1
|
Li L, Wang YM, Zeng XY, Hu Y, Zhang J, Wang B, Chen SX. Bioactive proteins and antioxidant peptides from Litsea cubeba fruit meal: Preparation, characterization and ameliorating function on high-fat diet-induced NAFLD through regulating lipid metabolism, oxidative stress and inflammatory response. Int J Biol Macromol 2024; 280:136186. [PMID: 39357720 DOI: 10.1016/j.ijbiomac.2024.136186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) plays an increasingly significant threat to human health. In this study, the processing by-products of Litsea cubeba fruit meal were defatted by ultrasound-assisted methods, then the acetone-precipitated protein of L. cubeba (LCP) was obtained and structural analysis was performed. LCP was hydrolyzed by a two-step sequential hydrolysis method using alcalase and papain. Subsequently, antioxidant peptide fraction (IV2) was isolated and identified from the resultant hydrolysate through membrane ultrafiltration, Sephadex G-15 chromatography, and liquid chromatograph mass spectrometer (LC-MS). Animal experimentation indicated the potential of IV2 to mitigate hepatic steatosis. Moreover, IV2 could effectively reduce oxidative stress-induced damage by modulating the Keap1-Nrf2 pathway to activate downstream heme oxygenase-1 (HO-1) and NAD(P) H quinone oxidoreductase 1 (NQO1). Integrating metabolomics and transcriptomics revealed enrichment in pathways associated with glycerolipid metabolism and fatty acid β-oxidation, suggesting the principal mechanisms underlying IV2's ameliorative effects on NAFLD. Transcriptome sequencing identified 3092 up-regulated and 3010 down-regulated genes following IV2 treatment. Interaction analyses based on different lipid compositions (DELs) and differentially expressed genes (DEGs) indicated that IV2 primarily alleviated hepatic steatosis by modulating peroxisome proliferator-activated receptor α (PPAR-α) related pathways, thereby augmenting fatty acid β-oxidation within liver cells. These results indicate that IV2 shows potential in improving high-fat diet (HFD)-induced NAFLD, with improved fatty acid β-oxidation and reduced triglyceride biosynthesis emerging as underlying mechanisms.
Collapse
Affiliation(s)
- Li Li
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330045, China
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiao-Yan Zeng
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330045, China
| | - Ying Hu
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330045, China
| | - Ji Zhang
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330045, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Shang-Xing Chen
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330045, China.
| |
Collapse
|
2
|
Jiao W, Jiao Y, Sang Y, Wang X, Wang S. 6-Shogaol alleviates high-fat diet induced hepatic steatosis through miR-3066-5p/Grem2 pathway. Food Chem 2024; 457:140197. [PMID: 38941907 DOI: 10.1016/j.foodchem.2024.140197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
The purpose of this study is to investigate the mechanism by which 6-shogaol ameliorates hepatic steatosis via miRNA-mRNA interaction analysis. C57BL/6 J mice were fed a high-fat diet (HFD) for 12 weeks, during which 6-shogaol was administered orally. The liver lipid level, liver function and oxidative damage in mice were evaluated. mRNA sequencing, miRNA sequencing, and RT-qPCR were employed to compare the expression profiles between the HFD group and the 6-shogaol-treated group. High-throughput sequencing was used to construct the mRNA and miRNA libraries. Target prediction and integration analysis identified eight potential miRNA-mRNA pairs involved in hepatic steatosis, which were subsequently validated in liver tissues and AML12 cells. The findings revealed that 6-shogaol modulates the miR-3066-5p/Grem2 pathway, thereby improving hepatic steatosis. This study provides new insights into the mechanisms through which 6-shogaol alleviates hepatic steatosis, establishing a foundation for future research on natural active compounds for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Wenya Jiao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yingshuai Jiao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Ortega-Vallbona R, Palomino-Schätzlein M, Tolosa L, Benfenati E, Ecker GF, Gozalbes R, Serrano-Candelas E. Computational Strategies for Assessing Adverse Outcome Pathways: Hepatic Steatosis as a Case Study. Int J Mol Sci 2024; 25:11154. [PMID: 39456937 PMCID: PMC11508863 DOI: 10.3390/ijms252011154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The evolving landscape of chemical risk assessment is increasingly focused on developing tiered, mechanistically driven approaches that avoid the use of animal experiments. In this context, adverse outcome pathways have gained importance for evaluating various types of chemical-induced toxicity. Using hepatic steatosis as a case study, this review explores the use of diverse computational techniques, such as structure-activity relationship models, quantitative structure-activity relationship models, read-across methods, omics data analysis, and structure-based approaches to fill data gaps within adverse outcome pathway networks. Emphasizing the regulatory acceptance of each technique, we examine how these methodologies can be integrated to provide a comprehensive understanding of chemical toxicity. This review highlights the transformative impact of in silico techniques in toxicology, proposing guidelines for their application in evidence gathering for developing and filling data gaps in adverse outcome pathway networks. These guidelines can be applied to other cases, advancing the field of toxicological risk assessment.
Collapse
Affiliation(s)
- Rita Ortega-Vallbona
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
| | - Martina Palomino-Schätzlein
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026 Valencia, Spain;
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos, 28029 Madrid, Spain
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | - Gerhard F. Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek Platz 2, 1090 Wien, Austria;
| | - Rafael Gozalbes
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
- MolDrug AI Systems S.L., Olimpia Arozena Torres 45, 46108 Valencia, Spain
| | - Eva Serrano-Candelas
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
| |
Collapse
|
4
|
Liu P, Liu Z, Zhou H, Zhu J, Sun Z, Zhang G, Liu Y. Lipidomics in forensic science: a comprehensive review of applications in drugs, alcohol, latent fingermarks, fire debris, and seafood authentication. Mol Omics 2024. [PMID: 39400253 DOI: 10.1039/d4mo00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Forensic science, an interdisciplinary field encompassing the collection, examination, and presentation of evidence in legal proceedings, has recently embraced lipidomics as a valuable tool. Lipidomics, a subfield of metabolomics, specializes in the analysis of lipid structures and functions, offering insights into biological processes that can aid forensic investigations. While not a substitute for DNA analysis in personal identification, lipidomics complements this technique by focusing on small biological molecules, with distinct sample requirements. This review comprehensively explores the current applications of lipidomics in forensic science. The review commences with an introduction to the concept and historical background of lipidomics, subsequently delving into its utilization in diverse areas such as drug analysis, ethyl alcohol and substitute assessment, latent fingermark detection, fire debris analysis, and seafood authentication. By showcasing the various biological materials and methods employed, this review underscores the potential of lipidomics as a powerful adjunct in forensic investigations.
Collapse
Affiliation(s)
- Pingyang Liu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Zhanfang Liu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Hong Zhou
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Jun Zhu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Zhenwen Sun
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Guannan Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Yao Liu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| |
Collapse
|
5
|
Milani I, Codini M, Guarisco G, Chinucci M, Gaita C, Leonetti F, Capoccia D. Hepatokines and MASLD: The GLP1-Ras-FGF21-Fetuin-A Crosstalk as a Therapeutic Target. Int J Mol Sci 2024; 25:10795. [PMID: 39409124 PMCID: PMC11477334 DOI: 10.3390/ijms251910795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The introduction of the term "Metabolic Steatotic Liver Disease" (MASLD) underscores the critical role of metabolic dysfunction in the development and progression of chronic liver disease and emphasizes the need for strategies that address both liver disease and its metabolic comorbidities. In recent years, a liver-focused perspective has revealed that altered endocrine function of the fatty liver is a key contributor to the metabolic dysregulation observed in MASLD. Due to its secretory capacity, the liver's increased production of proteins known as "hepatokines" has been linked to the development of insulin resistance, explaining why MASLD often precedes dysfunction in other organs and ultimately contributes to systemic metabolic disease. Among these hepatokines, fibroblast growth factor 21 (FGF21) and fetuin-A play central roles in regulating the metabolic abnormalities associated with MASLD, explaining why their dysregulated secretion in response to metabolic stress has been implicated in the metabolic abnormalities of MASLD. This review postulates why their modulation by GLP1-Ras may mediate the beneficial metabolic effects of these drugs, which have increased attention to their emerging role as pharmacotherapy for MASLD. By discussing the crosstalk between GLP1-Ras-FGF21-fetuin-A, this review hypothesizes that the possible modulation of fetuin-A by the novel GLP1-FGF21 dual agonist pharmacotherapy may contribute to the management of metabolic and liver diseases. Although research is needed to go into the details of this crosstalk, this topic may help researchers explore the mechanisms by which this type of pharmacotherapy may manage the metabolic dysfunction of MASLD.
Collapse
Affiliation(s)
- Ilaria Milani
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy;
| | - Gloria Guarisco
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| | - Marianna Chinucci
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| | - Chiara Gaita
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| | - Frida Leonetti
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| | - Danila Capoccia
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| |
Collapse
|
6
|
Arold D, Bornstein SR, Perakakis N, Ehrlich S, Bernardoni F. Regional gray matter changes in steatotic liver disease provide a neurobiological link to depression: A cross-sectional UK Biobank cohort study. Metabolism 2024; 159:155983. [PMID: 39089490 DOI: 10.1016/j.metabol.2024.155983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Steatotic liver disease (SLD) is characterized by excessive accumulation of lipids in the liver. It is associated with elevated risk of hepatic and cardiometabolic diseases, as well as mental disorders such as depression. Previous studies revealed global gray matter reduction in SLD. To investigate a possible shared neurobiology with depression, we examined liver fat-related regional gray matter alterations in SLD and its most significant clinical subgroup metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS We analyzed regional cortical thickness and area obtained from brain MRI in 29,051 participants in UK Biobank. Liver fat amount was computed as proton density fat fraction (PDFF) from liver MRI scans. We examined the relationship between brain structure and PDFF, adjusting for sociodemographic, physical, lifestyle, and environmental factors, as well as alcohol intake and a spectrum of cardiometabolic covariates. Finally, we compared patterns of brain alterations in SLD/MASLD and major depressive disorder (MDD) using previously published results. RESULTS PDFF-related gray matter alterations were region-specific, involving both increases and decreases in cortical thickness, and increased cortical area. In several regions, PDFF effects on gray matter could also be attributed to cardiometabolic covariates. However, PDFF was consistently associated with lower cortical thickness in middle and superior temporal regions and higher cortical thickness in pericalcarine and right frontal pole regions. PDFF-related alterations for the SLD and the MASLD group correlated with those observed in MDD (Pearson r = 0.45-0.54, p < 0.01). CONCLUSION These findings suggest the presence of shared biological mechanisms linking MDD to SLD and MASLD. They might explain the well-known elevated risk of depression in these groups and support early lifestyle interventions and treatment of metabolic risk factors for the successful management of the interconnected diseases depression and SLD/MASLD.
