1
|
Vo DK, Trinh KTL. Emerging Biomarkers in Metabolomics: Advancements in Precision Health and Disease Diagnosis. Int J Mol Sci 2024; 25:13190. [PMID: 39684900 DOI: 10.3390/ijms252313190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Metabolomics has come to the fore as an efficient tool in the search for biomarkers that are critical for precision health approaches and improved diagnostics. This review will outline recent advances in biomarker discovery based on metabolomics, focusing on metabolomics biomarkers reported in cancer, neurodegenerative disorders, cardiovascular diseases, and metabolic health. In cancer, metabolomics provides evidence for unique oncometabolites that are important for early disease detection and monitoring of treatment responses. Metabolite profiling for conditions such as neurodegenerative and mental health disorders can offer early diagnosis and mechanisms into the disease especially in Alzheimer's and Parkinson's diseases. In addition to these, lipid biomarkers and other metabolites relating to cardiovascular and metabolic disorders are promising for patient stratification and personalized treatment. The gut microbiome and environmental exposure also feature among the influential factors in biomarker discovery because they sculpt individual metabolic profiles, impacting overall health. Further, we discuss technological advances in metabolomics, current clinical applications, and the challenges faced by metabolomics biomarker validation toward precision medicine. Finally, this review discusses future opportunities regarding the integration of metabolomics into routine healthcare to enable preventive and personalized approaches.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Wei YC, Kung YC, Lin C, Yeh CH, Chen PY, Huang WY, Shyu YC, Lin CP, Chen CK. Differential neuropsychiatric associations of plasma biomarkers in older adults with major depression and subjective cognitive decline. Transl Psychiatry 2024; 14:333. [PMID: 39152102 PMCID: PMC11329686 DOI: 10.1038/s41398-024-03049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 06/23/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Older adults with major depressive disorder (MDD) or early cognitive decline during the subjective cognitive decline (SCD) stage may exhibit neuropsychiatric symptoms such as anxiety, depression, and subtle cognitive impairment. The clinicopathological features and biological mechanisms of MDD differ from those of SCD among older adults; these conditions thus require different treatment strategies. This study enrolled 82 participants above 50 years old with normal cognitive levels from the communities to examine biomarker-behavior correlations between MDD (n = 23) and SCD (n = 23) relative to a normal control (NC) group (n = 36). Multidomain assessments were performed for all participants, including immunomagnetic reduction tests to detect plasma beta-amyloid (Aβ), total tau (Tau), phosphorylated tau-181 (p-Tau181), neurofilament light chain, and glial fibrillary acidic protein (GFAP). This study observed that depressive symptoms in MDD were associated with amyloid pathology (plasma Aβ40 vs. HADS-D: R = 0.45, p = 0.031; Aβ42/Aβ40 vs. HADS-D: R = -0.47, p = 0.024), which was not observed in the NC (group difference p < 0.05). Moreover, cognitive decline in MDD was distinguished by a mixed neurodegenerative process involving amyloid (plasma Aβ42 vs. facial memory test: R = 0.48, p = 0.025), tau (Tau/Aβ42 vs. digit symbol substitution test (DSST): R = -0.53, p = 0.01), and astrocytic injury (plasma GFAP vs. Montreal cognitive assessment score: R = -0.44, p = 0.038; plasma GFAP vs. DSST: R = -0.52, p = 0.014), findings that did not apply to the NC (group difference p < 0.05). Moreover, this study revealed different biomarker-behavior correlations between individuals with SCD and the NC. Compared with the NC, cognitive decline in the SCD group might be unrelated to amyloid pathology and instead might be early manifestations of tau pathology. This study underscores the difference in clinicopathological features between MDD and SCD among older adults, which differ from those of the NC. These findings enhance our understanding of the mechanisms underlying MDD and SCD in older individuals.
Collapse
Affiliation(s)
- Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yi-Chia Kung
- Department of Radiology, Tri-Service General Hospital, Taipei, 114, Taiwan
| | - Chemin Lin
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Chun-Hung Yeh
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Pin-Yuan Chen
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Wen-Yi Huang
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Department of Education and Research, Taipei City Hospital, Taipei, 103, Taiwan.
| | - Chih-Ken Chen
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, 204, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, 204, Taiwan.
| |
Collapse
|
3
|
Wang L, Hu Y, Jiang N, Yetisen AK. Biosensors for psychiatric biomarkers in mental health monitoring. Biosens Bioelectron 2024; 256:116242. [PMID: 38631133 DOI: 10.1016/j.bios.2024.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Psychiatric disorders are associated with serve disturbances in cognition, emotional control, and/or behavior regulation, yet few routine clinical tools are available for the real-time evaluation and early-stage diagnosis of mental health. Abnormal levels of relevant biomarkers may imply biological, neurological, and developmental dysfunctions of psychiatric patients. Exploring biosensors that can provide rapid, in-situ, and real-time monitoring of psychiatric biomarkers is therefore vital for prevention, diagnosis, treatment, and prognosis of mental disorders. Recently, psychiatric biosensors with high sensitivity, selectivity, and reproducibility have been widely developed, which are mainly based on electrochemical and optical sensing technologies. This review presented psychiatric disorders with high morbidity, disability, and mortality, followed by describing pathophysiology in a biomarker-implying manner. The latest biosensors developed for the detection of representative psychiatric biomarkers (e.g., cortisol, dopamine, and serotonin) were comprehensively summarized and compared in their sensitivities, sensing technologies, applicable biological platforms, and integrative readouts. These well-developed biosensors are promising for facilitating the clinical utility and commercialization of point-of-care diagnostics. It is anticipated that mental healthcare could be gradually improved in multiple perspectives, ranging from innovations in psychiatric biosensors in terms of biometric elements, transducing principles, and flexible readouts, to the construction of 'Big-Data' networks utilized for sharing intractable psychiatric indicators and cases.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
4
|
Xu K, Zhao S, Ren Y, Zhong Q, Feng J, Tu D, Wu W, Wang J, Chen J, Xie P. Elevated SCN11A concentrations associated with lower serum lipid levels in patients with major depressive disorder. Transl Psychiatry 2024; 14:202. [PMID: 38734669 PMCID: PMC11088647 DOI: 10.1038/s41398-024-02916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The pathogenesis of major depressive disorder (MDD) involves lipid metabolism. Our earlier research also revealed that MDD patients had much lower total cholesterol (TC) concentrations than healthy controls (HCs). However, it is still unclear why TC decreased in MDD. Here, based on the Ingenuity Knowledge Base's ingenuity pathway analysis, we found that sodium voltage-gated channel alpha subunit 11A (SCN11A) might serve as a link between low lipid levels and MDD. We analyzed the TC levels and used ELISA kits to measure the levels of SCN11A in the serum from 139 MDD patients, and 65 HCs to confirm this theory and explore the potential involvement of SCN11A in MDD. The findings revealed that TC levels were considerably lower and SCN11A levels were remarkably increased in MDD patients than those in HCs, while they were significantly reversed in drug-treatment MDD patients than in drug-naïve MDD patients. There was no significant difference in SCN11A levels among MDD patients who used single or multiple antidepressants, and selective serotonin reuptake inhibitors or other antidepressants. Pearson correlation analysis showed that the levels of TC and SCN11A were linked with the Hamilton Depression Rating Scales score. A substantial association was also found between TC and SCN11A. Moreover, a discriminative model made up of SCN11A was discovered, which produced an area under a curve of 0.9571 in the training set and 0.9357 in the testing set. Taken together, our findings indicated that SCN11A may serve as a link between low lipid levels and MDD, and showed promise as a candidate biomarker for MDD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Zhao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dianji Tu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wentao Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jiaolin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Xu K, Ren Y, Fan L, Zhao S, Feng J, Zhong Q, Tu D, Wu W, Chen J, Xie P. TCF4 and RBFOX1 as peripheral biomarkers for the differential diagnosis and treatment of major depressive disorder. J Affect Disord 2024; 345:252-261. [PMID: 37890537 DOI: 10.1016/j.jad.2023.10.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Recent genome-wide association studies on major depressive disorder (MDD) have indicated the involvement of LRFN5 and OLFM4; however, the expression levels and roles of these molecules in MDD remain unclear. The present study aimed to determine the serum levels of TCF4 and RBFOX1 in patients with MDD and to investigate whether these molecules could be used as biomarkers for MDD diagnosis. METHODS The study included 99 drug-naïve MDD patients, 90 drug-treated MDD patients, and 81 healthy controls (HCs). Serum TCF4 and RBFOX1 levels were measured by ELISA. Pearson's correlation analysis was conducted to determine the association between TCF4/RBFOX1 and clinical variables. Linear support vector machine classifier was used to evaluate the diagnostic capabilities of TCF4 and RBFOX1. RESULTS Serum TCF4 and RBFOX1 levels were substantially higher in MDD patients than in HCs and significantly lower in drug-treated MDD patients than in drug-naïve MDD patients. Moreover, serum TCF4 and RBFOX1 levels were associated with the Hamilton Depression Scale score, duration of illness, serum lipids levels, and hepatic function. Thus, both these molecules showed potential as biomarkers for MDD. TCF4 and RBFOX1 combination exhibited a higher diagnostic performance, with the mean area under the curve values of 0.9861 and 0.9936 in the training and testing sets, respectively. LIMITATIONS Small sample size and investigation of only the peripheral nervous system. CONCLUSIONS TCF4 and RBFOX1 may be involved in the pathogenesis of MDD, and their combination may serve as a diagnostic biomarker panel for MDD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuang Zhao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing 400016, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Dianji Tu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wentao Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Stolz LA, Kohn JN, Smith SE, Benster LL, Appelbaum LG. Predictive Biomarkers of Treatment Response in Major Depressive Disorder. Brain Sci 2023; 13:1570. [PMID: 38002530 PMCID: PMC10669981 DOI: 10.3390/brainsci13111570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent, debilitating disorder with a high rate of treatment resistance. One strategy to improve treatment outcomes is to identify patient-specific, pre-intervention factors that can predict treatment success. Neurophysiological measures such as electroencephalography (EEG), which measures the brain's electrical activity from sensors on the scalp, offer one promising approach for predicting treatment response for psychiatric illnesses, including MDD. In this study, a secondary data analysis was conducted on the publicly available Two Decades Brainclinics Research Archive for Insights in Neurophysiology (TDBRAIN) database. Logistic regression modeling was used to predict treatment response, defined as at least a 50% improvement on the Beck's Depression Inventory, in 119 MDD patients receiving repetitive transcranial magnetic stimulation (rTMS). The results show that both age and baseline symptom severity were significant predictors of rTMS treatment response, with older individuals and more severe depression scores associated with decreased odds of a positive treatment response. EEG measures contributed predictive power to these models; however, these improvements in outcome predictability only trended towards statistical significance. These findings provide confirmation of previous demographic and clinical predictors, while pointing to EEG metrics that may provide predictive information in future studies.
Collapse
Affiliation(s)
- Louise A. Stolz
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (L.A.S.); (J.N.K.); (L.L.B.)
| | - Jordan N. Kohn
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (L.A.S.); (J.N.K.); (L.L.B.)
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Sydney E. Smith
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, USA;
| | - Lindsay L. Benster
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (L.A.S.); (J.N.K.); (L.L.B.)
