1
|
Kaur S, Khullar N, Navik U, Bali A, Bhatti GK, Bhatti JS. Multifaceted role of dynamin-related protein 1 in cardiovascular disease: From mitochondrial fission to therapeutic interventions. Mitochondrion 2024; 78:101904. [PMID: 38763184 DOI: 10.1016/j.mito.2024.101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Mitochondria are central to cellular energy production and metabolic regulation, particularly in cardiomyocytes. These organelles constantly undergo cycles of fusion and fission, orchestrated by key proteins like Dynamin-related Protein 1 (Drp-1). This review focuses on the intricate roles of Drp-1 in regulating mitochondrial dynamics, its implications in cardiovascular health, and particularly in myocardial infarction. Drp-1 is not merely a mediator of mitochondrial fission; it also plays pivotal roles in autophagy, mitophagy, apoptosis, and necrosis in cardiac cells. This multifaceted functionality is often modulated through various post-translational alterations, and Drp-1's interaction with intracellular calcium (Ca2 + ) adds another layer of complexity. We also explore the pathological consequences of Drp-1 dysregulation, including increased reactive oxygen species (ROS) production and endothelial dysfunction. Furthermore, this review delves into the potential therapeutic interventions targeting Drp-1 to modulate mitochondrial dynamics and improve cardiovascular outcomes. We highlight recent findings on the interaction between Drp-1 and sirtuin-3 and suggest that understanding this interaction may open new avenues for therapeutically modulating endothelial cells, fibroblasts, and cardiomyocytes. As the cardiovascular system increasingly becomes the focal point of aging and chronic disease research, understanding the nuances of Drp-1's functionality can lead to innovative therapeutic approaches.
Collapse
Affiliation(s)
- Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda India.
| |
Collapse
|
2
|
Pitt B, Diez J. Possible Role of Gut Microbiota Alterations in Myocardial Fibrosis and Burden of Heart Failure in Hypertensive Heart Disease. Hypertension 2024; 81:1467-1476. [PMID: 38716665 DOI: 10.1161/hypertensionaha.124.23089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Epidemiological studies have revealed that hypertensive heart disease is a major risk factor for heart failure, and its heart failure burden is growing rapidly. The need to act in the face of this threat requires first an understanding of the multifactorial origin of hypertensive heart disease and second an exploration of new mechanistic pathways involved in myocardial alterations critically involved in cardiac dysfunction and failure (eg, myocardial interstitial fibrosis). Increasing evidence shows that alterations of gut microbiota composition and function (ie, dysbiosis) leading to changes in microbiota-derived metabolites and impairment of the gut barrier and immune functions may be involved in blood pressure elevation and hypertensive organ damage. In this review, we highlight recent advances in the potential contribution of gut microbiota alterations to myocardial interstitial fibrosis in hypertensive heart disease through blood pressure-dependent and blood pressure-independent mechanisms. Achievements in this field should open a new path for more comprehensive treatment of myocardial interstitial fibrosis in hypertensive heart disease and, thus, for the prevention of heart failure.
Collapse
Affiliation(s)
- Bertram Pitt
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor (B.P.)
| | - Javier Diez
- Department of Cardiovascular Diseases, Center for Applied Medical Research and School of Medicine, University of Navarra, Pamplona, Spain (J.D.)
| |
Collapse
|
3
|
Sun Q, Wagg CS, Güven B, Wei K, de Oliveira AA, Silver H, Zhang L, Vergara A, Chen B, Wong N, Wang F, Dyck JRB, Oudit GY, Lopaschuk GD. Stimulating cardiac glucose oxidation lessens the severity of heart failure in aged female mice. Basic Res Cardiol 2024; 119:133-150. [PMID: 38148348 DOI: 10.1007/s00395-023-01020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/28/2023]
Abstract
Heart failure is a prevalent disease worldwide. While it is well accepted that heart failure involves changes in myocardial energetics, what alterations that occur in fatty acid oxidation and glucose oxidation in the failing heart remains controversial. The goal of the study are to define the energy metabolic profile in heart failure induced by obesity and hypertension in aged female mice, and to attempt to lessen the severity of heart failure by stimulating myocardial glucose oxidation. 13-Month-old C57BL/6 female mice were subjected to 10 weeks of a 60% high-fat diet (HFD) with 0.5 g/L of Nω-nitro-L-arginine methyl ester (L-NAME) administered via drinking water to induce obesity and hypertension. Isolated working hearts were perfused with radiolabeled energy substrates to directly measure rates of myocardial glucose oxidation and fatty acid oxidation. Additionally, a series of mice subjected to the obesity and hypertension protocol were treated with a pyruvate dehydrogenase kinase inhibitor (PDKi) to stimulate cardiac glucose oxidation. Aged female mice subjected to the obesity and hypertension protocol had increased body weight, glucose intolerance, elevated blood pressure, cardiac hypertrophy, systolic dysfunction, and decreased survival. While fatty acid oxidation rates were not altered in the failing hearts, insulin-stimulated glucose oxidation rates were markedly impaired. PDKi treatment increased cardiac glucose oxidation in heart failure mice, which was accompanied with improved systolic function and decreased cardiac hypertrophy. The primary energy metabolic change in heart failure induced by obesity and hypertension in aged female mice is a dramatic decrease in glucose oxidation. Stimulating glucose oxidation can lessen the severity of heart failure and exert overall functional benefits.
Collapse
Affiliation(s)
- Qiuyu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Cory S Wagg
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Berna Güven
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Kaleigh Wei
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Amanda A de Oliveira
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Heidi Silver
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Liyan Zhang
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Ander Vergara
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Brandon Chen
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Nathan Wong
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Faqi Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
4
|
Cheng WY, Desmet L, Depoortere I. Time-restricted eating for chronodisruption-related chronic diseases. Acta Physiol (Oxf) 2023; 239:e14027. [PMID: 37553828 DOI: 10.1111/apha.14027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
The circadian timing system enables organisms to adapt their physiology and behavior to the cyclic environmental changes including light-dark cycle or food availability. Misalignment between the endogenous circadian rhythms and external cues is known as chronodisruption and is closely associated with the development of metabolic and gastrointestinal disorders, cardiovascular diseases, and cancer. Time-restricted eating (TRE, in human) is an emerging dietary approach for weight management. Recent studies have shown that TRE or time-restricted feeding (TRF, when referring to animals) has several beneficial health effects, which, however, are not limited to weight management. This review summarizes the effects of TRE/TRF on regulating energy metabolism, gut microbiota and homeostasis, development of cardiovascular diseases and cancer. Furthermore, we will address the role of circadian clocks in TRE/TRF and propose ways to optimize TRE as a dietary strategy to obtain maximal health benefits.
Collapse
Affiliation(s)
- Wai-Yin Cheng
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Louis Desmet
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Musale V, Wasserman DH, Kang L. Extracellular matrix remodelling in obesity and metabolic disorders. LIFE METABOLISM 2023; 2:load021. [PMID: 37383542 PMCID: PMC10299575 DOI: 10.1093/lifemeta/load021] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Obesity causes extracellular matrix (ECM) remodelling which can develop into serious pathology and fibrosis, having metabolic effects in insulin-sensitive tissues. The ECM components may be increased in response to overnutrition. This review will focus on specific obesity-associated molecular and pathophysiological mechanisms of ECM remodelling and the impact of specific interactions on tissue metabolism. In obesity, complex network of signalling molecules such as cytokines and growth factors have been implicated in fibrosis. Increased ECM deposition contributes to the pathogenesis of insulin resistance at least in part through activation of cell surface integrin receptors and CD44 signalling cascades. These cell surface receptors transmit signals to the cell adhesome which orchestrates an intracellular response that adapts to the extracellular environment. Matrix proteins, glycoproteins, and polysaccharides interact through ligand-specific cell surface receptors that interact with the cytosolic adhesion proteins to elicit specific actions. Cell adhesion proteins may have catalytic activity or serve as scaffolds. The vast number of cell surface receptors and the complexity of the cell adhesome have made study of their roles challenging in health and disease. Further complicating the role of ECM-cell receptor interactions is the variation between cell types. This review will focus on recent insights gained from studies of two highly conserved, ubiquitously axes and how they contribute to insulin resistance and metabolic dysfunction in obesity. These are the collagen-integrin receptor-IPP (ILK-PINCH-Parvin) axis and the hyaluronan-CD44 interaction. We speculate that targeting ECM components or their receptor-mediated cell signalling may provide novel insights into the treatment of obesity-associated cardiometabolic complications.
Collapse
Affiliation(s)
- Vishal Musale
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - David H. Wasserman
- Department of Molecular Physiology and Biophysics, Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN 37235, USA
| | - Li Kang
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| |
Collapse
|
6
|
Samouillan V, Garcia E, Benitez-Amaro A, La Chica Lhoëst MT, Dandurand J, Actis Dato V, Guerra JM, Escolà-Gil JC, Chiabrando G, Enrich C, Llorente-Cortes V. Inhibitory Effects of LRP1-Based Immunotherapy on Cardiac Extracellular Matrix Biophysical Alterations Induced by Hypercholesterolemia. J Med Chem 2023; 66:6251-6262. [PMID: 37116069 PMCID: PMC10184115 DOI: 10.1021/acs.jmedchem.2c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The accumulation of lipids in cardiomyocytes contributes to cardiac dysfunction. The specific blockage of cardiomyocyte cholesteryl ester (CE) loading by antibodies (Abs) against the P3 sequence (Gly1127-Cys1140) of the LRP1 receptor improves cardiac insulin sensitivity. The impact of anti-P3 Abs on high-fat diet (HFD)-induced cardiac extracellular matrix (ECM) biophysical alterations was analyzed. Both IrP (without Abs) and P3-immunized rabbits (with Abs) were randomized into groups fed either HFD or a standard chow diet. Cardiac lipids, proteins, and carbohydrates were characterized by Fourier transform infrared spectroscopy in the attenuated total reflectance mode. The hydric organization and physical structure were determined by differential scanning calorimetry. HFD increased the levels of esterified lipids, collagen, and α-helical structures and upregulated fibrosis, bound water, and ECM plasticization in the heart. The inhibitory effect of anti-P3 Abs on cardiac CE accumulation was sufficient to reduce the collagen-filled extracellular space, the level of fibrosis, and the amount of bound water but did not counteract ECM plasticization in the heart of hypercholesterolemic rabbits.
Collapse
Affiliation(s)
- Valerie Samouillan
- CIRIMAT, Université de Toulouse, Université Paul Sabatier, Equipe PHYPOL, 31062 Toulouse, France
| | - Eduardo Garcia
- Biomedical Research Institute Sant Pau (IIB SANTPAU), Universitat Autonoma de Barcelona, 08041 Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036 Barcelona, Spain
| | - Aleyda Benitez-Amaro
- Biomedical Research Institute Sant Pau (IIB SANTPAU), Universitat Autonoma de Barcelona, 08041 Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036 Barcelona, Spain
| | - Maria Teresa La Chica Lhoëst
- Biomedical Research Institute Sant Pau (IIB SANTPAU), Universitat Autonoma de Barcelona, 08041 Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036 Barcelona, Spain
| | - Jany Dandurand
- CIRIMAT, Université de Toulouse, Université Paul Sabatier, Equipe PHYPOL, 31062 Toulouse, France
| | - Virginia Actis Dato
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Godoy Cruz, 2290 Buenos Aires, Argentina
| | - Jose Maria Guerra
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-SANTPAU), Universitat Autonoma de Barcelona, 08025 Barcelona, Spain
- CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Joan Carles Escolà-Gil
- Metabolic Basis of Cardiovascular Risk, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Gustavo Chiabrando
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Centro de Investigación en Medicina Translacional Severo R. Amuchástegui (CIMETSA), G. V. al Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC), X5016KEJ Córdoba, Argentina
| | - Carlos Enrich
- Unitat de Biologia Cellular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Vicenta Llorente-Cortes
- Biomedical Research Institute Sant Pau (IIB SANTPAU), Universitat Autonoma de Barcelona, 08041 Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
7
|
Xu H, Yang F, Bao Z. Gut microbiota and myocardial fibrosis. Eur J Pharmacol 2023; 940:175355. [PMID: 36309048 DOI: 10.1016/j.ejphar.2022.175355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 01/18/2023]
Abstract
Myocardial fibrosis (MF) is a pathophysiological condition that accompanies various myocardial diseases and comprises a damaged myocardial matrix repair process. Although fibrosis plays a vital role in repair, it ultimately alters cardiac systolic and diastolic functions. The gut microbiota is a complex and dynamic ecosystem with billions of microorganisms that produce bioactive compounds that influence host health and disease progression. Intestinal microbiota has been shown to correlate with cardiovascular disease, and dysbiosis of the intestinal microbiota is involved in the development of MF. In this review, we discuss the role of intestinal microbiota in the process of MF, including alterations in microbiota composition and the effects of metabolites. We also discuss how diet and medicines can affect cardiac fibrosis by influencing the gut microbiota, and potential future therapies targeting the gut-heart axis. A healthy gut microbiota can prevent disease, but dysbiosis can lead to various symptoms, including the induction of heart disease. In this review, we discuss the relevance of the gut-heart axis and the multiple pathways by which gut microbiota may affect cardiac fibrosis, including inflammatory factors, immune cells, and gut microbiota metabolites, such as trimethylamine-N-oxide (TMAO) and short-chain fatty acids (SCFAs). Finally, we discuss the involvement of gut microbiota in the treatment of cardiac fibrosis, including drugs, fecal microbiota transplantation, and oral probiotics or prebiotics. With future studies on the relationship between the heart and gut microbiota, we hope to find better ways to improve MF through the gut-heart axis.
