. It appears that leptin and oestradiol decreased food intake and body weight via different mechanisms, with the pattern of oestradiol-leptin being reminiscent of that observed in females and the pattern of OVX-leptin reminiscent of that observed in males. Oestrogen status did not influence initial fat mass loss by leptin. It can be concluded that oestradiol modulates the long-term response to central leptin overexpression, although its actions on energy homeostasis are additive and independent of those of leptin.
Collapse
Affiliation(s)
- Isabelle Côté
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | - Sara M. Green
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | - Joshua F. Yarrow
- Department of Veterans Affairs Medical Center, Research Service, Malcom Randall, North Florida/South Georgia Veterans Health System, Gainesville, Florida, United States
- Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Christine F. Conover
- Department of Veterans Affairs Medical Center, Research Service, Malcom Randall, North Florida/South Georgia Veterans Health System, Gainesville, Florida, United States
| | - Hale Z. Toklu
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | - Drake Morgan
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States
| | - Christy S. Carter
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, United States
| | - Nihal Tümer
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | - Philip J. Scarpace
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
13
|
Butler MJ, Hildebrandt RP, Eckel LA. Selective activation of estrogen receptors, ERα and GPER-1, rapidly decreases food intake in female rats. Horm Behav 2018; 103:54-61. [PMID: 29807036 PMCID: PMC6076327 DOI: 10.1016/j.yhbeh.2018.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/26/2018] [Accepted: 05/24/2018] [Indexed: 10/14/2022]
Abstract
Many of estradiol's behavioral effects are mediated, at least partially, via extra-nuclear estradiol signaling. Here, we investigated whether two estrogen receptor (ER) agonists, targeting ERα and G protein-coupled ER-1 (GPER-1), can promote rapid anorexigenic effects. Food intake was measured in ovariectomized (OVX) rats at 1, 2, 4, and 22 h following subcutaneous (s.c.) injection of an ERα agonist (PPT; 0-200 μg/kg), a GPER-1 agonist (G-1; 0-1600 μg/kg), and a GPER-1 antagonist (G-36; 0-80 μg/kg). To investigate possible cross-talk between ERα and GPER-1, we examined whether GPER-1 blockade affects the anorexigenic effect of PPT. Feeding was monitored in OVX rats that received s.c. injections of vehicle or 40 μg/kg G-36 followed 30 min later by s.c. injections of vehicle or 200 μg/kg PPT. Selective activation of ERα and GPER-1 alone decreased food intake within 1 h of drug treatment, and feeding remained suppressed for 22 h following PPT treatment and 4 h following G-1 treatment. Acute administration of G-36 alone did not suppress feeding at any time point. Blockade of GPER-1 attenuated PPT's rapid (within 1 h) anorexigenic effect, but did not modulate PPT's ability to suppress food intake at 2, 4 and 22 h. These findings demonstrate that selective activation of ERα produces a rapid (within 1 h) decrease in food intake that is best explained by a non-genomic signaling pathway and thus implicates the involvement of extra-nuclear ERα. Our findings also provide evidence that activation of GPER-1 is both sufficient to suppress feeding and necessary for PPT's rapid anorexigenic effect.
Collapse
Affiliation(s)
- Michael J Butler
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States
| | - Ryan P Hildebrandt
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States
| | - Lisa A Eckel
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States.
| |
Collapse
|
14
|
Emerging Roles of Estrogen-Related Receptors in the Brain: Potential Interactions with Estrogen Signaling. Int J Mol Sci 2018; 19:ijms19041091. [PMID: 29621182 PMCID: PMC5979530 DOI: 10.3390/ijms19041091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/21/2018] [Accepted: 03/30/2018] [Indexed: 01/22/2023] Open
Abstract
In addition to their well-known role in the female reproductive system, estrogens can act in the brain to regulate a wide range of behaviors and physiological functions in both sexes. Over the past few decades, genetically modified animal models have greatly increased our knowledge about the roles of estrogen receptor (ER) signaling in the brain in behavioral and physiological regulations. However, less attention has been paid to the estrogen-related receptors (ERRs), the members of orphan nuclear receptors whose sequences are homologous to ERs but lack estrogen-binding ability. While endogenous ligands of ERRs remain to be determined, they seemingly share transcriptional targets with ERs and their expression can be directly regulated by ERs through the estrogen-response element embedded within the regulatory region of the genes encoding ERRs. Despite the broad expression of ERRs in the brain, we have just begun to understand the fundamental roles they play at molecular, cellular, and circuit levels. Here, we review recent research advancement in understanding the roles of ERs and ERRs in the brain, with particular emphasis on ERRs, and discuss possible cross-talk between ERs and ERRs in behavioral and physiological regulations.