- Department Clinical Psychology, San Diego State University, San Diego, CA 92182, USA
| | - Lawrence G. Appelbaum
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (L.A.S.); (J.N.K.); (L.L.B.)
| |
Collapse
|
7
|
Ursumando L, Ponzo V, Monteleone AM, Menghini D, Fucà E, Lazzaro G, Esposito R, Picazio S, Koch G, Zanna V, Vicari S, Costanzo F. The efficacy of non-invasive brain stimulation in the treatment of children and adolescents with Anorexia Nervosa: study protocol of a randomized, double blind, placebo-controlled trial. J Eat Disord 2023; 11:127. [PMID: 37533058 PMCID: PMC10394844 DOI: 10.1186/s40337-023-00852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Current psychological and pharmacological treatments for Anorexia Nervosa (AN) provide only moderate effective support, and there is an urgent need for research to improve therapies, especially in developing age. Non-invasive brain stimulation has suggested to have the potential to reducing AN symptomatology, via targeting brain alterations, such as hyperactivity of right prefrontal cortex (PFC). We suppose that transcranial direct current stimulation (tDCS) to the PFC may be effective in children and adolescents with AN. METHODS We will conduct a randomized, double blind, add-on, placebo-controlled trial to investigate the efficacy of tDCS treatment on clinical improvement. We will also investigate brain mechanisms and biomarkers changes acting in AN after tDCS treatment. Eighty children or adolescent with AN (age range 10-18 years) will undergo treatment-as-usual including psychiatric, nutritional and psychological support, plus tDCS treatment (active or sham) to PFC (F3 anode/F4 cathode), for six weeks, delivered three times a week. Psychological, neurophysiological and physiological measures will be collected at baseline and at the end of treatment. Participants will be followed-up one, three, six months and one year after the end of treatment. Psychological measures will include parent- and self-report questionnaires on AN symptomatology and other psychopathological symptoms. Neurophysiological measures will include transcranial magnetic stimulation (TMS) with electroencephalography and paired pulse TMS and repetitive TMS to investigate changes in PFC connectivity, reactivity and plasticity after treatment. Physiological measures will include changes in the functioning of the endogenous stress response system, body mass index (BMI) and nutritional state. DISCUSSION We expect that tDCS treatment to improve clinical outcome by reducing the symptoms of AN assessed as changes in Eating Disorder Risk composite score of the Eating Disorder Inventory-3. We also expect that at baseline there will be differences between the right and left hemisphere in some electrophysiological measures and that such differences will be reduced after tDCS treatment. Finally, we expect a reduction of endogenous stress response and an improvement in BMI and nutritional status after tDCS treatment. This project would provide scientific foundation for new treatment perspectives in AN in developmental age, as well as insight into brain mechanisms acting in AN and its recovery. Trial registration The study was registered at ClinicalTrials.gov (ID: NCT05674266) and ethical approval for the study was granted by the local research ethics committee (process number 763_OPBG_2014).
Collapse
Affiliation(s)
- Luciana Ursumando
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Viviana Ponzo
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Romina Esposito
- Experimental Neuropsychophysiology Lab, IRCCS S. Lucia Foundation, Rome, Italy
| | - Silvia Picazio
- Experimental Neuropsychophysiology Lab, IRCCS S. Lucia Foundation, Rome, Italy
- Department of Psychology, University "Sapienza" of Rome, Rome, Italy
| | - Giacomo Koch
- Experimental Neuropsychophysiology Lab, IRCCS S. Lucia Foundation, Rome, Italy
- Section of Human Phisiology, University of Ferrara, Ferrara, Italy
| | - Valeria Zanna
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
8
|
Xu K, Zheng P, Zhao S, Wang J, Feng J, Ren Y, Zhong Q, Zhang H, Chen X, Chen J, Xie P. LRFN5 and OLFM4 as novel potential biomarkers for major depressive disorder: a pilot study. Transl Psychiatry 2023; 13:188. [PMID: 37280213 DOI: 10.1038/s41398-023-02490-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Evidences have shown that both LRFN5 and OLFM4 can regulate neural development and synaptic function. Recent genome-wide association studies on major depressive disorder (MDD) have implicated LRFN5 and OLFM4, but their expressions and roles in MDD are still completely unclear. Here, we examined serum concentrations of LRFN5 and OLFM4 in 99 drug-naive MDD patients, 90 drug-treatment MDD patients, and 81 healthy controls (HCs) using ELISA methods. The results showed that both LRFN5 and OLFM4 levels were considerably higher in MDD patients compared to HCs, and were significantly lower in drug-treatment MDD patients than in drug-naive MDD patients. However, there were no significant differences between MDD patients who received a single antidepressant and a combination of antidepressants. Pearson correlation analysis showed that they were associated with the clinical data, including Hamilton Depression Scale score, age, duration of illness, fasting blood glucose, serum lipids, and hepatic, renal, or thyroid function. Moreover, these two molecules both yielded fairly excellent diagnostic performance in diagnosing MDD. In addition, a combination of LRFN5 and OLFM4 demonstrated a better diagnostic effectiveness, with an area under curve of 0.974 in the training set and 0.975 in the testing set. Taken together, our data suggest that LRFN5 and OLFM4 may be implicated in the pathophysiology of MDD and the combination of LRFN5 and OLFM4 may offer a diagnostic biomarker panel for MDD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jiubing Wang
- Department of Clinical Laboratory, Chongqing Mental Health Centre, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hanping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Tallarico M, Pisano M, Leo A, Russo E, Citraro R, De Sarro G. Antidepressant Drugs for Seizures and Epilepsy: Where do we Stand? Curr Neuropharmacol 2023; 21:1691-1713. [PMID: 35761500 PMCID: PMC10514547 DOI: 10.2174/1570159x20666220627160048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
People with epilepsy (PWE) are more likely to develop depression and both these complex chronic diseases greatly affect health-related quality of life (QOL). This comorbidity contributes to the deterioration of the QOL further than increasing the severity of epilepsy worsening prognosis. Strong scientific evidence suggests the presence of shared pathogenic mechanisms. The correct identification and management of these factors are crucial in order to improve patients' QOL. This review article discusses recent original research on the most common pathogenic mechanisms of depression in PWE and highlights the effects of antidepressant drugs (ADs) against seizures in PWE and animal models of seizures and epilepsy. Newer ADs, such as selective serotonin reuptake inhibitors (SRRI) or serotonin-noradrenaline reuptake inhibitors (SNRI), particularly sertraline, citalopram, mirtazapine, reboxetine, paroxetine, fluoxetine, escitalopram, fluvoxamine, venlafaxine, duloxetine may lead to improvements in epilepsy severity whereas the use of older tricyclic antidepressant (TCAs) can increase the occurrence of seizures. Most of the data demonstrate the acute effects of ADs in animal models of epilepsy while there is a limited number of studies about the chronic antidepressant effects in epilepsy and epileptogenesis or on clinical efficacy. Much longer treatments are needed in order to validate the effectiveness of these new alternatives in the treatment and the development of epilepsy, while further clinical studies with appropriate protocols are warranted in order to understand the real potential contribution of these drugs in the management of PWE (besides their effects on mood).
Collapse
Affiliation(s)
- Martina Tallarico
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maria Pisano
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
10
|
Jeon SW, Kim YK. Neuron-Microglia Crosstalk in Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:3-15. [PMID: 36949303 DOI: 10.1007/978-981-19-7376-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Numerous studies have investigated the causes and mechanisms of psychiatric disorders through postmortem examination of patients with a history of a schizophrenia, mood disorder, or neurocognitive disorder. In addition, the search for specific mechanism-based treatments for psychiatric disorders has been intensified through the use of transgenic animal models involving specific genes tightly associated with psychiatric disorders. As a result, many studies with patients or animal models have reported a close association of neuroglia with major psychiatric disorders. Recently, research has focused on the associations between microglia and major psychiatric disorders and on the role of the immune response and abnormal microglia in the onset and symptoms of psychiatric disorders, in particular. Postmortem studies of brain tissue and animal models recapitulating human mental disorders have also confirmed association between psychiatric disorders and quantitative, structural, or functional abnormalities of neuron-microglia crosstalk. This review aims to describe the relationships between microglia and major psychiatric disorders and to specifically examine studies of gene expression and function of microglia in depression, schizophrenia, and Alzheimer's disease.
Collapse
Affiliation(s)
- Sang Won Jeon
- Department of Psychiatry, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Saemunan-ro, Jongno-gu, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
11
|
MANF/EWSR1/ANXA6 pathway might as the bridge between hypolipidemia and major depressive disorder. Transl Psychiatry 2022; 12:527. [PMID: 36585419 PMCID: PMC9803680 DOI: 10.1038/s41398-022-02287-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Major depressive disorder (MDD) involves changes in lipid metabolism, but previous findings are contradictory. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is considered to be a regulator of lipid metabolism. To date, the function of MANF has been studied in many brain disorders, but not in MDD. Therefore, to better understand the role of lipids in MDD, this study was conducted to examine lipid levels in the serum of MDD patients and to investigate the potential function of MANF in MDD. First, the data on total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG) in serum from 354 MDD patients and 360 healthy controls (HCs) were collected and analyzed. The results showed that there were significantly lower concentrations of TC and LDL-C in MDD patients compared with HCs, and TC levels were positively correlated with LDL-C levels. Bioinformatics analysis indicated that MANF/EWSR1/ANXA6 pathway might serve as the connecting bridge through which hypolipidemia played a functional role in MDD. Second, to verify this hypothesis, serum samples were collected from 143 MDD patients, and 67 HCs to measure the levels of MANF, EWSR1, and ANXA6 using ELISA kits. The results showed that compared to HCs, MDD patients had a significantly lower level of MANF and higher levels of ANXA6 and EWSR1, and these molecules were significantly correlated with both TC level and Hamilton Depression Rating Scales (HDRS) score. In addition, a discriminative model consisting of MANF, EWSR1, and ANXA6 was identified. This model was capable of distinguishing MDD subjects from HCs, yielded an area under curve of 0.9994 in the training set and 0.9569 in the testing set. Taken together, our results suggested that MANF/EWSR1/ANXA6 pathway might act as the bridge between hypolipidemia and MDD, and these molecules held promise as potential biomarkers for MDD.
Collapse
|
12
|
Stout DM, Simmons AN, Nievergelt CM, Minassian A, Biswas N, Maihofer AX, Risbrough VB, Baker DG. Deriving psychiatric symptom-based biomarkers from multivariate relationships between psychophysiological and biochemical measures. Neuropsychopharmacology 2022; 47:2252-2260. [PMID: 35347268 PMCID: PMC9630445 DOI: 10.1038/s41386-022-01303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022]
Abstract
Identification of biomarkers for psychiatric disorders remains very challenging due to substantial symptom heterogeneity and diagnostic comorbidity, limiting the ability to map symptoms to underlying neurobiology. Dimensional symptom clusters, such as anhedonia, hyperarousal, etc., are complex and arise due to interactions of a multitude of complex biological relationships. The primary aim of the current investigation was to use multi-set canonical correlation analysis (mCCA) to derive biomarkers (biochemical, physiological) linked to dimensional symptoms across the anxiety and depressive spectrum. Active-duty service members (N = 2,592) completed standardized depression, anxiety and posttraumatic stress questionnaires and several psychophysiological and biochemical assays. Using this approach, we identified two phenotype associations between distinct physiological and biological phenotypes. One was characterized by symptoms of dysphoric arousal (anhedonia, anxiety, hypervigilance) which was associated with low blood pressure and startle reactivity. This finding is in line with previous studies suggesting blunted physiological reactivity is associated with subpopulations endorsing anxiety with comorbid depressive features. A second phenotype of anxious fatigue (high anxiety and reexperiencing/avoidance symptoms coupled with fatigue) was associated with elevated blood levels of norepinephrine and the inflammatory marker C-reactive protein in conjunction with high blood pressure. This second phenotype may describe populations in which inflammation and high sympathetic outflow might contribute to anxious fatigue. Overall, these findings support the growing consensus that distinct neuropsychiatric symptom patterns are associated with differential physiological and blood-based biological profiles and highlight the potential of mCCA to reveal important psychiatric symptom biomarkers from several psychophysiological and biochemical measures.
Collapse
Affiliation(s)
- Daniel M Stout
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Alan N Simmons
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Caroline M Nievergelt
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Arpi Minassian
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nilima Biswas
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Victoria B Risbrough
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dewleen G Baker
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
13
|
Polyzos SA, Hill MA, Fuleihan GEH, Gnudi L, Kim YB, Larsson SC, Masuzaki H, Matarese G, Sanoudou D, Tena-Sempere M, Mantzoros CS. Metabolism, Clinical and Experimental: seventy years young and growing. Metabolism 2022; 137:155333. [PMID: 36244415 DOI: 10.1016/j.metabol.2022.155333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Ghada El-Hajj Fuleihan
- Division of Endocrinology, Calcium Metabolism and Osteoporosis Program, World Health Organization Collaborating Center for Metabolic Bone Disorders, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Luigi Gnudi
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, UK
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hiroaki Masuzaki
- Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, Second Department of Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy; Laboratorio di Immunogenetica dei Trapianti & Registro Regionale dei Trapianti di Midollo, AOU "Federico II", Naples, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Schizophrenia: A Narrative Review of Etiopathogenetic, Diagnostic and Treatment Aspects. J Clin Med 2022; 11:jcm11175040. [PMID: 36078967 PMCID: PMC9457502 DOI: 10.3390/jcm11175040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Although schizophrenia is currently conceptualized as being characterized as a syndrome that includes a collection of signs and symptoms, there is strong evidence of heterogeneous and complex underpinned etiological, etiopathogenetic, and psychopathological mechanisms, which are still under investigation. Therefore, the present viewpoint review is aimed at providing some insights into the recently investigated schizophrenia research fields in order to discuss the potential future research directions in schizophrenia research. The traditional schizophrenia construct and diagnosis were progressively revised and revisited, based on the recently emerging neurobiological, genetic, and epidemiological research. Moreover, innovative diagnostic and therapeutic approaches are pointed to build a new construct, allowing the development of better clinical and treatment outcomes and characterization for schizophrenic individuals, considering a more patient-centered, personalized, and tailored-based dimensional approach. Further translational studies are needed in order to integrate neurobiological, genetic, and environmental studies into clinical practice and to help clinicians and researchers to understand how to redesign a new schizophrenia construct.