Collapse
Affiliation(s)
- Han Xu
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Fan Yang
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Peres Valgas Da Silva C, Shettigar VK, Baer LA, Abay E, Pinckard KM, Vinales J, Sturgill SL, Vidal P, Ziolo MT, Stanford KI. Exercise training after myocardial infarction increases survival but does not prevent adverse left ventricle remodeling and dysfunction in high-fat diet fed mice. Life Sci 2022; 311:121181. [PMID: 36372212 PMCID: PMC9712172 DOI: 10.1016/j.lfs.2022.121181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
AIMS Aerobic exercise is an important component of rehabilitation after cardiovascular injuries including myocardial infarction (MI). In human studies, the beneficial effects of exercise after an MI are blunted in patients who are obese or glucose intolerant. Here, we investigated the effects of exercise on MI-induced cardiac dysfunction and remodeling in mice chronically fed a high-fat diet (HFD). MAIN METHODS C57Bl/6 male mice were fed either a standard (Chow; 21% kcal/fat) or HFD (60% kcal/fat) for 36 weeks. After 24 weeks of diet, the HFD mice were randomly subjected to an MI (MI) or a sham surgery (Sham). Following the MI or sham surgery, a subset of mice were subjected to treadmill exercise. KEY FINDINGS HFD resulted in obesity and glucose intolerance, and this was not altered by exercise or MI. MI resulted in decreased ejection fraction, increased left ventricle mass, increased end systolic and diastolic diameters, increased cardiac fibrosis, and increased expression of genes involved in cardiac hypertrophy and heart failure in the MI-Sed and MI-Exe mice. Exercise prevented HFD-induced cardiac fibrosis in Sham mice (Sham-Exe) but not in MI-Exe mice. Exercise did, however, reduce post-MI mortality. SIGNIFICANCE These data indicate that exercise significantly increased survival after MI in a model of diet-induced obesity independent of effects on cardiac function. These data have important translational ramifications because they demonstrate that environmental interventions, including diet, need to be carefully evaluated and taken into consideration to support the effects of exercise in the cardiac rehabilitation of patients who are obese.
Collapse
Affiliation(s)
- Carmem Peres Valgas Da Silva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Vikram K Shettigar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Lisa A Baer
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Eaman Abay
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Kelsey M Pinckard
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Jorge Vinales
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Sarah L Sturgill
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Pablo Vidal
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Mark T Ziolo
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, United States of America.
| |
Collapse
|
9
|
Xiao Z, Xie Y, Huang F, Yang J, Liu X, Lin X, Zhu P, Zheng S. MicroRNA-205-5p plays a suppressive role in the high-fat diet-induced atrial fibrosis through regulation of the EHMT2/IGFBP3 axis. GENES & NUTRITION 2022; 17:11. [PMID: 35858845 PMCID: PMC9297569 DOI: 10.1186/s12263-022-00712-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
Objective MicroRNAs (miRNAs) targeting has been revealed to be an appealing strategy for the treatment and management of atrial fibrillation (AF). In this research, we aimed to explore the mechanisms of miR-205-5p in reducing the high-fat diet (HFD)-induced atrial fibrosis through the EHMT2/IGFBP3 axis. Methods Expression levels of miR-205-5p, IGFBP3 and EHMT2 were determined in AF patients, cell fibrosis models and mouse atrial fibrosis models. Luciferase activity and RIP assays were performed to detect the binding between miR-205-5p and EHMT2, and ChIP assays were implemented to detect the enrichment of H3K9me2 and H3K4me3 in the promoter region of IGFBP3 in cells. The related experiments focusing on the inflammatory response, atrial fibrosis, mitochondrial damage, and metabolic abnormalities were performed to figure out the roles of miR-205-5p, IGFBP3, and EHMT2 in cell and mouse atrial fibrosis models. Results Low expression levels of miR-205-5p and IGFBP3 and a high expression of EHMT2 were found in AF patients, cell fibrosis models and mouse atrial fibrosis models. Upregulation of miR-205-5p reduced the expression of TGF-β1, α-SMA, Col III and other fibrosis-related proteins. miR-205-5p overexpression targeted EHMT2 to regulate the methylation of H3 histones to promote IGFBP3 expression, which in turn affected the fibrosis of atrial muscle cells. In HFD-induced atrial fibrosis mice, upregulated miR-205-5p or elevated IGFBP3 alleviated atrial fibrosis, mitochondrial damage, and metabolic abnormalities. Conclusion This study suggests that miR-205-5p attenuates HFD-induced atrial fibrosis via modulating the EHMT2/IGFBP3 axis. Graphical Abstract miR-205-5p alleviates high-fat diet-induced atrial fibrosis in mice via EHMT2/IGFBP3. ![]()
Collapse
|
10
|
A New Strategy to Preserve and Assess Oxygen Consumption in Murine Tissues. Int J Mol Sci 2021; 23:ijms23010109. [PMID: 35008535 PMCID: PMC8745047 DOI: 10.3390/ijms23010109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunctions are implicated in several pathologies, such as metabolic, cardiovascular, respiratory, and neurological diseases, as well as in cancer and aging. These metabolic alterations are usually assessed in human or murine samples by mitochondrial respiratory chain enzymatic assays, by measuring the oxygen consumption of intact mitochondria isolated from tissues, or from cells obtained after physical or enzymatic disruption of the tissues. However, these methodologies do not maintain tissue multicellular organization and cell-cell interactions, known to influence mitochondrial metabolism. Here, we develop an optimal model to measure mitochondrial oxygen consumption in heart and lung tissue samples using the XF24 Extracellular Flux Analyzer (Seahorse) and discuss the advantages and limitations of this technological approach. Our results demonstrate that tissue organization, as well as mitochondrial ultrastructure and respiratory function, are preserved in heart and lung tissues freshly processed or after overnight conservation at 4 °C. Using this method, we confirmed the repeatedly reported obesity-associated mitochondrial dysfunction in the heart and extended it to the lungs. We set up and validated a new strategy to optimally assess mitochondrial function in murine tissues. As such, this method is of great potential interest for monitoring mitochondrial function in cohort samples.
Collapse
|
11
|
Saleh FA, Jaber H, Eid A. Effect of Adipose derived mesenchymal stem cells on multiple Organ Injuries in diet-induced obese mice. Tissue Barriers 2021; 9:1952150. [PMID: 34308754 PMCID: PMC8794509 DOI: 10.1080/21688370.2021.1952150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022] Open
Abstract
Background: Obesity is a complex disease involving the accumulation of body fat that can inflict a substantial risk to health due to the potent role it plays in the development of a series of chronic diseases including cardiovascular diseases (CVD), nonalcoholic fatty liver diseases (NAFLD), kidney diseases, diabetes, and some cancers. Despite all efforts made, no therapy has succeeded in reversing the obesity pandemic and its associated diseases. Herein, the aim was to study the effect of adipose-derived mesenchymal stem cells on obesity-induced multi-organ injuries in a diet-induced obese mouse model. Male C57BL/6 mice were fed with regular chow diet or high fat diet (HFD) to induce obesity for 15 weeks after which the mice were administered two doses of adipose-derived mesenchymal stem cells (ASC-treated groups) or media as control (media-treated groups). Animals were sacrificed and adipose, hepatic, renal, and cardiac tissues were obtained for histopathological evaluation. Mice on HFD showed excessive pathological alterations such as epididymal adipose tissue expansion, hepatic fat accumulation, glomerular swelling, and cardiomyocyte hypertrophy. However, treatment with ASCs significantly reversed the significant histopathological abnormalities induced by obesity. In conclusion, this study demonstrated the therapeutic effects of adipose-derived mesenchymal stem cells on obesity-associated complications such as NAFLD, CVD, and kidney disorders in a diet-induced obese animal model, which were partly due to the attenuation of inflammatory cytokines such as TNF-α and IL-6.
Collapse
Affiliation(s)
- Fatima A. Saleh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Hala Jaber
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Ali Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
12
|
Kwiatkowski G, Bar A, Jasztal A, Chłopicki S. MRI-based in vivo detection of coronary microvascular dysfunction before alterations in cardiac function induced by short-term high-fat diet in mice. Sci Rep 2021; 11:18915. [PMID: 34556779 PMCID: PMC8460671 DOI: 10.1038/s41598-021-98401-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Endothelial dysfunction is one of the hallmarks of vascular abnormalities in metabolic diseases and has been repeatedly demonstrated in coronary and peripheral circulation in mice fed high-fat diet (HFD), particularly after long-term HFD. However, the temporal relationship between development of coronary microvascular endothelial dysfunction and deterioration in diastolic and systolic cardiac function after short-term feeding with HFD has not yet been studied. This study aimed to correlate the changes in coronary microvascular endothelial function and global cardiac performance indices in vivo after short-term feeding with HFD in mice. Short-term feeding with a HFD (60% fat + 1% cholesterol) resulted in severely impaired coronary microvascular function, as evidenced by the diminished effect of nitric oxide synthase inhibition (by L-NAME) assessed using T1 mapping via in vivo MRI. Deterioration of coronary microvascular function was detected as early as after 7 days of HFD and further declined after 8 weeks on a HFD. HFD-induced coronary microvascular dysfunction was not associated with impaired myocardial capillary density and was present before systemic insulin resistance assessed by a glucose tolerance test. Basal coronary flow and coronary reserve, as assessed using the A2A adenosine receptor agonist regadenoson, were also not altered in HFD-fed mice. Histological analysis did not reveal cardiomyocyte hypertrophy or fibrosis. Increased lipid accumulation in cardiomyocytes was detected as early as after 7 days of HFD and remained at a similar level at 8 weeks on a HFD. Multiparametric cardiac MRI revealed a reduction in systolic heart function, including decreased ejection rate, increased end-systolic volume and decreased myocardial strain in diastole with impaired ejection fraction, but not until 4 weeks of HFD. Short-term feeding with HFD resulted in early endothelial dysfunction in coronary microcirculation that preceded alteration in cardiac function and systemic insulin resistance.
Collapse
Affiliation(s)
- Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, ul. Bobrzynskiego 14, 30-348, Kraków, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, ul. Bobrzynskiego 14, 30-348, Kraków, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, ul. Bobrzynskiego 14, 30-348, Kraków, Poland
| | - Stefan Chłopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, ul. Bobrzynskiego 14, 30-348, Kraków, Poland.
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Kraków, Poland.
| |
Collapse
|
13
|
Eraky SM, Ramadan NM. Effects of omega-3 fatty acids and metformin combination on diabetic cardiomyopathy in rats through autophagic pathway. J Nutr Biochem 2021; 97:108798. [PMID: 34102283 DOI: 10.1016/j.jnutbio.2021.108798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/12/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022]
Abstract
Diabetic cardiomyopathy is a primary cause of increased morbidity and mortality in diabetics. Evidence has suggested a pivotal role for interrupted mitochondrial dynamics and quality control machinery in the onset and development of diabetic cardiomyopathy. Sequestosome 1 (SQSTM1) is a major reporter of selective autophagic activity. Other than controlling the expression of genes involved in mitochondrial biogenesis, recently peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) was reported to directly affect SQSTM1 gene expression. Calcineurin, a pivotal mediator of cardiac hypertrophy, has been also linked to enhanced expression of SQSTM1. This study aimed to test the cardioprotective effects of adding ω-3 polyunsaturated fatty acids (PUFAs) to metformin in a rat model of type 2 diabetes mellitus and to evaluate the molecular mechanisms underlying their effects on mitochondrial quality. Diabetes was induced in male Sprague Dawley rats by a high-fat diet for 6 weeks, followed by a low-dose streptozotocin (35 mg/kg). Diabetic rats were either treated with metformin (150 mg/kg/d), ω-3 PUFAs (300 mg/kg/d), or their combination in the same doses for further 8 weeks. Along with metabolic and pathological derangements, we report that correlating with electron microscopic evidence of mitochondrial degeneration, gene expression of the autophagic indicators SQSTM1, PGC-1α, and calcineurin were decreased in the hearts of diabetic rats. Independent of its anti-hyperglycemic effects, metformin successfully preserved mitochondrial integrity and upregulated myocardial PGC-1α, calcineurin, and SQSTM1 gene expression. ω-3 PUFAs possess synergistic cardioprotection when added to metformin, suggested by improvements in myocardial ultrastructure, autophagic activity, and SQSTM1 gene expression.
