1
|
Koenderman L, Vrisekoop N. Neutrophils in cancer: from biology to therapy. Cell Mol Immunol 2025; 22:4-23. [PMID: 39653768 DOI: 10.1038/s41423-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
The view of neutrophils has shifted from simple phagocytic cells, whose main function is to kill pathogens, to very complex cells that are also involved in immune regulation and tissue repair. These cells are essential for maintaining and regaining tissue homeostasis. Neutrophils can be viewed as double-edged swords in a range of situations. The potent killing machinery necessary for immune responses to pathogens can easily lead to collateral damage to host tissues when inappropriately controlled. Furthermore, some subtypes of neutrophils are potent pathogen killers, whereas others are immunosuppressive or can aid in tissue healing. Finally, in tumor immunology, many examples of both protumorigenic and antitumorigenic properties of neutrophils have been described. This has important consequences for cancer therapy, as targeting neutrophils can lead to either suppressed or stimulated antitumor responses. This review will discuss the current knowledge regarding the pro- and antitumorigenic roles of neutrophils, leading to the concept of a confused state of neutrophil-driven pro-/antitumor responses.
Collapse
Affiliation(s)
- Leo Koenderman
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nienke Vrisekoop
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Melkam A, Sionov RV, Shalish M, Steinberg D. Enhanced Anti-Bacterial Activity of Arachidonic Acid against the Cariogenic Bacterium Streptococcus mutans in Combination with Triclosan and Fluoride. Antibiotics (Basel) 2024; 13:540. [PMID: 38927206 PMCID: PMC11200779 DOI: 10.3390/antibiotics13060540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Dental caries is a global health problem that requires better prevention measures. One of the goals is to reduce the prevalence of the cariogenic Gram-positive bacterium Streptococcus mutans. We have recently shown that naturally occurring arachidonic acid (AA) has both anti-bacterial and anti-biofilm activities against this bacterium. An important question is how these activities are affected by other anti-bacterial compounds commonly used in mouthwashes. Here, we studied the combined treatment of AA with chlorhexidine (CHX), cetylpyridinium chloride (CPC), triclosan, and fluoride. Checkerboard microtiter assays were performed to determine the effects on bacterial growth and viability. Biofilms were quantified using the MTT metabolic assay, crystal violet (CV) staining, and live/dead staining with SYTO 9/propidium iodide (PI) visualized by spinning disk confocal microscopy (SDCM). The bacterial morphology and the topography of the biofilms were visualized by high-resolution scanning electron microscopy (HR-SEM). The effect of selected drug combinations on cell viability and membrane potential was investigated by flow cytometry using SYTO 9/PI staining and the potentiometric dye DiOC2(3), respectively. We found that CHX and CPC had an antagonistic effect on AA at certain concentrations, while an additive effect was observed with triclosan and fluoride. This prompted us to investigate the triple treatment of AA, triclosan, and fluoride, which was more effective than either compound alone or the double treatment. We observed an increase in the percentage of PI-positive bacteria, indicating increased bacterial cell death. Only AA caused significant membrane hyperpolarization, which was not significantly enhanced by either triclosan or fluoride. In conclusion, our data suggest that AA can be used together with triclosan and fluoride to improve the efficacy of oral health care.
Collapse
Affiliation(s)
- Avraham Melkam
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (A.M.); (R.V.S.)
- Hadassah Medical Center, Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| | - Ronit Vogt Sionov
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (A.M.); (R.V.S.)
| | - Miriam Shalish
- Hadassah Medical Center, Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| | - Doron Steinberg
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (A.M.); (R.V.S.)