Collapse
|
15
|
Servilha-Menezes G, Garcia-Cairasco N. A complex systems view on the current hypotheses of epilepsy pharmacoresistance. Epilepsia Open 2022; 7 Suppl 1:S8-S22. [PMID: 35253410 PMCID: PMC9340300 DOI: 10.1002/epi4.12588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/11/2022] Open
Abstract
Drug-resistant epilepsy remains to this day as a highly prevalent condition affecting around one-third of patients with epilepsy, despite all the research and the development of several new antiseizure medications (ASMs) over the last decades. Epilepsies are multifactorial complex diseases, commonly associated with psychiatric, neurological, and somatic comorbidities. Thus, to solve the puzzling problem of pharmacoresistance, the diagnosis and modeling of epilepsy and comorbidities need to change toward a complex system approach. In this review, we have summarized the sequence of events for the definition of epilepsies and comorbidities, the search for mechanisms, and the major hypotheses of pharmacoresistance, drawing attention to some of the many converging aspects between the proposed mechanisms, their supporting evidence, and comorbidities-related alterations. The use of systems biology applied to epileptology may lead to the discovery of new targets and the development of new ASMs, as may advance our understanding of the epilepsies and their comorbidities, providing much deeper insight on multidrug pharmacoresistance.
Collapse
Affiliation(s)
- Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil.,Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
16
|
Tsermpini EE, Kalogirou CI, Kyriakopoulos GC, Patrinos GP, Stathopoulos C. miRNAs as potential diagnostic biomarkers and pharmacogenomic indicators in psychiatric disorders. THE PHARMACOGENOMICS JOURNAL 2022; 22:211-222. [PMID: 35725816 DOI: 10.1038/s41397-022-00283-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
The heterogeneity of psychiatric disorders and the lack of reliable biomarkers for prediction and treatments follow-up pose difficulties towards recognition and understanding of the molecular basis of psychiatric diseases. However, several studies based on NGS approaches have shown that miRNAs could regulate gene expression during onset and disease progression and could serve as potential diagnostic and pharmacogenomics biomarkers during treatment. We provide herein a detailed overview of circulating miRNAs and their expression profiles as biomarkers in schizophrenia, bipolar disorder and major depressive disorder and their role in response to specific treatments. Bioinformatics analysis of miR-34a, miR-106, miR-134 and miR-132, which are common among SZ, BD and MDD patients, showed brain enrichment and involvement in the modulation of critical signaling pathways, which are often deregulated in psychiatric disorders. We propose that specific miRNAs support accurate diagnosis and effective precision treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Christina I Kalogirou
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| | | | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, School of Health Sciences, Department of Pharmacy, University of Patras, Patras, Greece
| | | |
Collapse
|
17
|
Grasser LR, Saad B, Bazzi C, Wanna C, Abu Suhaiban H, Mammo D, Jovanovic T, Javanbakht A. Skin conductance response to trauma interview as a candidate biomarker of trauma and related psychopathology in youth resettled as refugees. Eur J Psychotraumatol 2022; 13:2083375. [PMID: 35713586 PMCID: PMC9196716 DOI: 10.1080/20008198.2022.2083375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
UNLABELLED Background: Posttraumatic stress symptoms (PTSS) include a constellation of physical and emotional profiles that youth exposed to trauma may experience. An estimated 20% of youth are exposed to trauma, and in refugee populations, up to 54% experience posttraumatic stress. Given the physical and mental health consequences associated with trauma exposure and subsequent psychopathology, identifying biomarkers of symptom severity is a top research priority. Objective: Previous research in adults found that skin conductance responses to trauma interview predicted current and future PTSS. We extended this method to refugee youth exposed to civilian war trauma and forced migration, to examine associations between PTSS and skin conductance in this uniquely vulnerable child and adolescent population. Methods: 86 refugee youth ages 7-17 years completed a trauma interview and assessment of self-reported PTSS. The mobile eSense app on a iPad was used to obtain continuous recordings of skin conductance level (SCL) during a trauma interview (trauma SCL). Skin conductance response (SCR) was calculated by subtracting the baseline SCL from the maximum amplitude of the trauma SCL. Results: SCL during trauma was significantly greater than baseline SCL, Trauma exposure was significantly associated with SCR to trauma interview, R2 = .084, p = .042. SCR to trauma interview was positively correlated with reexperiencing (R2 = .127, p = .028), and hyperarousal symptoms (R 2 = .123, p = .048). Conclusions: The present study provides evidence for feasibility of SCR to trauma interview as a candidate biomarker of PTSS in youth. This is the first study to look at SCR to trauma interview in youth resettled as refugees and is part of the limited but growing body of research to look at biomarkers in refugee cohorts more broadly. As the number of forcibly displaced persons surges, early detection and prevention of trauma-related psychology is becoming more important than ever. HIGHLIGHTS Using the mobile eSense app, we demonstrate that skin conductance is measurable in a variety of research settings and that skin conductance response may be a biological indicator of trauma and related psychopathology - namely re-experiencing symptoms - in youth resettled as refugees.
Collapse
Affiliation(s)
- Lana Ruvolo Grasser
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| | - Bassem Saad
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| | - Celine Bazzi
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| | - Cassandra Wanna
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| | - Hiba Abu Suhaiban
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| | - Dalia Mammo
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| | - Arash Javanbakht
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI, USA
| |
Collapse
|
18
|
Galvão ACDM, Almeida RN, de Sousa Júnior GM, Leocadio-Miguel MA, Palhano-Fontes F, de Araujo DB, Lobão-Soares B, Maia-de-Oliveira JP, Nunes EA, Hallak JEC, Sarris J, Galvão-Coelho NL. Potential biomarkers of major depression diagnosis and chronicity. PLoS One 2021; 16:e0257251. [PMID: 34587177 PMCID: PMC8480905 DOI: 10.1371/journal.pone.0257251] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Molecular biomarkers are promising tools to be routinely used in clinical psychiatry. Among psychiatric diseases, major depression disorder (MDD) has gotten attention due to its growing prevalence and morbidity. METHODS We tested some peripheral molecular parameters such as serum mature Brain-Derived Neurotrophic Factor (mBDNF), plasma C-Reactive Protein (CRP), serum cortisol (SC), and the salivary Cortisol Awakening Response (CAR), as well as the Pittsburgh sleep quality inventory (PSQI), as part of a multibiomarker panel for potential use in MDD diagnosis and evaluation of disease's chronicity using regression models, and ROC curve. RESULTS For diagnosis model, two groups were analyzed: patients in the first episode of major depression (MD: n = 30) and a healthy control (CG: n = 32). None of those diagnosis models tested had greater power than Hamilton Depression Rating Scale-6. For MDD chronicity, a group of patients with treatment-resistant major depression (TRD: n = 28) was tested across the MD group. The best chronicity model (p < 0.05) that discriminated between MD and TRD included four parameters, namely PSQI, CAR, SC, and mBDNF (AUC ROC = 0.99), with 96% of sensitivity and 93% of specificity. CONCLUSION These results indicate that changes in specific biomarkers (CAR, SC, mBDNF and PSQI) have potential on the evaluation of MDD chronicity, but not for its diagnosis. Therefore, these findings can contribute for further studies aiming the development of a stronger model to be commercially available and used in psychiatry clinical practice.
Collapse
Affiliation(s)
- Ana Cecília de Menezes Galvão
- Laboratory of Hormone Measurement, Postgraduate Program in Psychobiology and Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raíssa Nobrega Almeida
- Laboratory of Hormone Measurement, Postgraduate Program in Psychobiology and Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Geovan Menezes de Sousa Júnior
- Laboratory of Hormone Measurement, Postgraduate Program in Psychobiology and Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Mário André Leocadio-Miguel
- Laboratory of Hormone Measurement, Postgraduate Program in Psychobiology and Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Bruno Lobão-Soares
- National Institute of Science and Technology in Translational Medicine, Ribeirao Preto, Brazil
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - João Paulo Maia-de-Oliveira
- National Institute of Science and Technology in Translational Medicine, Ribeirao Preto, Brazil
- Department of Clinical Medicine, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Emerson Arcoverde Nunes
- National Institute of Science and Technology in Translational Medicine, Ribeirao Preto, Brazil
- Department of Psychiatry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jaime Eduardo Cecilio Hallak
- National Institute of Science and Technology in Translational Medicine, Ribeirao Preto, Brazil
- Department of Neurosciences and Behavior, University of Sao Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Jerome Sarris
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
- Professorial Unit, Department of Psychiatry, The Melbourne Clinic, University of Melbourne, Melbourne, Australia
| | - Nicole Leite Galvão-Coelho
- Laboratory of Hormone Measurement, Postgraduate Program in Psychobiology and Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- National Institute of Science and Technology in Translational Medicine, Ribeirao Preto, Brazil
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| |
Collapse
|
19
|
Demir M, Akarsu EO, Dede HO, Bebek N, Yıldız SO, Baykan B, Akkan AG. Investigation of the Roles of New Antiepileptic Drugs and Serum BDNF Levels in Efficacy and Safety Monitoring and Quality of Life: A Clinical Research. ACTA ACUST UNITED AC 2021; 15:49-63. [PMID: 30864528 PMCID: PMC7497568 DOI: 10.2174/1574884714666190312145409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Objective: We aimed to determine the therapeutic drug monitoring (TDM) features and the relation to Brain-Derived Neurotrophic Factor (BDNF) of frequently used new antiepileptic drugs (NADs) including lamotrigine (LTG), oxcarbazepine (OXC), zonisamide (ZNS) and lacosamide (LCM). Moreover, we investigated their effect on the quality of life (QoL). Methods: Eighty epileptic patients who had been using the NADs, and thirteen healthy participants were included in this cross-sectional study. The participants were randomized into groups. The QOLIE-31 test was used for the assessment of QoL. We also prepared and applied “Safety Test”. HPLC method for TDM, and ELISA method for BDNF measurements were used consecutively. Results: In comparison to healthy participants, epileptic participants had lower marriage rate (p=0.049), education level (p˂0.001), alcohol use (p=0.002). BDNF levels were higher in patients with focal epilepsy (p=0.013) and in those with higher education level (p=0.016). There were negative correlations between serum BDNF levels and serum ZNS levels (p=0.042) with LTG-polytherapy, serum MHD levels (a 10-monohydroxy derivative of OXC, p=0.041) with OXC-monotherapy. There was no difference in BDNF according to monotherapy-polytherapy, drug-resistant groups, regarding seizure frequency. There was a positive correlation between total health status and QoL (p˂0.001). QOLIE-31 overall score (OS) was higher in those with OXC-monotherapy (76.5±14.5). OS (p˂0.001), seizure worry (SW, p=0.004), cognition (C, p˂0.001), social function (SF, p˂0.001) were different in the main groups. Forgetfulness was the most common unwanted effect. Conclusion: While TDM helps the clinician to use more effective and safe NADs, BDNF may assist in TDM for reaching the therapeutic target in epilepsy.
