1
|
Thippani S, Patel NJ, Jathan J, Filush K, Socarras KM, DiLorenzo J, Balasubramanian K, Gupta K, Ortiz Aleman G, Pandya JM, Kavitapu VV, Zeng D, Miller JC, Sapi E. Evidence for the Presence of Borrelia burgdorferi Biofilm in Infected Mouse Heart Tissues. Microorganisms 2024; 12:1766. [PMID: 39338441 PMCID: PMC11434270 DOI: 10.3390/microorganisms12091766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Borrelia burgdorferi, the bacterium responsible for Lyme disease, has been shown to form antimicrobial-tolerant biofilms, which protect it from unfavorable conditions. Bacterial biofilms are known to significantly contribute to severe inflammation, such as carditis, a common manifestation of Lyme disease. However, the role of B. burgdorferi biofilms in the development of Lyme carditis has not been thoroughly investigated due to the absence of an appropriate model system. In this study, we examined heart tissues from mice infected with B. burgdorferi for the presence of biofilms and inflammatory markers using immunohistochemistry (IHC), combined fluorescence in situ hybridization FISH/IHC, 3D microscopy, and atomic force microscopy techniques. Our results reveal that B. burgdorferi spirochetes form aggregates with a known biofilm marker (alginate) in mouse heart tissues. Furthermore, these biofilms induce inflammation, as indicated by elevated levels of murine C-reactive protein near the biofilms. This research provides evidence that B. burgdorferi can form biofilms in mouse heart tissue and trigger inflammatory processes, suggesting that the mouse model is a valuable tool for future studies on B. burgdorferi biofilms.
Collapse
Affiliation(s)
- Sahaja Thippani
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Niraj Jatin Patel
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Jasmine Jathan
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Kate Filush
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Kayla M. Socarras
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Jessica DiLorenzo
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Kunthavai Balasubramanian
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Khusali Gupta
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Geneve Ortiz Aleman
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Jay M. Pandya
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Venkata V. Kavitapu
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Daina Zeng
- Department of Biological Sciences, North Carolina State University, 3510 Thomas Hall, 112 Derieux Pl, Raleigh, NC 27607, USA; (D.Z.); (J.C.M.)
| | - Jennifer C. Miller
- Department of Biological Sciences, North Carolina State University, 3510 Thomas Hall, 112 Derieux Pl, Raleigh, NC 27607, USA; (D.Z.); (J.C.M.)
| | - Eva Sapi
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| |
Collapse
|
2
|
Cotten KL, Davis KM. Bacterial heterogeneity and antibiotic persistence: bacterial mechanisms utilized in the host environment. Microbiol Mol Biol Rev 2023; 87:e0017422. [PMID: 37962348 PMCID: PMC10732018 DOI: 10.1128/mmbr.00174-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
SUMMARYAntibiotic persistence, or the ability of small subsets of bacteria to survive prolonged antibiotic treatment, is an underappreciated cause of antibiotic treatment failure. Over the past decade, researchers have discovered multiple different stress responses and mechanisms that can promote antibiotic persistence. However, many of these studies have been completed in culture-based systems that fail to truly replicate the complexities of the host environment, and it is unclear whether the mechanisms defined in in vitro studies are applicable during host infection. In this review, we focus our discussion on recent studies that utilize a mixture of ex vivo culture systems and animal models to understand what stressors in the host environment are important for inducing antibiotic persistence. Different host stressors are involved depending on the anatomical niche the bacteria reside in and whether the host immune system is primed to generate a more robust response against bacteria, which can result in differing downstream effects on antibiotic susceptibility. Bacterial pathogens can also utilize specific strategies to reprogram their metabolism, which is vital for transitioning into an antibiotic-persistent state within host tissues. Importantly, we highlight that more attention is needed to establish guidelines for in vivo work on antibiotic persistence, particularly when identifying antibiotic-persistent subpopulations and distinguishing these phenotypes from antibiotic tolerance. Studying antibiotic persistence in the context of the host environment will be crucial for developing tools and strategies to target antibiotic-persistent bacteria and increase the efficacy of antibiotic treatment.
Collapse
Affiliation(s)
- Katherine L. Cotten
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kimberly Michele Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Zhou Y, Liao H, Pei L, Pu Y. Combatting persister cells: The daunting task in post-antibiotics era. CELL INSIGHT 2023; 2:100104. [PMID: 37304393 PMCID: PMC10250163 DOI: 10.1016/j.cellin.2023.100104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/25/2023] [Accepted: 04/21/2023] [Indexed: 06/13/2023]
Abstract
Over the years, much attention has been drawn to antibiotic resistance bacteria, but drug inefficacy caused by a subgroup of special phenotypic variants - persisters - has been largely neglected in both scientific and clinical field. Interestingly, this subgroup of phenotypic variants displayed their power of withstanding sufficient antibiotics exposure in a mechanism different from antibiotic resistance. In this review, we summarized the clinical importance of bacterial persisters, the evolutionary link between resistance, tolerance, and persistence, redundant mechanisms of persister formation as well as methods of studying persister cells. In the light of our recent findings of membrane-less organelle aggresome and its important roles in regulating bacterial dormancy depth, we propose an alternative approach for anti-persister therapy. That is, to force a persister into a deeper dormancy state to become a VBNC (viable but non-culturable) cell that is incapable of regrowth. We hope to provide the latest insights on persister studies and call upon more research interest into this field.
Collapse
Affiliation(s)
- Yidan Zhou
- Department of Clinical Laboratory, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China
| | - Hebin Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China
| | - Linsen Pei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China
| | - Yingying Pu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
4
|
NO-Stressed Y. pseudotuberculosis Has Decreased Cell Division Rates in the Mouse Spleen. Infect Immun 2022; 90:e0016722. [PMID: 35862700 PMCID: PMC9387282 DOI: 10.1128/iai.00167-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Fluorescence dilution approaches can detect bacterial cell division events and can detect if there are differential rates of cell division across individual cells within a population. This approach typically involves inducing expression of a fluorescent protein and then tracking partitioning of fluorescence into daughter cells. However, fluorescence can be diluted very quickly within a rapidly replicating population, such as pathogenic bacterial populations replicating within host tissues. To overcome this limitation, we have generated two revTetR reporter constructs, where either mCherry or yellow fluorescent protein (YFP) is constitutively expressed and repressed by addition of tetracyclines, resulting in fluorescence dilution within defined time frames. We show that fluorescent signals are diluted in replicating populations and that signal accumulates in growth-inhibited populations, including during nitric oxide (NO) exposure. Furthermore, we show that tetracyclines can be delivered to the mouse spleen during Yersinia pseudotuberculosis infection and defined a drug concentration that results in even exposure of cells to tetracyclines. We then used this system to visualize bacterial cell division within defined time frames postinfection. revTetR-mCherry allowed us to detect slow-growing cells in response to NO in culture; however, this strain had a growth defect within mouse tissues, which complicated results. To address this issue, we constructed revTetR-YFP using the less toxic YFP and showed that heightened NO exposure correlated with heightened YFP signal, indicating decreased cell division rates within this subpopulation in vivo. This revTetR reporter will provide a critical tool for future studies to identify and isolate slowly replicating bacterial subpopulations from host tissues.
Collapse
|
5
|
Uropathogenic Escherichia coli Shows Antibiotic Tolerance and Growth Heterogeneity in an In Vitro Model of Intracellular Infection. Antimicrob Agents Chemother 2021; 65:e0146821. [PMID: 34570646 DOI: 10.1128/aac.01468-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC), the major causative agent of urinary tract infections, can invade different types of host cells. To compare the pharmacodynamic properties of antibiotics against intra- and extracellular UPEC, an in vitro model of intracellular infection was established in J774 mouse macrophages infected by the UPEC strain CFT073. We tested antibiotics commonly prescribed against urinary tract infections (gentamicin, ampicillin, nitrofurantoin, trimethoprim, sulfamethoxazole, and ciprofloxacin) and the investigational fluoroquinolone finafloxacin. The metabolic activity of individual bacteria was assessed by expressing the fluorescent reporter protein TIMERbac within CFT073. Concentration-response experiments revealed that all tested antibiotics were much less effective against intracellular bacteria than extracellular ones. Most antibiotics, except fluoroquinolones, were unable to reach a bactericidal effect intracellularly at clinically achievable concentrations. Ciprofloxacin and finafloxacin killed 99.9% of extracellular bacteria at concentrations around the MIC, while for intracellular bacteria, concentrations more than 100× over the MIC were required to achieve a bactericidal effect. Time-kill curves showed that finafloxacin was more rapidly bactericidal in acidic medium than at neutral pH, while the reverse observation was made for ciprofloxacin. Intracellularly, kill curves showed biphasic kinetics for both fluoroquinolones, suggesting the presence of drug-tolerant subpopulations. Flow cytometry analysis of TIMERbac fluorescence revealed a marked heterogeneity in intracellular growth of individual bacteria, suggesting that the presence of subpopulations reaching a state of metabolic dormancy was the main reason for increased antibiotic tolerance of intracellular UPEC.
Collapse
|
6
|
Jin J, Li Y, Huang M, Li S, Mao Z. Preliminary studies on the different roles of T6SSs in pathogenicity of Pseudomonas plecoglossicida NB2011. JOURNAL OF FISH DISEASES 2021; 44:1669-1679. [PMID: 34431107 DOI: 10.1111/jfd.13479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Pseudomonas plecoglossicida, the causative agent of visceral granulomas in the large yellow croaker (Larimichthys crocea) in China, encodes three sets of type Ⅵ secretion systems (T6SS1-3). The purpose of this study was to characterize the different roles of T6SSs involved in infection. In-frame deletion of T6SSs was constructed, which resulted in 8 mutants. Competition against E. coli DH5α, virulence against the croaker and in vivo survival ability of the mutants were tested. The expression and secretion of Hcp by P. plecoglossicida NB2011 were investigated. The results showed T6SS2 mutant failed to inhibit the growth of E. coli, which is an indication of T6SS2 acting against environmental bacteria. The LD50 value of T6SS1 mutant strongly increased; T6SS2 and T6SS3 mutants were similar to that of the wild type; and the virulence of double deletion or triple deletion mutant was drastically alleviated, indicating that T6SS1 being one of the major virulence factors, and T6SS2 and T6SS3 directly or indirectly being involved in the pathogenicity. T6SS1 mutant disappeared in the fish spleen in 3 days, while other strains kept increasing, indicating the T6SS1 stimulation bacteria replication in vivo. Hcp1 secreted at 12-28°C and Hcp2 secreted at 12-35°C, while Hcp3 secretion not detected in vitro. This study has thrown some insights on the understanding of pathogenicity mechanisms of this pathogen.