Collapse
|
15
|
Adhya D, Annuario E, Lancaster MA, Price J, Baron‐Cohen S, Srivastava DP. Understanding the role of steroids in typical and atypical brain development: Advantages of using a "brain in a dish" approach. J Neuroendocrinol 2018; 30:e12547. [PMID: 29024164 PMCID: PMC5838783 DOI: 10.1111/jne.12547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 01/02/2023]
Abstract
Steroids have an important role in growth, development, sexual differentiation and reproduction. All four classes of steroids, androgens, oestrogens, progestogens and glucocorticoids, have varying effects on the brain. Androgens and oestrogens are involved in the sexual differentiation of the brain, and also influence cognition. Progestogens such as progesterone and its metabolites have been shown to be involved in neuroprotection, although their protective effects are timing-dependent. Glucocorticoids are linked with stress and memory performance, also in a dose- and time-dependent manner. Importantly, dysfunction in steroid function has been implicated in the pathogenesis of disease. Moreover, regulating steroid-signalling has been suggested as potential therapeutic avenue for the treatment of a number of neurodevelopmental, psychiatric and neurodegenerative disorders. Therefore, clarifying the role of steroids in typical and atypical brain function is essential for understanding typical brain functions, as well as determining their potential use for pharmacological intervention in the atypical brain. However, the majority of studies have thus far have been conducted using animal models, with limited work using native human tissue or cells. Here, we review the effect of steroids in the typical and atypical brain, focusing on the cellular, molecular functions of these molecules determined from animal models, and the therapeutic potential as highlighted by human studies. We further discuss the promise of human-induced pluripotent stem cells, including advantages of using three-dimensional neuronal cultures (organoids) in high-throughput screens, in accelerating our understanding of the role of steroids in the typical brain, and also with respect to their therapeutic value in the understanding and treatment of the atypical brain.
Collapse
Affiliation(s)
- D. Adhya
- Department of PsychiatryAutism Research CentreUniversity of CambridgeCambridgeUK
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Laboratory of Molecular BiologyCambridgeUK
| | - E. Annuario
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | | | - J. Price
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
- National Institute for Biological Standards and ControlSouth MimmsUK
| | - S. Baron‐Cohen
- Department of PsychiatryAutism Research CentreUniversity of CambridgeCambridgeUK
| | - D. P. Srivastava
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| |
Collapse
|
16
|
Lu CL, Herndon C. New roles for neuronal estrogen receptors. Neurogastroenterol Motil 2017; 29. [PMID: 28597596 DOI: 10.1111/nmo.13121] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 05/02/2017] [Indexed: 02/08/2023]
Abstract
Estrogens encompass steroid hormones which display physiological roles not only in the female reproductive system but also in other organ systems of non-reproductive controls, including the peripheral and central nervous systems. Traditionally, estrogen signals in neurons through a "genomic pathway": binding to estrogen receptors (ERs) which then interact with nuclear estrogen response elements to initiate transcription. This effect is usually delayed at onset (within several hours to days) and prolonged in duration. In addition to these classical ERs, recent data suggest that other ERs function through pregenomic signaling pathways. Estrogen's pregenomic pathways cause intracellular changes within seconds to minutes and go through a novel, 7-transmembrane spanning G protein-coupled receptor (GPER, formerly known as GPR30). In this review, we will briefly cover the cellular and molecular mechanisms of GPER and then discuss newly discovered roles of GPER in cognition, depression, homeostasis, pain processing, and other associated neuronal functions.
Collapse
Affiliation(s)
- C-L Lu
- Institute of Brain Science, Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - C Herndon
- University of California, Los Angeles
| |
Collapse
|
17
|
Thiebaut C, Chamard-Jovenin C, Chesnel A, Morel C, Djermoune EH, Boukhobza T, Dumond H. Mammary epithelial cell phenotype disruption in vitro and in vivo through ERalpha36 overexpression. PLoS One 2017; 12:e0173931. [PMID: 28301550 PMCID: PMC5354400 DOI: 10.1371/journal.pone.0173931] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/28/2017] [Indexed: 12/16/2022] Open
Abstract
Estrogen receptor alpha 36 (ERα36) is a variant of the canonical estrogen receptor alpha (ERα66), widely expressed in hormone sensitive cancer cells and whose high expression level correlates with a poor survival prognosis for breast cancer patients. While ERα36 activity have been related to breast cancer progression or acquired resistance to treatment, expression level and location of ERα36 are poorly documented in the normal mammary gland. Therefore, we explored the consequences of a ERα36 overexpression in vitro in MCF-10A normal mammary epithelial cells and in vivo in a unique model of MMTV-ERα36 transgenic mouse strain wherein ERα36 mRNA was specifically expressed in the mammary gland. By a combination of bioinformatics and computational analyses of microarray data, we identified hierarchical gene networks, downstream of ERα36 and modulated by the JAK2/STAT3 signaling pathway. Concomitantly, ERα36 overexpression lowered proliferation rate but enhanced migration potential and resistance to staurosporin-induced apoptosis of the MCF-10A cell line. In vivo, ERα36 expression led to duct epithelium thinning and disruption in adult but not in prepubescent mouse mammary gland. These phenotypes correlated with a loss of E-cadherin expression. Here, we show that an enhanced expression of ERα36 is sufficient, by itself, to disrupt normal breast epithelial phenotype in vivo and in vitro through a dominant-positive effect on nongenomic estrogen signaling pathways. These results also suggest that, in the presence of adult endogenous steroid levels, ERα36 overexpression in vivo contributes to alter mammary gland architecture which may support pre-neoplastic lesion and augment breast cancer risk.