Collapse
Affiliation(s)
- Meral Demir
- Department of Medical and Clinical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Fatih / Capa 34093, Istanbul, Turkey.,Department of Medical and Clinical Pharmacology, Cerrahpasa Faculty of Medicine, Istanbul University, Cerrahpasa Street / Fatih 34093, Istanbul, Turkey
| | - Emel O Akarsu
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Fatih / Capa 34093, Istanbul, Turkey
| | - Hava O Dede
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Fatih / Capa 34093, Istanbul, Turkey
| | - Nerses Bebek
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Fatih / Capa 34093, Istanbul, Turkey
| | - Sevda O Yıldız
- Department of Biostatistics, Istanbul Faculty of Medicine, Istanbul University, Fatih / Capa 34093, Istanbul, Turkey
| | - Betül Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Fatih / Capa 34093, Istanbul, Turkey
| | - Ahmet G Akkan
- Department of Medical and Clinical Pharmacology, Cerrahpasa Faculty of Medicine, Istanbul University, Cerrahpasa Street / Fatih 34093, Istanbul, Turkey
| |
Collapse
|
20
|
Cao KX, Ma ML, Wang CZ, Iqbal J, Si JJ, Xue YX, Yang JL. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology 2021; 197:108574. [PMID: 33894219 DOI: 10.1016/j.neuropharm.2021.108574] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
The etiology of psychiatric disorders remains largely unknown. The exploration of the neurobiological mechanisms of mental illness helps improve diagnostic efficacy and develop new therapies. This review focuses on the application of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) in various mental diseases, including major depressive disorder, bipolar disorder, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, substance use disorder, and insomnia. First, we summarize the commonly used protocols and output measures of TMS-EEG; then, we review the literature exploring the alterations in neural patterns, particularly cortical excitability, plasticity, and connectivity alterations, and studies that predict treatment responses and clinical states in mental disorders using TMS-EEG. Finally, we discuss the potential mechanisms underlying TMS-EEG in establishing biomarkers for psychiatric disorders and future research directions.
Collapse
Affiliation(s)
- Ke-Xin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mao-Liang Ma
- Department of Clinical Psychology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Cheng-Zhan Wang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Javed Iqbal
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Ji-Jian Si
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China; Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning Commission, Peking University, Beijing, China.
| | - Jian-Li Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
21
|
Łoś K, Waszkiewicz N. Biological Markers in Anxiety Disorders. J Clin Med 2021; 10:1744. [PMID: 33920547 PMCID: PMC8073190 DOI: 10.3390/jcm10081744] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Anxiety disorders are one of the most commonly reported disorders in psychiatry, causing a high medical and socio-economic burden. Recently, there has been a soaring interest in the biological basis of anxiety disorders, which is reflected in an increasing number of articles related to the topic. Due to the ambiguity of the diagnosis and a large number of underdiagnosed patients, researchers are looking for laboratory tests that could facilitate the diagnosis of anxiety disorders in clinical practice and would allow for the earliest possible implementation of appropriate treatment. Such potential biomarkers may also be useable in monitoring the efficacy of pharmacological therapy for anxiety disorders. Therefore this article reviews the literature of potential biomarkers such as components of saliva, peripheral blood, cerebrospinal fluid (CSF), and neuroimaging studies. There are promising publications in the literature that can be useful. The most valuable and promising markers of saliva are cortisol, lysozyme, and α-amylase (sAA). In the blood, in turn, we can distinguish serotonin, brain-derived serum neurotrophic factor (BDNF), cortisol, and microRNA. Structural changes in the amygdala and hippocampus are promising neuroimaging markers, while in CSF, potential markers include oxytocin and 5-Hydroxyindoleacetic acid (5-HIAA). Unfortunately, research in the field of biomarkers is hampered by insufficient knowledge about the etiopathogenesis of anxiety disorders, the significant heterogeneity of anxiety disorders, frequent comorbidities, and low specificity of biomarkers. The development of appropriate biomarker panels and their assessment using new approaches may have the prospective to overcome the above-mentioned obstacles.
Collapse
Affiliation(s)
- Kacper Łoś
- Department of Psychiatry, Medical University of Bialystok, Plac Brodowicza 1, 16-070 Choroszcz, Poland;
| | | |
Collapse
|
22
|
Abstract
Psychiatric disorders are studied at multiple levels, but there is no agreement on how these levels are related to each other, or how they should be understood in the first place. In this paper, I provide an account of levels and their relationships that is suited for psychopathology, drawing from recent debates in philosophy of science. Instead of metaphysical issues, the focus is on delivering an understanding of levels that is relevant and useful for scientific practice. I also defend a pragmatic approach to the question of reduction, arguing that even in-principle reductionists should embrace pluralism in practice. Finally, I discuss the benefits and challenges in integrating explanations and models of different levels.
Collapse
Affiliation(s)
- Markus I. Eronen
- Department of Theory and History of Psychology, University of Groningen, Grote Kruisstraat 2/1 9712 TS Groningen, Netherlands
| |
Collapse
|
23
|
You X, Zhang Y, Long Q, Liu Z, Ma X, Lu Z, Yang W, Feng Z, Zhang W, Teng Z, Zeng Y. Investigating aberrantly expressed microRNAs in peripheral blood mononuclear cells from patients with treatment‑resistant schizophrenia using miRNA sequencing and integrated bioinformatics. Mol Med Rep 2020; 22:4340-4350. [PMID: 33000265 PMCID: PMC7533444 DOI: 10.3892/mmr.2020.11513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) is a common phenotype of schizophrenia that places a considerable burden on patients as well as on society. TRS is known for its tendency to relapse and uncontrollable nature, with a poor response to antipsychotics other than clozapine. Therefore, it is urgent to identify objective biological markers, so as to guide its treatment and associated clinical work. In the present study, the peripheral blood mononuclear cells (PBMCs) of patients with TRS and a healthy control group, which were gender-, age- and ethnicity-matched, were subjected to microRNA (miRNA/miR) sequencing to screen out the top three miRNAs with the highest fold change values. These were then validated in the TRS (n=34) and healthy control (n=31) groups by reverse transcription-quantitative PCR. For two of the top three miRNAs, the PCR results were in accordance with the sequencing result (P<0.01), while the third miRNA exhibited the opposite trend (P<0.01). To elucidate the functions of these two miRNAs, Homo sapiens (hsa)-miR-218-5p and hsa-miR-1262 and their regulatory network, target gene prediction was first performed using online TargetScan and Diana-micro T software. Bioinformatics analysis was then performed using functional enrichment analysis to determine the Gene Ontology terms in the category biological process and the Kyoto Encyclopedia of Genes and Genomes pathways. It was revealed that these target genes were markedly associated with the nervous system and brain function, and it was obvious that the differentially expressed miRNAs most likely participated in the pathogenesis of TRS. A receiver operating characteristic curve was generated to confirm the distinct diagnostic value of these two miRNAs. It was concluded that aberrantly expressed miRNAs in PMBCs may be implicated in the pathogenesis of TRS and may serve as specific peripheral blood-based biomarkers for the early diagnosis of TRS.
Collapse
Affiliation(s)
- Xu You
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Yunqiao Zhang
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Qing Long
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Zijun Liu
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Xiao Ma
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Zixiang Lu
- Psychiatric Ward, Honghe Second People's Hospital, Honghe, Yunnan 654399, P.R. China
| | - Wei Yang
- Psychiatric Ward, Yuxi Second People's Hospital, Yuxi, Yunnan 653100, P.R. China
| | - Ziqiao Feng
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Wengyu Zhang
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Zhaowei Teng
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Yong Zeng
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| |
Collapse
|
24
|
Li L, Hao X, Chen H, Wang L, Chen A, Song X, Hu Z, Su Y, Lin H, Fan P. Metabolomic characterization of semen from asthenozoospermic patients using ultra-high-performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2020; 34:e4897. [PMID: 32428267 PMCID: PMC7507193 DOI: 10.1002/bmc.4897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
Asthenozoospermia (AS) is a common factor of male infertility, and its pathogenesis remains unclear. The purpose of this study was to investigate the differential seminal plasma metabolic pattern in asthenozoospermic men and to identify potential biomarkers in relation to spermatogenic dysfunction using sensitive ultra-high-performance liquid chromatography-tandem quadruple time-of-flight MS (UHPLC-Q-TOF/MS). The samples of seminal plasma from patients with AS (n = 20) and healthy controls (n = 20) were checked and differentiated by UHPLC-Q-TOF/MS. Compared with the control group, the AS group showed a total of nine significantly different metabolites, including increases in creatinine, uric acid, N6 -methyladenosine (m6 A), uridine, and taurine and decreases in carnitine, nicotinamide, N-acetylputrescine and l-palmitoylcarnitine. By analyzing the correlation among these metabolites and clinical computer-assisted semen analysis reports, we found that m6 A is significantly correlated with not only the four decreased metabolites but also with sperm count, motility, and curvilinear velocity. Furthermore, nicotinamide was shown to correlate with other identified metabolites, indicating its important role in the metabolic pathway of AS. Current results implied that sensitive untargeted seminal plasma metabolomics could identify distinct metabolic patterns of AS and would help clinicians by offering novel cues for discovering the pathogenesis of male infertility.
Collapse
Affiliation(s)
- Li Li
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiologythe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Xinrui Hao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiologythe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Hua Chen
- Reproductive Health Centre, Department of Obstetrics and Gynecologythe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Liyuan Wang
- Reproductive Health Centre, Department of Obstetrics and Gynecologythe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Aolei Chen
- Reproductive Health Centre, Department of Obstetrics and Gynecologythe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Xiaotian Song
- Reproductive Health Centre, Department of Obstetrics and Gynecologythe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhiyan Hu
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiologythe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Ying Su
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiologythe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Han Lin
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiologythe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Pei Fan
- Zhejiang Provincial Key Laboratory of Orthopedics, Department of Orthopedicsthe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
25
|
Birnbaum ML, Kulkarni PP, Van Meter A, Chen V, Rizvi AF, Arenare E, De Choudhury M, Kane JM. Utilizing Machine Learning on Internet Search Activity to Support the Diagnostic Process and Relapse Detection in Young Individuals With Early Psychosis: Feasibility Study. JMIR Ment Health 2020; 7:e19348. [PMID: 32870161 PMCID: PMC7492982 DOI: 10.2196/19348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Psychiatry is nearly entirely reliant on patient self-reporting, and there are few objective and reliable tests or sources of collateral information available to help diagnostic and assessment procedures. Technology offers opportunities to collect objective digital data to complement patient experience and facilitate more informed treatment decisions. OBJECTIVE We aimed to develop computational algorithms based on internet search activity designed to support diagnostic procedures and relapse identification in individuals with schizophrenia spectrum disorders. METHODS We extracted 32,733 time-stamped search queries across 42 participants with schizophrenia spectrum disorders and 74 healthy volunteers between the ages of 15 and 35 (mean 24.4 years, 44.0% male), and built machine-learning diagnostic and relapse classifiers utilizing the timing, frequency, and content of online search activity. RESULTS Classifiers predicted a diagnosis of schizophrenia spectrum disorders with an area under the curve value of 0.74 and predicted a psychotic relapse in individuals with schizophrenia spectrum disorders with an area under the curve of 0.71. Compared with healthy participants, those with schizophrenia spectrum disorders made fewer searches and their searches consisted of fewer words. Prior to a relapse hospitalization, participants with schizophrenia spectrum disorders were more likely to use words related to hearing, perception, and anger, and were less likely to use words related to health. CONCLUSIONS Online search activity holds promise for gathering objective and easily accessed indicators of psychiatric symptoms. Utilizing search activity as collateral behavioral health information would represent a major advancement in efforts to capitalize on objective digital data to improve mental health monitoring.
Collapse
Affiliation(s)
- Michael Leo Birnbaum
- The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, United States
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Hofstra Northwell School of Medicine, Hempstead, NY, United States
| | | | - Anna Van Meter
- The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, United States
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Hofstra Northwell School of Medicine, Hempstead, NY, United States
| | - Victor Chen
- Georgia Institute of Technology, Atlanta, GA, United States
| | - Asra F Rizvi
- The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, United States
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Elizabeth Arenare
- The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, United States
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - John M Kane
- The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, United States
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Hofstra Northwell School of Medicine, Hempstead, NY, United States
| |
Collapse
|
26
|
Chaves RDC, Mallmann ASV, de Oliveira NF, Capibaribe VCC, da Silva DMA, Lopes IS, Valentim JT, Barbosa GR, de Carvalho AMR, Fonteles MMDF, Gutierrez SJC, Barbosa Filho JM, de Sousa FCF. The neuroprotective effect of Riparin IV on oxidative stress and neuroinflammation related to chronic stress-induced cognitive impairment. Horm Behav 2020; 122:104758. [PMID: 32304685 DOI: 10.1016/j.yhbeh.2020.104758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Cognitive impairment is identified as one of the diagnostic criteria for major depressive disorder and can extensively affect the quality of life of patients. Based on these findings, this study aimed to investigate the possible effects of Riparin IV (Rip IV) on cognitive impairment induced by chronic administration of corticosterone in mice. METHODS Female Swiss mice were divided into four groups: control (Control), corticosterone (Cort), Riparin IV (Cort + Rip IV), and Fluvoxamine (Cort + Flu). Three groups were administered corticosterone (20 mg/kg) subcutaneously during the 22-day study, while the control group received only vehicle. After the 14th day, the groups were administered medications: Riparin IV (Rip IV), fluvoxamine (Flu), or distilled water, by gavage, 1 h after the subcutaneous injections. After treatment, mice underwent behavioral testing, and brain areas were removed for oxidative stress and cytokine content assays. RESULTS The results revealed that Cort-treated mice developed a cognitive impairment and exhibited a neuroinflammatory profile with an oxidative load and Th1/Th2 cytokine imbalance. Rip IV treatment significantly ameliorated the cognitive deficit induced by Cort and displayed a neuroprotective effect. CONCLUSION The antidepressant-like ability of Rip IV treatment against chronic Cort-induced stress may be due to its potential to mitigate inflammatory damage and oxidative stress. The antioxidant and anti-inflammatory effect observed indicates Rip IV as a possible drug for antidepressant treatment of non-responsive patients with severe and cognitive symptoms.