Collapse
Affiliation(s)
- Salma M Eraky
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Gaisler-Silva F, Junho CVC, Fredo-da-Costa I, Christoffolete MA, Carneiro-Ramos MS. Diet-induced obesity differentially modulates cardiac inflammatory status in the C57 and FVB mouse strains. Curr Mol Med 2021; 22:365-373. [PMID: 34082679 DOI: 10.2174/1566524021666210603163613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cardiovascular diseases correspond to the highest risk of sudden death worldwide, and obesity is largely related to being an increased risk factor. There is a higher prevalence of arterial hypertension in obese individuals, including the presence of cardiac hypertrophy. METHODS It is already known the role of toll-like receptors [TLR], mainly 2 and 4 in heart cells, as fundamental to the process of cardiac hypertrophy. Obesity has been studied as an activator of damage-associated molecular patterns [DAMPs], which use the TLR signaling pathway to increase the nuclear factor of inflammation, NF-kB, increasing cytokine expression in heart tissue. It's already known that FVB/N and C57BL/6 mouse strains have different behaviors in relation to metabolism, but the difference in cardiac tropism and innate immune system modulation is not clear. RESULTS The present study aimed to evaluate the contribution of innate immune factors to cardiac hypertrophy induced by an experimental model of obesity comparing two mouse strains: C57BL/6 and FVB/N. Both strains were submitted to a high-fat diet containing 23% protein, 35.5% carbohydrate, and 35.9% fat for 68 days. Hearts were collected, weighed, and submitted to RT-qPCR, and iBoplex analyzed the serum. We observed an increase in heart mass after 68 days in both strains. CONCLUSION This was followed by an increase of -actin only in C57BL/6 while ANF was increased in FVB/N. Gene expression of innate immune components and inflammatory cytokines were only increased in C57BL/6, but not in FVB/N. Based on the results obtained, we verified that C57BL/6 mice had a more robust action of innate immune system than FVB/N.
Collapse
Affiliation(s)
- Fernanda Gaisler-Silva
- Centro de Ciências Naturais e Humanas [CCNH]. Universidade Federal do ABC, Santo André, SP. Brazil
| | | | - Izabelle Fredo-da-Costa
- Centro de Ciências Naturais e Humanas [CCNH]. Universidade Federal do ABC, Santo André, SP. Brazil
| | | | | |
Collapse
|
15
|
Nankivell VA, Tan JTM, Wilsdon LA, Morrison KR, Bilu C, Psaltis PJ, Zimmet P, Kronfeld-Schor N, Nicholls SJ, Bursill CA, Brown A. Circadian disruption by short light exposure and a high energy diet impairs glucose tolerance and increases cardiac fibrosis in Psammomys obesus. Sci Rep 2021; 11:9673. [PMID: 33958671 PMCID: PMC8102519 DOI: 10.1038/s41598-021-89191-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) increases cardiac inflammation which promotes the development of cardiac fibrosis. We sought to determine the impact of circadian disruption on the induction of hyperglycaemia, inflammation and cardiac fibrosis. METHODS Psammomys obesus (P. obesus) were exposed to neutral (12 h light:12 h dark) or short (5 h light:19 h dark) photoperiods and fed a low energy (LE) or high energy (HE) diet for 8 or 20 weeks. To determine daily rhythmicity, P. obesus were euthanised at 2, 8, 14, and 20 h after 'lights on'. RESULTS P. obesus exposed to a short photoperiod for 8 and 20 weeks had impaired glucose tolerance following oral glucose tolerance testing, compared to a neutral photoperiod exposure. This occurred with both LE and HE diets but was more pronounced with the HE diet. Short photoperiod exposure also increased myocardial perivascular fibrosis after 20 weeks on LE (51%, P < 0.05) and HE (44%, P < 0.05) diets, when compared to groups with neutral photoperiod exposure. Short photoperiod exposure caused elevations in mRNA levels of hypertrophy gene Nppa (atrial natriuretic peptide) and hypertrophy transcription factors Gata4 and Mef2c in myocardial tissue after 8 weeks. CONCLUSION Exposure to a short photoperiod causes impaired glucose tolerance in P. obesus that is exacerbated with HE diet and is accompanied by an induction in myocardial perivascular fibrosis.
Collapse
Affiliation(s)
- Victoria A Nankivell
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Faculty of Health and Medical Science, The University of Adelaide, Adelaide, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, Australia
| | - Joanne T M Tan
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Faculty of Health and Medical Science, The University of Adelaide, Adelaide, Australia
| | - Laura A Wilsdon
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Kaitlin R Morrison
- South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Carmel Bilu
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Peter J Psaltis
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Faculty of Health and Medical Science, The University of Adelaide, Adelaide, Australia
| | - Paul Zimmet
- Department of Diabetes, Monash University, Melbourne, Australia
| | | | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Christina A Bursill
- South Australian Health & Medical Research Institute, Adelaide, Australia. .,Faculty of Health and Medical Science, The University of Adelaide, Adelaide, Australia. .,ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, Australia. .,Vascular Research Centre, Lifelong Health Theme, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia.
| | - Alex Brown
- South Australian Health & Medical Research Institute, Adelaide, Australia.,Faculty of Health and Medical Science, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
16
|
Behl T, Sehgal A, Bala R, Chadha S. Understanding the molecular mechanisms and role of autophagy in obesity. Mol Biol Rep 2021; 48:2881-2895. [PMID: 33797660 DOI: 10.1007/s11033-021-06298-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Vital for growth, proliferation, subsistence, and thermogenesis, autophagy is the biological cascade, which confers defence against aging and various pathologies. Current research has demonstrated de novo activity of autophagy in stimulation of biological events. There exists a significant association between autophagy activation and obesity, encompassing expansion of adipocytes which facilitates β cell activity. The main objective of the manuscript is to enumerate intrinsic role of autophagy in obesity and associated complications. The peer review articles published till date were searched using medical databases like PubMed and MEDLINE for research, primarily in English language. Obesity is characterized by adipocytic hypertrophy and hyperplasia, which leads to imbalance of lipid absorption, free fatty acid release, and mitochondrial activity. Detailed evaluation of obesity progression is necessary for its treatment and related comorbidities. Data collected in regard to etiological sustaining of obesity, has revealed hypothesized energy misbalance and neuro-humoral dysfunction, which is stimulated by autophagy. Autophagy regulates chief salvaging events for protein clustering, excessive triglycerides, and impaired mitochondria which is accompanied by oxidative and genotoxic stress in mammals. Autophagy is a homeostatic event, which regulates biological process by eliminating lethal cells and reprocessing physiological constituents, comprising of proteins and fat. Unquestionably, autophagy impairment is involved in metabolic syndromes, like obesity. According to an individual's metabolic outline, autophagy activation is essential for metabolism and activity of the adipose tissue and to retard metabolic syndrome i.e. obesity. The manuscript summarizes the perception of current knowledge on autophagy stimulation and its effect on the obesity.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
17
|
Hsu CC, Li Y, Hsu CT, Cheng JT, Lin MH, Cheng KC, Chen SW. Etanercept Ameliorates Cardiac Fibrosis in Rats with Diet-Induced Obesity. Pharmaceuticals (Basel) 2021; 14:ph14040320. [PMID: 33916242 PMCID: PMC8067047 DOI: 10.3390/ph14040320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diet-induced obesity (DIO) is considered the main risk factor for cardiovascular diseases. Increases in the plasma levels of tumor necrosis factor alpha (TNF-α) is associated with DIO. Etanercept, a TNF-α inhibitor, has been shown to alleviate cardiac hypertrophy. To investigate the effect of etanercept on cardiac fibrosis in DIO model, rats on high fat diet (HFD) were subdivided into two groups: the etanercept group and vehicle group. Cardiac injury was identified by classic methods, while fibrosis was characterized by histological analysis of the hearts. Etanercept treatment at 0.8 mg/kg/week twice weekly by subcutaneous injection effectively alleviates the cardiac fibrosis in HFD-fed rats. STAT3 activation seems to be induced in parallel with fibrosis-related gene expression in the hearts of HFD-fed rats. Decreased STAT3 activation plays a role in the etanercept-treated animals. Moreover, fibrosis-related genes are activated by palmitate in parallel with STAT3 activation in H9c2 cells. Etanercept may inhibit the effects of palmitate, but it is less effective than a direct inhibitor of STAT3. Direct inhibition of STAT3 activation by etanercept seems unlikely. Etanercept has the ability to ameliorate cardiac fibrosis through reduction of STAT3 activation after the inhibition of TNF-α and/or its receptor.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Department of Exercise and Health Sciences, University of Taipei, Taipei City 110, Taiwan;
- Department of Otorhinolaryngology, Taipei City Hospital, Taipei City 110, Taiwan
- Graduate Institute of Gerontology and Health Care Management, Chang Gung University of Science and Technology, Guishan, Taoyuan City 613, Taiwan;
| | - Yingxiao Li
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City 970, Taiwan;
| | - Chao-Tien Hsu
- Department of Pathology, I-Shou University Medical Center, Yanchao District, Kaohsiung City 824, Taiwan;
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Tainan City 710, Taiwan;
| | - Mang-Hung Lin
- Graduate Institute of Gerontology and Health Care Management, Chang Gung University of Science and Technology, Guishan, Taoyuan City 613, Taiwan;
| | - Kai-Chun Cheng
- Department of Pharmacy, College of Pharmacy, Tajen University, Pingtung 907, Taiwan
- Correspondence: (K.-C.C.); (S.-W.C.); Tel.: +886-8-762-4002 (K.-C.C.); +886-6-6336999 (S.-W.C.)
| | - Shang-Wen Chen
- Division of Cardiology, Chi-Mei Medical Center Liouying, Tainan City 736, Taiwan
- Correspondence: (K.-C.C.); (S.-W.C.); Tel.: +886-8-762-4002 (K.-C.C.); +886-6-6336999 (S.-W.C.)
| |
Collapse
|
18
|
Liu H, Jia W, Tang Y, Zhang W, Qi J, Yan J, Ding W, Cao H, Liang G, Zhu Z, Zheng H, Zhang Y. Inhibition of MyD88 by LM8 Attenuates Obesity-Induced Cardiac Injury. J Cardiovasc Pharmacol 2021; 76:63-70. [PMID: 32398475 DOI: 10.1097/fjc.0000000000000846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity-induced cardiomyopathy involves chronic and sustained inflammation. The toll-like receptor 4 (TLR4) signaling pathway can associate innate immunity with obesity. Myeloid differentiation primary response 88 (MyD88), an indispensable downstream adaptor molecule of TLR4, has been reported to mediate obesity complications. However, whether inhibition of MyD88 can mitigate obesity-induced heart injury remains unclear. LM8, a new MyD88 inhibitor, exhibits prominent anti-inflammatory activity in lipopolysaccharide-treated macrophages. In this study, the protective effects of LM8 on a high-fat diet (HFD)-induced heart injury were assessed in a mouse model of obesity. As suggested from the achieved results, LM8 treatment alleviated HFD-induced pathological and functional damages of the heart in mice. Meantime, the treatment of mice with LM8 could significantly inhibit myocardial hypertrophy, fibrosis, inflammatory cytokines expression, and inflammatory cell infiltration induced by HFD. Besides, LM8 administration inhibited the formation of MyD88/TLR4 complex, phosphorylation of ERK, and activation of nuclear factor-κB induced by HFD. According to the achieved results, MyD88 inhibitor LM8 ameliorated obesity-induced heart injury by inhibiting MyD88-ERK/nuclear factor-κB dependent cardiac inflammatory pathways. Furthermore, targeting MyD88 might be a candidate of a therapeutic method to treat obesity-induced heart injury.
Collapse
Affiliation(s)
- Hui Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Yihui Biotechnology Company Limited, Zhuji, Shaoxing, Zhejiang, China
| | - Wenjing Jia
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yelin Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wentao Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiayu Qi
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jueqian Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenting Ding
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huixin Cao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zaisheng Zhu
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Zheng
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Yihui Biotechnology Company Limited, Zhuji, Shaoxing, Zhejiang, China
| |
Collapse
|
19
|
Zheng H, Yang Z, Xin Z, Yang Y, Yu Y, Cui J, Liu H, Chen F. Glycogen synthase kinase-3β: a promising candidate in the fight against fibrosis. Theranostics 2020; 10:11737-11753. [PMID: 33052244 PMCID: PMC7545984 DOI: 10.7150/thno.47717] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Fibrosis exists in almost all organs/tissues of the human body, plays an important role in the occurrence and development of diseases and is also a hallmark of the aging process. However, there is no effective prevention or therapeutic method for fibrogenesis. As a serine/threonine (Ser/Thr)-protein kinase, glycogen synthase kinase-3β (GSK-3β) is a vital signaling mediator that participates in a variety of biological events and can inhibit extracellular matrix (ECM) accumulation and the epithelial-mesenchymal transition (EMT) process, thereby exerting its protective role against the fibrosis of various organs/tissues, including the heart, lung, liver, and kidney. Moreover, we further present the upstream regulators and downstream effectors of the GSK-3β pathway during fibrosis and comprehensively summarize the roles of GSK-3β in the regulation of fibrosis and provide several potential targets for research. Collectively, the information reviewed here highlights recent advances vital for experimental research and clinical development, illuminating the possibility of GSK-3β as a novel therapeutic target for the management of tissue fibrosis in the future.