| |
Collapse
|
3
|
Blasi-Brugué C, Martínez-Flórez I, Baxarias M, del Rio-Velasco J, Solano-Gallego L. Exploring the Relationship between Neutrophil Activation and Different States of Canine L. infantum Infection: Nitroblue Tetrazolium Test and IFN-γ. Vet Sci 2023; 10:572. [PMID: 37756094 PMCID: PMC10535614 DOI: 10.3390/vetsci10090572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
This study aimed to investigate the role of neutrophils in canine leishmaniosis by assessing neutrophil activation and its relationship with different states of L. infantum infection and antibody and IFN-γ production. Dogs were categorized into five groups: healthy-seronegative (n = 25), healthy-seropositive (n = 21), LeishVet-stage I (n = 25), Leishvet-stage II (n = 41), and LeishVet-stage III-IV (n = 16). Results of the nitroblue tetrazolium reduction test (NBT) showed significantly higher neutrophil activation in stage I (median:17.17, range: [7.33-31.50]%) compared to in healthy-seronegative (4.10 [1.20-18.00]%), healthy-seropositive (7.65 [3.98-21.74]%), stage II (6.50 [1.50-28.70]%), and stage III-IV (7.50 [3.00-16.75]%) groups (p < 0.0001). Healthy-seropositive dogs also displayed higher values than all groups except stage I. Stages II and III-IV did not show significant differences compared to healthy-seronegative. Regarding IFN-γ, stage I dogs had higher concentrations (median:127.90, range: [0-3998.00] pg/mL) than healthy-seronegative (0 [0-109.50] pg/mL) (p = 0.0002), stage II (9.00 [0-5086.00] pg/mL) (p = 0.045), and stage III-IV (3.50 [80.00-548.80] pg/mL) (p = 0.02) dogs. Stage II dogs showed increased IFN-γ compared to healthy-seronegative dogs (p = 0.015), while stage III-IV dogs had no significant differences compared to healthy-seronegative dogs (p = 0.12). Healthy-seropositive dogs had elevated IFN-γ concentrations compared to healthy-seronegative dogs (p = 0.001) and dogs in stage III-IV (p = 0.03). In conclusion, neutrophil activation was higher in dogs with mild disease and healthy-seropositive dogs, and a relationship between neutrophil activation and the production of IFN-γ was found.
Collapse
Affiliation(s)
| | | | | | | | - Laia Solano-Gallego
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.B.-B.); (I.M.-F.); (M.B.); (J.d.R.-V.)
| |
Collapse
|
4
|
Arora A, Singh A. Exploring the role of neutrophils in infectious and noninfectious pulmonary disorders. Int Rev Immunol 2023; 43:41-61. [PMID: 37353973 DOI: 10.1080/08830185.2023.2222769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/31/2023] [Indexed: 06/25/2023]
Abstract
With the change in global environment, respiratory disorders are becoming more threatening to the health of people all over the world. These diseases are closely linked to performance of immune system. Within the innate arm of immune system, Neutrophils are an important moiety to serve as an immune defense barrier. They are one of the first cells recruited to the site of infection and plays a critical role in pathogenesis of various pulmonary diseases. It is established that the migration and activation of neutrophils can lead to inflammation either directly or indirectly and this inflammation caused is very crucial for the clearance of pathogens and resolution of infection. However, the immunopathological mechanisms involved to carry out the same is very complex and not well understood. Despite there being studies concentrating on the role of neutrophils in multiple respiratory diseases, there is still a long way to go in order to completely understand the complexity of the participation of neutrophils and mechanisms involved in the development of these respiratory diseases. In the present article, we have reviewed the literature to comprehensively provide an insight in the current development and advancements about the role of neutrophils in infectious respiratory disorders including viral respiratory disorders such as Coronavirus disease (COVID-19) and bacterial pulmonary disorders with a focused review on pulmonary tuberculosis as well as in noninfectious disorders like Chronic obstructive pulmonary disease (COPD) and asthma. Also, future directions into research and therapeutic targets have been discussed for further exploration.