Collapse
Affiliation(s)
- Raquell de Castro Chaves
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Auriana Serra Vasconcelos Mallmann
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Natália Ferreira de Oliveira
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Victor Celso Cavalcanti Capibaribe
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Daniel Moreira Alves da Silva
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Iardja Stéfane Lopes
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Tiago Valentim
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Giovanna Riello Barbosa
- Multi-User Facility, Drug Research and Development Center, Federal University of Ceará, Brazil
| | - Alyne Mara Rodrigues de Carvalho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Stanley Juan Chavez Gutierrez
- Laboratory of Pharmaceutical Chemistry, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - José Maria Barbosa Filho
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Science, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Francisca Cléa Florenço de Sousa
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
27
|
Levchenko A, Nurgaliev T, Kanapin A, Samsonova A, Gainetdinov RR. Current challenges and possible future developments in personalized psychiatry with an emphasis on psychotic disorders. Heliyon 2020; 6:e03990. [PMID: 32462093 PMCID: PMC7240336 DOI: 10.1016/j.heliyon.2020.e03990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/31/2019] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
A personalized medicine approach seems to be particularly applicable to psychiatry. Indeed, considering mental illness as deregulation, unique to each patient, of molecular pathways, governing the development and functioning of the brain, seems to be the most justified way to understand and treat disorders of this medical category. In order to extract correct information about the implicated molecular pathways, data can be drawn from sampling phenotypic and genetic biomarkers and then analyzed by a machine learning algorithm. This review describes current difficulties in the field of personalized psychiatry and gives several examples of possibly actionable biomarkers of psychotic and other psychiatric disorders, including several examples of genetic studies relevant to personalized psychiatry. Most of these biomarkers are not yet ready to be introduced in clinical practice. In a next step, a perspective on the path personalized psychiatry may take in the future is given, paying particular attention to machine learning algorithms that can be used with the goal of handling multidimensional datasets.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Timur Nurgaliev
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Alexander Kanapin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Anastasia Samsonova
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| |
Collapse
|
28
|
Park HJ, Cho S, Kim M, Jung YS. Carboxylic Acid-Functionalized, Graphitic Layer-Coated Three-Dimensional SERS Substrate for Label-Free Analysis of Alzheimer's Disease Biomarkers. NANO LETTERS 2020; 20:2576-2584. [PMID: 32207951 DOI: 10.1021/acs.nanolett.0c00048] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS)-based protein analysis is a promising alternative to existing early stage diagnoses. However, SERS research conducted thus far accompanies challenges such as nonuniformity of plasmonic nanostructures, irregular coating of analytes, and denaturation of proteins, which seriously limit the practicability of suggested approaches. Here, we introduce a carboxylic acid-functionalized and graphitic nanolayer-coated three-dimensional SERS substrate (CGSS) fabricated by sequential nanotransfer printing. The substrate consists of well-defined, uniform gold nanowire arrays for effective Raman signal enhancement and a strong protein-immobilization layer. With an enhancement factor (EF) of 5.5 × 105, on par with the highest ever reported values, the CGSS allows the detection of protein conformational changes and the determination of protein concentration via Raman measurements. Exploiting the CGSS, we successfully measured the SERS spectra of Alzheimer's biomarkers, tau protein and amyloid β, based on which secondary structural changes were analyzed quantitatively.
Collapse
Affiliation(s)
- Hyung Joon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Pico Foundry Inc., 193 Munji-ro, Yuseong-gu, Daejeon 34051, Republic of Korea
| | - Seunghee Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Minjoon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Pico Foundry Inc., 193 Munji-ro, Yuseong-gu, Daejeon 34051, Republic of Korea
| |
Collapse
|
29
|
Troyan AS, Levada OA. The Diagnostic Value of the Combination of Serum Brain-Derived Neurotrophic Factor and Insulin-Like Growth Factor-1 for Major Depressive Disorder Diagnosis and Treatment Efficacy. Front Psychiatry 2020; 11:800. [PMID: 32922315 PMCID: PMC7457028 DOI: 10.3389/fpsyt.2020.00800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/24/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Last decades of psychiatric investigations have been marked by a search for biological markers that can clarify etiology and pathogenesis, confirm the diagnosis, screen individuals at risk, define the severity, and predict the course of mental disorders. In our study, we aimed to evaluate if BDNF and IGF-1 serum concentrations separately and in combination might be used as biomarkers for major depressive disorder (MDD) diagnosis and treatment efficacy and to evaluate the relationships among those proteins and clinical parameters of MDD. METHODS Forty-one MDD patients (according to DSM-5) and 32 healthy controls (HC) were included in this study. BDNF and IGF-1 serum concentrations, psychopathological (MADRS, CGI) and neuropsychological parameters (PDQ-5, RAVLT, TMT-B, DSST), functioning according to Sheehan Disability Scale were analyzed in all subjects at admission and 30 MDD patients after 8 weeks of vortioxetine treatment. Correlational analyses were performed to explore relationships between BDNF and IGF-1 and clinical characteristics. AUC-ROCs were calculated to determine if the value of serum BDNF and IGF-1 levels could serve for MDD diagnosis. RESULTS MDD patients had significantly lower serum BDNF (727.6 ± 87.9 pg/ml vs. 853.0 ± 93.9 pg/ml) and higher serum IGF-1 levels (289.15 ± 125.3 ng/ml vs. 170.2 ± 58.2 ng/ml) compared to HC. Significant correlations were obtained between BDNF levels and MDD status, depressive episode (DE) severity, precipitating factors, executive functions disruption (TMT-B, RAVLT immediate recall scores) and all subdomains of functioning. As for IGF-1, correlations were found between IGF-1 level and MDD status, DE severity, number and duration of DE, parameters of subjective and objective cognitive functioning (PDQ-5, RAVLT, TMT-B, DSST scores), and all subdomains of functioning. The associations between IGF-1 concentrations and cognitive tests' performance were stronger than those of BDNF. Separately both BDNF and IGF-1 demonstrated good discriminating ability for MDD diagnosis with AUC of 0.840 and 0.824, respectively. However, the combination of those neurotrophins had excellent diagnostic power to discriminate MDD patients from HC, providing an AUC of 0.916. Vortioxetine treatment significantly increased BDNF and attenuated IGF-1 serum concentrations, improved all psychopathological and neuropsychological parameters and functioning. CONCLUSIONS The combination of IGF-1 and BDNF might be considered as a diagnostic combination for MDD.
Collapse
Affiliation(s)
- Alexandra S Troyan
- Psychiatry Course, State Institution "Zaporizhzhia Medical Academy of Postgraduate Education Ministry of Health of Ukraine", Zaporizhzhia, Ukraine
| | - Oleg A Levada
- Psychiatry Course, State Institution "Zaporizhzhia Medical Academy of Postgraduate Education Ministry of Health of Ukraine", Zaporizhzhia, Ukraine
| |
Collapse
|
30
|
Cosci F, Mansueto G. Biological and Clinical Markers to Differentiate the Type of Anxiety Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:197-218. [PMID: 32002931 DOI: 10.1007/978-981-32-9705-0_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present chapter is an overview of possible biomarkers which distinguish anxiety disorders as classified by the DSM-5. Structural or activity changes in the brain regions; changes in N-acetylaspartate/creatine, dopamine, serotonin, and oxytocin; hearth rate variability; hypothalamic-pituitary-adrenal axis activity; error-related negativity; respiratory regulation; and genetic variants are proposed. However, their clinical utility is questionable due to low specificity and sensitivity: the majority does not distinguish subjects with different anxiety disorders, and they might be influenced by stress, comorbidity, physical activity, and psychotropic medications. In this framework, the staging model, a clinimetric tool which allows to define the degree of progression of a disease at a point in time and where the patient is located on the continuum of the course of the disease, is proposed since several DSM anxiety disorders take place at different stages of the same syndrome according to the staging model. Thus, a stage-specific biomarker model for anxiety disorders is hypothesized and illustrated.
Collapse
Affiliation(s)
- Fiammetta Cosci
- Department of Health Sciences, University of Florence, Florence, Italy. .,Maastricht University Medical Center, Department of Psychiatry & Psychology, School for Mental Health & Neuroscience, Maastricht, The Netherlands.
| | - Giovanni Mansueto
- Department of Health Sciences, University of Florence, Florence, Italy.,Maastricht University Medical Center, Department of Psychiatry & Psychology, School for Mental Health & Neuroscience, Maastricht, The Netherlands
| |
Collapse
|
31
|
Skogstrand K, Hagen CM, Borbye-Lorenzen N, Christiansen M, Bybjerg-Grauholm J, Bækvad-Hansen M, Werge T, Børglum A, Mors O, Nordentoft M, Mortensen PB, Hougaard DM. Reduced neonatal brain-derived neurotrophic factor is associated with autism spectrum disorders. Transl Psychiatry 2019; 9:252. [PMID: 31591381 PMCID: PMC6779749 DOI: 10.1038/s41398-019-0587-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
Mental disorders have for the majority of cases an unknown etiology, but several studies indicate that neurodevelopmental changes happen in utero or early after birth. We performed a nested case-control study of the relation between blood levels of neuro-developmental (S100B, BDNF, and VEGF-A) and inflammatory (MCP-1, TARC, IL-8, IL-18, CRP, and IgA) biomarkers in newborns, and later development of autism spectrum disorders (ASD, N = 751), attention deficit hyperactivity disorders (ADHD, N = 801), schizophrenia (N = 1969), affective (N = 641) or bipolar disorders (N = 641). Samples and controls were obtained as part of the iPSYCH Danish Case-Cohort Study using dried blood spot samples collected between 1981 and 2004, and stored frozen at the Danish National Biobank. In newborns lower blood level of BDNF was significantly associated with increased odds (OR 1.15) of developing ASD (p = 0.001). This difference could not be explained by genetic variation in the BDNF coding gene region. A tendency of decreased levels of all the neurotrophic markers and increased levels of all inflammatory markers was noted. The low newborn blood levels of BDNF in children developing ASD is an important finding, suggesting that lower BDNF levels in newborns contributes to the etiology of ASD and indicates new directions for further research. It may also help identifying a long-sought marker for high-ASD risk in, e.g., younger siblings of ASD children.
Collapse
Affiliation(s)
- Kristin Skogstrand
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
| | - Christian Munch Hagen
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Nis Borbye-Lorenzen
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Michael Christiansen
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Marie Bækvad-Hansen
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Thomas Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Biomedicine and iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Merethe Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Preben Bo Mortensen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedicine and iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, CIRRAU, Aarhus University, Aarhus, Denmark
| | - David Michael Hougaard
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| |
Collapse
|
32
|
Ling W, Huang YM, Qiao YC, Zhang XX, Zhao HL. Human Amylin: From Pathology to Physiology and Pharmacology. Curr Protein Pept Sci 2019; 20:944-957. [DOI: 10.2174/1389203720666190328111833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/18/2022]
Abstract
The histopathological hallmark of type 2 diabetes is islet amyloid implicated in the developing treatment options. The major component of human islet amyloid is 37 amino acid peptide known as amylin or islet amyloid polypeptide (IAPP). Amylin is an important hormone that is co-localized, copackaged, and co-secreted with insulin from islet β cells. Physiologically, amylin regulates glucose homeostasis by inhibiting insulin and glucagon secretion. Furthermore, amylin modulates satiety and inhibits gastric emptying via the central nervous system. Normally, human IAPP is soluble and natively unfolded in its monomeric state. Pathologically, human IAPP has a propensity to form oligomers and aggregate. The oligomers show misfolded α-helix conformation and can further convert themselves to β-sheet-rich fibrils as amyloid deposits. The pathological findings and physiological functions of amylin have led to the introduction of pramlintide, an amylin analog, for the treatment of diabetes. The history of amylin’s discovery is a representative example of how a pathological finding can translate into physiological exploration and lead to pharmacological intervention. Understanding the importance of transitioning from pathology to physiology and pharmacology can provide novel insight into diabetes mellitus and Alzheimer's disease.