Collapse
Affiliation(s)
- Dominic Arold
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nikolaos Perakakis
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Anastasiou G, Stefanakis K, Hill MA, Mantzoros CS. Expanding diagnostic and therapeutic horizons for MASH: Comparison of the latest and conventional therapeutic approaches. Metabolism 2024; 161:156044. [PMID: 39362519 DOI: 10.1016/j.metabol.2024.156044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Georgia Anastasiou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Blomquist SA, Fernandez ML. Chios Mastic Gum: A Promising Phytotherapeutic for Cardiometabolic Health. Nutrients 2024; 16:2941. [PMID: 39275256 PMCID: PMC11397435 DOI: 10.3390/nu16172941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Chios mastic gum (CMG) is a resin obtained from the Pistacia lentiscus var. Chia tree that grows in the Mediterranean. For millennia, it has been renowned for its medicinal properties, but recently, CMG has gained attention due to its pronounced anti-inflammatory and antioxidative properties and its use in oral health, inflammatory bowel disease, cancer, and risk factors related to cardiovascular and metabolic diseases. This narrative review seeks to briefly overview its bioactive constituents and examine and describe its potential as a cardiometabolic disease (CMD) phytotherapeutic. The results of clinical trials and in vivo, in vitro, and in silico studies provide accumulating evidence of the mechanisms underlying CMG's impacts on lipid and glucose metabolism, cardiovascular and hepatic health, inflammation, oxidative stress, body composition, and microbiota. Despite the relatively limited studies with mixed results, they have provided the foundation to understand the strengths, weaknesses, and opportunities moving forward that may help to establish CMG and its bioactives as viable therapeutics for CMD.
Collapse
Affiliation(s)
- Sarah A Blomquist
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ 85721, USA
| | - Maria Luz Fernandez
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ 85721, USA
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
9
|
Zhu A, Luo N, Sun L, Zhou X, Chen S, Huang Z, Mao X, Li K. Mulberry and Hippophae-based solid beverage attenuate hyperlipidemia and hepatic steatosis via adipose tissue-liver axis. Food Sci Nutr 2024; 12:5052-5064. [PMID: 39055214 PMCID: PMC11266884 DOI: 10.1002/fsn3.4155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 07/27/2024] Open
Abstract
Dyslipidemia and hepatic steatosis are the characteristics of the initial stage of nonalcohol fatty liver disease (NAFLD), which can be reversed by lifestyle intervention, including dietary supplementation. However, such commercial dietary supplements with solid scientific evidence and in particular clear mechanistic elucidation are scarce. Here, the health benefits of MHP, a commercial mulberry and Hippophae-based solid beverage, were evaluated in NAFLD rat model and the underlying molecular mechanisms were investigated. Histopathologic examination of liver and white adipose tissue found that MHP supplementation reduced hepatic lipid accumulation and adipocyte hypertrophy. Serum biochemical results confirmed that MHP effectively ameliorated dyslipidemia and decreased circulation-free fatty acid level. RNA-Seq-based transcriptomic analysis showed that MHP-regulated genes are involved in the inhibition of lipolysis of adipose tissue and thus may contribute to the reduction of hepatic ectopic lipid deposition. Furthermore, MHP upregulated ACSL1-CPT1a-CPT2 pathway, a canonical pathway that regulated mitochondrial fatty acid metabolism, and promoted liver and adipose tissue fatty acid β-oxidation. These results suggest that adipose tissue-liver crosstalk may play a key role in maintaining glucose and lipid metabolic hemostasis. In addition, MHP can also ameliorate chronic inflammation through regulating the secretion of adipokines. Our study demonstrates that MHP is able to improve dyslipidemia and hepatic steatosis through crosstalk between adipose tissue and liver and also presents transcriptomic evidence to support the underlying mechanisms of action, providing solid evidence for its health claims.
Collapse
Affiliation(s)
- An‐Qi Zhu
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Nin Luo
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Ling‐Yue Sun
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xiao‐Ting Zhou
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Shi‐Sheng Chen
- Perfect Life & Health InstituteZhongshanGuangdongChina
- Perfect (Guangdong) Co., Ltd.ZhongshanChina
| | - Zebo Huang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Xin‐Liang Mao
- Perfect Life & Health InstituteZhongshanGuangdongChina
- Perfect (Guangdong) Co., Ltd.ZhongshanChina
| | - Kun‐Ping Li
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
10
|
Laleman W, Peiffer KH, Tischendorf M, Ullerich HJ, Praktiknjo M, Trebicka J. Role of endoscopy in hepatology. Dig Liver Dis 2024; 56:1185-1195. [PMID: 38151452 DOI: 10.1016/j.dld.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
The growing and evolving field of EUS and advanced hepatobiliary endoscopy has amplified traditional upper gastrointestinal endoscopy and unveiled novel options for remaining unsolved hepatobiliary issues, both diagnostically and therapeutically. This conceptually appealing and fascinating integration of endoscopy within the practice of hepatology is referred to as 'endo-hepatology'. Endo-hepatology focuses on the one hand on disorders of the liver parenchyma and liver vasculature and of the hepatobiliary tract on the other hand. Applications hanging under the umbrella of endohepatology involve amongst others EUS-guided liver biopsy, EUS-guided portal pressure measurement, EUS-guided portal venous blood sampling, EUS-guided coil & glue embolization of gastric varices and spontaneous portosystemic shunts as well as ERCP in the challenging context of (decompensated cirrhosis) and intraductal cholangioscopy for primary sclerosing cholangitis. Although endoscopic proficiency however does not necessarily equal in an actual straightforward end-solution for currently persisting (complex) hepatobiliary situations. Therefore, endohepatology continues to generate high-quality data to validate and standardize procedures against currently considered (best available) "golden standards" while continuing to search and trying to provide novel minimally invasive solutions for persisting hepatological stalemate situations. In the current review, we aim to critically appraise the status and potential future directions of endo-hepatology.
Collapse
Affiliation(s)
- Wim Laleman
- Department of Gastroenterology and Hepatology, Section of Liver and Biliopancreatic disorders, University Hospitals Leuven, KU Leuven, Leuven, Belgium; Department of Medicine B (Gastroenterology, Hepatology, Endocrinology, Clinical Infectiology), University Hospital Muenster, Muenster, Germany.
| | - Kai-Henrik Peiffer
- Department of Medicine B (Gastroenterology, Hepatology, Endocrinology, Clinical Infectiology), University Hospital Muenster, Muenster, Germany
| | - Michael Tischendorf
- Department of Medicine B (Gastroenterology, Hepatology, Endocrinology, Clinical Infectiology), University Hospital Muenster, Muenster, Germany
| | - Hans-Joerg Ullerich
- Department of Medicine B (Gastroenterology, Hepatology, Endocrinology, Clinical Infectiology), University Hospital Muenster, Muenster, Germany
| | - Michael Praktiknjo
- Department of Medicine B (Gastroenterology, Hepatology, Endocrinology, Clinical Infectiology), University Hospital Muenster, Muenster, Germany
| | - Jonel Trebicka
- Department of Medicine B (Gastroenterology, Hepatology, Endocrinology, Clinical Infectiology), University Hospital Muenster, Muenster, Germany; European Foundation of Chronic Liver Failure, EFCLIF, Barcelona, Spain
| |
Collapse
|
11
|
Semertzidis A, Mouskeftara T, Gika H, Pousinis P, Makedou K, Goulas A, Kountouras J, Polyzos SA. Effects of Combined Low-Dose Spironolactone Plus Vitamin E versus Vitamin E Monotherapy on Lipidomic Profile in Non-Alcoholic Fatty Liver Disease: A Post Hoc Analysis of a Randomized Controlled Trial. J Clin Med 2024; 13:3798. [PMID: 38999363 PMCID: PMC11242225 DOI: 10.3390/jcm13133798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Background/Objectives: Lipid dysmetabolism seems to contribute to the development and progression of nonalcoholic fatty liver disease (NAFLD). Our aim was to compare serum lipidomic profile between patients with NAFLD having received monotherapy with vitamin E (400 IU/d) and those having received combination therapy with vitamin E (400 IU/d) and low-dose spironolactone (25 mg/d) for 52 weeks. Methods: This was a post hoc study of a randomized controlled trial (NCT01147523). Serum lipidomic analysis was performed in vitamin E monotherapy group (n = 15) and spironolactone plus vitamin E combination therapy group (n = 12). We employed an untargeted liquid chromatography-mass spectrometry lipid profiling approach in positive and negative ionization mode. Results: Univariate analysis revealed 36 lipid molecules statistically different between groups in positive mode and seven molecules in negative mode. Multivariate analysis in negative mode identified six lipid molecules that remained robustly different between groups. After adjustment for potential confounders, including gender, omega-3 supplementation, leptin concentration and homeostasis model assessment-insulin resistance (HOMA-IR), four lipid molecules remained significant between groups: FA 20:5, SM 34:2;O2, SM 42:3;O2 and CE 22:6, all being higher in the combination treatment group. Conclusions: The combination of spironolactone with vitamin E led to higher circulating levels of four lipid molecules than vitamin E monotherapy, after adjustment for potential confounders. Owing to very limited relevant data, we could not support that these changes in lipid molecules may be beneficial or not for the progression of NAFLD. Thus, mechanistic studies are warranted to clarify the potential clinical significance of these findings.
Collapse
Affiliation(s)
- Anastasios Semertzidis
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Thomai Mouskeftara
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- BIOMIC AUTh, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 570 01 Thessaloniki, Greece
| | - Petros Pousinis
- BIOMIC AUTh, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 570 01 Thessaloniki, Greece
| | - Kali Makedou
- Laboratory of Biochemistry, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Antonis Goulas
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Jannis Kountouras
- Second Medical Clinic, Ippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, 546 42 Thessaloniki, Greece
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
12
|
Tudor MS, Gheorman V, Simeanu GM, Dobrinescu A, Pădureanu V, Dinescu VC, Forțofoiu MC. Evolutive Models, Algorithms and Predictive Parameters for the Progression of Hepatic Steatosis. Metabolites 2024; 14:198. [PMID: 38668326 PMCID: PMC11052048 DOI: 10.3390/metabo14040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
The utilization of evolutive models and algorithms for predicting the evolution of hepatic steatosis holds immense potential benefits. These computational approaches enable the analysis of complex datasets, capturing temporal dynamics and providing personalized prognostic insights. By optimizing intervention planning and identifying critical transition points, they promise to revolutionize our approach to understanding and managing hepatic steatosis progression, ultimately leading to enhanced patient care and outcomes in clinical settings. This paradigm shift towards a more dynamic, personalized, and comprehensive approach to hepatic steatosis progression signifies a significant advancement in healthcare. The application of evolutive models and algorithms allows for a nuanced characterization of disease trajectories, facilitating tailored interventions and optimizing clinical decision-making. Furthermore, these computational tools offer a framework for integrating diverse data sources, creating a more holistic understanding of hepatic steatosis progression. In summary, the potential benefits encompass the ability to analyze complex datasets, capture temporal dynamics, provide personalized prognostic insights, optimize intervention planning, identify critical transition points, and integrate diverse data sources. The application of evolutive models and algorithms has the potential to revolutionize our understanding and management of hepatic steatosis, ultimately leading to improved patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Marinela Sînziana Tudor
- Doctoral School, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania; (M.S.T.); (G.-M.S.)
| | - Veronica Gheorman
- Department 3 Medical Semiology, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania;
| | - Georgiana-Mihaela Simeanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania; (M.S.T.); (G.-M.S.)