Collapse
Affiliation(s)
- Jiamin Jin
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - Yiying Li
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - Mengxia Huang
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - Shanshan Li
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - Zhijuan Mao
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
7
|
Analysis of In Vivo Transcriptome of Intracellular Bacterial Pathogen Salmonella enterica serovar Typhmurium Isolated from Mouse Spleen. Pathogens 2021; 10:pathogens10070823. [PMID: 34209260 PMCID: PMC8308634 DOI: 10.3390/pathogens10070823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important intracellular pathogen that poses a health threat to humans. This study tries to clarify the mechanism of Salmonella survival and reproduction in the host. In this study, high-throughput sequencing analysis was performed on RNA extracted from the strains isolated from infected mouse spleens and an S. Typhimurium reference strain (ATCC 14028) based on the BGISEQ-500 platform. A total of 1340 significant differentially expressed genes (DEGs) were screened. Functional annotation revealed DEGs associated with regulation, metabolism, transport and binding, pathogenesis, and motility. Through data mining and literature retrieval, 26 of the 58 upregulated DEGs (FPKM > 10) were not reported to be related to the adaptation to intracellular survival and were classified as candidate key genes (CKGs) for survival and proliferation in vivo. Our data contribute to our understanding of the mechanisms used by Salmonella to regulate virulence gene expression whilst replicating inside mammalian cells.
Collapse
|
8
|
Reuter T, Scharte F, Franzkoch R, Liss V, Hensel M. Single cell analyses reveal distinct adaptation of typhoidal and non-typhoidal Salmonella enterica serovars to intracellular lifestyle. PLoS Pathog 2021; 17:e1009319. [PMID: 34143852 PMCID: PMC8244875 DOI: 10.1371/journal.ppat.1009319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/30/2021] [Accepted: 05/14/2021] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica is a common foodborne, facultative intracellular enteropathogen. Human-restricted typhoidal S. enterica serovars Typhi (STY) or Paratyphi A (SPA) cause severe typhoid or paratyphoid fever, while many S. enterica serovar Typhimurium (STM) strains have a broad host range and in human hosts usually lead to a self-limiting gastroenteritis. Due to restriction of STY and SPA to primate hosts, experimental systems for studying the pathogenesis of typhoid and paratyphoid fever are limited. Therefore, STM infection of susceptible mice is commonly considered as model system for studying these diseases. The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2-T3SS) is a key factor for intracellular survival of Salmonella. Inside host cells, the pathogen resides within the Salmonella-containing vacuole (SCV) and induces tubular structures extending from the SCV, termed Salmonella-induced filaments (SIF). This study applies single cell analyses approaches, which are flow cytometry of Salmonella harboring dual fluorescent protein reporters, effector translocation, and correlative light and electron microscopy to investigate the fate and activities of intracellular STY and SPA. The SPI2-T3SS of STY and SPA is functional in translocation of effector proteins, SCV and SIF formation. However, only a low proportion of intracellular STY and SPA are actively deploying SPI2-T3SS and STY and SPA exhibited a rapid decline of protein biosynthesis upon experimental induction. A role of SPI2-T3SS for proliferation of STY and SPA in epithelial cells was observed, but not for survival or proliferation in phagocytic host cells. Our results indicate that reduced intracellular activities are factors of the stealth strategy of STY and SPA and facilitate systemic spread and persistence of the typhoidal Salmonella. Typhoidal Salmonella enterica serovars Typhi (STY) and Paratyphi A (SPA) cause a major disease burden to the human population. The restriction of these pathogens to human hosts limits experimental analyses of molecular mechanisms of diseases. S. enterica serovar Typhimurium is commonly used as surrogate model for typhoidal Salmonella (TS), and allowed the identification of virulence factors for intracellular lifestyle of S. enterica in mammalian host cells. If virulence factors, such as the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS) have similar roles for intracellular lifestyle of TS is largely unknown. We analyzed, on single cell level, the intracellular activities of STY and SPA in comparison to STM. STY and SPA deploy SPI2-T3SS to actively manipulate their host cells, but with far lower frequency than STM. Our work supports a model of TS as stealth pathogens that persist in host cells.
Collapse
Affiliation(s)
- Tatjana Reuter
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Felix Scharte
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Rico Franzkoch
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- iBiOs–integrated Bioimaging Facility Osnabrück, Universität Osnabrück, Osnabrück, Germany
| | - Viktoria Liss
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- iBiOs–integrated Bioimaging Facility Osnabrück, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs–Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
- * E-mail:
| |
Collapse
|
9
|
The protected physiological state of intracellular Salmonella enterica persisters reduces host cell-imposed stress. Commun Biol 2021; 4:520. [PMID: 33947954 PMCID: PMC8096953 DOI: 10.1038/s42003-021-02049-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
During infectious diseases, small subpopulations of bacterial pathogens enter a non-replicating (NR) state tolerant to antibiotics. After phagocytosis, intracellular Salmonella enterica serovar Typhimurium (STM) forms persisters able to subvert immune defenses of the host. Physiological state and sensing properties of persisters are difficult to analyze, thus poorly understood. Here we deploy fluorescent protein reporters to detect intracellular NR persister cells, and to monitor their stress response on single cell level. We determined metabolic properties of NR STM during infection and demonstrate that NR STM persisters sense their environment and respond to stressors. Since persisters showed a lower stress response compared to replicating (R) STM, which was not consequence of lower metabolic capacity, the persistent state of STM serves as protective niche. Up to 95% of NR STM were metabolically active at beginning of infection, very similar to metabolic capacity of R STM. Sensing and reacting to stress with constant metabolic activity supports STM to create a more permissive environment for recurrent infections. Stress sensing and response of persister may be targeted by new antimicrobial approaches. Schulte et al. show that non-replicating Salmonella enterica serovar Typhimurium persisters, which are tolerant to antibiotics, sense their environment and respond to stressors. This study suggests that stress sensing and response of persisters may be targeted as an antimicrobial strategy.
Collapse
|
10
|
Röder J, Felgner P, Hensel M. Comprehensive Single Cell Analyses of the Nutritional Environment of Intracellular Salmonella enterica. Front Cell Infect Microbiol 2021; 11:624650. [PMID: 33834004 PMCID: PMC8021861 DOI: 10.3389/fcimb.2021.624650] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
The facultative intracellular pathogen Salmonella enterica Typhimurium (STM) resides in a specific membrane-bound compartment termed the Salmonella-containing vacuole (SCV). STM is able to obtain all nutrients required for rapid proliferation, although being separated from direct access to host cell metabolites. The formation of specific tubular membrane compartments, called Salmonella-induced filaments (SIFs) are known to provides bacterial nutrition by giving STM access to endocytosed material and enabling proliferation. Additionally, STM expresses a range of nutrient uptake system for growth in nutrient limited environments to overcome the nutrition depletion inside the host. By utilizing dual fluorescence reporters, we shed light on the nutritional environment of intracellular STM in various host cells and distinct intracellular niches. We showed that STM uses nutrients of the host cell and adapts uniquely to the different nutrient conditions. In addition, we provide further evidence for improved nutrient supply by SIF formation or presence in the cytosol of epithelial cells, and the correlation of nutrient supply to bacterial proliferation.
Collapse
Affiliation(s)
- Jennifer Röder
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Pascal Felgner
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs – Center of Cellular Nanoanalytics, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
11
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
12
|
Schulte M, Olschewski K, Hensel M. Fluorescent protein-based reporters reveal stress response of intracellular Salmonella enterica at level of single bacterial cells. Cell Microbiol 2020; 23:e13293. [PMID: 33222378 DOI: 10.1111/cmi.13293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Intracellular bacteria such as Salmonella enterica are confronted with a broad array of defence mechanisms of their mammalian host cells. The ability to sense host cell-imposed damages, and to mount efficient stress responses are crucial for survival and proliferation of intracellular pathogens. The various combinations of host defence mechanisms acting on intracellular bacteria and their individual response also explain the occurrence of distinct subpopulations of intracellular S. enterica such as dormant or persisting, slowly or rapidly replicating cells. Here we describe a set of fluorescence protein (FP)-based reporter strains that were used to monitor the expression of cytoplasmic or periplasmic stress response systems of single bacterial cells. This is mediated by a fast-maturing FP as reporter for induction of stress response genes. We evaluated slower maturing FPs for a second function, that is, the analysis of the status of intracellular proliferation of pathogens. The combination of two FPs allows, at level of single bacterial cells, the interrogation of stress response and intracellular proliferation. Application of these reporters to S. enterica allowed us to detect and quantify distinct intracellular subpopulations with different levels of stress response and proliferation.