Collapse
Affiliation(s)
- Wei Ling
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Yan-Mei Huang
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Yong-Chao Qiao
- Department of Laboratory, the Affiliated Hospital of Guilin Medical University, Guilin 541004, China
| | - Xiao-Xi Zhang
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Hai-Lu Zhao
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
33
|
Rodrigues L, Wartchow KM, Suardi LZ, Federhen BC, Selistre NG, Gonçalves CA. Streptozotocin causes acute responses on hippocampal S100B and BDNF proteins linked to glucose metabolism alterations. Neurochem Int 2019; 128:85-93. [PMID: 31009650 DOI: 10.1016/j.neuint.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
Streptozotocin (STZ) is a glucosamine-nitrosourea commonly used to induce long-lasting models of diabetes mellitus and Alzheimer's disease. Direct toxicity of STZ on the pancreas and kidneys has been well characterized, but the acute effect of this compound on brain tissue has received less attention. Herein, we investigated the acute and direct toxicity of STZ on fresh hippocampal slices, measuring changes in BDNF and S100B secretion (two widely-used peripheral markers of brain injury), as well as glucose metabolism. Moreover, we investigated in vivo changes of these proteins in the hippocampus, 48 h after intracerebroventricular STZ administration. Transverse hippocampal slices (0.3 mm thick) were obtained using a McIlwain tissue chopper and target proteins were measured in the incubation medium by ELISA. STZ decreased S100B secretion, but increased BDNF secretion as well as causing impairment in glucose uptake in hippocampal slices, measured using [3H] deoxy-glucose. Glucose levels and glucose metabolism differentially modulated S100B secretion in astrocytes and BDNF secretion in neurons, when evaluated under specific conditions (high-potassium medium, presence of tetrodotoxin or fluorocitrate). Moreover, at 48 h after intracerebroventricular STZ, hippocampal BDNF content, but not S100B, was reduced. Our results indicate that BDNF and S100B are useful and sensitive markers of glucose metabolism disturbance and reinforce these proteins as general acute markers of brain disorders.
Collapse
Affiliation(s)
- Leticia Rodrigues
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Krista Minéia Wartchow
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Zingano Suardi
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | |
Collapse
|
34
|
Cosci F, Mansueto G. Biological and Clinical Markers in Panic Disorder. Psychiatry Investig 2019; 16:27-36. [PMID: 30184613 PMCID: PMC6354043 DOI: 10.30773/pi.2018.07.26] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/26/2018] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Classifying mental disorders on the basis of objective makers might clarify their aetiology, help in making the diagnosis, identify "at risk" individuals, determine the severity of mental illness, and predict the course of the disorder. This study aims to review biological and clinical markers of panic disorder (PD). METHODS A computerized search was carried out in PubMed and Science Direct using the key words: "marker/biomarker/clinical marker/neurobiology/staging" combined using Boolean AND operator with "panic." In addition, the reference lists from existing reviews and from the articles retrieved were inspected. Only English language papers published in peer-reviewed journals were included. RESULTS Structural changes in the amygdala, hippocampus, cerebral blood level in the left occipital cortex, serotonin 5-TH and noradrenergic systems activation, aberrant respiratory regulation, hearth rate variability, blood cells and peripheral blood stem cells, hypothalamic-pituitary-adrenal axis dysregulation were identified as potential candidate biomarkers of PD. Staging was identified as clinical marker of PD. According to the staging model, PD is described as follows: prodromal phase (stage 1); acute phase (stage 2); panic attacks (stage 3); chronic phase (stage 4). CONCLUSION The clinical utility, sensitivity, specificity, and the predictive value of biomarkers for PD is still questionable. The staging model of PD might be a valid susceptibility, diagnostic, prognostic, and predictive marker of PD. A possible longitudinal model of biological and clinical markers of PD is proposed.
Collapse
Affiliation(s)
- Fiammetta Cosci
- Department of Health Sciences, University of Florence, Florence, Italy.,Maastricht University Medical Center, Department of Psychiatry & Psychology, School for Mental Health & Neuroscience, Maastricht, the Netherlands
| | - Giovanni Mansueto
- Department of Health Sciences, University of Florence, Florence, Italy.,Maastricht University Medical Center, Department of Psychiatry & Psychology, School for Mental Health & Neuroscience, Maastricht, the Netherlands
| |
Collapse
|
35
|
Juster RP, Sasseville M, Giguère CÉ, Consortium S, Lupien SJ. Elevated allostatic load in individuals presenting at psychiatric emergency services. J Psychosom Res 2018; 115:101-109. [PMID: 30470308 DOI: 10.1016/j.jpsychores.2018.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Individuals requiring psychiatric emergency services are often highly distressed and intoxicated. To provide an objective and comprehensive measure of their stress-related physiological dysregulations, we indexed allostatic load with 14 biomarkers collected within 24 h of patients' admission to the largest psychiatric hospital in the Canadian province of Quebec. METHODS This study (N = 278) combines data for emergency patients (n = 76; 65.8% women; M age = 44.97, SE = 1.6) and hospital workers who served as sex- and age-matched controls (n = 202; 70.8% women; M age = 40.10, SE = 0.83). Sex-specific allostatic load indices summarized neuroendocrine (cortisol), immune (tumor necrosis factor-α, interleukin-6, c-reactive protein), metabolic (insulin, glycosylated hemoglobin, total cholesterol, high-density lipoprotein, low-density lipoprotein, triglycerides, body mass index), and cardiovascular (heart rate, systolic and diastolic blood pressure) functioning. Well-validated questionnaires assessed substance (ab)use. RESULTS Individuals presenting at psychiatric emergency showed elevated allostatic load, drug abuse, and tobacco use compared to controls. Elevated allostatic load in emergency patients was driven by elevated cortisol, interleukin-6, systolic blood pressure, and heart rate; however, allostatic load was not explained by substance (ab)use or demographic variables. Sub-group analyses revealed that emergency patients primarily diagnosed with bipolar, depressive, or anxiety disorders showed higher allostatic load than those diagnosed with personality disorder(s). CONCLUSIONS This study demonstrates that individuals presenting at psychiatric emergency services show physiological dysregulations associated with chronic stress. Future research should explore the clinical utility of allostatic load in predicting comorbidities among psychiatric patients.
Collapse
Affiliation(s)
- Robert-Paul Juster
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Canada; Institut universitaire en santé mentale de Montréal, Centre intégré universitaire de santé et service sociaux Est, Montreal, Canada.
| | - Marc Sasseville
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Canada; Institut universitaire en santé mentale de Montréal, Centre intégré universitaire de santé et service sociaux Est, Montreal, Canada
| | - Charles-Édouard Giguère
- Institut universitaire en santé mentale de Montréal, Centre intégré universitaire de santé et service sociaux Est, Montreal, Canada
| | - Signature Consortium
- Institut universitaire en santé mentale de Montréal, Centre intégré universitaire de santé et service sociaux Est, Montreal, Canada
| | - Sonia J Lupien
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Canada; Institut universitaire en santé mentale de Montréal, Centre intégré universitaire de santé et service sociaux Est, Montreal, Canada; Centre for Studies on Human Stress, Centre intégré universitaire de santé et service sociaux Est, Montreal, Canada
| |
Collapse
|
36
|
Abstract
BACKGROUND S100B is a calcium-binding protein located in glial cells; it is regarded as a potential biomarker in affective disorders. AIM To review the literature investigating the role of S100B in patients with affective disorders. METHOD A systematic review of original English language studies investigating S100B in serum, cerebrospinal fluid, plasma and lymphocytes, in patients with affective disorders, was conducted. The literature search was conducted within the PubMed database. Effect sizes were calculated to adjust for systematic measurement effects. RESULTS Twenty studies were included, with a total of 1292 participants. Of these, 398 patients had or have had depressive disorder, 301 patients had bipolar disorder and 593 were healthy controls. S100B levels in serum were consistently elevated in studies with statistically significant results which investigated acute affective episodes (comprising major depressive episode in major depressive disorder, and both manic and depressive episodes in patients with bipolar disorder), in comparison to healthy controls. There were few studies assessing S100B levels in cerebrospinal fluid, plasma or lymphocytes, and these had inconsistent results. CONCLUSION The results indicated that elevated S100B levels might be associated with mood episodes in affective disorders. However, the role of S100B, and its possible impact in affective disorders, requires further investigation and at the present S100B does not have a role as clinically biomarker in affective disorder. Future longitudinal multicentre studies with larger transdiagnostic real life patient cohorts are warranted.
Collapse
Affiliation(s)
- Hilda Kroksmark
- a Psychiatric Centre Copenhagen, Rigshospitalet, University Hospital of Copenhagen , Copenhagen , Denmark
| | - Maj Vinberg
- a Psychiatric Centre Copenhagen, Rigshospitalet, University Hospital of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
37
|
Bastos JR, Perico KM, Marciano Vieira ÉL, Teixeira AL, Machado FS, de Miranda AS, Moreira FA. Inhibition of the dopamine transporter as an animal model of bipolar disorder mania: Locomotor response, neuroimmunological profile and pharmacological modulation. J Psychiatr Res 2018; 102:142-149. [PMID: 29656188 DOI: 10.1016/j.jpsychires.2018.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
Abstract
Inhibition of dopamine transporter (DAT) by GBR12909 has been proposed as a pharmacological model of mania related to bipolar disorder (BD). Here we tested the hypothesis that GBR12909 injection impairs habituation and induces hyperlocomotion in mice, along with changes in cytokines and neurotrophic factors levels, as observed in BD patients. We also tested if lithium carbonate, sodium valproate and aripiprazole prevent GBR12909-induced locomotion. Male Swiss mice received GBR12909 (15 mg/kg) injections and locomotor responses were quantified in an open field. Cytokines and neurotrophic factors levels were assessed in the prefrontal cortex, striatum and hippocampus 30 min and 24 h after injections. Pre-treatments with lithium, valproate or aripiprazole were performed with single and repeated injection protocols. GBR12909 prevented motoric habituation and increased basal locomotion in habituated mice in the open field. This compound also induced changes in IL-2 and BDNF levels in prefrontal cortex; IL-2, IL-4 and IL-10 in striatum; and IL-10, IL-4, IFN-γ and NGF in hippocampus. GBR12909-induced hyperlocomotion was attenuated by lithium (12.5-100 mg/kg), but not valproate (75-300 mg/kg), and prevented by aripiprazole (0.1-10 mg/kg). Repeated injections of these drugs (twice a day for 3 days), however, failed to inhibit hyperlocomotion. The main limitations of the protocols in this study are the analysis of locomotion as the only behavioral parameter, changes in immune factors that may overlap with other psychiatric disorders and the lack chronic drug injections. Despite of these limitations, this study adds to previous literature suggesting DAT inhibition as a potential animal model of mania related to BD.
Collapse
Affiliation(s)
- Juliana R Bastos
- Grad School in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Katherinne M Perico
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Érica L Marciano Vieira
- Grad School in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Brazil
| | - Antônio L Teixeira
- Grad School in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fabiana S Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Aline S de Miranda
- Grad School in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Brazil; Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Fabrício A Moreira
- Grad School in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
38
|
Zohar N, Hochman E, Katz N, Krivoy A, Weizman A, Barzilay R. Association between Elevated C-Reactive Protein and Manic Polarity in Acute Psychiatric Inpatients with Affective Symptomatology. Neuropsychobiology 2018; 76:166-170. [PMID: 29902794 DOI: 10.1159/000489783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/02/2018] [Indexed: 11/19/2022]
Abstract
The interplay between the immune system and behaviour is of increasing interest in psychiatry research. Specifically, accumulating data points to a link between inflammation and psychopathology, including affective symptomatology. We investigated the association between inflammation and affective polarity in psychiatric inpatients who were hospitalized due to an affective exacerbation. Data was collected retrospectively and comparisons were made between manic and depressed patients. C-reactive protein (CRP), a general laboratory marker of immune activation and inflammation, was used as a non-specific inflammatory biomarker. Age, smoking and body mass index were considered covariates. Manic polarity (n = 89) was associated with statistically significant elevated CRP levels compared to depressed polarity (n = 44, 56%; p = 0.036), after controlling for covariates. No differences were observed in CRP levels across Diagnostic and Statistical Manual of Mental Disorders-IV Edition-Text Revised psychiatric diagnoses. These findings suggest a transdiagnostic association between inflammation and manic polarity in affective inpatients.