| | - Adrian Dobrinescu
- Department of Thoracic Surgery, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania
| | - Vlad Pădureanu
- Department 3 Medical Semiology, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania;
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania;
| | - Mircea-Cătălin Forțofoiu
- Department 3 Medical Semiology, University of Medicine and Pharmacy of Craiova, Clinical Municipal Hospital “Philanthropy” of Craiova, 200143 Craiova, Romania;
| |
Collapse
|
13
|
Huneault HE, Chen CY, Cohen CC, Liu X, Jarrell ZR, He Z, DeSantos KE, Welsh JA, Maner-Smith KM, Ortlund EA, Schwimmer JB, Vos MB. Lipidome Changes Associated with a Diet-Induced Reduction in Hepatic Fat among Adolescent Boys with Metabolic Dysfunction-Associated Steatotic Liver Disease. Metabolites 2024; 14:191. [PMID: 38668319 PMCID: PMC11052520 DOI: 10.3390/metabo14040191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Little is known about lipid changes that occur in the setting of metabolic-dysfunction-associated steatotic liver disease (MASLD) regression. We previously reported improvements in hepatic steatosis, de novo lipogenesis (DNL), and metabolomic profiles associated with oxidative stress, inflammation, and selected lipid metabolism in 40 adolescent boys (11-16 y) with hepatic steatosis ≥5% (98% meeting the definition of MASLD). Participants were randomized to a low-free-sugar diet (LFSD) (n = 20) or usual diet (n = 20) for 8 weeks. Here, we employed untargeted/targeted lipidomics to examine lipid adaptations associated with the LFSD and improvement of hepatic steatosis. Our LC-MS/MS analysis revealed decreased triglycerides (TGs), diacylglycerols (DGs), cholesteryl esters (ChE), lysophosphatidylcholine (LPC), and phosphatidylcholine (PC) species with the diet intervention (p < 0.05). Network analysis demonstrated significantly lower levels of palmitate-enriched TG species post-intervention, mirroring the previously shown reduction in DNL in response to the LFSD. Targeted oxylipins analysis revealed a decrease in the abundance of 8-isoprostane and 14,15-DiHET and an increase in 8,9-DiHET (p < 0.05). Overall, we observed reductions in TGs, DGs, ChE, PC, and LPC species among participants in the LFSD group. These same lipids have been associated with MASLD progression; therefore, our findings may indicate normalization of key biological processes, including lipid metabolism, insulin resistance, and lipotoxicity. Additionally, our targeted oxylipins assay revealed novel changes in eicosanoids, suggesting improvements in oxidative stress. Future studies are needed to elucidate the mechanisms of these findings and prospects of these lipids as biomarkers of MASLD regression.
Collapse
Affiliation(s)
- Helaina E. Huneault
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; (J.A.W.); (M.B.V.)
| | - Chih-Yu Chen
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA; (C.-Y.C.); (X.L.); (E.A.O.)
| | - Catherine C. Cohen
- Section of Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.C.C.); (K.M.M.-S.)
| | - Xueyun Liu
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA; (C.-Y.C.); (X.L.); (E.A.O.)
| | - Zachery R. Jarrell
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Zhulin He
- Pediatric Biostatistics Core, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Karla E. DeSantos
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA;
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Jean A. Welsh
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; (J.A.W.); (M.B.V.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Kristal M. Maner-Smith
- Section of Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.C.C.); (K.M.M.-S.)
| | - Eric A. Ortlund
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA; (C.-Y.C.); (X.L.); (E.A.O.)
| | - Jeffrey B. Schwimmer
- Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA;
- Department of Pediatrics, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Miriam B. Vos
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; (J.A.W.); (M.B.V.)
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA;
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Kouvari M, Chrysohoou C, Damigou E, Barkas F, Kravvariti E, Liberopoulos E, Tsioufis C, Sfikakis PP, Pitsavos C, Panagiotakos D, Mantzoros CS. Non-invasive tools for liver steatosis and steatohepatitis predict incidence of diabetes, cardiovascular disease and mortality 20 years later: The ATTICA cohort study (2002-2022). Clin Nutr 2024; 43:900-908. [PMID: 38387279 DOI: 10.1016/j.clnu.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) or, as recently renamed, metabolic dysfunction-associated steatotic liver disease (MASLD), has common metabolic pathways with diabetes and cardiovascular disease (CVD). Non-invasive tools (NITs) for liver steatosis and steatohepatitis (MASH) were studied as potential predictors of diabetes, cardiovascular disease (CVD) and mortality over a 20-year period. METHODS In 2001-02, 3042 individuals from the Attica region of Greece were recruited randomly, and were stratified by subgroups of sex, age and region to reflect the general urban population in Athens, Greece. Validated NITs for hepatic steatosis (Hepatic Steatosis Index (HIS), Fatty Liver Index (FLI), Lipid Accumulation Product (LAP), NAFLD liver fat score (NAFLD-LFS)) and steatohepatitis (Index of non-alcoholic steatohepatitis (ION), aminotransferase-creatinine-clearance non-alcoholic steatohepatitis (acNASH)) were calculated. Incidence of diabetes, CVD and mortality were recorded 5, 10 and 20 years later. RESULTS Within a 20-year observation period, the diabetes and CVD incidence was 26.3% and 36.1%, respectively. All hepatic steatosis and steatohepatitis NITs were independently associated with diabetes incidence. ION and acNASH presented independent association with CVD incidence [(Hazard Ratio (HR)per 1 standard deviation (SD) = 1.33, 95% Confidence Interval (95% CI) (1.07, 1.99)) and (HRper 1 SD = 1.77, 95% CI (1.05, 2.59)), respectively]. NAFLD-LFS which is a steatosis NIT indicating features of steatohepatitis, was linked with increased CVD mortality (HRper 1 SD = 1.35, 95% CI (1.00, 2.30)) and all-cause mortality (HRper 1 SD = 1.43, 95% CI (1.08, 2.01)). Overall, steatohepatitis NITs (i.e., ION and acNASH) presented stronger associations with the outcomes of interest compared with steatosis NITs. Clinically important trends were observed in relation to diabetes and CVD incidence progressively over time, i.e. 5, 10 and 20 years after baseline. CONCLUSIONS Easily applicable and low-cost NITs representing steatohepatitis may be early predictors of diabetes and CVD onset. More importantly, these NITs increased the attributable risk conveyed by conventional CVD risk factors by 10%. Thus, their potential inclusion in clinical practice and guidelines should be studied further.
Collapse
Affiliation(s)
- Matina Kouvari
- Department of Medicine, Devision of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Christina Chrysohoou
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 15772, Athens, Greece
| | - Evangelia Damigou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17671, Athens, Greece
| | - Fotios Barkas
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Evrydiki Kravvariti
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Evangelos Liberopoulos
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Costas Tsioufis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 15772, Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Christos Pitsavos
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 15772, Athens, Greece
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17671, Athens, Greece.
| | - Christos S Mantzoros
- Department of Medicine, Devision of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, 02215, USA.
| |
Collapse
|
15
|
Perry AS, Hadad N, Chatterjee E, Ramos MJ, Farber-Eger E, Roshani R, Stolze LK, Zhao S, Martens L, Kendall TJ, Thone T, Amancherla K, Bailin S, Gabriel CL, Koethe J, Carr JJ, Terry JG, Freedman J, Tanriverdi K, Alsop E, Keuren-Jensen KV, Sauld JFK, Mahajan G, Khan S, Colangelo L, Nayor M, Fisher-Hoch S, McCormick J, North KE, Below J, Wells Q, Abel D, Kalhan R, Scott C, Guilliams M, Fallowfield JA, Banovich NE, Das S, Shah R. A prognostic molecular signature of hepatic steatosis is spatially heterogeneous and dynamic in human liver. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.26.24301828. [PMID: 38352394 PMCID: PMC10863022 DOI: 10.1101/2024.01.26.24301828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) prevalence is increasing in parallel with an obesity pandemic, calling for novel strategies for prevention and treatment. We defined a circulating proteome of human MASLD across ≈7000 proteins in ≈5000 individuals from diverse, at-risk populations across the metabolic health spectrum, demonstrating reproducible diagnostic performance and specifying both known and novel metabolic pathways relevant to MASLD (central carbon and amino acid metabolism, hepatocyte regeneration, inflammation, fibrosis, insulin sensitivity). A parsimonious proteomic signature of MASLD was associated with a protection from MASLD and its related multi-system metabolic consequences in >26000 free-living individuals, with an additive effect to polygenic risk. The MASLD proteome was encoded by genes that demonstrated transcriptional enrichment in liver, with spatial transcriptional activity in areas of steatosis in human liver biopsy and dynamicity for select targets in human liver across stages of steatosis. We replicated several top relations from proteomics and spatial tissue transcriptomics in a humanized "liver-on-a-chip" model of MASLD, highlighting the power of a full translational approach to discovery in MASLD. Collectively, these results underscore utility of blood-based proteomics as a dynamic "liquid biopsy" of human liver relevant to clinical biomarker and mechanistic applications.
Collapse
|
16
|
Gîlcă-Blanariu GE, Budur DS, Mitrică DE, Gologan E, Timofte O, Bălan GG, Olteanu VA, Ștefănescu G. Advances in Noninvasive Biomarkers for Nonalcoholic Fatty Liver Disease. Metabolites 2023; 13:1115. [PMID: 37999211 PMCID: PMC10672868 DOI: 10.3390/metabo13111115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) currently represents one of the most common liver diseases worldwide. Early diagnosis and disease staging is crucial, since it is mainly asymptomatic, but can progress to nonalcoholic steatohepatitis (NASH) or cirrhosis or even lead to the development of hepatocellular carcinoma. Over time, efforts have been put into developing noninvasive diagnostic and staging methods in order to replace the use of a liver biopsy. The noninvasive methods used include imaging techniques that measure liver stiffness and biological markers, with a focus on serum biomarkers. Due to the impressive complexity of the NAFLD's pathophysiology, biomarkers are able to assay different processes involved, such as apoptosis, fibrogenesis, and inflammation, or even address the genetic background and "omics" technologies. This article reviews not only the currently validated noninvasive methods to investigate NAFLD but also the promising results regarding recently discovered biomarkers, including biomarker panels and the combination of the currently validated evaluation methods and serum markers.
Collapse
Affiliation(s)
- Georgiana-Emmanuela Gîlcă-Blanariu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Daniela Simona Budur
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Dana Elena Mitrică
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Elena Gologan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Oana Timofte
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gheorghe Gh Bălan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Vasile Andrei Olteanu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gabriela Ștefănescu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| |
Collapse
|
17
|
Kokkorakis M, Boutari C, Katsiki N, Mantzoros CS. From non-alcoholic fatty liver disease (NAFLD) to steatotic liver disease (SLD): an ongoing journey towards refining the terminology for this prevalent metabolic condition and unmet clinical need. Metabolism 2023; 147:155664. [PMID: 37517792 DOI: 10.1016/j.metabol.2023.155664] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chrysoula Boutari
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
18
|
Demir M, Bornstein SR, Mantzoros CS, Perakakis N. Liver fat as risk factor of hepatic and cardiometabolic diseases. Obes Rev 2023; 24:e13612. [PMID: 37553237 DOI: 10.1111/obr.13612] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disorder characterized by excessive accumulation of fat in the liver that can progress to liver inflammation (non-alcoholic steatohepatitis [NASH]), liver fibrosis, and cirrhosis. Although most efforts for drug development are focusing on the treatment of the latest stages of NAFLD, where significant fibrosis and NASH are present, findings from studies suggest that the amount of liver fat may be an important independent risk factor and/or predictor of development and progression of NAFLD and metabolic diseases. In this review, we first describe the current tools available for quantification of liver fat in humans and then present the clinical and pathophysiological evidence that link liver fat with NAFLD progression as well as with cardiometabolic diseases. Finally, we discuss current pharmacological and non-pharmacological approaches to reduce liver fat and present open questions that have to be addressed in future studies.