Collapse
Affiliation(s)
- Hanxue Zheng
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zhenlong Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yuan Yu
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jihong Cui
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Hongbo Liu
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Fulin Chen
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| |
Collapse
|
20
|
Cao J, Cowan DB, Wang DZ. tRNA-Derived Small RNAs and Their Potential Roles in Cardiac Hypertrophy. Front Pharmacol 2020; 11:572941. [PMID: 33041815 PMCID: PMC7527594 DOI: 10.3389/fphar.2020.572941] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
Transfer RNAs (tRNAs) are abundantly expressed, small non-coding RNAs that have long been recognized as essential components of the protein translation machinery. The tRNA-derived small RNAs (tsRNAs), including tRNA halves (tiRNAs), and tRNA fragments (tRFs), were unexpectedly discovered and have been implicated in a variety of important biological functions such as cell proliferation, cell differentiation, and apoptosis. Mechanistically, tsRNAs regulate mRNA destabilization and translation, as well as retro-element reverse transcriptional and post-transcriptional processes. Emerging evidence has shown that tsRNAs are expressed in the heart, and their expression can be induced by pathological stress, such as hypertrophy. Interestingly, cardiac pathophysiological conditions, such as oxidative stress, aging, and metabolic disorders can be viewed as inducers of tsRNA biogenesis, which further highlights the potential involvement of tsRNAs in these conditions. There is increasing enthusiasm for investigating the molecular and biological functions of tsRNAs in the heart and their role in cardiovascular disease. It is anticipated that this new class of small non-coding RNAs will offer new perspectives in understanding disease mechanisms and may provide new therapeutic targets to treat cardiovascular disease.
Collapse
Affiliation(s)
- Jun Cao
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Douglas B Cowan
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Effect of dietary selenium on postprandial protein deposition in the muscle of juvenile rainbow trout ( Oncorhynchus mykiss). Br J Nutr 2020; 125:721-731. [PMID: 32778191 DOI: 10.1017/s000711452000313x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Se, an essential biological trace element, is required for fish growth. However, the underlying mechanisms remain unclear. Protein deposition in muscle is an important determinant for fish growth. This study was conducted on juvenile rainbow trout (Oncorhynchus mykiss) to explore the nutritional effects of Se on protein deposition in fish muscle by analysing the postprandial dynamics of both protein synthesis and protein degradation. Trout were fed a basal diet supplemented with or without 4 mg/kg Se (as Se yeast), which has been previously demonstrated as the optimal supplemental level for rainbow trout growth. After 6 weeks of feeding, dietary Se supplementation exerted no influence on fish feed intake, whereas it increased fish growth rate, feed efficiency, protein retention rate and muscle protein content. Results of postprandial dynamics (within 24 h after feeding) of protein synthesis and degradation in trout muscle showed that dietary Se supplementation led to a persistently hyperactivated target of rapamycin complex 1 pathway and the suppressive expression of numerous genes related to the ubiquitin-proteasome system and the autophagy-lysosome system after the feeding. However, the ubiquitinated proteins and microtubule-associated light chain 3B (LC3)-II:LC3-I ratio, biomarkers for ubiquitination and autophagy activities, respectively, exhibited no significant differences among the fish fed different experimental diets throughout the whole postprandial period. Overall, this study demonstrated a promoting effect of nutritional level of dietary Se on protein deposition in fish muscle by accelerating postprandial protein synthesis. These results provide important insights about the regulatory role of dietary Se in fish growth.
Collapse
|
22
|
Gutiérrez-Cuevas J, Sandoval-Rodríguez A, Monroy-Ramírez HC, Vazquez-Del Mercado M, Santos-García A, Armendáriz-Borunda J. Prolonged-release pirfenidone prevents obesity-induced cardiac steatosis and fibrosis in a mouse NASH model. Cardiovasc Drugs Ther 2020; 35:927-938. [PMID: 32621046 DOI: 10.1007/s10557-020-07014-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Obesity is associated with systemic insulin resistance and cardiac hypertrophy with fibrosis. Peroxisome proliferator-activated receptors (PPARs) regulate carbohydrate and lipid metabolism, improving insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. We previously demonstrated that prolonged-release pirfenidone (PR-PFD) is an agonistic ligand for Pparα with anti-inflammatory and anti-fibrotic effects, and might be a promising drug for cardiac diseases-treatment. Here, we investigated the effects of PR-PFD in ventricular tissue of mice with nonalcoholic steatohepatitis (NASH) and obesity induced by high-fat/high-carbohydrate (HFHC) diet. METHODS Five male C57BL/6 J mice were fed with normal diet (ND) and ten with HFHC diet for 16 weeks; at 8 weeks of feeding, five mice with HFHC diet were administered PR-PFD (350 mg/kg/day) mixed with HFHC diet. RESULT Systemic insulin resistance, heart weight/body weight ratio, myocardial steatosis with inflammatory foci, hypertrophy, and fibrosis were prevented by PR-PFD. In addition, HFHC mice showed significantly increased desmin, Tgfβ1, Timp1, collagen I (Col I), collagen III (Col III), TNF-α, and Nrf2 mRNA levels, including α-SMA, NF-kB, Nrf2, troponin I, Acox1, Cpt1A, and Lxrα protein levels compared with the ND ventricular tissues. Mechanistically, HFHC mice with PR-PFD treatment significantly decreased these genes overexpressed by HFHC diet. Furthermore, PR-PFD overexpressed the Pgc1a mRNA levels and Pparα, Pparγ, Acox1, and Cpt1A protein levels. CONCLUSIONS The results suggest that PR-PFD could be a promising drug for the prevention and treatment of cardiac steatosis and fibrosis induced by obesity.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara, Jalisco, México
| | - Ana Sandoval-Rodríguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara, Jalisco, México
| | - Hugo Christian Monroy-Ramírez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara, Jalisco, México
| | | | | | - Juan Armendáriz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara, Jalisco, México. .,Tecnologico de Monterrey, Campus Guadalajara, Guadalajara, Jalisco, México.
| |
Collapse
|
23
|
Hu HH, Cao G, Wu XQ, Vaziri ND, Zhao YY. Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res Rev 2020; 60:101063. [PMID: 32272170 DOI: 10.1016/j.arr.2020.101063] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the final hallmark of pathological remodeling, which is a major contributor to the pathogenesis of various chronic diseases and aging-related organ failure to fully control chronic wound-healing and restoring tissue function. The process of fibrosis is involved in the pathogenesis of the kidney, lung, liver, heart and other tissue disorders. Wnt is a highly conserved signaling in the aberrant wound repair and fibrogenesis, and sustained Wnt activation is correlated with the pathogenesis of fibrosis. In particular, mounting evidence has revealed that Wnt signaling played important roles in cell fate determination, proliferation and cell polarity establishment. The expression and distribution of Wnt signaling in different tissues vary with age, and these changes have key effects on maintaining tissue homeostasis. In this review, we first describe the major constituents of the Wnt signaling and their regulation functions. Subsequently, we summarize the dysregulation of Wnt signaling in aging-related fibrotic tissues such as kidney, liver, lung and cardiac fibrosis, followed by a detailed discussion of its involvement in organ fibrosis. In addition, the crosstalk between Wnt signaling and other pathways has the potential to profoundly add to the complexity of organ fibrosis. Increasing studies have demonstrated that a number of Wnt inhibitors had the potential role against tissue fibrosis, specifically in kidney fibrosis and the implications of Wnt signaling in aging-related diseases. Therefore, targeting Wnt signaling might be a novel and promising therapeutic strategy against aging-related tissue fibrosis.
Collapse
|
24
|
Hynynen H, Mutikainen M, Naumenko N, Shakirzyanova A, Tuomainen T, Tavi P. Short high-fat diet interferes with the physiological maturation of the late adolescent mouse heart. Physiol Rep 2020; 8:e14474. [PMID: 32643294 PMCID: PMC7343666 DOI: 10.14814/phy2.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/12/2020] [Accepted: 05/04/2020] [Indexed: 11/24/2022] Open
Abstract
Dietary fats are essential for cardiac function. The metabolites of fats known as fatty acids provide most of the energy for cardiac tissue, serve as building blocks for membranes and regulate important signaling cascades. Despite their importance, excess fat intake can cause cardiac dysfunction. The detrimental effects of high-fat diet (HFD) on cardiac health are widely investigated in long-term studies but the short-term effects of fats have not been thoroughly studied. To elucidate the near-term effects of a HFD on the growth and maturation of late adolescent heart we subjected 11-week-old mice to an 8-week long HFD (42% of calories from fat, 42% from carbohydrate, n = 8) or chow diet (12% of calories from fat, 66% from carbohydrate, n = 7) and assessed their effects on the heart in vivo and in vitro. Our results showed that excessive fat feeding interferes with normal maturation of the heart indicated by the lack of increase in dimensions, volume, and stroke volume of the left ventricles of mice on high fat diet that were evident in mice on chow diet. In addition, differences in regional strain during the contraction cycle between mice on HFD and chow diet were seen. These changes were associated with reduced activity of the growth promoting PI3K-Akt1 signaling cascade and moderate changes in glucose metabolism without changes in calcium signaling. This study suggests that even a short period of HFD during late adolescence hinders cardiac maturation and causes physiological changes that may have an impact on the cardiac health in adulthood.
Collapse
Affiliation(s)
- Heidi Hynynen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Maija Mutikainen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Nikolay Naumenko
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | | | - Tomi Tuomainen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Pasi Tavi
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
25
|
Xue Q, Chen F, Zhang H, Liu Y, Chen P, Patterson AJ, Luo J. Maternal high-fat diet alters angiotensin II receptors and causes changes in fetal and neonatal rats†. Biol Reprod 2020; 100:1193-1203. [PMID: 30596890 DOI: 10.1093/biolre/ioy262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/07/2018] [Accepted: 12/24/2018] [Indexed: 01/01/2023] Open
Abstract
Maternal high-fat diet (HFD) during pregnancy is linked to cardiovascular diseases in postnatal life. The current study tested the hypothesis that maternal HFD causes myocardial changes through angiotensin II receptor (AGTR) expression modulation in fetal and neonatal rat hearts. The control group of pregnant rats was fed a normal diet and the treatment group of pregnant rats was on a HFD (60% kcal fat). Hearts were isolated from embryonic day 21 fetuses (E21) and postnatal day 7 pups (PD7). Maternal HFD decreased the body weight of the offspring in both E21 and PD7. The ratio of heart weight to body weight was increased in E21, but not PD7, when compared to the control group. Transmission electron microscopy revealed disorganized myofibrils and effacement of mitochondria cristae in the treatment group. Maternal HFD decreased S-phase and increased G1-phase of the cellular cycle for fetal and neonatal cardiac cells. Molecular markers of cardiac hypertrophy, such as Nppa and Myh7, were found to be increased in the treatment group. There was an associated increase in Agtr2 mRNA and protein, whereas Agtr1a mRNA and AGTR1 protein were decreased in HFD fetal and neonatal hearts. Furthermore, maternal HFD decreased glucocorticoid receptors (GRs) binding to glucocorticoid response elements at the Agtr1a and Agtr2 promoter, which correlated with downregulation of GR in fetal and neonatal hearts. These findings suggest that maternal HFD may promote premature termination of fetal and neonatal cardiomyocyte proliferation and compensatory hypertrophy through intrauterine modulation of AGTR1 and AGTR2 expression via GR dependent mechanism.
Collapse
Affiliation(s)
- Qin Xue
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Fangyuan Chen
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Haichuan Zhang
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yinghua Liu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Pinxian Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Andrew J Patterson
- University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Jiandong Luo
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| |
Collapse
|
26
|
Sun X, Han F, Lu Q, Li X, Ren D, Zhang J, Han Y, Xiang YK, Li J. Empagliflozin Ameliorates Obesity-Related Cardiac Dysfunction by Regulating Sestrin2-Mediated AMPK-mTOR Signaling and Redox Homeostasis in High-Fat Diet-Induced Obese Mice. Diabetes 2020; 69:1292-1305. [PMID: 32234722 DOI: 10.2337/db19-0991] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have favorable cardiovascular outcomes in patients with diabetes. However, whether SGLT2i can improve obesity-related cardiac dysfunction is unknown. Sestrin2 is a novel stress-inducible protein that regulates AMPK-mammalian target of rapamycin (mTOR) and suppresses oxidative damage. The aim of this study was to determine whether empagliflozin (EMPA) improves obesity-related cardiac dysfunction via regulating Sestrin2-mediated pathways in diet-induced obesity. C57BL/6J mice and Sestrin2 knockout mice were fed a high-fat diet (HFD) for 12 weeks and then treated with or without EMPA (10 mg/kg) for 8 weeks. Treating HFD-fed C57BL/6J mice with EMPA reduced body weight and whole-body fat and improved metabolic disorders. Furthermore, EMPA improved myocardial hypertrophy/fibrosis and cardiac function and reduced cardiac fat accumulation and mitochondrial injury. Additionally, EMPA significantly augmented Sestrin2 levels and increased AMPK and endothelial nitric oxide synthase phosphorylation, but inhibited Akt and mTOR phosphorylation. These beneficial effects were partially attenuated in HFD-fed Sestrin2 knockout mice. Intriguingly, EMPA treatment enhanced the Nrf2/HO-1-mediated oxidative stress response, suggesting antioxidant and anti-inflammatory activity. Thus, EMPA improved obesity-related cardiac dysfunction via regulating Sestrin2-mediated AMPK-mTOR signaling and maintaining redox homeostasis. These findings provide a novel mechanism for the cardiovascular protection of SGLT2i in obesity.