Collapse
Affiliation(s)
- Marc Schulte
- Abteilung Mikrobiologie, CellNanOs - Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| | - Katharina Olschewski
- Abteilung Mikrobiologie, CellNanOs - Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, CellNanOs - Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
13
|
Brzostek J, Fatin A, Chua WH, Tan HY, Dick T, Gascoigne NRJ. Single Cell Analysis of Drug Susceptibility of Mycobacterium Abscessus During Macrophage Infection. Antibiotics (Basel) 2020; 9:antibiotics9100711. [PMID: 33080864 PMCID: PMC7650608 DOI: 10.3390/antibiotics9100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium abscessus is an emerging health risk to immunocompromised individuals and to people with pre-existing pulmonary conditions. As M. abscessus possesses multiple mechanisms of drug resistance, treatments of M. abscessus are of poor efficacy. Therefore, there is an urgent need for new therapeutic strategies targeting M. abscessus. We describe an experimental system for screening of compounds for their antimicrobial activity against intracellular M. abscessus using flow cytometry and imaging flow cytometry. The assay allows simultaneous analysis of multiple parameters, such as proportion of infected host cells, bacterial load per host cell from the infected population, and host cell viability. We verified the suitability of this method using two antibiotics with known activity against M. abscessus: clarithromycin and amikacin. Our analysis revealed a high degree of infection heterogeneity, which correlated with host cell size. A higher proportion of the larger host cells is infected with M. abscessus as compared to smaller host cells, and infected larger cells have higher intracellular bacterial burden than infected smaller cells. Clarithromycin treatment has a more pronounced effect on smaller host cells than on bigger host cells, suggesting that heterogeneity within the host cell population has an effect on antibiotic susceptibility of intracellular bacteria.
Collapse
Affiliation(s)
- Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
- Correspondence: (J.B.); (N.R.J.G.)
| | - Amierah Fatin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
| | - Wen Hui Chua
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
| | - Hui Yi Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ 07110, USA
| | - Nicholas R. J. Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore
- Correspondence: (J.B.); (N.R.J.G.)
| |
Collapse
|
14
|
Rossi O, Vlazaki M, Kanvatirth P, Restif O, Mastroeni P. Within-host spatiotemporal dynamic of systemic salmonellosis: Ways to track infection, reaction to vaccination and antimicrobial treatment. J Microbiol Methods 2020; 176:106008. [PMID: 32707153 DOI: 10.1016/j.mimet.2020.106008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022]
Abstract
During the last two decades our understanding of the complex in vivo host-pathogen interactions has increased due to technical improvements and new research tools. The rapid advancement of molecular biology, flow cytometry and microscopy techniques, combined with mathematical modelling, have empowered in-depth studies of systemic bacterial infections across scales from single molecules, to cells, to organs and systems to reach the whole organism level. By tracking subpopulations of bacteria in vivo using molecular or fluorescent tags, it has been possible to reconstruct the spread of infection within and between organs, allowing unprecedented quantification of the effects of antimicrobial treatment and vaccination. This review illustrates recent advances in the study of heterogeneous traits of the infection process and illustrate approaches to investigate the reciprocal interactions between antimicrobial treatments, bacterial growth/death as well as inter- and intra-organ spread. We also discuss how vaccines impact the in vivo behaviour of bacteria and how these findings can guide vaccine design and rational antimicrobial treatment.
Collapse
Affiliation(s)
- Omar Rossi
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, CB3 0ES Cambridge, UK.
| | - Myrto Vlazaki
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, CB3 0ES Cambridge, UK
| | - Panchali Kanvatirth
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, CB3 0ES Cambridge, UK
| | - Olivier Restif
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, CB3 0ES Cambridge, UK
| | - Pietro Mastroeni
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, CB3 0ES Cambridge, UK.
| |
Collapse
|
15
|
Jariani A, Vermeersch L, Cerulus B, Perez-Samper G, Voordeckers K, Van Brussel T, Thienpont B, Lambrechts D, Verstrepen KJ. A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast. eLife 2020; 9:e55320. [PMID: 32420869 PMCID: PMC7259953 DOI: 10.7554/elife.55320] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Current methods for single-cell RNA sequencing (scRNA-seq) of yeast cells do not match the throughput and relative simplicity of the state-of-the-art techniques that are available for mammalian cells. In this study, we report how 10x Genomics' droplet-based single-cell RNA sequencing technology can be modified to allow analysis of yeast cells. The protocol, which is based on in-droplet spheroplasting of the cells, yields an order-of-magnitude higher throughput in comparison to existing methods. After extensive validation of the method, we demonstrate its use by studying the dynamics of the response of isogenic yeast populations to a shift in carbon source, revealing the heterogeneity and underlying molecular processes during this shift. The method we describe opens new avenues for studies focusing on yeast cells, as well as other cells with a degradable cell wall.
Collapse
Affiliation(s)
- Abbas Jariani
- Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory of Genetics and Genomics, CMPG, Department M2S, KU LeuvenLeuvenBelgium
| | - Lieselotte Vermeersch
- Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory of Genetics and Genomics, CMPG, Department M2S, KU LeuvenLeuvenBelgium
| | - Bram Cerulus
- Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory of Genetics and Genomics, CMPG, Department M2S, KU LeuvenLeuvenBelgium
| | - Gemma Perez-Samper
- Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory of Genetics and Genomics, CMPG, Department M2S, KU LeuvenLeuvenBelgium
| | - Karin Voordeckers
- Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory of Genetics and Genomics, CMPG, Department M2S, KU LeuvenLeuvenBelgium
| | - Thomas Van Brussel
- Laboratory for Translational Genetics, Department of Human Genetics, KU LeuvenLeuvenBelgium
- VIB Center for Cancer Biology, VIBLeuvenBelgium
| | - Bernard Thienpont
- Laboratory for Translational Genetics, Department of Human Genetics, KU LeuvenLeuvenBelgium
- VIB Center for Cancer Biology, VIBLeuvenBelgium
- Laboratory for Functional Epigenetics, Department of Genetics, KU LeuvenLeuvenBelgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU LeuvenLeuvenBelgium
- VIB Center for Cancer Biology, VIBLeuvenBelgium
| | - Kevin J Verstrepen
- Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory of Genetics and Genomics, CMPG, Department M2S, KU LeuvenLeuvenBelgium
| |
Collapse
|
16
|
Ferelli AMC, Bolten S, Szczesny B, Micallef SA. Salmonella enterica Elicits and Is Restricted by Nitric Oxide and Reactive Oxygen Species on Tomato. Front Microbiol 2020; 11:391. [PMID: 32231649 PMCID: PMC7082413 DOI: 10.3389/fmicb.2020.00391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/25/2020] [Indexed: 11/17/2022] Open
Abstract
The enteric pathogen Salmonella enterica can interact with parts of the plant immune system despite not being a phytopathogen. Previous transcriptomic profiling of S. enterica associating with tomato suggested that Salmonella was responding to oxidative and nitrosative stress in the plant niche. We aimed to investigate whether Salmonella was eliciting generation of reactive oxygen species (ROS) and nitric oxide (NO), two components of the microbe-associated molecular pattern (MAMP)-triggered immunity (MTI) of plants. We also sought to determine whether this interaction had any measurable effects on Salmonella colonization of plants. Biochemical, gene expression and on-plant challenge assays of tomato vegetative and fruit organs were conducted to assess the elicitation of ROS and NO in response to Salmonella Newport association. The counter bacterial response and the effect of NO and ROS on Salmonella colonization was also investigated. We detected H2O2 in leaves and fruit following challenge with live S. Newport (p < 0.05). Conversely, NO was detected on leaves but not on fruit in response to S. Newport (p < 0.05). We found no evidence of plant defense attenuation by live S. Newport. Bacterial gene expression of S. Newport associating with leaves and fruit were indicative of adaptation to biotic stress in the plant niche. The nitrosative stress response genes hmpA and yoaG were significantly up-regulated in S. Newport on leaves and fruit tissue compared to tissue scavenged of NO or ROS (p < 0.05). Chemical modulation of these molecules in the plant had a restrictive effect on bacterial populations. Significantly higher S. Newport titers were retrieved from H2O2 scavenged leaves and fruit surfaces compared to controls (p < 0.05). Similarly, S. Newport counts recovered from NO-scavenged leaves, but not fruit, were higher compared to control (p < 0.05), and significantly lower on leaves pre-elicited to produce endogenous NO. We present evidence of Salmonella elicitation of ROS and NO in tomato, which appear to have a restricting effect on the pathogen. Moreover, bacterial recognition of ROS and NO stress was detected. This work shows that tomato has mechanisms to restrict Salmonella populations and ROS and NO detoxification may play an important role in Salmonella adaptation to the plant niche.
Collapse
Affiliation(s)
- Angela Marie C Ferelli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Samantha Bolten
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Brooke Szczesny
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States.,Centre for Food Safety and Security Systems, University of Maryland, College Park, MD, United States
| |
Collapse
|
17
|
Röder J, Hensel M. Presence of SopE and mode of infection result in increased
Salmonella
‐containing vacuole damage and cytosolic release during host cell infection by
Salmonella enterica. Cell Microbiol 2020; 22:e13155. [DOI: 10.1111/cmi.13155] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Jennifer Röder
- Abteilung MikrobiologieUniversitat Osnabruck Osnabrück Germany
| | - Michael Hensel
- Abteilung MikrobiologieUniversitat Osnabruck Osnabrück Germany
- CellNanOs – Center for Cellular Nanoanalytics, Fachbereich Biologie/ChemieUniversität Osnabrück Osnabrück Germany
| |
Collapse
|
18
|
Abstract
It is generally regarded that the progression of an infection within host macrophages is the consequence of a failed immune response. However, recent appreciation of macrophage heterogeneity, with respect to both development and metabolism, indicates that the reality is more complex. Different lineages of tissue-resident macrophages respond divergently to microbial, environmental and immunological stimuli. The emerging picture that the developmental origin of macrophages determines their responses to immune stimulation and to infection stresses the importance of in vivo infection models. Recent investigations into the metabolism of infecting microorganisms and host macrophages indicate that their metabolic interface can be a major determinant of pathogen growth or containment. This Review focuses on the integration of data from existing studies, the identification of challenges in generating and interpreting data from ongoing studies and a discussion of the technologies and tools that are required to best address future questions in the field.