Collapse
Affiliation(s)
- Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Christos S Mantzoros
- Division of Endocrinology, Boston VA Healthcare System and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, 02215, USA
| | - Nikolaos Perakakis
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
19
|
Morawietz H, Brendel H, Diaba-Nuhoho P, Catar R, Perakakis N, Wolfrum C, Bornstein SR. Cross-Talk of NADPH Oxidases and Inflammation in Obesity. Antioxidants (Basel) 2023; 12:1589. [PMID: 37627585 PMCID: PMC10451527 DOI: 10.3390/antiox12081589] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity is a major risk factor for cardiovascular and metabolic diseases. Multiple experimental and clinical studies have shown increased oxidative stress and inflammation linked to obesity. NADPH oxidases are major sources of reactive oxygen species in the cardiovascular system and in metabolically active cells and organs. An impaired balance due to the increased formation of reactive oxygen species and a reduced antioxidative capacity contributes to the pathophysiology of cardiovascular and metabolic diseases and is linked to inflammation as a major pathomechanism in cardiometabolic diseases. Non-alcoholic fatty liver disease is particularly characterized by increased oxidative stress and inflammation. In recent years, COVID-19 infections have also increased oxidative stress and inflammation in infected cells and tissues. Increasing evidence supports the idea of an increased risk for severe clinical complications of cardiometabolic diseases after COVID-19. In this review, we discuss the role of oxidative stress and inflammation in experimental models and clinical studies of obesity, cardiovascular diseases, COVID-19 infections and potential therapeutic strategies.
Collapse
Affiliation(s)
- Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (H.B.); (P.D.-N.)
| | - Heike Brendel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (H.B.); (P.D.-N.)
| | - Patrick Diaba-Nuhoho
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (H.B.); (P.D.-N.)
- Department of Paediatric and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Rusan Catar
- Department of Nephrology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Nikolaos Perakakis
- Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (N.P.); (S.R.B.)
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Christian Wolfrum
- Institute of Food, Nutrition, and Health, ETH Zürich, Schorenstrasse, 8603 Schwerzenbach, Switzerland;
| | - Stefan R. Bornstein
- Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (N.P.); (S.R.B.)
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Diabetes and Nutritional Sciences, King’s College London, Strand, London WC2R 2LS, UK
| |
Collapse
|
20
|
Wang Y, Shi K, Tu J, Ke C, Chen N, Wang B, Liu Y, Zhou Z. Atractylenolide III Ameliorates Bile Duct Ligation-Induced Liver Fibrosis by Inhibiting the PI3K/AKT Pathway and Regulating Glutamine Metabolism. Molecules 2023; 28:5504. [PMID: 37513376 PMCID: PMC10383814 DOI: 10.3390/molecules28145504] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Liver fibrosis is one of the leading causes of hepatic sclerosis and hepatocellular carcinoma worldwide. However, the complex pathophysiological mechanisms of liver fibrosis are unknown, and no specific drugs are available to treat liver fibrosis. Atractylenolide III (ATL III) is a natural compound isolated from the plant Atractylodes lancea (Thunb.) DC. that possesses antioxidant properties and the ability to inhibit inflammatory responses. In this study, cholestatic hepatic fibrosis was induced in mice using a bile duct ligation (BDL) model and treated with 10 mg/kg and 50 mg/kg of ATL III via gavage for 14 days. ATL III significantly reduced the liver index, lowered serum ALT and AST levels, and reduced liver injury in bile-duct-ligated mice. In addition, ATL III significantly attenuated histopathological changes and reduced collagen deposition. ATL III reduced the expression of fibrosis-related genes α-smooth muscle actin (α-SMA), Collagen I (col1a1), Collagen IV (col4a2), and fibrosis-related proteins α-SMA and col1a1 in liver tissue. Using RNA sequencing (RNA-seq) to screen molecular targets and pathways, ATL III was found to affect the PI3K/AKT singling pathway by inhibiting the phosphorylation of PI3K and AKT, thereby ameliorating BDL-induced liver fibrosis. Gas chromatography-mass spectrometry (GC-MS) was used to evaluate the effect of ATL III on liver metabolites in BDL mice. ATL III further affected glutamine metabolism by down-regulating the activity of glutamine (GLS1) and glutamine metabolism. ATL III further affected glutamine metabolism by down-regulating the activity of glutaminase (GLS1), as well as glutamine metabolism. Therefore, we conclude that ATL III attenuates liver fibrosis by inhibiting the PI3K/AKT pathway and glutamine metabolism, suggesting that ATL III is a potential drug candidate for treating liver fibrosis.
Collapse
Affiliation(s)
- Yan Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Kun Shi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jiyuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Niping Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Bo Wang
- Hubei Institute for Drug Control, NMPA Key Laboratory of Quality Control of Chinese Medicine, Hubei Engineering Research Center for Drug Quality Control, Wuhan 430075, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| |
Collapse
|
21
|
Zhou H, Niu B, Wu X, Chu W, Zhou Y, Chen Z, Mi Y, Liu Y, Li P. iTRAQ-based quantitative proteomics analysis of the effect of ACT001 on non-alcoholic steatohepatitis in mice. Sci Rep 2023; 13:11336. [PMID: 37443174 PMCID: PMC10345009 DOI: 10.1038/s41598-023-38448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023] Open
Abstract
ACT001 is a novel sesquiterpene lactone derivative that has been shown to have significant antitumor and anti-inflammatory effects. However, the effect of ACT001 on nonalcoholic steatohepatitis (NASH) is unknown. Methionine and choline deficient (MCD) diet induced NASH model in C57BL/6J mice. Steatosis, inflammation and fibrosis-related indices of serum and liver tissues were detected by fully automated biochemical analyzer, enzyme-linked immunosorbent assay (ELISA) kit, flow cytometry, hematoxylin and eosin (H&E), Masson and immunohistochemical staining. The results showed that ACT001 reduced serum lipid and inflammatory factor levels, attenuated hepatic steatosis, inflammation and fibrosis, and inhibited hepatic oxidative stress and activation of NOD-like receptor protein 3 (NLRP3) inflammatory vesicles in NASH mice. In addition, 381 differentially expressed proteins (DEPs), including 162 up-regulated and 219 down-regulated proteins, were identified in the MCD group and ACT001 high-dose group using isotope labeling relative and absolute quantification (iTRAQ) technique analysis. Among these DEPs, five proteins associated with NAFLD were selected for real-time fluorescence quantitative PCR (RT-qPCR) validation, and the results were consistent with proteomics. In conclusion, ACT001 has a therapeutic effect on NASH, and the results of proteomic analysis will provide new ideas for the mechanism study of ACT001 for NASH treatment.
Collapse
Affiliation(s)
- Hui Zhou
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Niu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Infectious Diseases, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xue Wu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Weike Chu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Yibing Zhou
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Ze Chen
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Yuqiang Mi
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Research Institute of Liver Diseases, Tianjin, China
| | - Yonggang Liu
- Department of Pathology, Tianjin Second People's Hospital, Tianjin, China
| | - Ping Li
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China.
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China.
- Tianjin Research Institute of Liver Diseases, Tianjin, China.
| |
Collapse
|
22
|
Shen Y, Li X, Xiong S, Hou S, Zhang L, Wang L, Dai X, Zhao Y. Untargeted metabonomic analysis of non-alcoholic fatty liver disease with iron overload in rats via UPLC/MS. Free Radic Res 2023:1-15. [PMID: 37326040 DOI: 10.1080/10715762.2023.2226315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND/AIMS In recent years, many metabolites specific to nonalcoholic fatty liver disease (NAFLD) have been identified thanks to the application of metabolomics techniques. This study aimed to investigate the candidate targets and potential molecular pathways involved in NAFLD in the presence of iron overload. METHODS Male Sprague Dawley rats were fed with control or high-fat diet with or without excess iron. After 8,16,20 weeks of treatment, urine samples of rats were collected for metabolomics analysis using ultra-performance liquid chromatography/mass spectrometry (UPLC-MS). Blood and liver samples were also collected. RESULTS High-fat, high-iron diet resulted in increased triglyceride accumulation and increased oxidative damage. A total of 13 metabolites and four potential pathways were identified. Compared to the control group, the intensities of adenine, cAMP, hippuric acid, kynurenic acid, xanthurenic acid, uric acid, and citric acid were significantly lower (P < 0.05) and the concentration of other metabolites was significantly higher in the high-fat diet group. In the high-fat, high-iron group, the differences in the intensities of the above metabolites were amplified. CONCLUSION Our findings suggest that NAFLD rats have impaired antioxidant system and liver function, lipid disorders, abnormal energy, and glucose metabolism, and that iron overload may further exacerbate these disorders.
Collapse
Affiliation(s)
- Yang Shen
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Xianan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Shichao Xiong
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Shaoying Hou
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Lijia Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Li Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Xuezheng Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Yan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| |
Collapse
|
23
|
Valenzuela-Vallejo L, Sanoudou D, Mantzoros CS. Precision Medicine in Fatty Liver Disease/Non-Alcoholic Fatty Liver Disease. J Pers Med 2023; 13:830. [PMID: 37241000 PMCID: PMC10224312 DOI: 10.3390/jpm13050830] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease, and is related to fatal and non-fatal liver, metabolic, and cardiovascular complications. Its non-invasive diagnosis and effective treatment remain an unmet clinical need. NAFLD is a heterogeneous disease that is most commonly present in the context of metabolic syndrome and obesity, but not uncommonly, may also be present without metabolic abnormalities and in subjects with normal body mass index. Therefore, a more specific pathophysiology-based subcategorization of fatty liver disease (FLD) is needed to better understand, diagnose, and treat patients with FLD. A precision medicine approach for FLD is expected to improve patient care, decrease long-term disease outcomes, and develop better-targeted, more effective treatments. We present herein a precision medicine approach for FLD based on our recently proposed subcategorization, which includes the metabolic-associated FLD (MAFLD) (i.e., obesity-associated FLD (OAFLD), sarcopenia-associated FLD (SAFLD, and lipodystrophy-associated FLD (LAFLD)), genetics-associated FLD (GAFLD), FLD of multiple/unknown causes (XAFLD), and combined causes of FLD (CAFLD) as well as advanced stage fibrotic FLD (FAFLD) and end-stage FLD (ESFLD) subcategories. These and other related advances, as a whole, are expected to enable not only improved patient care, quality of life, and long-term disease outcomes, but also a considerable reduction in healthcare system costs associated with FLD, along with more options for better-targeted, more effective treatments in the near future.