Collapse
Affiliation(s)
- Xiaodong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS
| | - Fang Han
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Qingguo Lu
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Xuan Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS
| | - Di Ren
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS
- Department of Surgery, University of South Florida, Tampa, FL
| | - Jingwen Zhang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS
- Department of Surgery, University of South Florida, Tampa, FL
| | - Ying Han
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS
- Department of Surgery, University of South Florida, Tampa, FL
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS
- Department of Surgery, University of South Florida, Tampa, FL
| |
Collapse
|
27
|
Paternal Resistance Training Induced Modifications in the Left Ventricle Proteome Independent of Offspring Diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5603580. [PMID: 32454941 PMCID: PMC7218999 DOI: 10.1155/2020/5603580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/18/2019] [Indexed: 01/13/2023]
Abstract
Ancestral obesogenic exposure is able to trigger harmful effects in the offspring left ventricle (LV) which could lead to cardiovascular diseases. However, the impact of the father's lifestyle on the offspring LV is largely unexplored. The aim of this study was to investigate the effects of 8 weeks of paternal resistance training (RT) on the offspring left ventricle (LV) proteome exposed to control or high-fat (HF) diet. Wistar rats were randomly divided into two groups: sedentary fathers and trained fathers (8 weeks, 3 times per week with weights secured to the animals' tails). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into 4 groups (5 animals per group): offspring from sedentary fathers, exposed to control diet (SFO-C); offspring from trained fathers, exposed to control diet (TFO-C); offspring from sedentary fathers, exposed to high-fat diet (SFO-HF); and offspring from trained fathers, exposed to high-fat diet (TFO-HF). The LC-MS/MS analysis revealed 537 regulated proteins among groups. Offspring exposure to HF diet caused reduction in the abundance levels of proteins related to cell component organization, metabolic processes, and transport. Proteins related to antioxidant activity, transport, and transcription regulation were increased in TFO-C and TFO-HF as compared with the SFO-C and SFO-HF groups. Paternal RT demonstrated to be an important intervention capable of inducing significant effects on the LV proteome regardless of offspring diet due to the increase of proteins involved into LV homeostasis maintenance. This study contributes to a better understanding of the molecular aspects involved in transgenerational inheritance.
Collapse
|
28
|
Ashraf S, Yilmaz G, Chen X, Harmancey R. Dietary Fat and Sugar Differentially Affect β-Adrenergic Stimulation of Cardiac ERK and AKT Pathways in C57BL/6 Male Mice Subjected to High-Calorie Feeding. J Nutr 2020; 150:1041-1050. [PMID: 31950177 PMCID: PMC7198302 DOI: 10.1093/jn/nxz342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND High dietary fat and sugar promote cardiac hypertrophy independently from an increase in blood pressure. The respective contribution that each macronutrient exerts on cardiac growth signaling pathways remains unclear. OBJECTIVE The goal of this study was to investigate the mechanisms by which high amounts of dietary fat and sugar affect cardiac growth regulatory pathways. METHODS Male C57BL/6 mice (9 wk old; n = 20/group) were fed a standard rodent diet (STD; kcal% protein-fat-carbohydrate, 29-17-54), a high-fat diet (HFD; 20-60-20), a high-fat and high-sugar Western diet (WD; 20-45-35), a high-sugar diet with mixed carbohydrates (HCD; 20-10-70), or a high-sucrose diet (HSD; 20-10-70). Body composition was assessed weekly by EchoMRI. Whole-body glucose utilization was assessed with an intraperitoneal glucose tolerance test. After 6 wk on diets, mice were treated with saline or 20 mg/kg isoproterenol (ISO), and the activity of cardiac growth regulatory pathways was analyzed by immunoblotting. Data were analyzed by ANOVA with data from the STD group included for references only. RESULTS Compared with HCD and HSD, WD and HFD increased body fat mass 2.7- to 3.8-fold (P < 0.001), induced glucose intolerance (P < 0.001), and increased insulin concentrations >1.5-fold (P < 0.05), thereby enhancing basal and ISO-stimulated AKT phosphorylation at both threonine 308 and serine 473 residues (+25-63%; P < 0.05). Compared with HFD, the high-sugar diets potentiated ISO-mediated stimulation of the glucose-sensitive kinases PYK2 (>47%; P < 0.05 for HCD and HSD) and ERK (>34%; P < 0.05 for WD, HCD, and HSD), thereby leading to increased phosphorylation of protein synthesis regulator S6K1 at threonine 389 residue (>64%; P < 0.05 for WD, HCD, and HSD). CONCLUSIONS Dietary fat and sugar affect cardiac growth signaling pathways in C57BL/6 mice through distinct and additive mechanisms. The findings may provide new insights into the role of overnutrition in pathological cardiac remodeling.
Collapse
Affiliation(s)
- Sadia Ashraf
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS
| | - Gizem Yilmaz
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS
| | - Xu Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS
| | - Romain Harmancey
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS,Address correspondence to RH (e-mail: )
| |
Collapse
|
29
|
Gupte M, Umbarkar P, Singh AP, Zhang Q, Tousif S, Lal H. Deletion of Cardiomyocyte Glycogen Synthase Kinase-3 Beta (GSK-3β) Improves Systemic Glucose Tolerance with Maintained Heart Function in Established Obesity. Cells 2020; 9:cells9051120. [PMID: 32365965 PMCID: PMC7291092 DOI: 10.3390/cells9051120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/12/2023] Open
Abstract
Obesity is an independent risk factor for cardiovascular diseases (CVD), including heart failure. Thus, there is an urgent need to understand the molecular mechanism of obesity-associated cardiac dysfunction. We recently reported the critical role of cardiomyocyte (CM) Glycogen Synthase Kinase-3 beta (GSK-3β) in cardiac dysfunction associated with a developing obesity model (deletion of CM-GSK-3β prior to obesity). In the present study, we investigated the role of CM-GSK-3β in a clinically more relevant model of established obesity (deletion of CM-GSK-3β after established obesity). CM-GSK-3β knockout (GSK-3βfl/flCre+/-) and controls (GSK-3βfl/flCre-/-) mice were subjected to a high-fat diet (HFD) in order to establish obesity. After 12 weeks of HFD treatment, all mice received tamoxifen injections for five consecutive days to delete GSK-3β specifically in CMs and continued on the HFD for a total period of 55 weeks. To our complete surprise, CM-GSK-3β knockout (KO) animals exhibited a globally improved glucose tolerance and maintained normal cardiac function. Mechanistically, in stark contrast to the developing obesity model, deleting CM-GSK-3β in obese animals did not adversely affect the GSK-3αS21 phosphorylation (activity) and maintained canonical β-catenin degradation pathway and cardiac function. As several GSK-3 inhibitors are in the trial to treat various chronic conditions, including metabolic diseases, these findings have important clinical implications. Specifically, our results provide critical pre-clinical data regarding the safety of GSK-3 inhibition in obese patients.
Collapse
Affiliation(s)
- Manisha Gupte
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Department of Biology, Austin Peay State University, Clarksville, TN 37044, USA
| | - Prachi Umbarkar
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Anand Prakash Singh
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Qinkun Zhang
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Sultan Tousif
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Hind Lal
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
- Correspondence: ; Tel.: (205)-996-4219; Fax: (205)-975-5104
| |
Collapse
|
30
|
Wu YHS, Lin YL, Huang C, Chiu CH, Nakthong S, Chen YC. Cardiac protection of functional chicken-liver hydrolysates on the high-fat diet induced cardio-renal damages via sustaining autophagy homeostasis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2443-2452. [PMID: 31951016 DOI: 10.1002/jsfa.10261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/02/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cardio-renal syndrome (CRS) is an integrative problem related to chronic malnutrition, obesity, etc. Amino acids and peptides are regarded as protective and essential for tissues. Pepsin-digested chicken liver hydrolysates (CLHs), which are made from the byproducts of the poultry industry, are amino-acid based and of animal origin, and may be protective against the myocardial and renal damage induced by a high-fat diet (HFD). RESULTS Our results showed that CLHs contain large quantities of anserine, taurine, and branched-chain amino acids (BCAAs), and supplementing the diet with CLHs reduced (P < 0.05) weight gain, liver weight, peri-renal fat mass / adipocyte-area sizes, serum total cholesterol (TC), aspartate aminotransferase (AST), and low-density lipoprotein cholesterol (LDLC) levels in HFD-fed mice but increased (P < 0.05) serum high-density lipoprotein cholesterol (HDLC) levels. By histological analyses, CLHs alleviated (P < 0.05) renal lipid deposition and fibrosis, as well as cardiac fibrosis and inflammation of HFD-fed mice. Meanwhile, increased (P < 0.05) inflammatory and fibrotic cytokines levels in the myocardia of the HFD-fed mice were downregulated (P < 0.05) by CLH supplementation. Regarding autophagy-related protein levels, protective effects of CLHs on the myocardia against HFD feeding may result from the early blockade of the autophagy pathway to prevent autophagosome accumulation. CONCLUSION Functional CLHs could be a novel food ingredient as a cardio-renal protective agent against a high-fat dietary habit in a niche market. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chien Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsien Chiu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Sasitorn Nakthong
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Dubois-Deruy E, Rémy G, Alard J, Kervoaze G, Chwastyniak M, Baron M, Beury D, Siegwald L, Caboche S, Hot D, Gosset P, Grangette C, Pinet F, Wolowczuk I, Pichavant M. Modelling the Impact of Chronic Cigarette Smoke Exposure in Obese Mice: Metabolic, Pulmonary, Intestinal, and Cardiac Issues. Nutrients 2020; 12:nu12030827. [PMID: 32244932 PMCID: PMC7175208 DOI: 10.3390/nu12030827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Unhealthy lifestyle choices, such as bad eating behaviors and cigarette smoking, have major detrimental impacts on health. However, the inter-relations between obesity and smoking are still not fully understood. We thus developed an experimental model of high-fat diet-fed obese C57BL/6 male mice chronically exposed to cigarette smoke. Our study evaluated for the first time the resulting effects of the combined exposure to unhealthy diet and cigarette smoke on several metabolic, pulmonary, intestinal, and cardiac parameters. We showed that the chronic exposure to cigarette smoke modified the pattern of body fat distribution in favor of the visceral depots in obese mice, impaired the respiratory function, triggered pulmonary inflammation and emphysema, and was associated with gut microbiota dysbiosis, cardiac hypertrophy and myocardial fibrosis.
Collapse
Affiliation(s)
- Emilie Dubois-Deruy
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France; (E.D.-D.); (M.C.); (F.P.)
| | - Gaëlle Rémy
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France; (G.R.); (J.A.); (G.K.); (M.B.); (D.B.); (L.S.); (S.C.); (D.H.); (P.G.); (C.G.); (I.W.)
| | - Jeanne Alard
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France; (G.R.); (J.A.); (G.K.); (M.B.); (D.B.); (L.S.); (S.C.); (D.H.); (P.G.); (C.G.); (I.W.)
| | - Gwenola Kervoaze
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France; (G.R.); (J.A.); (G.K.); (M.B.); (D.B.); (L.S.); (S.C.); (D.H.); (P.G.); (C.G.); (I.W.)
| | - Maggy Chwastyniak
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France; (E.D.-D.); (M.C.); (F.P.)
| | - Morgane Baron
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France; (G.R.); (J.A.); (G.K.); (M.B.); (D.B.); (L.S.); (S.C.); (D.H.); (P.G.); (C.G.); (I.W.)
| | - Delphine Beury
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France; (G.R.); (J.A.); (G.K.); (M.B.); (D.B.); (L.S.); (S.C.); (D.H.); (P.G.); (C.G.); (I.W.)
| | - Léa Siegwald
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France; (G.R.); (J.A.); (G.K.); (M.B.); (D.B.); (L.S.); (S.C.); (D.H.); (P.G.); (C.G.); (I.W.)
| | - Ségolène Caboche
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France; (G.R.); (J.A.); (G.K.); (M.B.); (D.B.); (L.S.); (S.C.); (D.H.); (P.G.); (C.G.); (I.W.)
| | - David Hot
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France; (G.R.); (J.A.); (G.K.); (M.B.); (D.B.); (L.S.); (S.C.); (D.H.); (P.G.); (C.G.); (I.W.)
| | - Philippe Gosset
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France; (G.R.); (J.A.); (G.K.); (M.B.); (D.B.); (L.S.); (S.C.); (D.H.); (P.G.); (C.G.); (I.W.)
| | - Corinne Grangette
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France; (G.R.); (J.A.); (G.K.); (M.B.); (D.B.); (L.S.); (S.C.); (D.H.); (P.G.); (C.G.); (I.W.)
| | - Florence Pinet
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France; (E.D.-D.); (M.C.); (F.P.)
| | - Isabelle Wolowczuk
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France; (G.R.); (J.A.); (G.K.); (M.B.); (D.B.); (L.S.); (S.C.); (D.H.); (P.G.); (C.G.); (I.W.)
| | - Muriel Pichavant
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France; (G.R.); (J.A.); (G.K.); (M.B.); (D.B.); (L.S.); (S.C.); (D.H.); (P.G.); (C.G.); (I.W.)