Collapse
Affiliation(s)
- David G Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Lu Huang
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Brian C VanderVen
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
19
|
García-Pastor L, Sánchez-Romero MA, Gutiérrez G, Puerta-Fernández E, Casadesús J. Formation of phenotypic lineages in Salmonella enterica by a pleiotropic fimbrial switch. PLoS Genet 2018; 14:e1007677. [PMID: 30252837 PMCID: PMC6173445 DOI: 10.1371/journal.pgen.1007677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/05/2018] [Accepted: 09/05/2018] [Indexed: 11/29/2022] Open
Abstract
The std locus of Salmonella enterica, an operon acquired by horizontal transfer, encodes fimbriae that permit adhesion to epithelial cells in the large intestine. Expression of the std operon is bistable, yielding a major subpopulation of StdOFF cells (99.7%) and a minor subpopulation of StdON cells (0.3%). In addition to fimbrial proteins, the std operon encodes two proteins, StdE and StdF, that have DNA binding capacity and control transcription of loci involved in flagellar synthesis, chemotaxis, virulence, conjugal transfer, biofilm formation, and other cellular functions. As a consequence of StdEF pleiotropic transcriptional control, StdON and StdOFF subpopulations may differ not only in the presence or absence of Std fimbriae but also in additional phenotypic traits. Separation of StdOFF and StdON lineages by cell sorting confirms the occurrence of lineage-specific features. Formation of StdOFF and StdON lineages may thus be viewed as a rudimentary bacterial differentiation program. We show that the std fimbrial operon of Salmonella enterica undergoes bistable expression, a trait far from exceptional among loci that encode components of the bacterial envelope. However, an unsuspected trait of the std operon is the presence of two genes that encode pleiotropic regulators of gene expression. Indeed, StdE and StdF are DNA-binding proteins that control transcription of hundreds of genes. As a consequence, StdEF govern multiple phenotypic traits, and the fimbriated and non-fimbriated Salmonella lineages may differ in motility, virulence, conjugal transfer, biofilm formation, and potentially in other phenotypic features. We hypothesize that pleiotropic control of gene expression by StdEF may contribute to adapt the non-fimbriated lineage to acute infection and the fimbriated lineage to chronic infection.
Collapse
Affiliation(s)
- Lucía García-Pastor
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Elena Puerta-Fernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
- * E-mail: (EPF); (JC)
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- * E-mail: (EPF); (JC)
| |
Collapse
|
20
|
Batan D, Braselmann E, Minson M, Nguyen DMT, Cossart P, Palmer AE. A Multicolor Split-Fluorescent Protein Approach to Visualize Listeria Protein Secretion in Infection. Biophys J 2018; 115:251-262. [PMID: 29653838 PMCID: PMC6050711 DOI: 10.1016/j.bpj.2018.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/04/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes is an intracellular food-borne pathogen that has evolved to enter mammalian host cells, survive within them, spread from cell to cell, and disseminate throughout the body. A series of secreted virulence proteins from Listeria are responsible for manipulation of host-cell defense mechanisms and adaptation to the intracellular lifestyle. Identifying when and where these virulence proteins are located in live cells over the course of Listeria infection can provide valuable information on the roles these proteins play in defining the host-pathogen interface. These dynamics and protein levels may vary from cell to cell, as bacterial infection is a heterogeneous process both temporally and spatially. No assay to visualize virulence proteins over time in infection with Listeria or other Gram-positive bacteria has been developed. Therefore, we adapted a live, long-term tagging system to visualize a model Listeria protein by fluorescence microscopy on a single-cell level in infection. This system leverages split-fluorescent proteins, in which the last strand of a fluorescent protein (a 16-amino-acid peptide) is genetically fused to the virulence protein of interest. The remainder of the fluorescent protein is produced in the mammalian host cell. Both individual components are nonfluorescent and will bind together and reconstitute fluorescence upon virulence-protein secretion into the host cell. We demonstrate accumulation and distribution within the host cell of the model virulence protein InlC in infection over time. A modular expression platform for InlC visualization was developed. We visualized InlC by tagging it with red and green split-fluorescent proteins and compared usage of a strong constitutive promoter versus the endogenous promoter for InlC production. This split-fluorescent protein approach is versatile and may be used to investigate other Listeria virulence proteins for unique mechanistic insights in infection progression.
Collapse
Affiliation(s)
- Dilara Batan
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Esther Braselmann
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado; BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | - Michael Minson
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado; BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | | | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France; Inserm U604, Paris, France; French National Institute for Agricultural Research, Unité Sous-Contrat 2020, Paris, France
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado; BioFrontiers Institute, University of Colorado, Boulder, Colorado.
| |
Collapse
|
21
|
Rossi O, Dybowski R, Maskell DJ, Grant AJ, Restif O, Mastroeni P. Within-host spatiotemporal dynamics of systemic Salmonella infection during and after antimicrobial treatment. J Antimicrob Chemother 2018; 72:3390-3397. [PMID: 28962012 PMCID: PMC5890750 DOI: 10.1093/jac/dkx294] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/20/2017] [Indexed: 01/23/2023] Open
Abstract
Objectives We determined the interactions between efficacy of antibiotic treatment, pathogen growth rates and between-organ spread during systemic Salmonella infections. Methods We infected mice with isogenic molecularly tagged subpopulations of either a fast-growing WT or a slow-growing ΔaroC Salmonella strain. We monitored viable bacterial numbers and fluctuations in the proportions of each bacterial subpopulation in spleen, liver, blood and mesenteric lymph nodes (MLNs) before, during and after the cessation of treatment with ampicillin and ciprofloxacin. Results Both antimicrobials induced a reduction in viable bacterial numbers in the spleen, liver and blood. This reduction was biphasic in infections with fast-growing bacteria, with a rapid initial reduction followed by a phase of lower effect. Conversely, a slow and gradual reduction of the bacterial load was seen in infections with the slow-growing strain, indicating a positive correlation between bacterial net growth rates and the efficacy of ampicillin and ciprofloxacin. The viable numbers of either bacterial strain remained constant in MLNs throughout the treatment with a relapse of the infection with WT bacteria occurring after cessation of the treatment. The frequency of each tagged bacterial subpopulation was similar in the spleen and liver, but different from that of the MLNs before, during and after treatment. Conclusions In Salmonella infections, bacterial growth rates correlate with treatment efficacy. MLNs are a site with a bacterial population structure different to those of the spleen and liver and where the total viable bacterial load remains largely unaffected by antimicrobials, but can resume growth after cessation of treatment.
Collapse
Affiliation(s)
- O Rossi
- University of Cambridge, Department of Veterinary Medicine, Cambridge, UK
| | - R Dybowski
- University of Cambridge, Department of Veterinary Medicine, Cambridge, UK
| | - D J Maskell
- University of Cambridge, Department of Veterinary Medicine, Cambridge, UK
| | - A J Grant
- University of Cambridge, Department of Veterinary Medicine, Cambridge, UK
| | - O Restif
- University of Cambridge, Department of Veterinary Medicine, Cambridge, UK
| | - P Mastroeni
- University of Cambridge, Department of Veterinary Medicine, Cambridge, UK
| |
Collapse
|
22
|
Rufián JS, Macho AP, Corry DS, Mansfield JW, Ruiz‐Albert J, Arnold DL, Beuzón CR. Confocal microscopy reveals in planta dynamic interactions between pathogenic, avirulent and non-pathogenic Pseudomonas syringae strains. MOLECULAR PLANT PATHOLOGY 2018; 19:537-551. [PMID: 28120374 PMCID: PMC6638015 DOI: 10.1111/mpp.12539] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 05/04/2023]
Abstract
Recent advances in genomics and single-cell analysis have demonstrated the extraordinary complexity reached by microbial populations within their hosts. Communities range from complex multispecies groups to homogeneous populations differentiating into lineages through genetic or non-genetic mechanisms. Diversity within bacterial populations is recognized as a key driver of the evolution of animal pathogens. In plants, however, little is known about how interactions between different pathogenic and non-pathogenic variants within the host impact on defence responses, or how the presence within a mixture may affect the development or the fate of each variant. Using confocal fluorescence microscopy, we analysed the colonization of the plant apoplast by individual virulence variants of Pseudomonas syringae within mixed populations. We found that non-pathogenic variants can proliferate and even spread beyond the inoculated area to neighbouring tissues when in close proximity to pathogenic bacteria. The high bacterial concentrations reached at natural entry points promote such interactions during the infection process. We also found that a diversity of interactions take place at a cellular level between virulent and avirulent variants, ranging from dominant negative effects on proliferation of virulent bacteria to in trans suppression of defences triggered by avirulent bacteria. Our results illustrate the spatial dynamics and complexity of the interactions found within mixed infections, and their potential impact on pathogen evolution.
Collapse
Affiliation(s)
- José S. Rufián
- Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”Universidad de Malaga‐Consejo Superior de Investigaciones Cientificas (IHSM‐UMA‐CSIC), Departamento Biologia Celular, Genetica y Fisiologia, Campus de Teatinos, Malaga E‐29071, Spain
| | - Alberto P. Macho
- Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”Universidad de Malaga‐Consejo Superior de Investigaciones Cientificas (IHSM‐UMA‐CSIC), Departamento Biologia Celular, Genetica y Fisiologia, Campus de Teatinos, Malaga E‐29071, Spain
- Present address:
Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological SciencesChinese Academy of SciencesShanghai201602China
| | - David S. Corry
- Centre for Research in Bioscience, Faculty of Health and Applied SciencesUniversity of the West of England, Frenchay CampusBristolBS16 1QYUK
| | | | - Javier Ruiz‐Albert
- Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”Universidad de Malaga‐Consejo Superior de Investigaciones Cientificas (IHSM‐UMA‐CSIC), Departamento Biologia Celular, Genetica y Fisiologia, Campus de Teatinos, Malaga E‐29071, Spain
| | - Dawn L. Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied SciencesUniversity of the West of England, Frenchay CampusBristolBS16 1QYUK
| | - Carmen R. Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”Universidad de Malaga‐Consejo Superior de Investigaciones Cientificas (IHSM‐UMA‐CSIC), Departamento Biologia Celular, Genetica y Fisiologia, Campus de Teatinos, Malaga E‐29071, Spain
| |
Collapse
|
23
|
Namakchian M, Kassler K, Sticht H, Hensel M, Deiwick J. Structure-based functional analysis of effector protein SifA in living cells reveals motifs important for Salmonella intracellular proliferation. Int J Med Microbiol 2017; 308:84-96. [PMID: 28939436 DOI: 10.1016/j.ijmm.2017.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 02/01/2023] Open
Abstract
The facultative intracellular pathogen Salmonella enterica survives and replicates inside the Salmonella-containing vacuole (SCV) of mammalian host cells. SifA is a key effector protein translocated by a type III secretion system and involved in formation of Salmonella-induced filaments (SIF), extensive tubular endosomal compartments. Recruitment of LAMP1 (lysosomal-associated membrane protein 1)-positive membranes to SIF ensures integrity and dynamics of the membrane network. The binding of SifA to the host protein SKIP (SifA and kinesin interacting protein) was proposed as crucial for this function. Due to structural mimicry SifA has further been proposed to interact with G-proteins. We conducted a mutational study of SifA to identify domains and amino acid residues specifically relevant for intracellular replication and SIF formation. Mutations were designed based on the available structural data of SifA and its interface with SKIP, or modeled for SifA as putative guanine nucleotide exchange factor. We developed a live cell imaging-based approach for volume quantification of the SIF network that allowed determination of subtle changes in SIF network and performed a comprehensive analysis of mutant forms of SifA by this approach. We found that the SifA catalytic loop of WxxxE effectors is as important for SIF formation and intracellular proliferation as the SKIP interaction motif, or the CAAX motif for membrane anchoring of SifA.