Collapse
Affiliation(s)
- Laura Valenzuela-Vallejo
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4(th) Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Christos S. Mantzoros
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02130, USA
| |
Collapse
|
24
|
Zhu Y, Zhang H, Jiang P, Xie C, Luo Y, Chen J. Transcriptional and Epigenetic Alterations in the Progression of Non-Alcoholic Fatty Liver Disease and Biomarkers Helping to Diagnose Non-Alcoholic Steatohepatitis. Biomedicines 2023; 11:biomedicines11030970. [PMID: 36979950 PMCID: PMC10046227 DOI: 10.3390/biomedicines11030970] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of conditions from simple steatosis (non-alcoholic fatty liver (NAFL)) to non-alcoholic steatohepatitis (NASH), and its global prevalence continues to rise. NASH, the progressive form of NAFLD, has higher risks of liver and non-liver related adverse outcomes compared with those patients with NAFL alone. Therefore, the present study aimed to explore the mechanisms in the progression of NAFLD and to develop a model to diagnose NASH based on the transcriptome and epigenome. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) among the three groups (normal, NAFL, and NASH) were identified, and the functional analysis revealed that the development of NAFLD was primarily related to the oxidoreductase-related activity, PPAR signaling pathway, tight junction, and pathogenic Escherichia coli infection. The logistic regression (LR) model, consisting of ApoF, THOP1, and BICC1, outperformed the other five models. With the highest AUC (0.8819, 95%CI: 0.8128-0.9511) and a sensitivity of 97.87%, as well as a specificity of 64.71%, the LR model was determined as the diagnostic model, which can differentiate NASH from NAFL. In conclusion, several potential mechanisms were screened out based on the transcriptome and epigenome, and a diagnostic model was built to help patient stratification for NAFLD populations.
Collapse
Affiliation(s)
- Yalan Zhu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pengjun Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengxia Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
26
|
Xu J, Liu X, Wu S, Zhang D, Liu X, Xia P, Ling J, Zheng K, Xu M, Shen Y, Zhang J, Yu P. RNA-binding proteins in metabolic-associated fatty liver disease (MAFLD): From mechanism to therapy. Biosci Trends 2023; 17:21-37. [PMID: 36682800 DOI: 10.5582/bst.2022.01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease globally and seriously increases the public health burden, affecting approximately one quarter of the world population. Recently, RNA binding proteins (RBPs)-related pathogenesis of MAFLD has received increasing attention. RBPs, vividly called the gate keepers of MAFLD, play an important role in the development of MAFLD through transcription regulation, alternative splicing, alternative polyadenylation, stability and subcellular localization. In this review, we describe the mechanisms of different RBPs in the occurrence and development of MAFLD, as well as list some drugs that can improve MAFLD by targeting RBPs. Considering the important role of RBPs in the development of MAFLD, elucidating the RNA regulatory networks involved in RBPs will facilitate the design of new drugs and biomarkers discovery.
Collapse
Affiliation(s)
- Jiawei Xu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingyu Liu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shuqin Wu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kai Zheng
- Medical Care Strategic Customer Department, China Merchants Bank Shenzhen Branch, Shenzhen, Guangdong, Guangdong, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
27
|
Athanasopoulou F, Manolakakis M, Vernia S, Kamaly N. Nanodrug delivery systems for metabolic chronic liver diseases: advances and perspectives. Nanomedicine (Lond) 2023; 18:67-84. [PMID: 36896958 DOI: 10.2217/nnm-2022-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Nanomedicines are revolutionizing healthcare as recently demonstrated by the Pfizer/BioNTech and Moderna COVID-2019 vaccines, with billions of doses administered worldwide in a safe manner. Nonalcoholic fatty liver disease is the most common noncommunicable chronic liver disease, posing a major growing challenge to global public health. However, due to unmet diagnostic and therapeutic needs, there is great interest in the development of novel translational approaches. Nanoparticle-based approaches offer novel opportunities for efficient and specific drug delivery to liver cells, as a step toward precision medicines. In this review, the authors highlight recent advances in nanomedicines for the generation of novel diagnostic and therapeutic tools for nonalcoholic fatty liver disease and related liver diseases.
Collapse
Affiliation(s)
- Foteini Athanasopoulou
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK.,MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Michail Manolakakis
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK.,MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| |
Collapse
|
28
|
Romero-Gómez M, Aller R, Ampuero J, Fernández Rodríguez C, Augustín S, Latorre R, Rivera-Esteban J, Martínez Urroz B, Gutiérrez García ML, López SA, Albillos A, Hernández M, Graupera I, Benlloch S, Olveira A, Crespo J, Calleja JL. AEEH «Consensus about detection and referral of hidden prevalent liver diseases». GASTROENTEROLOGIA Y HEPATOLOGIA 2023; 46:236-247. [PMID: 35569541 DOI: 10.1016/j.gastrohep.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Manuel Romero-Gómez
- Servicio de Aparato Digestivo, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina (HUVR/CSIC/US), Universidad de Sevilla, Sevilla, España.
| | - Rocío Aller
- Servicio de Aparato Digestivo, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España
| | - Javier Ampuero
- Servicio de Aparato Digestivo, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina (HUVR/CSIC/US), Universidad de Sevilla, Sevilla, España
| | | | - Salvador Augustín
- Servei de Hepatología, Hospital Universitario Vall d'Hebron, Barcelona, España
| | - Raquel Latorre
- Servicio de Aparato Digestivo, Hospital Universitario Son Llàtzer, Palma de Mallorca, Islas Baleares, España
| | | | | | | | - Sonia Alonso López
- Servicio de Aparato Digestivo, Hospital Universitario Gregorio Marañón, Madrid, España
| | - Agustín Albillos
- Servicio de Aparato Digestivo, Hospital Universitario Ramón y Cajal, Madrid, España
| | - Marta Hernández
- Servicio de Aparato Digestivo, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Universidad Autónoma de Madrid, Majadahonda, Madrid, España
| | - Isabel Graupera
- Servicio de Hepatología, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, España
| | - Salvador Benlloch
- Servicio de Aparato Digestivo, Hospital Arnau de Vilanova, Valencia, España; CIBERehd, Instituto de Salud Carlos III, Madrid, España
| | - Antonio Olveira
- Servicio de Aparato Digestivo, Hospital La Paz, Madrid, España
| | - Javier Crespo
- Servicio de Aparato Digestivo, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla. IDIVAL, Santander, Cantabria, España
| | - José Luis Calleja
- Servicio de Aparato Digestivo, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Universidad Autónoma de Madrid, Majadahonda, Madrid, España
| |
Collapse
|
29
|
Martin-Grau M, Monleon D. Sex dimorphism and metabolic profiles in management of metabolic-associated fatty liver disease. World J Clin Cases 2023; 11:1236-1244. [PMID: 36926130 PMCID: PMC10013124 DOI: 10.12998/wjcc.v11.i6.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) refers to the build-up of fat in the liver associated with metabolic dysfunction and has been estimated to affect a quarter of the population worldwide. Although metabolism is highly influenced by the effects of sex hormones, studies of sex differences in the incidence and progression of MAFLD are scarce. Metabolomics represents a powerful approach to studying these differences and identifying potential biomarkers and putative mechanisms. First, metabolomics makes it possible to obtain the molecular phenotype of the individual at a given time. Second, metabolomics may be a helpful tool for classifying patients according to the severity of the disease and obtaining diagnostic biomarkers. Some studies demonstrate associations between circulating metabolites and early and established MAFLD, but little is known about how metabolites relate to and encompass sex differences in disease progression and risk management. In this review, we will discuss the epidemiological metabolomic studies for sex differences in the development and progression of MAFLD, the role of metabolic profiles in understanding mechanisms and identifying sex-dependent biomarkers, and how this evidence may help in the future management of the disease.
Collapse
Affiliation(s)
- Maria Martin-Grau
- Department of Pathology, University of Valencia, Valencia 46010, Spain
| | - Daniel Monleon
- Department of Pathology, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
30
|
Huang W, Ruan W, Huo C, Lin Y, Wang T, Dai X, Zhai H, Ma J, Zhang J, Lu J, Zhuang J. The effect of 12 weeks of combined training on hepatic fat content and metabolic flexibility of individuals with non-alcoholic fatty liver disease: Protocol of an open-label, single-center randomized control trial. Front Nutr 2023; 9:1065188. [PMID: 36726820 PMCID: PMC9884837 DOI: 10.3389/fnut.2022.1065188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Metabolic flexibility (MetF) is the capacity of an organism to oxidate substrate according to substrate availability or demand. The mismatch of substrate availability and oxidation may cause ectopic fat accumulation in the muscle and the liver. The objectives of the study are to examine the effect of 12 weeks of combined exercise on hepatic fat reduction and investigate metabolites related to MetF before and after the high-fat diet between individuals with NAFLD and healthy control with an active lifestyle. Methods This study is an open-label, single-center trial randomized controlled clinical study plus a cross-sectional comparison between individuals with NAFLD and healthy control. Individuals with NAFLD were allocated into two groups receiving resistance training (RT) combined with high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT). Anthropometric indicators, clinical blood markers about glucose, lipid metabolism, and hepatic fat content (HFC) were assessed before and after the intervention. The metabolomics was also used to investigate the discrepant metabolites and mechanisms related to MetF. Discussion Metabolic flexibility reflects the capacity of an organism to switch the oxidation substrates flexibly, which is associated with ectopic fat accumulation. Our study aimed to explore the discrepant metabolites related to MetF before and after a high-fat diet between individuals with NAFLD and healthy control. In addition, the study also examined the effectiveness of RT combined with HIIT or MICT on hepatic fat reduction and quantificationally analyzed the metabolites related to MetF before and after the intervention. Our results provided a perspective on fatty liver-associated metabolic inactivity. Trial registration ClinicalTrials.gov: ChiCTR2200055110; Registered 31 December 2021, http://www.chictr.org.cn/index.aspx.
Collapse
Affiliation(s)
- Wei Huang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Weiqi Ruan
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Cuilan Huo
- Department of Endocrinology, The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Yanyu Lin
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Tian Wang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiangdi Dai
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Haonan Zhai
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Jiasheng Ma
- School of Elite Sport, Shanghai University of Sport, Shanghai, China
| | - Jingyi Zhang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jin Lu
- Department of Endocrinology, The First Affiliated Hospital of the Naval Medical University, Shanghai, China,*Correspondence: Jin Lu ✉
| | - Jie Zhuang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China,Jie Zhuang ✉
| |
Collapse
|
31
|
Bing H, Li YL. The role of bile acid metabolism in the occurrence and development of NAFLD. Front Mol Biosci 2022; 9:1089359. [PMID: 36589245 PMCID: PMC9798289 DOI: 10.3389/fmolb.2022.1089359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the important causes of cirrhosis and liver cancer, resulting in a huge medical burden worldwide. Currently, effective non-invasive diagnostic indicators and drugs for NAFLD are still lacking. With the development of metabolomics technology, the changes in metabolites during the development of NAFLD have been gradually revealed. Bile acid (BA) is the main endpoint of cholesterol metabolism in the body. In addition, it also acts as a signaling factor to regulate metabolism and inflammation in the body through the farnesyl X receptor and G protein-coupled BA receptor. Studies have shown that BA metabolism is associated with the development of NAFLD, but a large number of animal and clinical studies are still needed. BA homeostasis is maintained through multiple negative feedback loops and the enterohepatic circulation of BA. Recently, treatment of NAFLD by interfering with BA synthesis and metabolism has become a new research direction. Here, we review the changes in BA metabolism and its regulatory mechanisms during the development of NAFLD and describe the potential of studies exploring novel non-invasive diagnostic indicators and therapeutic targets for NAFLD based on BA metabolism.