- Correspondence: ; Tel.: +33-320-877-965
| |
Collapse
|
32
|
Ding X, Iyer R, Novotny C, Metzger D, Zhou HH, Smith GI, Yoshino M, Yoshino J, Klein S, Swaminath G, Talukdar S, Zhou Y. Inhibition of Grb14, a negative modulator of insulin signaling, improves glucose homeostasis without causing cardiac dysfunction. Sci Rep 2020; 10:3417. [PMID: 32099031 PMCID: PMC7042267 DOI: 10.1038/s41598-020-60290-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/09/2020] [Indexed: 01/25/2023] Open
Abstract
Insulin resistance increases patients' risk of developing type 2 diabetes (T2D), non-alcoholic steatohepatitis (NASH) and a host of other comorbidities including cardiovascular disease and cancer. At the molecular level, insulin exerts its function through the insulin receptor (IR), a transmembrane receptor tyrosine kinase. Data from human genetic studies have shown that Grb14 functions as a negative modulator of IR activity, and the germline Grb14-knockout (KO) mice have improved insulin signaling in liver and skeletal muscle. Here, we show that Grb14 knockdown in liver, white adipose tissues, and heart with an AAV-shRNA (Grb14-shRNA) improves glucose homeostasis in diet-induced obese (DIO) mice. A previous report has shown that germline deletion of Grb14 in mice results in cardiac hypertrophy and impaired systolic function, which could severely limit the therapeutic potential of targeting Grb14. In this report, we demonstrate that there are no significant changes in cardiac function as measured by echocardiography in the Grb14-knockdown mice fed a high-fat diet for a period of four months. While additional studies are needed to further confirm the efficacy and to de-risk potential negative cardiac effects in preclinical models, our data support the therapeutic strategy of inhibiting Grb14 to treat diabetes and related conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Gordon I Smith
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mihoko Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
33
|
Reggio A, Rosina M, Krahmer N, Palma A, Petrilli LL, Maiolatesi G, Massacci G, Salvatori I, Valle C, Testa S, Gargioli C, Fuoco C, Castagnoli L, Cesareni G, Sacco F. Metabolic reprogramming of fibro/adipogenic progenitors facilitates muscle regeneration. Life Sci Alliance 2020; 3:3/3/e202000646. [PMID: 32019766 PMCID: PMC7003708 DOI: 10.26508/lsa.202000660] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/25/2022] Open
Abstract
High-fat diet ameliorates muscle dystrophic phenotype by promoting the FAP-dependent myogenesis of satellite cells. In Duchenne muscular dystrophy (DMD), the absence of the dystrophin protein causes a variety of poorly understood secondary effects. Notably, muscle fibers of dystrophic individuals are characterized by mitochondrial dysfunctions, as revealed by a reduced ATP production rate and by defective oxidative phosphorylation. Here, we show that in a mouse model of DMD (mdx), fibro/adipogenic progenitors (FAPs) are characterized by a dysfunctional mitochondrial metabolism which correlates with increased adipogenic potential. Using high-sensitivity mass spectrometry–based proteomics, we report that a short-term high-fat diet (HFD) reprograms dystrophic FAP metabolism in vivo. By combining our proteomic dataset with a literature-derived signaling network, we revealed that HFD modulates the β-catenin–follistatin axis. These changes are accompanied by significant amelioration of the histological phenotype in dystrophic mice. Transplantation of purified FAPs from HFD-fed mice into the muscles of dystrophic recipients demonstrates that modulation of FAP metabolism can be functional to ameliorate the dystrophic phenotype. Our study supports metabolic reprogramming of muscle interstitial progenitor cells as a novel approach to alleviate some of the adverse outcomes of DMD.
Collapse
Affiliation(s)
- Alessio Reggio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marco Rosina
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Natalie Krahmer
- Department Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Alessandro Palma
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Giorgia Massacci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Illari Salvatori
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Stefano Testa
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Fuoco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Luisa Castagnoli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy .,Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
34
|
Sodium Selenate Ameliorates Cardiac Injury Developed from High-Fat Diet in Mice through Regulation of Autophagy Activity. Sci Rep 2019; 9:18752. [PMID: 31822702 PMCID: PMC6904559 DOI: 10.1038/s41598-019-54985-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is often accompanied by dyslipidemia, high blood glucose, hypertension, atherosclerosis, and myocardial dysfunction. Selenate is a vital antioxidant in the cardiovascular system. The beneficial effects of selenate on obesity-associated cardiac dysfunction and potential molecular mechanism were identified in both H9C2 cells and C57BL/6J mice hearts. The cardiac histological preformation in C57BL/6J mice were evaluated by cross-sectional area (CSA) of cardiomyocytes and percent area of fibrosis in the left ventricles. The cardiac autophagy flux in H9C2 cells and C57BL/6J mice hearts was analyzed by Western blots and the number of autophagosomes and autolysosome in H9C2 cells. In the present study, we found that lipid overload caused increases in serum lipid, CSA, and percent area of fibrosis. We further found that lipid-induced accumulation of autophagosomes was due to depressed autophagy degradation, which was not restored in the pretreatment with 3-methyladenine and chloroquine, whereas, it was improved by rapamycin. Moreover, we demonstrated that increased levels of serum lipid, CSA, percent area of fibrosis and mRNA expression related to cardiomyocytes hypertrophy and fibrosis were significantly reduced after selenate treatments of mice. We also found selenate treatment significantly down-regulated activity of the Akt pathway, which was activated in response to lipid-overload. Furthermore, selenate dramatically improved cardiac autophagic degradation which was suppressed after exposure to lipid-overload in both H9C2 cells and C57BL/6J mice hearts. Taken together, selenate offers therapeutic intervention in lipid-related metabolic disorders, and protection against cardiac remodeling, likely through regulation of the activity of autophagic degradation and Akt pathway.
Collapse
|
35
|
Murine model of left ventricular diastolic dysfunction and electro-mechanical uncoupling following high-fat diet. Int J Obes (Lond) 2019; 44:1428-1439. [PMID: 31792335 DOI: 10.1038/s41366-019-0500-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/24/2019] [Accepted: 11/06/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES It is well established that obesity is an independent risk factor for cardiac death. In particular various cardiac alterations have been described in obese patients such as long QT on ECG, impaired diastolic filling of the left ventricle (LV), and all-type arrhythmias. In the present study, the above alterations were all reproduced in a mouse model of fat diet-induced obesity. ANIMALS/METHODS In C57BL6 mice fed on a high fat (n = 20, HF-group) or standard diet (n = 20, C-group) for 13 weeks, balanced by sex and age, we examined heart morphology and function by high-frequency ultrasounds and electric activity by surface ECG. Besides, the autonomic sympathovagal balance (heart-rate variability) and the arrhythmogenic susceptibility to adrenergic challenge (i.p. isoproterenol) were compared in the two groups, as well as glucose tolerance (i.p. glucose test) and liver steatosis (ultrasounds). RESULTS Body weight in HF-group exceeded C-group at the end of the experiment (+28% p < 0.01). An abnormal ventricular repolarization (long QTc on ECG) together with impaired LV filling rate and increased LV mass was found in HF-group as compared to C. Moreover, HF-group showed higher heart rate, unbalanced autonomic control with adrenergic prevalence and a greater susceptibility to develop rhythm disturbances under adrenergic challenge (i.p. isoprenaline). Impaired glucose tolerance and higher liver fat accumulation were also found in HF mice compared to C. CONCLUSIONS The described murine model of 13 weeks on HF diet, well reproduced the cardiovascular and metabolic disorders reported in clinical obesity, suggesting its potential utility as translational mean suitable for testing new pharmaco-therapeutic approaches to the treatment of obesity and its comorbidity.
Collapse
|
36
|
Anaruma CP, Pereira RM, Cristina da Cruz Rodrigues K, Ramos da Silva AS, Cintra DE, Ropelle ER, Pauli JR, Pereira de Moura L. Rock protein as cardiac hypertrophy modulator in obesity and physical exercise. Life Sci 2019; 254:116955. [PMID: 31626788 DOI: 10.1016/j.lfs.2019.116955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 01/03/2023]
Abstract
Obesity and cardiovascular diseases are worldwide public health issues. In this review, we discussed the participation of ROCK protein in cardiac hypertrophy, mainly through the modulation of leptin and insulin signaling pathways. Leptin plays a role in cardiovascular disease development and, through the Rho-associated protein kinase (ROCK), promotes cardiac hypertrophy. ROCK protein, is regulated by small Rho-GTPases and has two isoforms with high homology. ROCK is able to activate the MAP kinase (MAPK) pathway and modulate insulin signaling in the heart, participating in cardiac hypertrophy development of concentric and eccentric left ventricle growth. Although different types of stimulus can lead to morphologically antagonistic heart growth, physical exercise promotes improvements in hemodynamic function, emerging as a promising non-pharmacological tool to improve overall health. Leptin can activate ROCK in a pathological way, increasing MAPK activity and decreasing insulin signaling via insulin receptor substrate 1 (IRS1) serine 307 residue phosphorylation, phosphatase and tensin homolog, and protein kinase Cβ2. In turn, physical exercise decreases leptin levels and positively modulates insulin signaling as well as increases ROCK-dependent IRS1 (Ser632/635) phosphorylation, improving phosphatidylinositol 3-kinase/protein kinase B axis and promoting physiologic heart growth. Currently, there is a lack of studies about differences in ROCK isoforms, especially during exercise and/or obesity. However, the understanding of its biological function and the complex mechanism underlying the distinct types of cardiac hypertrophy development can be a useful tool in the improvement and treatment of cardiovascular outcomes.
Collapse
Affiliation(s)
- Chadi Pellegrini Anaruma
- Department of Physical Education, Institute of Biosciences - São Paulo State University (UNESP), Rio Claro, SP, Brazil; Exercise Cell Biology Lab (ECEBIL), School of Applied Science - University of Campinas, Limeira, SP, Brazil
| | - Rodrigo Martins Pereira
- Exercise Cell Biology Lab (ECEBIL), School of Applied Science - University of Campinas, Limeira, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Kellen Cristina da Cruz Rodrigues
- Exercise Cell Biology Lab (ECEBIL), School of Applied Science - University of Campinas, Limeira, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil
| | | | - Dennys Esper Cintra
- CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Nutritional Genomics (LabGeN), School of Applied Science - University of Campinas, Limeira, SP, Brazil
| | - Eduardo Rochete Ropelle
- CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science - University of Campinas, Limeira, SP, Brazil
| | - José Rodrigo Pauli
- CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science - University of Campinas, Limeira, SP, Brazil
| | - Leandro Pereira de Moura
- Department of Physical Education, Institute of Biosciences - São Paulo State University (UNESP), Rio Claro, SP, Brazil; Exercise Cell Biology Lab (ECEBIL), School of Applied Science - University of Campinas, Limeira, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil.
| |
Collapse
|
37
|
Natarajan N, Vujic A, Das J, Wang AC, Phu KK, Kiehm SH, Ricci-Blair EM, Zhu AY, Vaughan KL, Colman RJ, Mattison JA, Lee RT. Effect of dietary fat and sucrose consumption on cardiac fibrosis in mice and rhesus monkeys. JCI Insight 2019; 4:128685. [PMID: 31415241 PMCID: PMC6795382 DOI: 10.1172/jci.insight.128685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/12/2019] [Indexed: 01/11/2023] Open
Abstract
Calorie restriction (CR) improved health span in 2 longitudinal studies in nonhuman primates (NHPs), yet only the University of Wisconsin (UW) study demonstrated an increase in survival in CR monkeys relative to controls; the National Institute on Aging (NIA) study did not. Here, analysis of left ventricle samples showed that CR did not reduce cardiac fibrosis relative to controls. However, there was a 5.9-fold increase of total fibrosis in UW hearts, compared with NIA hearts. Diet composition was a prominent difference between the studies; therefore, we used the NHP diets to characterize diet-associated molecular and functional changes in the hearts of mice. Consistent with the findings from the NHP samples, mice fed a UW or a modified NIA diet with increased sucrose and fat developed greater cardiac fibrosis compared with mice fed the NIA diet, and transcriptomics analysis revealed diet-induced activation of myocardial oxidative phosphorylation and cardiac muscle contraction pathways.