Collapse
Affiliation(s)
| | - Kristin Kassler
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany.
| | - Jörg Deiwick
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany.
| |
Collapse
|
24
|
Abana CM, Brannon JR, Ebbott RA, Dunigan TL, Guckes KR, Fuseini H, Powers J, Rogers BR, Hadjifrangiskou M. Characterization of blue light irradiation effects on pathogenic and nonpathogenic Escherichia coli. Microbiologyopen 2017; 6. [PMID: 28332311 PMCID: PMC5552948 DOI: 10.1002/mbo3.466] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/27/2017] [Accepted: 02/08/2017] [Indexed: 01/09/2023] Open
Abstract
Blue light irradiation (BLI) is an FDA-approved method for treating certain types of infections, like acne, and is becoming increasingly attractive as an antimicrobial strategy as the prevalence of antibiotic-resistant "superbugs" rises. However, no study has delineated the effectiveness of BLI throughout different bacterial growth phases, especially in more BLI-tolerant organisms such as Escherichia coli. While the vast majority of E. coli strains are nonpathogenic, several E. coli pathotypes exist that cause infection within and outside the gastrointestinal tract. Here, we compared the response of E. coli strains from five phylogenetic groups to BLI with a 455 nm wavelength (BLI455 ), using colony-forming unit and ATP measurement assays. Our results revealed that BLI455 is not bactericidal, but can retard E. coli growth in a manner that is dependent on culture age and strain background. This observation is critical, given that bacteria on and within mammalian hosts are found in different phases of growth.
Collapse
Affiliation(s)
- Courtney M Abana
- Department of Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - John R Brannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ebbott
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Taryn L Dunigan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kirsten R Guckes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hubaida Fuseini
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Powers
- Vanderbilt Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bridget R Rogers
- Department of Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
25
|
Abstract
The transcriptome is a powerful proxy for the physiological state of a cell, healthy or diseased. As a result, transcriptome analysis has become a key tool in understanding the molecular changes that accompany bacterial infections of eukaryotic cells. Until recently, such transcriptomic studies have been technically limited to analyzing mRNA expression changes in either the bacterial pathogen or the infected eukaryotic host cell. However, the increasing sensitivity of high-throughput RNA sequencing now enables "dual RNA-seq" studies, simultaneously capturing all classes of coding and noncoding transcripts in both the pathogen and the host. In the five years since the concept of dual RNA-seq was introduced, the technique has been applied to a range of infection models. This has not only led to a better understanding of the physiological changes in pathogen and host during the course of an infection but has also revealed hidden molecular phenotypes of virulence-associated small noncoding RNAs that were not visible in standard infection assays. Here, we use the knowledge gained from these recent studies to suggest experimental and computational guidelines for the design of future dual RNA-seq studies. We conclude this review by discussing prospective applications of the technique.
Collapse
Affiliation(s)
- Alexander J. Westermann
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
- * E-mail:
| |
Collapse
|
26
|
Ronin I, Katsowich N, Rosenshine I, Balaban NQ. A long-term epigenetic memory switch controls bacterial virulence bimodality. eLife 2017; 6. [PMID: 28178445 PMCID: PMC5295817 DOI: 10.7554/elife.19599] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/17/2017] [Indexed: 12/22/2022] Open
Abstract
When pathogens enter the host, sensing of environmental cues activates the expression of virulence genes. Opposite transition of pathogens from activating to non-activating conditions is poorly understood. Interestingly, variability in the expression of virulence genes upon infection enhances colonization. In order to systematically detect the role of phenotypic variability in enteropathogenic E. coli (EPEC), an important human pathogen, both in virulence activating and non-activating conditions, we employed the ScanLag methodology. The analysis revealed a bimodal growth rate. Mathematical modeling combined with experimental analysis showed that this bimodality is mediated by a hysteretic memory-switch that results in the stable co-existence of non-virulent and hyper-virulent subpopulations, even after many generations of growth in non-activating conditions. We identified the per operon as the key component of the hysteretic switch. This unique hysteretic memory switch may result in persistent infection and enhanced host-to-host spreading. DOI:http://dx.doi.org/10.7554/eLife.19599.001 Bacteria typically cope with harsh and changing environments by activating specific genes or accumulating those mutations that change genes in a beneficial way. Recently, it was also shown that the levels of gene activity can vary between otherwise identical bacteria in a single population. This provides an alternative strategy to deal with stressful conditions because it generates sub-groups of bacteria that potentially already adapted to different environments. Bacteria that enter the human body face many challenges, and this kind of pre-adaptation could help them to invade humans and overcome the immune system. However, this hypothesis had not previously been tested in a bacterium called enteropathogenic E.coli, which infects the intestines and is responsible for the deaths of many infants worldwide. Ronin et al. show that cells in enteropathogenic E.coli colonies spontaneously form into two groups when exposed to conditions that mimic the environment inside the human body. Once triggered, one of these groups is particularly dangerous and this “hypervirulent” state is remembered for an extremely long time meaning that the bacteria remain hypervirulent for many generations. In addition, Ronin et al. identified the specific genes that control the switch to the hypervirulent state. These findings have uncovered the existence of groups of enteropathogenic E.coli that are pre-adapted to invading human hosts. Finding out more about how the switching mechanism works and its relevance in other bacteria may help researchers to develop new therapies that can help fight bacterial infections. DOI:http://dx.doi.org/10.7554/eLife.19599.002
Collapse
Affiliation(s)
- Irine Ronin
- Racah Institute of Physics, Edmond J. Safra Campus, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naama Katsowich
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nathalie Q Balaban
- Racah Institute of Physics, Edmond J. Safra Campus, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
García-Del Portillo F, Pucciarelli MG. RNA-Seq unveils new attributes of the heterogeneous Salmonella-host cell communication. RNA Biol 2017; 14:429-435. [PMID: 28045572 DOI: 10.1080/15476286.2016.1276148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
High-throughput RNA sequencing (RNA-Seq) has uncovered hundreds of small RNAs and complex modes of RNA regulation in every bacterium analyzed to date. This complexity agrees with the adaptability of most bacteria to varied environments including, in the case of pathogens, the new niches encountered in the host. Recent RNA-Seq studies have analyzed simultaneously gene expression in the intracellular pathogen Salmonella enterica and infected host cells at population and single-cell level. Distinct polarization states or interferon responses in the infected macrophage were linked to variable growth rates or activities of defined virulence regulators in intra-phagosomal bacteria. Intracellular Salmonella, however, exhibit disparate intracellular lifestyles depending the host cell, ranging from a hyper-replicative cytosolic state in epithelial cells to a non-replicative intra-phagosomal condition in varied host cell types. The basis of such diverse pathogen-host communications could be examined by RNA-Seq studies in single intracellular Salmonella cells, certainly a challenge for future investigations.
Collapse
Affiliation(s)
- Francisco García-Del Portillo
- a Laboratory of Intracellular Bacterial Pathogens, Department of Microbial Biotechnology , Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Darwin, Madrid , Spain
| | - M Graciela Pucciarelli
- a Laboratory of Intracellular Bacterial Pathogens, Department of Microbial Biotechnology , Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Darwin, Madrid , Spain.,b Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), Department de Molecular Biology , Universidad Autónoma de Madrid , Nicolás Cabrera, Madrid , Spain
| |
Collapse
|
28
|
Haridas V, Ranjbar S, Vorobjev IA, Goldfeld AE, Barteneva NS. Imaging flow cytometry analysis of intracellular pathogens. Methods 2017; 112:91-104. [PMID: 27642004 PMCID: PMC5857943 DOI: 10.1016/j.ymeth.2016.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/15/2016] [Accepted: 09/15/2016] [Indexed: 01/09/2023] Open
Abstract
Imaging flow cytometry has been applied to address questions in infection biology, in particular, infections induced by intracellular pathogens. This methodology, which utilizes specialized analytic software makes it possible to analyze hundreds of quantified features for hundreds of thousands of individual cellular or subcellular events in a single experiment. Imaging flow cytometry analysis of host cell-pathogen interaction can thus quantitatively addresses a variety of biological questions related to intracellular infection, including cell counting, internalization score, and subcellular patterns of co-localization. Here, we provide an overview of recent achievements in the use of fluorescently labeled prokaryotic or eukaryotic pathogens in human cellular infections in analysis of host-pathogen interactions. Specifically, we give examples of Imagestream-based analysis of cell lines infected with Toxoplasma gondii or Mycobacterium tuberculosis. Furthermore, we illustrate the capabilities of imaging flow cytometry using a combination of standard IDEAS™ software and the more recently developed Feature Finder algorithm, which is capable of identifying statistically significant differences between researcher-defined image galleries. We argue that the combination of imaging flow cytometry with these software platforms provides a powerful new approach to understanding host control of intracellular pathogens.