Collapse
Affiliation(s)
- Nitzan Zohar
- Geha Mental Health Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eldar Hochman
- Geha Mental Health Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nachum Katz
- Geha Mental Health Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Krivoy
- Geha Mental Health Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abraham Weizman
- Geha Mental Health Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Barzilay
- Geha Mental Health Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Lifespan Brain Institute, Children's Hospital of Philadelphia, Department of Child and Adolescent Psychiatry and UPenn Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Roomruangwong C, Barbosa DS, de Farias CC, Matsumoto AK, Baltus THL, Morelli NR, Kanchanatawan B, Duleu S, Geffard M, Maes M. Natural regulatory IgM-mediated autoimmune responses directed against malondialdehyde regulate oxidative and nitrosative pathways and coupled with IgM responses to nitroso adducts attenuate depressive and physiosomatic symptoms at the end of term pregnancy. Psychiatry Clin Neurosci 2018; 72:116-130. [PMID: 29194848 DOI: 10.1111/pcn.12625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 12/14/2022]
Abstract
AIM We aimed to delineate the effects of immunoglobulin (Ig)M-mediated autoimmune responses directed against malondialdehyde (MDA) and nitroso (SNO) adducts on nitro-oxidative stress and depressive and physiosomatic symptoms (DPSS) at the end of term. METHODS IgM responses to MDA, NO (nitroso) adducts formed by nitrosylation, and NO2 tyrosine formed by nitration were measured as well as hydroperoxides (ferrous oxidation xylenol orange), advanced protein oxidation products (AOPP), and NO metabolite (NOx) levels in women at the end of term pregnancy and in normal controls. RESULTS IgM responses to MDA were significantly and inversely associated with AOPP, ferrous oxidation xylenol orange, and NOx and DPSS. IgM responses to NO adducts were significantly and inversely associated with DPSS and positively with NOx levels. There were significant associations between IgM responses to MDA, NO adducts, and NO2 tyrosine. The DPSS score was predicted by AOPP and a lifetime history of premenstrual syndrome (both positively) and IgM responses to NO adducts (inversely). Furthermore, 71.8% of the variance in the index of nitro-oxidative stress was explained by lowered IgM responses to MDA, antioxidant levels (zinc, total radical trapping parameter), and inflammatory mediators. CONCLUSION Lowered levels of IgM responses to MDA during pregnancy are accompanied by a reduced regulation of nitro-oxidative processes thereby explaining increased oxidative and nitrosative stress biomarkers in association with DPSS. IgM responses to NO adducts, which reflect nitrosylation as a consequence of increased NO production, regulate DPSS symptoms at the end of term and are a trait marker of major depression. IgM responses to MDA are a key part of the compensatory anti-inflammatory responses system.
Collapse
Affiliation(s)
- Chutima Roomruangwong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Decio S Barbosa
- Graduation Program in Health Sciences, State University of Londrina, Londrina, Brazil
| | - Carine C de Farias
- Graduation Program in Health Sciences, State University of Londrina, Londrina, Brazil
| | - Andressa K Matsumoto
- Graduation Program in Health Sciences, State University of Londrina, Londrina, Brazil
| | - Thiago H L Baltus
- Graduation Program in Health Sciences, State University of Londrina, Londrina, Brazil
| | - Nayara R Morelli
- Graduation Program in Health Sciences, State University of Londrina, Londrina, Brazil
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sebastien Duleu
- Research Department, Institute for the Development of Research in Human and Therapeutic Pathology, Talence, France
| | - Michel Geffard
- Research Department, Institute for the Development of Research in Human and Therapeutic Pathology, Talence, France.,GEMAC, Lieu-Dit Berganton, Saint Jean d'Illac, France
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Graduation Program in Health Sciences, State University of Londrina, Londrina, Brazil.,Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.,IMPACT Strategic Center, Barwon Health, Geelong, Australia
| |
Collapse
|
40
|
Abstract
The search for biomarkers to aid in the diagnosis and prognosis of psychiatric conditions and predict response to treatment is a focus of twenty-first century medicine. The current lack of biomarkers in routine use is attributable in part to the existing way mental health conditions are diagnosed, being based upon descriptions of symptoms rather than causal biological evidence. New ways of conceptualizing mental health disorders together with the enormous advances in genetic, epidemiological, and neuroscience research are informing the brain circuits and physiological mechanisms underpinning behavioural constructs that cut across current diagnostic DSM-5 categories. Combining these advances with 'Big Data', analytical approaches offer new opportunities for biomarker development. Here we provide an introductory perspective to this volume, highlighting methodological strategies for biomarker identification; ranging from stem cells, immune mechanisms, genomics, imaging, network science to cognition. Thereafter we emphasize key points made by contributors on affective disorders, psychosis, schizophrenia, and autism spectrum disorder. An underlying theme is how preclinical and clinical research are informing biomarker development and the importance of forward and reverse translation approaches. In considering the exploitation of biomarkers we note that there is a timely opportunity to improve clinical trial design informed by patient 'biological' and 'psychological' phenotype. This has the potential to reinvigorate drug development and clinical trials in psychiatry. In conclusion, we are poised to move from the descriptive and discovery phase to one where biomarker panels can be evaluated in real-life cohorts. This will necessitate resources for large-scale collaborative efforts worldwide. Ultimately this will lead to new interventions and personalized medicines and transform our ability to prevent illness onset and treat complex psychiatric disorders more effectively.
Collapse
Affiliation(s)
- Judith Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
41
|
Wendler A, Wehling M. Translatability score revisited: differentiation for distinct disease areas. J Transl Med 2017; 15:226. [PMID: 29100553 PMCID: PMC5670516 DOI: 10.1186/s12967-017-1329-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/27/2017] [Indexed: 12/23/2022] Open
Abstract
Background Translational science supports successful transition of early biomedical research into human applications. In 2009 a translatability score to assess risk and identify strengths and weaknesses of a given project has been designed and successfully tested in case studies. The score elements, in particular the contributing weight factors, are heterogeneous for different disease areas; therefore, the score was individualized for six areas (cardiovascular, oncology, psychiatric, anti-viral, anti-bacterial/fungal and monogenetic diseases). Results FDA reviews and related literature were used for modifications of the score with emphasis on biomarkers, personalized medicine and animal models. 113 new medical entities approved by FDA from 2012 through 2016 were evaluated and metrics obtained for companion diagnostics and animal models as starting points for author-based individualization of the score. Most drugs approved in this period were related to oncology (46%), while the approvals were lowest for psychiatrics (4%). The evaluation of the FDA package inserts revealed that companion diagnostics play an important role in every field except psychiatrics. Further the analysis of the FDA reviews showed the weakness of animal models in psychiatrics and anti-virals, while useful animal models were present for all other fields. Consequently the scoring system was adapted to the different fields, resulting in increased weights for animal models, biomarker and personalized medicine in oncology. For psychiatrics the weights for animal models, biomarker and personalized medicine were decreased, while the weight for model compounds, clinical trials and surrogate or endpoint strategy were increased. For anti-viral drugs weights for in vitro data and personalized medicine were increased, while the weight for animal models was decreased. Further, for anti-bacterial/fungal drugs weights for animal models and personalized medicine were increased. Weights were increased for genetics and personalized medicine and decreased for model compounds for monogenetic orphans. Conclusions Adaptation of the score to different disease areas should help to support a structured and diverse approach to translation and encourage researchers in the private or public sectors to further customize the score. Electronic supplementary material The online version of this article (10.1186/s12967-017-1329-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Wendler
- Institute of Experimental and Clinical Pharmacology and Toxicology, Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Martin Wehling
- Institute of Experimental and Clinical Pharmacology and Toxicology, Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
42
|
Redox dysregulation, immuno-inflammatory alterations and genetic variants of BDNF and MMP-9 in schizophrenia: Pathophysiological and phenotypic implications. Schizophr Res 2017; 188:98-109. [PMID: 28100419 DOI: 10.1016/j.schres.2017.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/15/2016] [Accepted: 01/07/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although a clear mechanism underlying the pathophysiology of schizophrenia (SZ) remains elusive, oxidative stress, inflammatory syndrome and immune activation have become an attractive hypothesis for explaining the pathophysiology of SZ. Data from prior studies on the role of matrix metalloproteinase 9 (MMP-9) and brain-derived neurotrophic factor (BDNF) single nucleotide polymorphisms (SNPs) in SZ are contradictory. We aimed to investigate whether oxidative stress, inflammatory and immune activation markers as well as MMP-9 levels may be implicated in SZ pathogenesis. The association of MMP-9 and BDNF SNPs with the clinical expression of SZ was examined. SUBJECTS AND METHODS Ninety-four subjects were recruited, including 44 SZ patients and 50 healthy controls. Serum levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC), nitrite, C-reactive protein (CRP), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), Beta-2 microglobulin (Β2M), complement component 3 (C3), C4 and MMP-9 were measured. The MMP-9 -1562C>T and BDNF196G>A SNPs were genotyped using polymerase chain reaction-restriction fragment length polymorphism assay. Psychopathology was assessed using the positive and negative syndrome scale (PANSS). RESULTS SZ patients showed significantly higher TBARS, PCC, nitrite, CRP, IL-6, TNF-α, Β2M, C3 and MMP-9 levels than controls. In distinguishing SZ patients from healthy controls, CRP and MMP-9 yielded similar discriminatory performance, and both perform better than IL-6, Β2M, C3, nitrite, TBARS, PCC, TNF-α and C4. The MMP-9 -1562C>T SNP genotypes distribution didn't differ significantly between controls and SZ patients. As compared to controls, SZ patients harbor a significantly higher frequency of the BDNF196GG genotype and a lower frequency of the BDNF196GA/AA genotype. Patients carrying the MMP-9 -1562CC or BDNF196GG genotype revealed a significantly higher PANSS than those carrying MMP-9 -1562CT/TT or BDNF196GA/AA genotype. Male gender and the MMP-9 -1562CC genotype were identified as independent predictive factors for higher PANSS. CONCLUSIONS Redox dysregulation and alterations in the immuno-inflammatory pathways are major culprits in the pathogenesis of SZ. MMP-9 and BDNF SNPs are associated with the clinical phenotype of SZ and, thus, may be a useful marker predicting the phenotypic expression and prognosis of SZ patients.
Collapse
|
43
|
Eriksen BMS, Bjørkly S, Lockertsen Ø, Færden A, Roaldset JO. Low cholesterol level as a risk marker of inpatient and post-discharge violence in acute psychiatry - A prospective study with a focus on gender differences. Psychiatry Res 2017; 255:1-7. [PMID: 28505467 DOI: 10.1016/j.psychres.2017.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/30/2017] [Accepted: 05/07/2017] [Indexed: 11/26/2022]
Abstract
Several studies indicate an association between low levels of serum cholesterol and aggressive behaviour, but prospective studies are scarce. In this naturalistic prospective inpatient and post-discharge study from an acute psychiatric ward, we investigated total cholesterol (TC) and high-density lipoprotein (HDL) as risk markers of violence. From March 21, 2012, to March 20, 2013, 158 men and 204 women were included. TC and HDL were measured at admission. Violence was recorded during hospital stay and for the first 3 months post-discharge. Univariate and multivariate binary logistic regression were used to estimate associations between low TC and low HDL and violence. Results showed that HDL level was significantly inversely associated with violence during hospital stay for all patients. For men, but not for women, HDL level was significantly inversely associated with violence the first 3 months post-discharge. Results indicate that low HDL is a risk marker for inpatient and post-discharge violence in acute psychiatry and also suggest gender differences in HDL as a risk marker for violence.