Collapse
Affiliation(s)
- Hao Bing
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,Department of Gastroenterology, Shengjing Hospital Affiliated with China Medical University, Shenyang, Liaoning, China
| | - Yi-Ling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Yi-Ling Li,
| |
Collapse
|
32
|
Zhang X, Zuo R, Xiao S, Wang L. Association between iron metabolism and non-alcoholic fatty liver disease: results from the National Health and Nutrition Examination Survey (NHANES 2017-2018) and a controlled animal study. Nutr Metab (Lond) 2022; 19:81. [PMID: 36514155 PMCID: PMC9749311 DOI: 10.1186/s12986-022-00715-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Iron metabolism may be involved in the pathogenesis of the non-alcoholic fatty liver disease (NAFLD). The relationship between iron metabolism and NAFLD has not been clearly established. This study aimed to clarify the relationship between biomarkers of iron metabolism and NAFLD. METHODS Based on the National Health and Nutrition Examination Survey (NHANES), restricted cubic spline models and multivariable logistic regression were used to examine the association between iron metabolism [serum iron (SI), serum ferritin (SF), transferrin saturation (TSAT), and soluble transferrin receptor (sTfR)] and the risk for NAFLD. In addition, stratified subgroup analysis was performed for the association between TSAT and NAFLD. Moreover, serum TSAT levels were determined in male mice with NAFLD. The expression of hepcidin and ferroportin, vital regulators of iron metabolism, were analyzed in the livers of mice by quantitative real-time PCR (qRT-PCR) and patients with NAFLD by microarray collected from the GEO data repository. RESULTS Patients with NAFLD showed decreased SI, SF, and TSAT levels and increased STfR levels based on the NHANES. After adjusting for confounding factors, TSAT was significantly negatively correlated with NAFLD. Of note, the relationship between TSAT and NAFLD differed in the four subgroups of age, sex, race, and BMI (P for interaction < 0.05). Consistently, mice with NAFLD exhibited decreased serum TSAT levels. Decreased hepcidin and increased ferroportin gene expression were observed in the livers of patients and mice with NAFLD. CONCLUSION Serum TSAT levels and hepatic hepcidin expression were decreased in both patients and mice with NAFLD. Among multiple biomarkers of iron metabolism, lower TSAT levels were significantly associated with a higher risk of NAFLD in the U.S. general population. These findings might provide new ideas for the prediction, diagnosis, and mechanistic exploration of NAFLD.
Collapse
Affiliation(s)
- Xinxin Zhang
- grid.254147.10000 0000 9776 7793School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Ronghua Zuo
- grid.412676.00000 0004 1799 0784Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Shengjue Xiao
- grid.263826.b0000 0004 1761 0489Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009 China
| | - Lirui Wang
- grid.41156.370000 0001 2314 964XInstitute of Modern Biology, Nanjing University, 22 Hankou Road, Gulou, Nanjing, 210093 China
| |
Collapse
|
33
|
Lu F, Du L, Chen W, Jiang H, Yang C, Pu Y, Wu J, Zhu J, Chen T, Zhang X, Wu C. T 1- T 2 dual-modal magnetic resonance contrast-enhanced imaging for rat liver fibrosis stage. RSC Adv 2022; 12:35809-35819. [PMID: 36545112 PMCID: PMC9749127 DOI: 10.1039/d2ra05913d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022] Open
Abstract
The development of an effective method for staging liver fibrosis has always been a hot topic of research in the field of liver fibrosis. In this paper, PEGylated ultrafine superparamagnetic iron oxide nanocrystals (SPIO@PEG) were developed for T 1-T 2 dual-modal contrast-enhanced magnetic resonance imaging (MRI) and combined with Matrix Laboratory (MATLAB)-based image fusion for staging liver fibrosis in the rat model. Firstly, SPIO@PEG was synthesized and characterized with physical and biological properties as a T 1-T 2 dual-mode MRI contrast agent. Secondly, in the subsequent MR imaging of liver fibrosis in rats in vivo, conventional T 1 and T 2-weighted imaging, and T 1 and T 2 mapping of the liver pre- and post-intravenous administration of SPIO@PEG were systematically collected and analyzed. Thirdly, by creative design, we fused the T 1 and T 2 mapping images by MATLAB and quantitively measured each rat's hepatic fibrosis positive pixel ratio (PPR). SPIO@PEG was proved to have an ultrafine core size (4.01 ± 0.16 nm), satisfactory biosafety and T 1-T 2 dual-mode contrast effects under a 3.0 T MR scanner (r 2/r 1 = 3.51). According to the image fusion results, the SPIO@PEG contrast-enhanced PPR shows significant differences among different stages of liver fibrosis (P < 0.05). The combination of T 1-T 2 dual-modal SPIO@PEG and MATLAB-based image fusion technology could be a promising method for diagnosing and staging liver fibrosis in the rat model. PPR could also be used as a non-invasive biomarker to diagnose and discriminate the stages of liver fibrosis.
Collapse
Affiliation(s)
- Fulin Lu
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China,Department of Radiology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengdu 610072China
| | - Liang Du
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Wei Chen
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Hai Jiang
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Chenwu Yang
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Yu Pu
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Jun Wu
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Tianwu Chen
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Xiaoming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| | - Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000China
| |
Collapse
|
34
|
Liu J, Tan L, Liu Z, Shi R. The association between non-alcoholic fatty liver disease (NAFLD) and advanced fibrosis with blood selenium level based on the NHANES 2017-2018. Ann Med 2022; 54:2259-2268. [PMID: 35975984 PMCID: PMC9455329 DOI: 10.1080/07853890.2022.2110277] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND & OBJECTIVE Selenium was one of the essential trace elements that played a pivotal role in human health. Although previous studies have investigated the relationship between selenium and non-alcoholic fatty liver disease (NAFLD) and fibrosis, these findings were still inconclusive. Our study was aimed to explore the association between blood selenium level and NAFLD and advanced liver fibrosis diagnosed by vibration controlled transient elastography (VCTE) in US adults. METHODS All data were extracted from National Health and Nutrition Examination Survey database (2017-2018). Participants were divided into four groups according to quartile of blood selenium level. Liver stiffness and controlled attenuation parameter (CAP) were measured by VCTE. Multiple logistic regression models and subgroup analyses were conducted to determine the association between blood selenium level and NAFLD and advanced liver fibrosis diagnosed by a variety of methods. RESULTS A total of 3336 participants were enrolled in main analysis. In multiple logistic regression models, the higher blood selenium level (>205.32, ≤453.62 μg/L) had a significant positive association with NAFLD (β = 1.31). Moreover, high blood selenium level had significantly inversely association to advanced liver fibrosis (β = 0.61). In subgroup analysis, the main inversely correlation between blood selenium and advanced liver fibrosis was found in males with high blood selenium level. Despite dietary selenium intake being adjusted or in different subgroups, the associations between blood selenium level and NAFLD/advanced liver fibrosis remained significant. CONCLUSIONS This study showed that blood selenium level were positively association with NAFLD among US population. Participants with lower blood selenium level showed a higher percentage of advanced liver fibrosis. Blood selenium is more likely to cause NAFLD and liver fibrosis due to imbalances in selenium homeostasis rather than dietary selenium intake.Key messagesHigh blood selenium level was association with NAFLD diagnosed by vibration controlled transient elastography.Participants with lower blood selenium level had high percentage of advanced liver fibrosis.NAFLD and liver fibrosis are caused by an imbalance of selenium homeostasis, not by dietary selenium intake.
Collapse
Affiliation(s)
- Jie Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Liao Tan
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoya Liu
- Department of the Geriatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Gangopadhyay A, Ibrahim R, Theberge K, May M, Houseknecht KL. Non-alcoholic fatty liver disease (NAFLD) and mental illness: Mechanisms linking mood, metabolism and medicines. Front Neurosci 2022; 16:1042442. [PMID: 36458039 PMCID: PMC9707801 DOI: 10.3389/fnins.2022.1042442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the world and one of the leading indications for liver transplantation. It is one of the many manifestations of insulin resistance and metabolic syndrome as well as an independent risk factor for cardiovascular disease. There is growing evidence linking the incidence of NAFLD with psychiatric illnesses such as schizophrenia, bipolar disorder and depression mechanistically via genetic, metabolic, inflammatory and environmental factors including smoking and psychiatric medications. Indeed, patients prescribed antipsychotic medications, regardless of diagnosis, have higher incidence of NAFLD than population norms. The mechanistic pharmacology of antipsychotic-associated NAFLD is beginning to emerge. In this review, we aim to discuss the pathophysiology of NAFLD including its risk factors, insulin resistance and systemic inflammation as well as its intersection with psychiatric illnesses.
Collapse
Affiliation(s)
| | | | | | | | - Karen L. Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| |
Collapse
|
36
|
A liver secretome gene signature-based approach for determining circulating biomarkers of NAFLD severity. PLoS One 2022; 17:e0275901. [PMID: 36260611 PMCID: PMC9581378 DOI: 10.1371/journal.pone.0275901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/25/2022] [Indexed: 11/08/2022] Open
Abstract
Non-invasive biomarkers of non-alcoholic fatty liver disease (NAFLD) supporting diagnosis and monitoring disease progression are urgently needed. The present study aimed to establish a bioinformatics pipeline capable of defining and validating NAFLD biomarker candidates based on paired hepatic global gene expression and plasma bioanalysis from individuals representing different stages of histologically confirmed NAFLD (no/mild, moderate, more advanced NAFLD). Liver secretome gene signatures were generated in a patient cohort of 26 severely obese individuals with the majority having no or mild fibrosis. To this end, global gene expression changes were compared between individuals with no/mild NAFLD and moderate/advanced NAFLD with subsequent filtering for candidate gene products with liver-selective expression and secretion. Four candidate genes, including LPA (lipoprotein A), IGFBP-1 (insulin-like growth factor-binding protein 1), SERPINF2 (serpin family F member 2) and MAT1A (methionine adenosyltransferase 1A), were differentially expressed in moderate/advanced NAFLD, which was confirmed in three independent RNA sequencing datasets from large, publicly available NAFLD studies. The corresponding gene products were quantified in plasma samples but could not discriminate among different grades of NAFLD based on NAFLD activity score. Conclusion: We demonstrate a novel approach based on the liver transcriptome allowing for identification of secreted hepatic gene products as potential circulating diagnostic biomarkers of NAFLD. Using this approach in larger NAFLD patient cohorts may yield potential circulating biomarkers for NAFLD severity.