Collapse
Affiliation(s)
- Viraga Haridas
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States
| | - Shahin Ranjbar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States
| | - Ivan A Vorobjev
- School of Science and Technology, Nazarbayev University, Kazakhstan; A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russia; Department of Cell Biology and Histology, M.V. Lomonosov Moscow State University, Russia
| | - Anne E Goldfeld
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States.
| | - Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States; School of Science and Technology, Nazarbayev University, Kazakhstan.
| |
Collapse
|
29
|
Diacovich L, Lorenzi L, Tomassetti M, Méresse S, Gramajo H. The infectious intracellular lifestyle of Salmonella enterica relies on the adaptation to nutritional conditions within the Salmonella-containing vacuole. Virulence 2016; 8:975-992. [PMID: 27936347 DOI: 10.1080/21505594.2016.1270493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative pathogen that causes various host-specific diseases. During their life cycle, Salmonellae survive frequent exposures to a variety of environmental stresses, e.g. carbon-source starvation. The virulence of this pathogen relies on its ability to establish a replicative niche, named Salmonella-containing vacuole, inside host cells. However, the microenvironment of the SCV and the bacterial metabolic pathways required during infection are largely undefined. In this work we developed different biological probes whose expression is modulated by the environment and the physiological state of the bacterium. We constructed transcriptional reporters by fusing promoter regions to the gfpmut3a gene to monitor the expression profile of genes involved in glucose utilization and lipid catabolism. The induction of these probes by a specific metabolic change was first tested in vitro, and then during different conditions of infection in macrophages. We were able to determine that Entner-Doudoroff is the main metabolic pathway utilized by Salmonella during infection in mouse macrophages. Furthermore, we found sub-populations of bacteria expressing genes involved in pathways for the utilization of different sources of carbon. These populations are modified in presence of different metabolizable substrates, suggesting the coexistence of Salmonella with diverse metabolic states during the infection.
Collapse
Affiliation(s)
- Lautaro Diacovich
- a Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario , Rosario , Argentina
| | - Lucía Lorenzi
- a Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario , Rosario , Argentina
| | - Mauro Tomassetti
- a Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario , Rosario , Argentina
| | - Stéphane Méresse
- b Aix Marseille Université, CNRS, INSERM, CIML , Marseille , France
| | - Hugo Gramajo
- a Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario , Rosario , Argentina
| |
Collapse
|
30
|
Active efflux in dormant bacterial cells - New insights into antibiotic persistence. Drug Resist Updat 2016; 30:7-14. [PMID: 28363336 DOI: 10.1016/j.drup.2016.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/14/2016] [Accepted: 11/02/2016] [Indexed: 01/07/2023]
Abstract
Bacterial persisters are phenotypic variants of an isogenic cell population that can survive antibiotic treatment and resume growth after the antibiotics have been removed. Cell dormancy has long been considered the principle mechanism underlying persister formation. However, dormancy alone is insufficient to explain the full range of bacterial persistence. Our recent work revealed that in addition to 'passive defense' via dormancy, persister cells employ 'active defense' via enhanced efflux activity to expel drugs. This finding suggests that persisters combine two seemingly contradictory mechanisms to tolerate antibiotic attack. Here, we review the passive and active aspects of persister formation, discuss new insights into the process, and propose new techniques that can facilitate the study of bacterial persistence.
Collapse
|
31
|
Rufián JS, Sánchez-Romero MA, López-Márquez D, Macho AP, Mansfield JW, Arnold DL, Ruiz-Albert J, Casadesús J, Beuzón CR. Pseudomonas syringae Differentiates into Phenotypically Distinct Subpopulations During Colonization of a Plant Host. Environ Microbiol 2016; 18:3593-3605. [PMID: 27516206 DOI: 10.1111/1462-2920.13497] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/09/2016] [Indexed: 11/28/2022]
Abstract
Bacterial microcolonies with heterogeneous sizes are formed during colonization of Phaseolus vulgaris by Pseudomonas syringae. Heterogeneous expression of structural and regulatory components of the P. syringae type III secretion system (T3SS), essential for colonization of the host apoplast and disease development, is likewise detected within the plant apoplast. T3SS expression is bistable in the homogeneous environment of nutrient-limited T3SS-inducing medium, suggesting that subpopulation formation is not a response to different environmental cues. T3SS bistability is reversible, indicating a non-genetic origin, and the T3SSHIGH and T3SSLOW subpopulations show differences in virulence. T3SS bistability requires the transcriptional activator HrpL, the double negative regulatory loop established by HrpV and HrpG, and may be enhanced through a positive feedback loop involving HrpA, the main component of the T3SS pilus. To our knowledge, this is the first example of phenotypic heterogeneity in the expression of virulence determinants during colonization of a non-mammalian host.
Collapse
Affiliation(s)
- José S Rufián
- Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | | | - Diego López-Márquez
- Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | - Alberto P Macho
- Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | - John W Mansfield
- Faculty of Natural Sciences, Imperial College, London, SW7 2AZ, UK
| | - Dawn L Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Javier Ruiz-Albert
- Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, 1095, Spain
| | - Carmen R Beuzón
- Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain.
| |
Collapse
|
32
|
Davis KM, Isberg RR. Defining heterogeneity within bacterial populations via single cell approaches. Bioessays 2016; 38:782-90. [PMID: 27273675 DOI: 10.1002/bies.201500121] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bacterial populations are heterogeneous, which in many cases can provide a selective advantage during changes in environmental conditions. In some instances, heterogeneity exists at the genetic level, in which significant allelic variation occurs within a population seeded by a single cell. In other cases, heterogeneity exists due to phenotypic differences within a clonal, genetically identical population. A variety of mechanisms can drive this latter strategy. Stochastic fluctuations can drive differential gene expression, but heterogeneity in gene expression can also be driven by environmental changes sensed by individual cells residing in distinct locales. Utilizing multiple single cell approaches, workers have started to uncover the extent of heterogeneity within bacterial populations. This review will first describe several examples of phenotypic and genetic heterogeneity, and then discuss many single cell approaches that have recently been applied to define heterogeneity within bacterial populations.
Collapse
Affiliation(s)
- Kimberly M Davis
- Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Ralph R Isberg
- Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
33
|
Cerulus B, New AM, Pougach K, Verstrepen KJ. Noise and Epigenetic Inheritance of Single-Cell Division Times Influence Population Fitness. Curr Biol 2016; 26:1138-47. [PMID: 27068419 DOI: 10.1016/j.cub.2016.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/05/2016] [Accepted: 03/01/2016] [Indexed: 01/24/2023]
Abstract
The fitness effect of biological noise remains unclear. For example, even within clonal microbial populations, individual cells grow at different speeds. Although it is known that the individuals' mean growth speed can affect population-level fitness, it is unclear how or whether growth speed heterogeneity itself is subject to natural selection. Here, we show that noisy single-cell division times can significantly affect population-level growth rate. Using time-lapse microscopy to measure the division times of thousands of individual S. cerevisiae cells across different genetic and environmental backgrounds, we find that the length of individual cells' division times can vary substantially between clonal individuals and that sublineages often show epigenetic inheritance of division times. By combining these experimental measurements with mathematical modeling, we find that, for a given mean division time, increasing heterogeneity and epigenetic inheritance of division times increases the population growth rate. Furthermore, we demonstrate that the heterogeneity and epigenetic inheritance of single-cell division times can be linked with variation in the expression of catabolic genes. Taken together, our results reveal how a change in noisy single-cell behaviors can directly influence fitness through dynamics that operate independently of effects caused by changes to the mean. These results not only allow a better understanding of microbial fitness but also help to more accurately predict fitness in other clonal populations, such as tumors.
Collapse
Affiliation(s)
- Bram Cerulus
- KU Leuven Department Microbiële en Moleculaire Systemen, CMPG Laboratory of Genetics and Genomics, Gaston Geenslaan 1, 3001 Leuven, Belgium; VIB Laboratory of Systems Biology, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Aaron M New
- KU Leuven Department Microbiële en Moleculaire Systemen, CMPG Laboratory of Genetics and Genomics, Gaston Geenslaan 1, 3001 Leuven, Belgium; VIB Laboratory of Systems Biology, Gaston Geenslaan 1, 3001 Leuven, Belgium; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Ksenia Pougach
- KU Leuven Department Microbiële en Moleculaire Systemen, CMPG Laboratory of Genetics and Genomics, Gaston Geenslaan 1, 3001 Leuven, Belgium; VIB Laboratory of Systems Biology, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Kevin J Verstrepen
- KU Leuven Department Microbiële en Moleculaire Systemen, CMPG Laboratory of Genetics and Genomics, Gaston Geenslaan 1, 3001 Leuven, Belgium; VIB Laboratory of Systems Biology, Gaston Geenslaan 1, 3001 Leuven, Belgium.
| |
Collapse
|
34
|
Imamovic L, Ballesté E, Martínez-Castillo A, García-Aljaro C, Muniesa M. Heterogeneity in phage induction enables the survival of the lysogenic population. Environ Microbiol 2016; 18:957-69. [PMID: 26626855 DOI: 10.1111/1462-2920.13151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 11/24/2015] [Indexed: 11/29/2022]
Abstract
Lysogeny by temperate phages provides novel functions for bacteria and shelter for phages. However, under conditions that activate the phage lytic cycle, the benefit of lysogeny becomes a paradox that poses a threat for bacterial population survival. Using Escherichia coli lysogens for Shiga toxin (Stx) phages as model, we demonstrate how lysogenic bacterial populations circumvent extinction after phage induction. A fraction of cells maintains lysogeny, allowing population survival, whereas the other fraction of cells lyse, increasing Stx production and spreading Stx phages. The uninduced cells were still lysogenic for the Stx phage and equally able to induce phages as the original cells, suggesting heterogeneity of the E. coli lysogenic population. The bacterial population can modulate phage induction under stress conditions by the stress regulator RpoS. Cells overexpressing RpoS reduce Stx phage induction and compete with and survive better than cells with baseline RpoS levels. Our observations suggest that population heterogeneity in phage induction could be widespread among other bacterial genera and we propose this is a mechanism positively selected to prevent the extinction of the lysogenic population that can be modulated by environmental conditions.