Collapse
Affiliation(s)
- Niranjana Natarajan
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Ana Vujic
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jishnu Das
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Annie C. Wang
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Krystal K. Phu
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Spencer H. Kiehm
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Elisabeth M. Ricci-Blair
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Anthony Y. Zhu
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Kelli L. Vaughan
- National Institute on Aging, NIH, Baltimore, Maryland, USA
- SoBran BioSciences, SoBran Inc., Burtonsville, Maryland, USA
| | - Ricki J. Colman
- Department of Cell and Regenerative Biology and Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Obese mice exposed to psychosocial stress display cardiac and hippocampal dysfunction associated with local brain-derived neurotrophic factor depletion. EBioMedicine 2019; 47:384-401. [PMID: 31492565 PMCID: PMC6796537 DOI: 10.1016/j.ebiom.2019.08.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Obesity and psychosocial stress (PS) co-exist in individuals of Western society. Nevertheless, how PS impacts cardiac and hippocampal phenotype in obese subjects is still unknown. Nor is it clear whether changes in local brain-derived neurotrophic factor (BDNF) account, at least in part, for myocardial and behavioral abnormalities in obese experiencing PS. METHODS In adult male WT mice, obesity was induced via a high-fat diet (HFD). The resident-intruder paradigm was superimposed to trigger PS. In vivo left ventricular (LV) performance was evaluated by echocardiography and pressure-volume loops. Behaviour was indagated by elevated plus maze (EPM) and Y-maze. LV myocardium was assayed for apoptosis, fibrosis, vessel density and oxidative stress. Hippocampus was analyzed for volume, neurogenesis, GABAergic markers and astrogliosis. Cardiac and hippocampal BDNF and TrkB levels were measured by ELISA and WB. We investigated the pathogenetic role played by BDNF signaling in additional cardiac-selective TrkB (cTrkB) KO mice. FINDINGS When combined, obesity and PS jeopardized LV performance, causing prominent apoptosis, fibrosis, oxidative stress and remodeling of the larger coronary branches, along with lower BDNF and TrkB levels. HFD/PS weakened LV function similarly in WT and cTrkB KO mice. The latter exhibited elevated LV ROS emission already at baseline. Obesity/PS augmented anxiety-like behaviour and impaired spatial memory. These changes were coupled to reduced hippocampal volume, neurogenesis, local BDNF and TrkB content and augmented astrogliosis. INTERPRETATION PS and obesity synergistically deteriorate myocardial structure and function by depleting cardiac BDNF/TrkB content, leading to augmented oxidative stress. This comorbidity triggers behavioral deficits and induces hippocampal remodeling, potentially via lower BDNF and TrkB levels. FUND: J.A. was in part supported by Rotary Foundation Global Study Scholarship. G.K. was supported by T32 National Institute of Health (NIH) training grant under award number 1T32AG058527. S.C. was funded by American Heart Association Career Development Award (19CDA34760185). G.A.R.C. was funded by NIH (K01HL133368-01). APB was funded by a Grant from the Friuli Venezia Giulia Region entitled: "Heart failure as the Alzheimer disease of the heart; therapeutic and diagnostic opportunities". M.C. was supported by PRONAT project (CNR). N.P. was funded by NIH (R01 HL136918) and by the Magic-That-Matters fund (JHU). V.L. was in part supported by institutional funds from Scuola Superiore Sant'Anna (Pisa, Italy), by the TIM-Telecom Italia (WHITE Lab, Pisa, Italy), by a research grant from Pastificio Attilio Mastromauro Granoro s.r.l. (Corato, Italy) and in part by ETHERNA project (Prog. n. 161/16, Fondazione Pisa, Italy). Funding source had no such involvement in study design, in the collection, analysis, interpretation of data, in the writing of the report; and in the decision to submit the paper for publication.
Collapse
|
39
|
Jin N, Wang Y, Liu L, Xue F, Jiang T, Xu M. Dysregulation of the Renin-Angiotensin System and Cardiometabolic Status in Mice Fed a Long-Term High-Fat Diet. Med Sci Monit 2019; 25:6605-6614. [PMID: 31523052 PMCID: PMC6738017 DOI: 10.12659/msm.914877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background This study aimed to investigate the renin-angiotensin system (RAS) and cardiometabolic status in mice fed a long-term high-fat diet (HFD). Material/Methods C57BL/6J mice were randomly assigned to the control group on a normal diet (ND) (n=15) and the HFD group (n=15). Serum biomarkers were measured, including total cholesterol (TC), triglyceride (TG), insulin, glycated hemoglobin (HbA1c), brain natriuretic peptide (BNP), renin, angiotensin-converting enzyme (ACE), angiotensin II (Ang-II), Ang-II type 1 receptor (AT1R), and aldosterone. Cardiac histology was measured by the cross-sectional area (CSA) of cardiomyocytes and collagen deposition. Levels of myocardial intercalated disc (ICD) proteins and mRNA were analyzed by Western blot and real-time quantitative polymerase chain reaction (RT-qPCR), respectively. The localization of ICD proteins was evaluated by immunohistochemistry (IHC). Results Compared with ND, HFD resulted in increased blood glucose, body weight, TC, TG, HbA1c, insulin, and BNP and levels of serum ACE, Ang-II, aldosterone, AT1R, cardiomyocyte CSA, and interstitial collagen in the myocardium compared. Also, HFD significantly down-regulated connexin-43, and upregulated β-catenin, N-cadherin, and plakoglobin in the hearts of HFD mice compared with ND mice. However, the deposition of ICD proteins was not changed in the hearts of HFD mice compared with ND mice. Conclusions Long-term HFD in mice resulted in left ventricular hypertrophy, interstitial fibrosis, dysregulation of RAS, and abnormal expression of ICD proteins compared with ND mice, but did not affect the distribution of cardiomyocyte ICD proteins. Long-term HFD resulted in cardiac remodeling and altered expression of ICD proteins through RAS activation.
Collapse
Affiliation(s)
- Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Yu Wang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China (mainland)
| | - Lin Liu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China (mainland)
| | - Feng Xue
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China (mainland)
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China (mainland)
| | - Mingzhu Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China (mainland)
| |
Collapse
|
40
|
Castañeda D, Gabani M, Choi SK, Nguyen QM, Chen C, Mapara A, Kassan A, Gonzalez AA, Ait-Aissa K, Kassan M. Targeting Autophagy in Obesity-Associated Heart Disease. Obesity (Silver Spring) 2019; 27:1050-1058. [PMID: 30938942 DOI: 10.1002/oby.22455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/30/2019] [Indexed: 01/18/2023]
Abstract
Over the past three decades, the increasing rates of obesity have led to an alarming obesity epidemic worldwide. Obesity is associated with an increased risk of cardiovascular diseases; thus, it is essential to define the molecular mechanisms by which obesity affects heart function. Individuals with obesity and overweight have shown changes in cardiac structure and function, leading to cardiomyopathy, hypertrophy, atrial fibrillation, and arrhythmia. Autophagy is a highly conserved recycling mechanism that delivers proteins and damaged organelles to lysosomes for degradation. In the hearts of patients and mouse models with obesity, this process is impaired. Furthermore, it has been shown that autophagy flux restoration in obesity models improves cardiac function. Therefore, autophagy may play an important role in mitigating the adverse effects of obesity on the heart. Throughout this review, we will discuss the benefits of autophagy on the heart in obesity and how regulating autophagy might be a therapeutic tool to reduce the risk of obesity-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Diana Castañeda
- Department of Biological Sciences, California State University, Los Angeles, California, USA
| | - Mohanad Gabani
- Cardiovascular Division, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Soo-Kyoung Choi
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Quynh My Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Cheng Chen
- Department of Emergency and Critical Care, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China, Shanghai
| | - Ayesha Mapara
- Department of Biology, Northeastern Illinois University, Chicago, Illinois, USA
| | - Adam Kassan
- School of Pharmacy, West Coast University, Los Angeles, California, USA
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Karima Ait-Aissa
- Cardiovascular Division, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Modar Kassan
- Cardiovascular Division, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
41
|
Shen CJ, Kong B, Shuai W, Liu Y, Wang GJ, Xu M, Zhao JJ, Fang J, Fu H, Jiang XB, Huang H. Myeloid differentiation protein 1 protected myocardial function against high-fat stimulation induced pathological remodelling. J Cell Mol Med 2019; 23:5303-5316. [PMID: 31140723 PMCID: PMC6653035 DOI: 10.1111/jcmm.14407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 11/30/2022] Open
Abstract
Myeloid differentiation 1 (MD‐1) is a secreted protein that regulates the immune response of B cell through interacting with radioprotective 105 (RP105). Disrupted immune response may contribute to the development of cardiac diseases, while the roles of MD‐1 remain elusive. Our studies aimed to explore the functions and molecular mechanisms of MD‐1 in obesity‐induced cardiomyopathy. H9C2 myocardial cells were treated with free fatty acid (FFA) containing palmitic acid and oleic acid to challenge high‐fat stimulation and adenoviruses harbouring human MD‐1 coding sequences or shRNA for MD‐1 overexpression or knockdown in vitro. MD‐1 overexpression or knockdown transgenic mice were generated to assess the effects of MD‐1 on high‐fat diet (HD) induced cardiomyopathy in vivo. Our results showed that MD‐1 was down‐regulated in H9C2 cells exposed to FFA stimulation for 48 hours and in obesity mice induced by HD for 20 weeks. Both in vivo and in vitro, silencing of MD‐1 accelerated myocardial function injury induced by HD stimulation through increased cardiac hypertrophy and fibrosis, while overexpression of MD‐1 alleviated the effects of HD by inhibiting the process of cardiac remodelling. Moreover, the MAPK and NF‐κB pathways were overactivated in MD‐1 deficient mice and H9C2 cells after high‐fat treatment. Inhibition of MAPK and NF‐κB pathways played a cardioprotective role against the adverse effects of MD‐1 silencing on high‐fat stimulation induced pathological remodelling. In conclusion, MD‐1 protected myocardial function against high‐fat stimulation induced cardiac pathological remodelling through negative regulation for MAPK/NF‐κB signalling pathways, providing feasible strategies for obesity cardiomyopathy.
Collapse
Affiliation(s)
- Cai-Jie Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Guang-Ji Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Min Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Jing-Jing Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Jin Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Xiao-Bo Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| |
Collapse
|
42
|
Liang Y, Young JL, Kong M, Tong Y, Qian Y, Freedman JH, Cai L. Gender Differences in Cardiac Remodeling Induced by a High-Fat Diet and Lifelong, Low-Dose Cadmium Exposure. Chem Res Toxicol 2019; 32:1070-1081. [PMID: 30912652 DOI: 10.1021/acs.chemrestox.8b00386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Childhood obesity, which is prevalent in developed countries, is a metabolic risk factor for cardiovascular disease. Cadmium (Cd), a ubiquitous environmental toxic metal, also has deleterious effects on the cardiovascular system. However, the combined effects of a high-fat diet (HFD) and lifelong, low-dose Cd exposure on cardiac remodeling remain unclear. This study aims to determine the effects of combined HFD and Cd exposure on cardiac remodeling, as well as gender-specific differences in the response. C57BL/6J mice were exposed to Cd at a low dose (L-Cd, 0.5 ppm) or high dose (H-Cd, 5 ppm) via drinking water from conception to sacrifice. After being weaned, the offspring mice were fed with a HFD (42% kcal from fat) for an additional 10 weeks. H-Cd exposure significantly increased Cd accumulation in the hearts of both parents and their offspring; a HFD showed no added effects on cardiac Cd content. H-Cd exposure increased cardiac metallothionein protein levels only in female mice, regardless of dietary intake. Histological analysis revealed that H-Cd exposure combined with a HFD induced cardiac hypertrophy and fibrosis only in female mice. This was further supported by elevated expression of ANP and COL1A1 protein levels along with COL1A1, COL1A2, and COL3A1 mRNA levels. Profibrotic markers PAI-1, CTGF, and FN were also elevated in HFD/H-Cd-exposed female mice. Levels of the oxidative stress marker 3-NT significantly increased in the hearts of HFD-fed female mice, whereas Cd exposure showed no additional effects. Of all the antioxidant markers examined, levels of CAT significantly increased in mice fed a HFD, regardless of gender and Cd exposure. In summary, a HFD combined with lifelong, low-dose Cd exposure induces cardiac hypertrophy and fibrosis in female but not male mice, a response that is independent of oxidative stress.
Collapse
Affiliation(s)
- Yaqin Liang
- Department of Pediatrics , First Affiliated Hospital of Wenzhou Medical University , Zhejiang 325000 , China
| | | | | | | | - Yan Qian
- Department of Pediatrics , First Affiliated Hospital of Wenzhou Medical University , Zhejiang 325000 , China
| | | | | |
Collapse
|
43
|
Geng Z, Fan WY, Zhou B, Ye C, Tong Y, Zhou YB, Xiong XQ. FNDC5 attenuates obesity-induced cardiac hypertrophy by inactivating JAK2/STAT3-associated inflammation and oxidative stress. J Transl Med 2019; 17:107. [PMID: 30940158 PMCID: PMC6444535 DOI: 10.1186/s12967-019-1857-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/26/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chronic low-grade inflammation and oxidative stress play important roles in the development of obesity-induced cardiac hypertrophy. Here, we investigated the role of Fibronectin type III domain containing 5 (FNDC5) in cardiac inflammation and oxidative stress in obesity-induced cardiac hypertrophy. METHODS Male wild-type and FNDC5-/- mice were fed normal chow or high fat diet (HFD) for 20 weeks to induce obesity, and primary cardiomyocytes and H9c2 cells treated with palmitate (PA) were used as in vitro model. The therapeutic effects of lentiviral vector-mediated FNDC5 overexpression were also examined in HFD-induced cardiac hypertrophy. RESULTS High fat diet manifested significant increases in body weight and cardiac hypertrophy marker genes expression, while FNDC5 deficiency aggravated cardiac hypertrophy evidenced by increased Nppa, Nppb and Myh7 mRNA level and cardiomyocytes area, in association with enhanced cardiac inflammatory cytokines expression, oxidative stress level and JAK2/STAT3 activation in HFD-fed mice. FNDC5 deficiency in primary cardiomyocytes or FNDC5 knockdown in H9c2 cells enhanced PA-induced inflammatory responses and NOX4 expression. Exogenous FNDC5 pretreatment attenuated PA-induced cardiomyocytes hypertrophy, inflammatory cytokines up-regulation and oxidative stress in primary cardiomyocytes and H9c2 cells. FNDC5 overexpression attenuated cardiac hypertrophy as well as cardiac inflammation and oxidative stress in HFD-fed mice. CONCLUSIONS FNDC5 attenuates obesity-induced cardiac hypertrophy by inactivating JAK2/STAT3 associated-cardiac inflammation and oxidative stress. The cardio-protective role of FNDC5 shed light on future therapeutic interventions in obesity and related cardiovascular complications.