Collapse
Affiliation(s)
- Bjørn Magne S Eriksen
- Oslo University Hospital, Division of Mental Health and Addiction, Acute Psychiatric Section, Oslo, Norway; University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway.
| | - Stål Bjørkly
- Oslo University Hospital, Centre for Research and Education in Forensic Psychiatry, Oslo, Norway; Molde University College, Molde, Norway
| | - Øyvind Lockertsen
- Oslo University Hospital, Division of Mental Health and Addiction, Acute Psychiatric Section, Oslo, Norway; Oslo and Akershus University College of Applied Sciences, Faculty of Health Sciences, Department of Nursing and Health Promotion, Oslo, Norway
| | - Ann Færden
- Oslo University Hospital, Division of Mental Health and Addiction, Acute Psychiatric Section, Oslo, Norway
| | - John Olav Roaldset
- Oslo University Hospital, Centre for Research and Education in Forensic Psychiatry, Oslo, Norway; Ålesund Hospital, Møre & Romsdal Health Trust, Psychiatric Department, Ålesund, Norway; The Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| |
Collapse
|
44
|
He K, Guo C, He L, Shi Y. MiRNAs of peripheral blood as the biomarker of schizophrenia. Hereditas 2017; 155:9. [PMID: 28860957 PMCID: PMC5575894 DOI: 10.1186/s41065-017-0044-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022] Open
Abstract
The diagnosis of schizophrenia is currently based on the symptoms and bodily signs rather than on the pathological and physiological markers of the patient. In the search for new molecular targeted therapy medicines, and recurrence of early-warning indicators have become the major focus of contemporary research, because they improve diagnostic accuracy. Biomarkers reflect the physiological, physical and biochemical status of the body, and so have extensive applicability and practical significance. The ascertainment of schizophrenia biomarkers will help diagnose, stratify of disease, and treat of schizophrenia patients. The detection of biomarkers from blood has become a promising area of schizophrenia research. Recently, a series of studies revealed that, MiRNAs play an important role in the genesis of schizophrenia, and their abnormal expressions have the potential to be used as biomarkers of schizophrenia. This article presents and summarizes the value of peripheral blood miRNAs with abnormal expression as the biomarker of schizophrenia.
Collapse
Affiliation(s)
- Kuanjun He
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028043 People’s Republic of China
| | - Chuang Guo
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028043 People’s Republic of China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030 People’s Republic of China
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, 200042 People’s Republic of China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030 People’s Republic of China
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, 200042 People’s Republic of China
| |
Collapse
|
45
|
Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development. Sci Rep 2017; 7:9079. [PMID: 28831049 PMCID: PMC5567270 DOI: 10.1038/s41598-017-06300-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/09/2017] [Indexed: 01/20/2023] Open
Abstract
Some neuropsychiatric disease, including schizophrenia, may originate during prenatal development, following periods of gestational hypoxia and placental oxidative stress. Here we investigated if gestational hypoxia promotes damaging secretions from the placenta that affect fetal development and whether a mitochondria-targeted antioxidant MitoQ might prevent this. Gestational hypoxia caused low birth-weight and changes in young adult offspring brain, mimicking those in human neuropsychiatric disease. Exposure of cultured neurons to fetal plasma or to secretions from the placenta or from model trophoblast barriers that had been exposed to altered oxygenation caused similar morphological changes. The secretions and plasma contained altered microRNAs whose targets were linked with changes in gene expression in the fetal brain and with human schizophrenia loci. Molecular and morphological changes in vivo and in vitro were prevented by a single dose of MitoQ bound to nanoparticles, which were shown to localise and prevent oxidative stress in the placenta but not in the fetus. We suggest the possibility of developing preventative treatments that target the placenta and not the fetus to reduce risk of psychiatric disease in later life.
Collapse
|
46
|
Abstract
BACKGROUND Personalized medicine is a model in which a patient's unique clinical, genetic, and environmental characteristics are the basis for treatment and prevention. Aim, method, and results: This review aims to describe the current tools, phenomenological features, clinical risk factors, and biomarkers used to provide personalized medicine. Furthermore, this study describes the target areas in which they can be applied including diagnostics, treatment selection and response, assessment of risk of side-effects, and prevention. DISCUSSION AND CONCLUSION Personalized medicine in psychiatry is challenged by the current taxonomy, where the diagnostic categories are broad and great biological heterogeneity exists within each category. There is, thus, a gap between the current advanced research prospects and clinical practice, and the current taxonomy is, thus, a poor basis for biological research. The discussion proposes possible solutions to narrow this gap and to move psychiatric research forward towards personalized medicine.
Collapse
Affiliation(s)
| | - Maj Vinberg
- b Psychiatric Center Copenhagen , Copenhagen University , Copenhagen , Denmark
| | - Lars Vedel Kessing
- b Psychiatric Center Copenhagen , Copenhagen University , Copenhagen , Denmark
| | - Roger S McIntyre
- c Mood Disorders Psychopharmacology Unit , University Health Network , Toronto , ON , Canada
| |
Collapse
|
47
|
Ravizza T, Onat FY, Brooks-Kayal AR, Depaulis A, Galanopoulou AS, Mazarati A, Numis AL, Sankar R, Friedman A. WONOEP appraisal: Biomarkers of epilepsy-associated comorbidities. Epilepsia 2016; 58:331-342. [PMID: 28035782 DOI: 10.1111/epi.13652] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 01/04/2023]
Abstract
Neurologic and psychiatric comorbidities are common in patients with epilepsy. Diagnostic, predictive, and pharmacodynamic biomarkers of such comorbidities do not exist. They may share pathogenetic mechanisms with epileptogenesis/ictogenesis, and as such are an unmet clinical need. The objectives of the subgroup on biomarkers of comorbidities at the XIII Workshop on the Neurobiology of Epilepsy (WONOEP) were to present the state-of-the-art recent research findings in the field that highlighting potential biomarkers for comorbidities in epilepsy. We review recent progress in the field, including molecular, imaging, and genetic biomarkers of comorbidities as discussed during the WONOEP meeting on August 31-September 4, 2015, in Heybeliada Island (Istanbul, Turkey). We further highlight new directions and concepts from studies on comorbidities and potential new biomarkers for the prediction, diagnosis, and treatment of epilepsy-associated comorbidities. The activation of various molecular signaling pathways such as the "Janus Kinase/Signal Transducer and Activator of Transcription," "mammalian Target of Rapamycin," and oxidative stress have been shown to correlate with the presence and severity of subsequent cognitive abnormalities. Furthermore, dysfunction in serotonergic transmission, hyperactivity of the hypothalamic-pituitary-adrenocortical axis, the role of the inflammatory cytokines, and the contributions of genetic factors have all recently been regarded as relevant for understanding epilepsy-associated depression and cognitive deficits. Recent evidence supports the utility of imaging studies as potential biomarkers. The role of such biomarker may be far beyond the diagnosis of comorbidities, as accumulating clinical data indicate that comorbidities can predict epilepsy outcomes. Future research is required to reveal whether molecular changes in specific signaling pathways or advanced imaging techniques could be detected in the clinical settings and correlate with epilepsy-associated comorbidities. A reliable biomarker will allow a more accurate diagnosis and improved treatment of epilepsy-associated comorbidities.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milano, Italy
| | - Filiz Y Onat
- Department of Medical Pharmacology, Epilepsy Research Center, School of Medicine Marmara University, Istanbul, Turkey
| | - Amy R Brooks-Kayal
- Department of Pediatrics, Neurology and Pharmaceutical Sciences, Children's Hospital Colorado, University of Colorado Schools of Medicine and Pharmacy, Aurora, Colorado, U.S.A
| | | | - Aristea S Galanopoulou
- Laboratory of Developmental Neuroscience, Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, U.S.A.,Montefiore/Einstein Comprehensive Epilepsy Center, Montefiore Medical Center, Bronx, New York, U.S.A
| | - Andrey Mazarati
- Neurology Division, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Adam L Numis
- Neurology Division, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Raman Sankar
- Neurology Division, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A.,Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Alon Friedman
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
48
|
Kim E, Liu Y, Ben-Yoav H, Winkler TE, Yan K, Shi X, Shen J, Kelly DL, Ghodssi R, Bentley WE, Payne GF. Fusing Sensor Paradigms to Acquire Chemical Information: An Integrative Role for Smart Biopolymeric Hydrogels. Adv Healthc Mater 2016; 5:2595-2616. [PMID: 27616350 PMCID: PMC5485850 DOI: 10.1002/adhm.201600516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/26/2016] [Indexed: 12/14/2022]
Abstract
The Information Age transformed our lives but it has had surprisingly little impact on the way chemical information (e.g., from our biological world) is acquired, analyzed and communicated. Sensor systems are poised to change this situation by providing rapid access to chemical information. This access will be enabled by technological advances from various fields: biology enables the synthesis, design and discovery of molecular recognition elements as well as the generation of cell-based signal processors; physics and chemistry are providing nano-components that facilitate the transmission and transduction of signals rich with chemical information; microfabrication is yielding sensors capable of receiving these signals through various modalities; and signal processing analysis enhances the extraction of chemical information. The authors contend that integral to the development of functional sensor systems will be materials that (i) enable the integrative and hierarchical assembly of various sensing components (for chemical recognition and signal transduction) and (ii) facilitate meaningful communication across modalities. It is suggested that stimuli-responsive self-assembling biopolymers can perform such integrative functions, and redox provides modality-spanning communication capabilities. Recent progress toward the development of electrochemical sensors to manage schizophrenia is used to illustrate the opportunities and challenges for enlisting sensors for chemical information processing.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Yi Liu
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Hadar Ben-Yoav
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Thomas E Winkler
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Kun Yan
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Jana Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - Reza Ghodssi
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - William E Bentley
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Gregory F Payne
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
49
|
Chigogora S, Zaninotto P, Kivimaki M, Steptoe A, Batty GD. Insulin-like growth factor 1 and risk of depression in older people: the English Longitudinal Study of Ageing. Transl Psychiatry 2016; 6:e898. [PMID: 27648920 PMCID: PMC5048205 DOI: 10.1038/tp.2016.167] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/18/2016] [Indexed: 12/14/2022] Open
Abstract
Depressive disorders are a leading cause of disability in older age. Although the role of psychosocial and behavioural predictors has been well examined, little is known about the biological origins of depression. Findings from animal studies have implicated insulin-like growth factor 1 (IGF-1) in the aetiology of this disorder. A total of 6017 older adults (mean age of 65.7 years; 55% women) from the English Longitudinal Study of Ageing provided serum levels of IGF-1 (mean=15.9 nmol l(-1), s.d. 5.7) during a nurse visit in 2008. Depression symptoms were assessed in the same year and again in 2012 using the eight-item Center for Epidemiologic Studies Depression Scale. Self-reports of a physician-diagnosis of depression were also collected at both time points. In separate analyses for men and women, the results from both the cross-sectional and longitudinal analyses revealed a 'U'-shaped pattern of association, such that lower and higher levels of IGF-1 were associated with a slightly elevated risk of depression, whereas the lowest risk was seen around the median levels. Thus, in men, with the lowest quintile of IGF-1 as the referent, the age-adjusted odds ratios (95% confidence interval) of developing depression symptoms after 4 years of follow-up, for increasing quintiles of IGF-1, were: 0.51 (0.28-0.91), 0.50 (0.27-0.92), 0.63 (0.35-1.15) and 0.63 (0.35-1.13) (P-value for quadratic association 0.002). Some attenuation of these effects was apparent after adjustment for co-morbidity, socioeconomic status and health behaviours. In conclusion, in the present study of older adults, there was some evidence that moderate levels of IGF-1 levels conferred a reduced risk of depression.
Collapse
Affiliation(s)
- S Chigogora
- Department of Epidemiology and Public Health, University College London, London, UK
| | - P Zaninotto
- Department of Epidemiology and Public Health, University College London, London, UK
| | - M Kivimaki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - A Steptoe
- Department of Epidemiology and Public Health, University College London, London, UK
| | - G D Batty
- Department of Epidemiology and Public Health, University College London, London, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
50
|
Abstract
Metabolic imaging is a field of molecular imaging that focuses and targets changes in metabolic pathways for the evaluation of different clinical conditions. Targeting and quantifying metabolic changes noninvasively is a powerful approach to facilitate diagnosis and evaluate therapeutic response. This review addresses only techniques targeting metabolic pathways. Other molecular imaging strategies, such as affinity or receptor imaging or microenvironment-dependent methods are beyond the scope of this review. Here we describe the current state of the art in clinically translatable metabolic imaging modalities. Specifically, we focus on PET and MR spectroscopy, including conventional (1)H- and (13)C-MR spectroscopy at thermal equilibrium and hyperpolarized MRI. In this article, we first provide an overview of metabolic pathways that are altered in many pathologic conditions and the corresponding probes and techniques used to study those alterations. We then describe the application of metabolic imaging to several common diseases, including cancer, neurodegeneration, cardiac ischemia, and infection or inflammation.
Collapse
Affiliation(s)
- Valentina Di Gialleonardo
- Department of Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - David M Wilson
- Department of Radiology and Biomedical Imaging University of California San Francisco (UCSF), San Francisco, CA
| | - Kayvan R Keshari
- Department of Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY.
| |
Collapse
|