Collapse
Affiliation(s)
- Lejla Imamovic
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - Elisenda Ballesté
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - Alexandre Martínez-Castillo
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - Cristina García-Aljaro
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - Maite Muniesa
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| |
Collapse
|
35
|
Srikumar S, Kröger C, Hébrard M, Colgan A, Owen SV, Sivasankaran SK, Cameron ADS, Hokamp K, Hinton JCD. RNA-seq Brings New Insights to the Intra-Macrophage Transcriptome of Salmonella Typhimurium. PLoS Pathog 2015; 11:e1005262. [PMID: 26561851 PMCID: PMC4643027 DOI: 10.1371/journal.ppat.1005262] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/17/2015] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is arguably the world’s best-understood bacterial pathogen. However, crucial details about the genetic programs used by the bacterium to survive and replicate in macrophages have remained obscure because of the challenge of studying gene expression of intracellular pathogens during infection. Here, we report the use of deep sequencing (RNA-seq) to reveal the transcriptional architecture and gene activity of Salmonella during infection of murine macrophages, providing new insights into the strategies used by the pathogen to survive in a bactericidal immune cell. We characterized 3583 transcriptional start sites that are active within macrophages, and highlight 11 of these as candidates for the delivery of heterologous antigens from Salmonella vaccine strains. A majority (88%) of the 280 S. Typhimurium sRNAs were expressed inside macrophages, and SPI13 and SPI2 were the most highly expressed pathogenicity islands. We identified 31 S. Typhimurium genes that were strongly up-regulated inside macrophages but expressed at very low levels during in vitro growth. The SalComMac online resource allows the visualisation of every transcript expressed during bacterial replication within mammalian cells. This primary transcriptome of intra-macrophage S.-Typhimurium describes the transcriptional start sites and the transcripts responsible for virulence traits, and catalogues the sRNAs that may play a role in the regulation of gene expression during infection. The burden of Salmonellosis remains unacceptably high throughout the world and control measures have had limited success. Because Salmonella bacteria can be transmitted from the wider environment to animals and humans, the bacteria encounter diverse environments that include food, water, plant surfaces and the extracellular and intracellular phases of infection of eukaryotic hosts. An intricate transcriptional network has evolved to respond to a variety of environmental signals and control the “right time/ right place” expression of virulence genes. To understand how transcription is rewired during intracellular infection, we determined the primary transcriptome of Salmonella enterica serovar Typhimurium within murine macrophages. We report the coding genes, sRNAs and transcriptional start sites that are expressed within macrophages at 8 hours after infection, and use these to infer gene function. We identified gene promoters that are specifically expressed within macrophages and could drive the intracellular delivery of antigens by S. Typhimurium vaccine strains. These data contribute to our understanding of the mechanisms used by Salmonella to regulate virulence gene expression whilst replicating inside mammalian cells.
Collapse
Affiliation(s)
- Shabarinath Srikumar
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Magali Hébrard
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Aoife Colgan
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Siân V. Owen
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sathesh K. Sivasankaran
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | | | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
| | - Jay C. D. Hinton
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Affiliation(s)
- Martin Ackermann
- Department of Environmental Systems Sciences; ETH Zurich; Zurich 8092 Switzerland
- Department of Environmental Microbiology; Eawag - Swiss Federal Institute of Aquatic Science and Technology; Dubendorf 8600 Switzerland
| | - Frank Schreiber
- Department of Environmental Systems Sciences; ETH Zurich; Zurich 8092 Switzerland
- Department of Environmental Microbiology; Eawag - Swiss Federal Institute of Aquatic Science and Technology; Dubendorf 8600 Switzerland
| |
Collapse
|
37
|
Siegrist MS, Aditham AK, Espaillat A, Cameron TA, Whiteside SA, Cava F, Portnoy DA, Bertozzi CR. Host actin polymerization tunes the cell division cycle of an intracellular pathogen. Cell Rep 2015; 11:499-507. [PMID: 25892235 DOI: 10.1016/j.celrep.2015.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/23/2015] [Accepted: 03/22/2015] [Indexed: 02/02/2023] Open
Abstract
Growth and division are two of the most fundamental capabilities of a bacterial cell. While they are well described for model organisms growing in broth culture, very little is known about the cell division cycle of bacteria replicating in more complex environments. Using a D-alanine reporter strategy, we found that intracellular Listeria monocytogenes (Lm) spend a smaller proportion of their cell cycle dividing compared to Lm growing in broth culture. This alteration to the cell division cycle is independent of bacterial doubling time. Instead, polymerization of host-derived actin at the bacterial cell surface extends the non-dividing elongation period and compresses the division period. By decreasing the relative proportion of dividing Lm, actin polymerization biases the population toward cells with the highest propensity to form actin tails. Thus, there is a positive-feedback loop between the Lm cell division cycle and a physical interaction with the host cytoskeleton.
Collapse
Affiliation(s)
- M Sloan Siegrist
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Arjun K Aditham
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Akbar Espaillat
- Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Todd A Cameron
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah A Whiteside
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
38
|
Sugimoto S, Arita-Morioka KI, Mizunoe Y, Yamanaka K, Ogura T. Thioflavin T as a fluorescence probe for monitoring RNA metabolism at molecular and cellular levels. Nucleic Acids Res 2015; 43:e92. [PMID: 25883145 PMCID: PMC4538803 DOI: 10.1093/nar/gkv338] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/02/2015] [Indexed: 12/26/2022] Open
Abstract
The intrinsically stochastic dynamics of mRNA metabolism have important consequences on gene regulation and non-genetic cell-to-cell variability; however, no generally applicable methods exist for studying such stochastic processes quantitatively. Here, we describe the use of the amyloid-binding probe Thioflavin T (ThT) for monitoring RNA metabolism in vitro and in vivo. ThT fluoresced strongly in complex with bacterial total RNA than with genomic DNA. ThT bound purine oligoribonucleotides preferentially over pyrimidine oligoribonucleotides and oligodeoxyribonucleotides. This property enabled quantitative real-time monitoring of poly(A) synthesis and phosphorolysis by polyribonucleotide phosphorylase in vitro. Cellular analyses, in combination with genetic approaches and the transcription-inhibitor rifampicin treatment, demonstrated that ThT mainly stained mRNA in actively dividing Escherichia coli cells. ThT also facilitated mRNA metabolism profiling at the single-cell level in diverse bacteria. Furthermore, ThT can also be used to visualise transitions between non-persister and persister cell states, a phenomenon of isogenic subpopulations of antibiotic-sensitive bacteria that acquire tolerance to multiple antibiotics due to stochastically induced dormant states. Collectively, these results suggest that probing mRNA dynamics with ThT is a broadly applicable approach ranging from the molecular level to the single-cell level.
Collapse
Affiliation(s)
- Shinya Sugimoto
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-Ku, Kumamoto 860-0811, Japan Department of Bacteriology, The Jikei University School of Medicine, Minato-Ku, Tokyo 105-8461, Japan
| | - Ken-ichi Arita-Morioka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-Ku, Kumamoto 860-0811, Japan
| | - Yoshimitsu Mizunoe
- Department of Bacteriology, The Jikei University School of Medicine, Minato-Ku, Tokyo 105-8461, Japan
| | - Kunitoshi Yamanaka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-Ku, Kumamoto 860-0811, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-Ku, Kumamoto 860-0811, Japan
| |
Collapse
|
39
|
Liss V, Hensel M. Take the tube: remodelling of the endosomal system by intracellularSalmonella enterica. Cell Microbiol 2015; 17:639-47. [DOI: 10.1111/cmi.12441] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Viktoria Liss
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie; Universität Osnabrück; Barbarastr. 11 Osnabrück 49076 Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie; Universität Osnabrück; Barbarastr. 11 Osnabrück 49076 Germany
| |
Collapse
|
40
|
Damodaran SP, Eberhard S, Boitard L, Rodriguez JG, Wang Y, Bremond N, Baudry J, Bibette J, Wollman FA. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii. PLoS One 2015; 10:e0118987. [PMID: 25760649 PMCID: PMC4356620 DOI: 10.1371/journal.pone.0118987] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/08/2015] [Indexed: 12/31/2022] Open
Abstract
To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers) and a significant subpopulation of slowly dividing cells (slow-growers). These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.
Collapse
Affiliation(s)
- Shima P. Damodaran
- Laboratoire de Colloïdes et Matériaux Divisés, Institute of Chemistry, Biology and Innovation ESPCI ParisTech/CNRS UMR 8231/PSL* Research University, Paris, France
| | - Stephan Eberhard
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC 7141, Paris, France
| | - Laurent Boitard
- Laboratoire de Colloïdes et Matériaux Divisés, Institute of Chemistry, Biology and Innovation ESPCI ParisTech/CNRS UMR 8231/PSL* Research University, Paris, France
| | - Jairo Garnica Rodriguez
- Laboratoire de Colloïdes et Matériaux Divisés, Institute of Chemistry, Biology and Innovation ESPCI ParisTech/CNRS UMR 8231/PSL* Research University, Paris, France
| | - Yuxing Wang
- Laboratoire de Colloïdes et Matériaux Divisés, Institute of Chemistry, Biology and Innovation ESPCI ParisTech/CNRS UMR 8231/PSL* Research University, Paris, France
- Optical Science & Engineering Research Center, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Nicolas Bremond
- Laboratoire de Colloïdes et Matériaux Divisés, Institute of Chemistry, Biology and Innovation ESPCI ParisTech/CNRS UMR 8231/PSL* Research University, Paris, France
| | - Jean Baudry
- Laboratoire de Colloïdes et Matériaux Divisés, Institute of Chemistry, Biology and Innovation ESPCI ParisTech/CNRS UMR 8231/PSL* Research University, Paris, France
| | - Jérôme Bibette
- Laboratoire de Colloïdes et Matériaux Divisés, Institute of Chemistry, Biology and Innovation ESPCI ParisTech/CNRS UMR 8231/PSL* Research University, Paris, France
- * E-mail: (JB); (FAW)
| | - Francis-André Wollman
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC 7141, Paris, France
- * E-mail: (JB); (FAW)
| |
Collapse
|
41
|
Siegrist MS, Swarts BM, Fox DM, Lim SA, Bertozzi CR. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiol Rev 2015; 39:184-202. [PMID: 25725012 DOI: 10.1093/femsre/fuu012] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology.