Collapse
Affiliation(s)
- Zhi Geng
- Department of Cardiac Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Wen-Yong Fan
- State Key Laboratory of Medical Neurobiology, Department of Physiology and Biophysics, School of Life Sciences and Collaborative Innovation Centre for Brain Science, Fudan University, Shanghai, 200438, China
| | - Bing Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Chao Ye
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Ying Tong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Ye-Bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Xiao-Qing Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
44
|
Intermittent Fasting in Cardiovascular Disorders-An Overview. Nutrients 2019; 11:nu11030673. [PMID: 30897855 PMCID: PMC6471315 DOI: 10.3390/nu11030673] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/25/2022] Open
Abstract
Intermittent fasting is a form of time restricted eating (typically 16 h fasting and 8 h eating), which has gained popularity in recent years and shows promise as a possible new paradigm in the approach to weight loss and the reduction of inflammation, and has many potential long term health benefits. In this review, the authors will incorporate many aspects of fasting, mainly focusing on its effects on the cardiovascular system, involving atherosclerosis progression, benefits for diabetes mellitus type 2, lowering of blood pressure, and exploring other cardiovascular risk factors (such as lipid profile and inflammation).
Collapse
|
45
|
Gao H, Wu D, Zhang E, Liang T, Meng X, Chen L, Wu Y. Phasic change and apoptosis regulation of JAK2/STAT3 pathway in a type 2 diabetic rat model. Am J Transl Res 2019; 11:911-930. [PMID: 30899391 PMCID: PMC6413285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
JAK2/STAT3 is a cardio-protective, pro-inflammation pathway, the function of which in cardiomyopathy caused by diabetic (DCM) is currently unknown. Here we explore the role of the JAK2/STAT3 pathway in DCM employing different time courses and a type 2 DM (T2DM) rat model. We examined the interactions of metformin and sitagliptin treatment with the JAK2/STAT3 pathway and cardiac remodeling. A T2DM rat model was induced by high fat diet/streptozotocin (HFD/STZ) and treated with metformin, sitagliptin (10 mg/d or 20 mg/d) or a placebo. Cell inflammation markers, cardiac remodeling and cardiomyocyte apoptosis were evaluated. We observed an activated inflammation reaction as well as activation of the JAK2/STAT3 thought-out the experiment in the simple HFD group only in the early stage of the disease (until week 9). JAK2/STAT3 activity showed a phasic peculiarity as increased inflammation was observed in prolongation of the DCM accompanied with an accelerated cardiac dysfunction but reduced phosphorylation of myocardial STAT3. Moreover, in the metformin but not the sitagliptin treated group, JAK2/STAT3 activation was associated with having better improved cardiac remolding and reduced myocardial apoptosis. In vitro studies further validated that metformin could activate JAK2/STAT3 pathway and alleviate apoptosis of NRCMs under hyperglycemia incubation. The phasic feature of JAK2/STAT3 pathway activation may participate in the pathophysiological development of DCM. The superior cardio-protective effect of metformin over sitagliptin treatment may partly account for the differences we observed in JAK2/STAT3 activation, indicating that measuring JAK2/STAT3 pathway coupled with metformin treatment may give insight into a more promising DM treatment.
Collapse
Affiliation(s)
- Haiyang Gao
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Dewei Wu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Erli Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Tuo Liang
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
| | - Xianmin Meng
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Lanying Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Yongjian Wu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
46
|
Hu WS, Ting WJ, Tamilselvi S, Day CH, Wang T, Chiang WD, Viswanadha VP, Yeh YL, Lin WT, Huang CY. Oral administration of alcalase potato protein hydrolysate-APPH attenuates high fat diet-induced cardiac complications via TGF-β/GSN axis in aging rats. ENVIRONMENTAL TOXICOLOGY 2019; 34:5-12. [PMID: 30240538 DOI: 10.1002/tox.22651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Consumption of high fat diet (HFD) is associated with increased cardiovascular risk factors among elderly people. Aging and obesity induced-cardiac remodeling includes hypertrophy and fibrosis. Gelsolin (GSN) induces cardiac hypertrophy and TGF-β, a key cytokine, which induces fibrosis. The relationship between TGF-β and GSN in aging induced cardiac remodeling is still unknown. We evaluated the expressions of TGF-β and GSN in HFD fed 22 months old aging SD rats, followed by the administration of either probucol or alcalase potato protein hydrolysate (APPH). Western blotting and Masson trichrome staining showed that APPH (45 and 75 mg/kg/day) and probucol (500 mg/kg/day) treatments significantly reduced the aging and HFD-induced hypertrophy and fibrosis. Echocardiograph showed that the performance of the hearts was improved in APPH, and probucol treated HFD aging rats. Serum from all rats was collected and H9c2 cells were cultured with collected serums separately. The GSN dependent hypertrophy was inhibited with an exogenous TGF-β in H9c2 cells cultured in HFD+ APPH treated serum. Thus, we propose that along with its role in cardiac fibrosis, TGF-β also acts as an upstream activator of GSN dependent hypertrophy. Hence, TGF-β in serum could be a promising therapeutic target for cardiac remodeling in aging and/or obese subjects.
Collapse
Affiliation(s)
- Wei Syun Hu
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University, Hospital, Taichung, Taiwan
| | - Wei Jen Ting
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Shanmugam Tamilselvi
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | - Ting Wang
- Department of hospitality management, College of Agriculture, Tunghai University, Taichung, Taiwan
| | - Wen-Dee Chiang
- Department of Food science, College of Agriculture, Tunghai University, Taichung, Taiwan
| | | | - Yu Lan Yeh
- Department of pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Wan Teng Lin
- Department of hospitality management, College of Agriculture, Tunghai University, Taichung, Taiwan
| | - Chih Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
47
|
Camelo L, Marinho TDS, Águila MB, Souza-Mello V, Barbosa-da-Silva S. Intermittent fasting exerts beneficial metabolic effects on blood pressure and cardiac structure by modulating local renin-angiotensin system in the heart of mice fed high-fat or high-fructose diets. Nutr Res 2018; 63:51-62. [PMID: 30824397 DOI: 10.1016/j.nutres.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/01/2018] [Accepted: 12/07/2018] [Indexed: 02/09/2023]
Abstract
Intermittent fasting (IF) sets the preference for fats as fuel and is linked to beneficial metabolic outcomes; however, the effects in the renin-angiotensin system (RAS) in the heart remains to be determined. We hypothesized that IF improves blood pressure and lipid profiles due to a less activated local RAS in the left ventricle of mice, irrespective of the dietary scheme. This study aimed to evaluate the effects of intermittent fasting on cardiovascular parameters and local RAS in the left ventricle (LV) of mice fed either a high-fat (HF) or high-fructose diet (HFru). Metabolic alterations were induced in C57BL/6 mice by providing them free access to a high-fat or a high-fructose (HFru) diet for 8 weeks. Following the 8-week metabolic alteration period, the mice were subjected to the IF protocol in which mice were deprived of food for 24 hours, every other day, for a period of 4 weeks. The IF protocol caused significant reduction in body weight, systolic blood pressure, blood glucose, total cholesterol, and triacylglycerol levels, in addition to augmenting the plasma and urinary uric acid levels, irrespective of the diet. Post IF protocol, beneficial LV remodeling was observed in animals fed either diet and included reduced LV mass, thickness, and cardiomyocyte cross-sectional area. These results comply with the improved RAS modulation, which favored ACE2/MAS receptor axis over the renin/ACE/AT1 axis. In conclusion, the significant decrease in weight brought about as a result of the IF protocol lead to modulation of the local RAS, with the consequential benefit of LV remodeling and reduction in blood pressure, irrespective of the diet.
Collapse
Affiliation(s)
- Luana Camelo
- Institute of Biology, State University of Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
48
|
Fernandes T, Barretti DL, Phillips MI, Menezes Oliveira E. Exercise training prevents obesity-associated disorders: Role of miRNA-208a and MED13. Mol Cell Endocrinol 2018; 476:148-154. [PMID: 29746886 DOI: 10.1016/j.mce.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/17/2018] [Accepted: 05/05/2018] [Indexed: 12/21/2022]
Abstract
Exercise training (ET) has been established as an important treatment for obesity, since it counteracts aberrant cardiac metabolism and weight gain; however, underlying mechanisms remain to be further determined. MicroRNAs (miRNAs) inhibit protein expression by base-pairing with the 3' UTRs of mRNA targets. MiRNA-208a is a cardiac-specific miRNA that regulates β-MHC content and systemic energy homeostasis via MED13. We investigated whether ET regulates the cardiac miRNA-208a and its target MED13, reducing the weight gain and β-MHC expression in obese Zucker rats (OZR). OZR (n = 11) and Lean (L, n = 10) male rats were assigned into 4 groups: OZR, trained OZR (OZRT), L and trained L (LT). Swimming ET consisted of 60 min of duration, 1x/day, 5x/week/10 weeks. MiRNA and gene expression were analyzed by real-time PCR and protein levels by western blot. Resting bradycardia was observed in trained groups. ET reduced weight gain, retroperitoneal fat weight and adipocyte cell size in OZRT compared with OZR group. Cardiac miRNA-208a levels increased 57% in OZR paralleled with a decrease of 39% in MED13 protein levels compared with L group. In contrast, ET corrected the cardiac miRNA-208a and MED13 levels in OZRT compared with L group. Furthermore, ET reduced the increased cardiac mass and normalized β-MHC protein levels caused by obesity. These results suggest that ET can prevent weight gain and pathological cardiac hypertrophy via increased of cardiac MED13 by the regulation of miRNA-208a. Therefore, miRNA-208a can be used as potential therapeutic target for metabolic and cardiac disorders.
Collapse
Affiliation(s)
- Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil; Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Diego Lopes Barretti
- Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - M Ian Phillips
- Laboratory of Stem Cells, Keck Graduate Institute, Claremont, CA, USA
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
49
|
Early Imaging Biomarker of Myocardial Glucose Adaptations in High-Fat-Diet-Induced Insulin Resistance Model by Using 18F-FDG PET and [U- 13C]glucose Nuclear Magnetic Resonance Tracer. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:8751267. [PMID: 30116165 PMCID: PMC6079607 DOI: 10.1155/2018/8751267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
Background High-fat diet (HFD) induces systemic insulin resistance leading to myocardial dysfunction. We aim to characterize the early adaptations of myocardial glucose utility to HFD-induced insulin resistance. Methods Male Sprague–Dawley rats were assigned into two groups, fed a regular chow diet or HFD ad libitum for 10 weeks. We used in vivo imaging of cardiac magnetic resonance (CMR), 18F-FDG PET, and ex vivo nuclear magnetic resonance (NMR) metabolomic analysis for the carbon-13-labeled glucose ([U-13C]Glc) perfused myocardium. Results As compared with controls, HFD rats had a higher ejection fraction and a smaller left ventricular end-systolic volume (P < 0.05), with SUVmax of myocardium on 18F-FDG PET significantly increased in 4 weeks (P < 0.005). The [U-13C]Glc probed the increased glucose uptake being metabolized into pyruvate and acetyl-CoA, undergoing oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, and then synthesized into glutamic acid and glutamine, associated with overexpressed LC3B (P < 0.05). Conclusions HFD-induced IR associated with increased glucose utility undergoing oxidative phosphorylation via the TCA cycle in the myocardium is supported by overexpression of glucose transporter, acetyl-CoA synthase. Noninvasive imaging biomarker has potentials in detecting the metabolic perturbations prior to the decline of the left ventricular function.
Collapse
|
50
|
Che Y, Wang ZP, Yuan Y, Zhang N, Jin YG, Wan CX, Tang QZ. Role of autophagy in a model of obesity: A long‑term high fat diet induces cardiac dysfunction. Mol Med Rep 2018; 18:3251-3261. [PMID: 30066870 PMCID: PMC6102660 DOI: 10.3892/mmr.2018.9301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/19/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity may induce end-organ damage through metabolic syndrome, and autophagy serves a vital role in the pathogenesis of metabolic syndrome. The purpose of the present study was to define the roles of autophagy and mitophagy in high fat diet (HFD)-induced cardiomyopathy. Male, 8 week-old C57BL/6 mice were fed either a HFD (60% kcal) or a diet of normal chow (NC; 10% kcal) for 42 weeks. Glucose tolerance tests were performed during the feeding regimes. Blood samples were collected for assaying serum triglyceride with the glycerol-3-phosphate oxidase phenol and aminophenazone (PAP) method and total cholesterol was tested with the cholesterol oxidase-PAP method. Myocardial function was assessed using echocardiography and hemodynamic analyses. Western blot analysis was employed to evaluate endoplasmic reticulum stress (ERS), autophagy and mitochondrial function. Electron microscopy was used to assess the number of lipid droplets and the degree of autophagy within the myocardium. The body weight and adipose tissue weight of mice fed the HFD were increased compared with the NC mice. The serum levels of blood glucose, total cholesterol and triglyceride were significantly increased following 42 weeks of HFD feeding. The results of the glucose tolerance tests additionally demonstrated metabolic dysregulation in HFD mice. In addition, HFD mice exhibited hemodynamic and echocardiographic evidence of impaired diastolic and systolic function, including alterations in the cardiac output, end-diastolic pressure, end-diastolic volume and left ventricular relaxation time constant (tau) following HFD intake. Furthermore, a HFD resulted in increased ERS, and a downregulation of the autophagy and mitophagy level. The present study investigated cardiac function in obese HFD-fed mice. These results aid the pursuit of novel therapeutic targets to combat obesity-associated cardiomyopathy.
Collapse
Affiliation(s)
- Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhao-Peng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ya-Ge Jin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chun-Xia Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|