Collapse
Affiliation(s)
- Charlène Thiebaut
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Clémence Chamard-Jovenin
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Amand Chesnel
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Chloé Morel
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - El-Hadi Djermoune
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Taha Boukhobza
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Hélène Dumond
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
18
|
Alexander A, Irving AJ, Harvey J. Emerging roles for the novel estrogen-sensing receptor GPER1 in the CNS. Neuropharmacology 2017; 113:652-660. [DOI: 10.1016/j.neuropharm.2016.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023]
|
19
|
Neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-κB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice. Sci Rep 2016; 6:19869. [PMID: 26813160 PMCID: PMC4728497 DOI: 10.1038/srep19869] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/18/2015] [Indexed: 12/19/2022] Open
Abstract
FGF10 is a member of fibroblast growth factors (FGFs). We previously showed that FGF10 protects neuron against oxygen-glucose deprivation injury in vitro; however, the effect of FGF10 in ischemic stroke in vivo is unknown. In the present study, we showed that FGF10 was mainly expressed in neurons but not astrocytes, and detected FGF10 in mouse cerebrospinal fluid. The FGF10 levels in neurons culture medium and cell lysate were much higher than those in astrocytes. FGF10 expression in brain tissue and FGF10 level in CSF were increased in mouse middle cerebral artery occlusion (MCAO) model. Administration of FGF10 into lateral cerebroventricle not only decreased MCAO-induced brain infarct volume and neurological deficit, but also reduced the number of TUNEL-positive cells and activities of Caspases. Moreover, FGF10 treatment depressed the triggered inflammatory factors (TNF-α and IL-6) and NF-κB signaling pathway, and increased phosphorylation of PI3K/Akt signaling pathway. Blockade of PI3K/Akt signaling pathway by wortmannin and Akt1/2-kinase inhibitor, partly compromised the neuroprotection of FGF10. However, blockade of PI3K/Akt signaling pathway did not impair the anti-inflammation action of FGF10. Collectively, our results demonstrate that neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-κB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice.
Collapse
|
20
|
Prossnitz ER, Hathaway HJ. What have we learned about GPER function in physiology and disease from knockout mice? J Steroid Biochem Mol Biol 2015; 153:114-26. [PMID: 26189910 PMCID: PMC4568147 DOI: 10.1016/j.jsbmb.2015.06.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
Abstract
Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and pathophysiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also demonstrated roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, United States; University of New Mexico Cancer Center, Albuquerque, NM 87131, United States.
| | - Helen J Hathaway
- Department of Cell Biology & Physiology, University of New Mexico, Albuquerque, NM 87131, United States; University of New Mexico Cancer Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
21
|
Barton M, Prossnitz ER. Emerging roles of GPER in diabetes and atherosclerosis. Trends Endocrinol Metab 2015; 26:185-92. [PMID: 25767029 PMCID: PMC4731095 DOI: 10.1016/j.tem.2015.02.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/31/2015] [Accepted: 02/04/2015] [Indexed: 01/13/2023]
Abstract
The G protein-coupled estrogen receptor (GPER) is a 7-transmembrane receptor implicated in rapid estrogen signaling. Originally cloned from vascular endothelial cells, GPER plays a central role in the regulation of vascular tone and cell growth as well as lipid and glucose homeostasis. This review highlights our knowledge of the physiological and pathophysiological functions of GPER in the pancreas, peripheral and immune tissues, and the arterial vasculature. Recent findings on its roles in obesity, diabetes, and atherosclerosis, including GPER-dependent regulation of lipid metabolism and inflammation, are presented. The therapeutic potential of targeting GPER-dependent pathways in chronic diseases such as coronary artery disease and diabetes and in the context of menopause is also discussed.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, Switzerland.
| | - Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA; UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA.
| |
Collapse
|