Collapse
Affiliation(s)
- M Sloan Siegrist
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Benjamin M Swarts
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Douglas M Fox
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Shion An Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, CA 94720, USA Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
42
|
Direct measurement of oxidative and nitrosative stress dynamics in Salmonella inside macrophages. Proc Natl Acad Sci U S A 2014; 112:560-5. [PMID: 25548165 DOI: 10.1073/pnas.1414569112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many significant bacterial pathogens have evolved virulence mechanisms to evade degradation and exposure to reactive oxygen (ROS) and reactive nitrogen species (RNS), allowing them to survive and replicate inside their hosts. Due to the highly reactive and short-lived nature of ROS and RNS, combined with limitations of conventional detection agents, the mechanisms underlying these evasion strategies remain poorly understood. In this study, we describe a system that uses redox-sensitive GFP to nondisruptively measure real-time fluctuations in the intrabacterial redox environment. Using this system coupled with high-throughput microscopy, we report the intrabacterial redox dynamics of Salmonella enterica Typhimurium (S. Typhimurium) residing inside macrophages. We found that the bacterial SPI-2 type III secretion system is required for ROS evasion strategies and this evasion relies on an intact Salmonella-containing vacuole (SCV) within which the bacteria reside during infection. Additionally, we found that cytosolic bacteria that escape the SCV experience increased redox stress in human and murine macrophages. These results highlight the existence of specialized evasion strategies used by intracellular pathogens that either reside inside a vacuole or "escape" into the cytosol. Taken together, the use of redox-sensitive GFP inside Salmonella significantly advances our understanding of ROS and RNS evasion strategies during infection. This technology can also be applied to measuring bacterial oxidative and nitrosative stress dynamics under different conditions in a wide variety of bacteria.
Collapse
|
43
|
Coward C, Restif O, Dybowski R, Grant AJ, Maskell DJ, Mastroeni P. The effects of vaccination and immunity on bacterial infection dynamics in vivo. PLoS Pathog 2014; 10:e1004359. [PMID: 25233077 PMCID: PMC4169467 DOI: 10.1371/journal.ppat.1004359] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/25/2014] [Indexed: 01/31/2023] Open
Abstract
Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body. The bacterium Salmonella enterica causes gastroenteritis and the severe systemic diseases typhoid, paratyphoid fever and non-typhoidal septicaemia (NTS). Treatment of systemic disease with antibiotics is becoming increasingly difficult due to the acquisition of resistance. Licensed vaccines are available for the prevention of typhoid, but not paratyphoid fever or NTS. Vaccines can be either living (attenuated strains) or non-living (e.g. inactivated whole cells or surface polysaccharides) and these different classes potentially activate different components of the host immune system. Improvements in vaccine design require a better understanding of how different vaccine types differ in their ability to control a subsequent infection. We have improved a previously developed experimental system and mathematical model to investigate how these different vaccine types act. We show that the inactivated vaccine can only control bacterial numbers by a transient increase in bactericidal activity whereas the living vaccine is superior as it can induce an immune response that rapidly kills, then restrains the growth and spread of infecting bacteria.
Collapse
Affiliation(s)
- Chris Coward
- University of Cambridge, Department of Veterinary Medicine, Cambridge, United Kingdom
| | - Olivier Restif
- University of Cambridge, Department of Veterinary Medicine, Cambridge, United Kingdom
| | - Richard Dybowski
- University of Cambridge, Department of Veterinary Medicine, Cambridge, United Kingdom
| | - Andrew J Grant
- University of Cambridge, Department of Veterinary Medicine, Cambridge, United Kingdom
| | - Duncan J Maskell
- University of Cambridge, Department of Veterinary Medicine, Cambridge, United Kingdom
| | - Pietro Mastroeni
- University of Cambridge, Department of Veterinary Medicine, Cambridge, United Kingdom
| |
Collapse
|
44
|
Helaine S, Kugelberg E. Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol 2014; 22:417-24. [PMID: 24768561 DOI: 10.1016/j.tim.2014.03.008] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/16/2014] [Accepted: 03/21/2014] [Indexed: 01/02/2023]
Abstract
Persisters are multidrug-tolerant bacteria that could account for the relapse of infections. For a long time, persisters have been assumed to be nonreplicating dormant bacteria, but the growth status of these recalcitrant cells is still debated. Toxin-antitoxin (TA) modules have an important role in the formation of persisters and several studies show that they can form in response to different triggers. These findings, together with the invention of new tools to study persisters, could have important implications for the development of novel therapeutics to eradicate persisting subpopulations.
Collapse
Affiliation(s)
- Sophie Helaine
- Section of Microbiology, Medical Research Council (MRC) Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK.
| | - Elisabeth Kugelberg
- Section of Microbiology, Medical Research Council (MRC) Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| |
Collapse
|
45
|
Jonas K. To divide or not to divide: control of the bacterial cell cycle by environmental cues. Curr Opin Microbiol 2014; 18:54-60. [PMID: 24631929 DOI: 10.1016/j.mib.2014.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 11/26/2022]
Abstract
Whether to divide or not is an important decision that nearly all cells have to make, especially bacteria that are exposed to drastic environmental changes. Under adverse conditions proliferation and growth could compromise cellular integrity and hence must be downregulated. To this end, bacteria have evolved sophisticated mechanisms to transduce environmental information into the cell cycle engine. Recent studies in Escherichia coli, Bacillus subtilis and Caulobacter crescentus indicate that these mechanisms often involve small molecule-based signaling, regulated proteolysis, as well as protein-protein interactions. Most of them delay replication initiation or septum formation by targeting the key regulators DnaA or FtsZ, respectively. Remarkably, while the targets are conserved, the precise mechanisms show a considerable degree of diversity among different species.
Collapse
Affiliation(s)
- Kristina Jonas
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, 35043 Marburg, Germany.
| |
Collapse
|
46
|
Spatial segregation of virulence gene expression during acute enteric infection with Salmonella enterica serovar Typhimurium. mBio 2014; 5:e00946-13. [PMID: 24496791 PMCID: PMC3950517 DOI: 10.1128/mbio.00946-13] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To establish a replicative niche during its infectious cycle between the intestinal lumen and tissue, the enteric pathogen Salmonella enterica serovar Typhimurium requires numerous virulence genes, including genes for two type III secretion systems (T3SS) and their cognate effectors. To better understand the host-pathogen relationship, including early infection dynamics and induction kinetics of the bacterial virulence program in the context of a natural host, we monitored the subcellular localization and temporal expression of T3SS-1 and T3SS-2 using fluorescent single-cell reporters in a bovine, ligated ileal loop model of infection. We observed that the majority of bacteria at 2 h postinfection are flagellated, express T3SS-1 but not T3SS-2, and are associated with the epithelium or with extruding enterocytes. In epithelial cells, S. Typhimurium cells were surrounded by intact vacuolar membranes or present within membrane-compromised vacuoles that typically contained numerous vesicular structures. By 8 h postinfection, T3SS-2-expressing bacteria were detected in the lamina propria and in the underlying mucosa, while T3SS-1-expressing bacteria were in the lumen. Our work identifies for the first time the temporal and spatial regulation of T3SS-1 and -2 expression during an enteric infection in a natural host and provides further support for the concept of cytosolic S. Typhimurium in extruding epithelium as a mechanism for reseeding the lumen. The pathogenic bacterium Salmonella enterica serovar Typhimurium invades and persists within host cells using distinct sets of virulence genes. Genes from Salmonella pathogenicity island 1 (SPI-1) are used to initiate contact and facilitate uptake into nonphagocytic host cells, while genes within SPI-2 allow the pathogen to colonize host cells. While many studies have identified bacterial virulence determinants in animal models of infection, very few have focused on virulence gene expression at the single-cell level during an in vivo infection. To better understand when and where bacterial virulence factors are expressed during an acute enteric infection of a natural host, we infected bovine jejunal-ileal loops with S. Typhimurium cells harboring fluorescent transcriptional reporters for SPI-1 and -2 (PinvF and PssaG, respectively). After a prescribed time of infection, tissue and luminal fluid were collected and analyzed by microscopy. During early infection (≤2 h), bacteria within both intact and compromised membrane-bound vacuoles were observed within the epithelium, with the majority expressing SPI-1. As the infection progressed, S. Typhimurium displayed differential expression of the SPI-1 and SPI-2 regulons, with the majority of tissue-associated bacteria expressing SPI-2 and the majority of lumen-associated bacteria expressing SPI-1. This underscores the finding that Salmonella virulence gene expression changes as the pathogen transitions from one anatomical location to the next.
Collapse
|
47
|
Mastroeni P, Grant A. Dynamics of spread of Salmonella enterica in the systemic compartment. Microbes Infect 2013; 15:849-57. [PMID: 24183878 DOI: 10.1016/j.micinf.2013.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/09/2013] [Indexed: 12/21/2022]
Abstract
Traditional microbiological and immunological tools, combined with modern imaging, and molecular and mathematical approaches, have revealed the dispersive nature of Salmonella infections. Bacterial escape from infected cells, spread in the tissues and attempts to restrain this process by the host give rise to fascinating scenarios that underpin the pathogenesis of salmonelloses.
Collapse
Affiliation(s)
- Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom.
| | | |
Collapse
|