Collapse
|
37
|
Liu D, Zhao L, Jiang Y, Li L, Guo M, Mu Y, Zhu H. Integrated analysis of plasma and urine reveals unique metabolomic profiles in idiopathic inflammatory myopathies subtypes. J Cachexia Sarcopenia Muscle 2022; 13:2456-2472. [PMID: 35860906 PMCID: PMC9530549 DOI: 10.1002/jcsm.13045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Idiopathic inflammatory myopathies (IIM) are a class of autoimmune diseases with high heterogeneity that can be divided into different subtypes based on clinical manifestations and myositis-specific autoantibodies (MSAs). However, even in each IIM subtype, the clinical symptoms and prognoses of patients are very different. Thus, the identification of more potential biomarkers associated with IIM classification, clinical symptoms, and prognosis is urgently needed. METHODS Plasma and urine samples from 79 newly diagnosed IIM patients (mean disease duration 4 months) and 52 normal control (NC) samples were analysed by high-performance liquid chromatography of quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS)/MS-based untargeted metabolomics. Orthogonal partial least-squares discriminate analysis (OPLS-DA) were performed to measure the significance of metabolites. Pathway enrichment analysis was conducted based on the KEGG human metabolic pathways. Ten machine learning (ML) algorithms [linear support vector machine (SVM), radial basis function SVM, random forest, nearest neighbour, Gaussian processes, decision trees, neural networks, adaptive boosting (AdaBoost), Gaussian naive Bayes and quadratic discriminant analysis] were used to classify each IIM subtype and select the most important metabolites as potential biomarkers. RESULTS OPLS-DA showed a clear separation between NC and IIM subtypes in plasma and urine metabolic profiles. KEGG pathway enrichment analysis revealed multiple unique and shared disturbed metabolic pathways in IIM main [dermatomyositis (DM), anti-synthetase syndrome (ASS), and immune-mediated necrotizing myopathy (IMNM)] and MSA-defined subtypes (anti-Mi2+, anti-MDA5+, anti-TIF1γ+, anti-Jo1+, anti-PL7+, anti-PL12+, anti-EJ+, and anti-SRP+), such that fatty acid biosynthesis was significantly altered in both plasma and urine in all main IIM subtypes (enrichment ratio > 1). Random forest and AdaBoost performed best in classifying each IIM subtype among the 10 ML models. Using the feature selection methods in ML models, we identified 9 plasma and 10 urine metabolites that contributed most to separate IIM main subtypes and MSA-defined subtypes, such as plasma creatine (fold change = 3.344, P = 0.024) in IMNM subtype and urine tiglylcarnitine (fold change = 0.351, P = 0.037) in anti-EJ+ ASS subtype. Sixteen common metabolites were found in both the plasma and urine samples of IIM subtypes. Among them, some were correlated with clinical features, such as plasma hypogeic acid (r = -0.416, P = 0.005) and urine malonyl carnitine (r = -0.374, P = 0.042), which were negatively correlated with the prevalence of interstitial lung disease. CONCLUSIONS In both plasma and urine samples, IIM main and MSA-defined subtypes have specific metabolic signatures and pathways. This study provides useful clues for understanding the molecular mechanisms, searching potential diagnosis biomarkers and therapeutic targets for IIM.
Collapse
Affiliation(s)
- Di Liu
- Department of Rheumatology and Immunology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Department of Rheumatology and Clinical Immunology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Lijuan Zhao
- Department of Rheumatology and Immunology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yu Jiang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency MedicineHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaHunanChina
| | - Liya Li
- Department of Rheumatology and Immunology, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Muyao Guo
- Department of Rheumatology and Immunology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yibing Mu
- Department of NutritionHunan Provincial Maternal and Child Health Care HospitalChangshaHunanChina
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
38
|
Wang Q, Guo F, Jin Y, Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Target Ther 2022; 7:336. [PMID: 36167824 PMCID: PMC9513303 DOI: 10.1038/s41392-022-01194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Digestive system diseases arise primarily through the interplay of genetic and environmental influences; there is an urgent need in elucidating the pathogenic mechanisms of these diseases and deploy personalized treatments. Traditional and long-established model systems rarely reproduce either tissue complexity or human physiology faithfully; these shortcomings underscore the need for better models. Organoids represent a promising research model, helping us gain a more profound understanding of the digestive organs; this model can also be used to provide patients with precise and individualized treatment and to build rapid in vitro test models for drug screening or gene/cell therapy, linking basic research with clinical treatment. Over the past few decades, the use of organoids has led to an advanced understanding of the composition of each digestive organ and has facilitated disease modeling, chemotherapy dose prediction, CRISPR-Cas9 genetic intervention, high-throughput drug screening, and identification of SARS-CoV-2 targets, pathogenic infection. However, the existing organoids of the digestive system mainly include the epithelial system. In order to reveal the pathogenic mechanism of digestive diseases, it is necessary to establish a completer and more physiological organoid model. Combining organoids and advanced techniques to test individualized treatments of different formulations is a promising approach that requires further exploration. This review highlights the advancements in the field of organoid technology from the perspectives of disease modeling and personalized therapy.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanying Guo
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutao Jin
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Liu J, Wu A, Cai J, She ZG, Li H. The contribution of the gut-liver axis to the immune signaling pathway of NAFLD. Front Immunol 2022; 13:968799. [PMID: 36119048 PMCID: PMC9471422 DOI: 10.3389/fimmu.2022.968799] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the liver manifestation of metabolic syndrome and is the most common chronic liver disease in the world. The pathogenesis of NAFLD has not been fully clarified; it involves metabolic disturbances, inflammation, oxidative stress, and various forms of cell death. The “intestinal-liver axis” theory, developed in recent years, holds that there is a certain relationship between liver disease and the intestinal tract, and changes in intestinal flora are closely involved in the development of NAFLD. Many studies have found that the intestinal flora regulates the pathogenesis of NAFLD by affecting energy metabolism, inducing endotoxemia, producing endogenous ethanol, and regulating bile acid and choline metabolism. In this review, we highlighted the updated discoveries in intestinal flora dysregulation and their link to the pathogenesis mechanism of NAFLD and summarized potential treatments of NAFLD related to the gut microbiome.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Anding Wu
- Department of general surgery, Huanggang Central Hospital, Huanggang, China
- Huanggang Institute of Translation Medicine, Huanggang, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- *Correspondence: Zhi-Gang She, ; Hongliang Li,
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Zhi-Gang She, ; Hongliang Li,
| |
Collapse
|
40
|
Hoffmann C, Gerber PA, Cavelti-Weder C, Licht L, Kotb R, Al Dweik R, Cherfane M, Bornstein SR, Perakakis N. Liver, NAFLD and COVID-19. Horm Metab Res 2022; 54:522-531. [PMID: 35468630 DOI: 10.1055/a-1834-9008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is characterized by a wide clinical spectrum that includes abnormalities in liver function indicative of liver damage. Conversely, people with liver diseases are at higher risk of severe COVID-19. In the current review, we summarize first the epidemiologic evidence describing the bidirectional relationship between COVID-19 and liver function/liver diseases. Additionally, we present the most frequent histologic findings as well as the most important direct and indirect mechanisms supporting a COVID-19 mediated liver injury. Furthermore, we focus on the most frequent liver disease in the general population, non-alcoholic or metabolic-associated fatty liver disease (NAFLD/MAFLD), and describe how COVID-19 may affect NAFLD/MAFLD development and progression and conversely how NAFLD/MAFLD may further aggravate a COVID-19 infection. Finally, we present the long-term consequences of the pandemic on the development and management of NAFLD.
Collapse
Affiliation(s)
- Carlotta Hoffmann
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany, Department of Internal Medicine III, Dresden, Germany
| | - Philipp A Gerber
- University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland, Department of Endocrinology, Diabetology and Clinical Nutrition, Zurich, Switzerland
| | - Claudia Cavelti-Weder
- University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland, Department of Endocrinology, Diabetology and Clinical Nutrition, Zurich, Switzerland
| | - Louisa Licht
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany, Department of Internal Medicine III, Dresden, Germany
| | - Reham Kotb
- Abu Dhabi University, Abu Dhabi, United Arab Emirates, College of Health Sciences, Abu Dhabi, United Arab Emirates
| | - Rania Al Dweik
- Abu Dhabi University, Abu Dhabi, United Arab Emirates, Department of Public Health, Abu Dhabi, United Arab Emirates
| | - Michele Cherfane
- Abu Dhabi University, Abu Dhabi, United Arab Emirates, College of Health Sciences, Abu Dhabi, United Arab Emirates
| | - Stefan R Bornstein
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany, Department of Internal Medicine III, Dresden, Germany
| | - Nikolaos Perakakis
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany, Department of Internal Medicine III, Dresden, Germany
- University Hospital and Faculty of Medicine, TU Dresden, Dresden, Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, Dresden, Germany
- Neuherberg, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
41
|
Advance of Serum Biomarkers and Combined Diagnostic Panels in Nonalcoholic Fatty Liver Disease. DISEASE MARKERS 2022; 2022:1254014. [PMID: 35811662 PMCID: PMC9259243 DOI: 10.1155/2022/1254014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects approximately 25-30% population worldwide, which progresses from simple steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma, and has complications such as cardiovascular events. Liver biopsy is still the gold standard for the diagnosis of NAFLD, with some limitations, such as invasive, sampling deviation, and empirical judgment. Therefore, it is urgent to develop noninvasive diagnostic biomarkers. Currently, a large number of NAFLD-related serum biomarkers have been identified, including apoptosis, inflammation, fibrosis, adipokines, hepatokines, and omics biomarkers, which could effectively diagnose NASH and exclude patients with progressive fibrosis. We summarized serum biomarkers and combined diagnostic panels of NAFLD, to provide some guidance for the noninvasive diagnosis and further clinical studies.
Collapse
|
42
|
Plasma Metabolomics and Machine Learning-Driven Novel Diagnostic Signature for Non-Alcoholic Steatohepatitis. Biomedicines 2022; 10:biomedicines10071669. [PMID: 35884973 PMCID: PMC9312563 DOI: 10.3390/biomedicines10071669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
We performed targeted metabolomics with machine learning (ML)-based interpretation to identify metabolites that distinguish the progression of nonalcoholic fatty liver disease (NAFLD) in a cohort. Plasma metabolomics analysis was conducted in healthy control subjects (n = 25) and patients with NAFL (n = 42) and nonalcoholic steatohepatitis (NASH, n = 19) by gas chromatography-tandem mass spectrometry (MS/MS) and liquid chromatography-MS/MS as well as RNA sequencing (RNA-seq) analyses on liver tissues from patients with varying stages of NAFLD (n = 12). The resulting metabolomic data were subjected to routine statistical and ML-based analyses and multi-omics interpretation with RNA-seq data. We found 6 metabolites that were significantly altered in NAFLD among 79 detected metabolites. Random-forest and multinomial logistic regression analyses showed that eight metabolites (glutamic acid, cis-aconitic acid, aspartic acid, isocitric acid, α-ketoglutaric acid, oxaloacetic acid, myristoleic acid, and tyrosine) could distinguish the three groups. Then, the recursive partitioning and regression tree algorithm selected three metabolites (glutamic acid, isocitric acid, and aspartic acid) from these eight metabolites. With these three metabolites, we formulated an equation, the MetaNASH score that distinguished NASH with excellent performance. In addition, metabolic map construction and correlation assays integrating metabolomics data into the transcriptome datasets of the liver showed correlations between the concentration of plasma metabolites and the expression of enzymes governing metabolism and specific alterations of these correlations in NASH. Therefore, these findings will be useful for evaluation of altered metabolism in NASH and understanding of pathophysiologic implications from metabolite profiles in relation to NAFLD progression.
Collapse
|
43
|
Sanz-Garcia C, Nevzorova YA, Martínez-Naves E, Cubero FJ. Nuevas dianas terapéuticas para el estudio de la enfermedad hepática crónica: La creación del Consorcio Iberoamericano para el estudio de la cirrosis hepática. GASTROENTEROLOGIA Y HEPATOLOGIA 2022; 46:322-328. [PMID: 35688395 DOI: 10.1016/j.gastrohep.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023]
Abstract
Unfortunately, there is a gap of understanding in the pathophysiology of chronic liver disease due to the lack of experimental models that exactly mimic the human disease. Additionally, the diagnosis of patients is very poor due to the lack of biomarkers than can detect the disease in early stages. Thus, it is of utmost interest the generation of a multidisciplinary consortium from different countries with a direct translation. The present reports the meeting of the 2021 Iberoamerican Consortium for the study of liver Cirrhosis, held online, in October 2021. The meeting, was focused on the recent advancements in the field of chronic liver disease and cirrhosis with a specific focus on cell pathobiology and liver regeneration, molecular and cellular targets involved in non-alcoholic hepatic steatohepatitis, alcoholic liver disease (ALD), both ALD and western diet, and end-stage liver cirrhosis and hepatocellular carcinoma. In addition, the meeting highlighted recent advances in targeted novel technology (-omics) and opening therapeutic avenues in this field of research.
Collapse
|
44
|
Ding X, Xu Y, Nie P, Zhong L, Feng L, Guan Q, Song L. Changes in the serum metabolomic profiles of subjects with NAFLD in response to n-3 PUFAs and phytosterol ester: a double-blind randomized controlled trial. Food Funct 2022; 13:5189-5201. [PMID: 35438091 DOI: 10.1039/d1fo03921k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease and threatens human health worldwide. As shown in our previous study, co-supplementation with phytosterol ester (PSE) (3.3 g day-1) and n-3 polyunsaturated fatty acids (PUFAs) (450 mg eicosapentaenoic acid (EPA) + 1500 mg docosahexaenoic acid (DHA) per day) was more effective at ameliorating hepatic steatosis than treatment with PSE or n-3 PUFAs alone. In the present study, we further investigated the changes in the serum metabolic profiles of subjects with NAFLD in response to n-3 PUFAs and PSE. Thirty-one differentially altered serum metabolites were annotated using the nontargeted ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MSE) analysis technique. Multivariable statistical and clustering analyses showed that co-supplementation of n-3 PUFAs and PSE was more effective at improving metabolic disorders in patients with NAFLD than treatment with n-3 PUFAs or PSE alone. The regulated metabolic pathways included metabolism of retinol, linoleic acid, arachidonic acid, glycerophospholipid, sphingolipid, and steroid hormone biosynthesis. Overall, the co-supplementation of n-3 PUFAs and PSE significantly increased the serum levels of PUFA-containing phosphatidylcholine (PC), lysophosphatidylcholine (LysoPC), perillyl alcohol and retinyl ester in patients with NAFLD after 12 weeks of intervention, and the levels of PC (14:0/20:5, 15:0/20:5), LysoPC (20:5, 22:6) and retinyl ester correlated negatively with the degree of hepatic steatosis. The regulatory effect of co-supplementation of n-3 PUFAs and PSE on metabolomic profiles may explain their potential role in alleviating hepatic steatosis in patients with NAFLD.
Collapse
Affiliation(s)
- Xinwen Ding
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinfei Xu
- The First People's Hospital of Ningyang County, Tai'an City 270018, Shandong Province, People's Republic of China
| | - Pan Nie
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lingyue Zhong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Qi Guan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lihua Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
45
|
Riccio S, Melone R, Vitulano C, Guida P, Maddaluno I, Guarino S, Marzuillo P, Miraglia del Giudice E, Di Sessa A. Advances in pediatric non-alcoholic fatty liver disease: From genetics to lipidomics. World J Clin Pediatr 2022; 11:221-238. [PMID: 35663007 PMCID: PMC9134151 DOI: 10.5409/wjcp.v11.i3.221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
As a result of the obesity epidemic, non-alcoholic fatty liver disease (NAFLD) represents a global medical concern in childhood with a closely related increased cardiometabolic risk. Knowledge on NAFLD pathophysiology has been largely expanded over the last decades. Besides the well-known key NAFLD genes (including the I148M variant of the PNPLA3 gene, the E167K allele of the TM6SF2, the GCKR gene, the MBOAT7-TMC4 rs641738 variant, and the rs72613567:TA variant in the HSD17B13 gene), an intriguing pathogenic role has also been demonstrated for the gut microbiota. More interestingly, evidence has added new factors involved in the “multiple hits” theory. In particular, omics determinants have been highlighted as potential innovative markers for NAFLD diagnosis and treatment. In fact, different branches of omics including metabolomics, lipidomics (in particular sphingolipids and ceramides), transcriptomics (including micro RNAs), epigenomics (such as DNA methylation), proteomics, and glycomics represent the most attractive pathogenic elements in NAFLD development, by providing insightful perspectives in this field. In this perspective, we aimed to provide a comprehensive overview of NAFLD pathophysiology in children, from the oldest pathogenic elements (including genetics) to the newest intriguing perspectives (such as omics branches).
Collapse
Affiliation(s)
- Simona Riccio
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Rosa Melone
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Caterina Vitulano
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Pierfrancesco Guida
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Ivan Maddaluno
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Stefano Guarino
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Emanuele Miraglia del Giudice
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Anna Di Sessa
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| |
Collapse
|
46
|
Song Q, Liu H, Zhang Y, Qiao C, Ge S. Lipidomics Revealed Alteration of the Sphingolipid Metabolism in the Liver of Nonalcoholic Steatohepatitis Mice Treated with Scoparone. ACS OMEGA 2022; 7:14121-14127. [PMID: 35559132 PMCID: PMC9089391 DOI: 10.1021/acsomega.2c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/24/2022] [Indexed: 05/07/2023]
Abstract
Perturbation in sphingolipid metabolism has been regarded as a risk factor for nonalcoholic steatohepatitis (NASH) development, predisposing to inflammation, insulin resistance, and weight gain. Scoparone can regulate the level of ceramide in primary hepatocytes and effectively ameliorate hepatic inflammation, apoptosis, steatosis, and fibrogenesis in a mice model of NASH. Nevertheless, the potential effects of scoparone in sphingolipid metabolism, which is dysregulated in NASH, have not been explored so far. To uncover the impact of scoparone on sphingolipid metabolism in NASH and potential therapeutic targets for treating NASH, the liver tissue samples were collected and lipidomics analysis based on UPLC-QTRAP-MRM/MS was carried out. The collected raw data was handled with multivariate data treatment to discover the potential biomarkers in sphingolipid metabolism. Compared to the control group, 22 potential sphingolipid biomarkers were discovered in the NASH group, of which 10 were downregulated and 12 were upregulated. Orally administrated scoparone contributed to the reversal of the levels of these potential biomarkers. Ten differential metabolites showed a tendency of recovery compared to the control group and may be potential targets for scoparone to treat NASH. This study indicated that lipidomics can detect the perturbed sphingolipids to unravel the therapeutic effects of scoparone on NASH.
Collapse
Affiliation(s)
- Qi Song
- College
of Traditional Chinese Medicine, Hebei University, Baoding 071000, P.R. China
| | - Hu Liu
- College
of Traditional Chinese Medicine, Hebei University, Baoding 071000, P.R. China
| | - Yunqi Zhang
- College
of Traditional Chinese Medicine, Hebei University, Baoding 071000, P.R. China
| | - Chuanqi Qiao
- College
of Traditional Chinese Medicine, Hebei University, Baoding 071000, P.R. China
| | - Shaoqin Ge
- College
of Traditional Chinese Medicine, Hebei University, Baoding 071000, P.R. China
- College
of Basic Medical Science, Hebei University, Baoding 071000, P.R. China
- (S.G.). Phone: +86-312-5075644. Fax: +86-312-5075644
| |
Collapse
|
47
|
Tatta ER, Imchen M, Moopantakath J, Kumavath R. Bioprospecting of microbial enzymes: current trends in industry and healthcare. Appl Microbiol Biotechnol 2022; 106:1813-1835. [PMID: 35254498 DOI: 10.1007/s00253-022-11859-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/15/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022]
Abstract
Microbial enzymes have an indispensable role in producing foods, pharmaceuticals, and other commercial goods. Many novel enzymes have been reported from all domains of life, such as plants, microbes, and animals. Nonetheless, industrially desirable enzymes of microbial origin are limited. This review article discusses the classifications, applications, sources, and challenges of most demanded industrial enzymes such as pectinases, cellulase, lipase, and protease. In addition, the production of novel enzymes through protein engineering technologies such as directed evolution, rational, and de novo design, for the improvement of existing industrial enzymes is also explored. We have also explored the role of metagenomics, nanotechnology, OMICs, and machine learning approaches in the bioprospecting of novel enzymes. Overall, this review covers the basics of biocatalysts in industrial and healthcare applications and provides an overview of existing microbial enzyme optimization tools. KEY POINTS: • Microbial bioactive molecules are vital for therapeutic and industrial applications. • High-throughput OMIC is the most proficient approach for novel enzyme discovery. • Comprehensive databases and efficient machine learning models are the need of the hour to fast forward de novo enzyme design and discovery.
Collapse
Affiliation(s)
- Eswar Rao Tatta
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India
| | - Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India
| | - Jamseel Moopantakath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India.
| |
Collapse
|
48
|
Azul AM, Winter M, Silva D, Georgievska L, Oliveira PJ. Bioenergetic remodeling in the pathophysiology and treatment of nonalcoholic fatty liver disease. Eur J Clin Invest 2022; 52:e13749. [PMID: 35156207 DOI: 10.1111/eci.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Anabela Marisa Azul
- CNC-Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, UC Biotech, Cantanhede, Portugal
| | - Martin Winter
- Micro-Biolytics GmbH, Esslingen am Neckar, Germany.,Lab Automation Network, Tübingen, Germany
| | - Daniel Silva
- CNC-Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, UC Biotech, Cantanhede, Portugal
| | - Liljana Georgievska
- CNC-Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, UC Biotech, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, UC Biotech, Cantanhede, Portugal
| |
Collapse
|
49
|
Gallego-Durán R, Albillos A, Ampuero J, Arechederra M, Bañares R, Blas-García A, Berná G, Caparrós E, Delgado TC, Falcón-Pérez JM, Francés R, Fernández-Barrena MG, Graupera I, Iruzubieta P, Nevzorova YA, Nogueiras R, Macías RIR, Marín F, Sabio G, Soriano G, Vaquero J, Cubero FJ, Gracia-Sancho J. Metabolic-associated fatty liver disease: from simple steatosis towards liver cirrhosis and potential complications. Proceedings of the Third Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH). GASTROENTEROLOGIA Y HEPATOLOGIA 2022; 45:724-734. [DOI: 10.1016/j.gastrohep.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
|
50
|
Diagnostic Modalities of Non-Alcoholic Fatty Liver Disease: From Biochemical Biomarkers to Multi-Omics Non-Invasive Approaches. Diagnostics (Basel) 2022; 12:diagnostics12020407. [PMID: 35204498 PMCID: PMC8871470 DOI: 10.3390/diagnostics12020407] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is currently the most common cause of chronic liver disease worldwide, and its prevalence is increasing globally. NAFLD is a multifaceted disorder, and its spectrum includes steatosis to steatohepatitis, which may evolve to advanced fibrosis and cirrhosis. In addition, the presence of NAFLD is independently associated with a higher cardiometabolic risk and increased mortality rates. Considering that the vast majority of individuals with NAFLD are mainly asymptomatic, early diagnosis of non-alcoholic steatohepatitis (NASH) and accurate staging of fibrosis risk is crucial for better stratification, monitoring and targeted management of patients at risk. To date, liver biopsy remains the gold standard procedure for the diagnosis of NASH and staging of NAFLD. However, due to its invasive nature, research on non-invasive tests is rapidly increasing with significant advances having been achieved during the last decades in the diagnostic field. New promising non-invasive biomarkers and techniques have been developed, evaluated and assessed, including biochemical markers, imaging modalities and the most recent multi-omics approaches. Our article provides a comprehensive review of the currently available and emerging non-invasive diagnostic tools used in assessing NAFLD, also highlighting the importance of accurate and validated diagnostic tools.
Collapse
|