Collapse
Affiliation(s)
- Alisha Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Archana Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Cheng C, Liu K, Shen F, Zhang J, Xie Y, Li S, Hou Y, Bai G. Astragaloside IV targets PRDX6, inhibits the activation of RAC subunit in NADPH oxidase 2 for oxidative damage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154795. [PMID: 37030053 DOI: 10.1016/j.phymed.2023.154795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Radix Astragali Mongolici, as a traditional Chinese medicine, is widely used in the treatment of qi deficiency, viral or bacterial infection, inflammation and cancer. Astragaloside IV (AST), a key active compound in Radix Astragali Mongolici, has been shown to reduce disease progression by inhibiting oxidative stress and inflammation. However, the specific target and mechanism of action of AST in improving oxidative stress are still unclear. PURPOSE This study aims to explore the target and mechanism of AST to improve oxidative stress, and to explain the biological process of oxidative stress. METHODS AST functional probes were designed to capture target proteins and combined with protein spectrum to analyze target proteins. Small molecule and protein interaction technologies were used to verify the mode of action, while computer dynamics simulation technology was used to analyze the site of interaction with the target protein. The pharmacological activity of AST in improving oxidative stress was evaluated in a mouse model of acute lung injury induced by LPS. Additionally, pharmacological and serial molecular biological approaches were used to explore the underlying mechanism of action. RESULTS AST inhibits PLA2 activity in PRDX6 by targeting the PLA2 catalytic triad pocket. This binding alters the conformation and structural stability of PRDX6 and interferes with the interaction between PRDX6 and RAC, hindering the activation of the RAC-GDI heterodimer. Inactivation of RAC prevents NOX2 maturation, attenuates superoxide anion production, and improves oxidative stress damage. CONCLUSION The findings of this research indicate that AST impedes PLA2 activity by acting on the catalytic triad of PRDX6. This, in turn, disrupts the interaction between PRDX6 and RAC, thereby hindering the maturation of NOX2 and diminishing the oxidative stress damage.
Collapse
Affiliation(s)
- Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Kaixin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Jinling Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yang Xie
- The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Suyun Li
- The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R., China, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| |
Collapse
|
6
|
Rawat K, Shrivastava A. Neutrophils as emerging protagonists and targets in chronic inflammatory diseases. Inflamm Res 2022; 71:1477-1488. [PMID: 36289077 PMCID: PMC9607713 DOI: 10.1007/s00011-022-01627-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Neutrophils are the key cells of our innate immune system with a primary role in host defense. They rapidly arrive at the site of infection and display a range of effector functions including phagocytosis, degranulation, and NETosis to eliminate the invading pathogens. However, in recent years, studies focusing on neutrophil biology have revealed the highly adaptable nature and versatile functions of these cells which extend beyond host defense. Neutrophils are now referred to as powerful mediators of chronic inflammation. In several chronic inflammatory diseases, their untoward actions, such as immense infiltration, hyper-activation, dysregulation of effector functions, and extended survival, eventually contribute to disease pathogenesis. Therefore, a better understanding of neutrophils and their effector functions in prevalent chronic diseases will not only shed light on their role in disease pathogenesis but will also reveal them as novel therapeutic targets. METHODS We performed a computer-based online search using the databases, PubMed.gov and Clinical trials.gov for published research and review articles. RESULTS AND CONCLUSIONS This review provides an assessment of neutrophils and their crucial involvement in various chronic inflammatory disorders ranging from respiratory, neurodegenerative, autoimmune, and cardiovascular diseases. In addition, we also discuss the therapeutic approach for targeting neutrophils in disease settings that will pave the way forward for future research.
Collapse
Affiliation(s)
- Kavita Rawat
- Department of Zoology, University of Delhi, New Delhi, Delhi 110007 India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, New Delhi, Delhi 110007 India
| |
Collapse
|
7
|
Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants (Basel) 2022; 11:antiox11122345. [PMID: 36552553 PMCID: PMC9774434 DOI: 10.3390/antiox11122345] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Organisms are continually exposed to exogenous and endogenous sources of reactive oxygen species (ROS) and other oxidants that have both beneficial and deleterious effects on the cell. ROS have important roles in a wide range of physiological processes; however, high ROS levels are associated with oxidative stress and disease progression. Oxidative stress has been implicated in nearly all major human diseases, from neurogenerative diseases and neuropsychiatric disorders to cardiovascular disease, diabetes, and cancer. Antioxidant defence systems have evolved as a means of protection against oxidative stress, with the transcription factor Nrf2 as the key regulator. Nrf2 is responsible for regulating an extensive panel of antioxidant enzymes involved in the detoxification and elimination of oxidative stress and has been extensively studied in the disease contexts. This review aims to provide the reader with a general overview of oxidative stress and Nrf2, including basic mechanisms of Nrf2 activation and regulation, and implications in various major human diseases.
Collapse
|
8
|
Behrens LM, van Egmond M, van den Berg TK. Neutrophils as immune effector cells in antibody therapy in cancer. Immunol Rev 2022; 314:280-301. [PMID: 36331258 DOI: 10.1111/imr.13159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumor-targeting monoclonal antibodies are available for a number of cancer cell types (over)expressing the corresponding tumor antigens. Such antibodies can limit tumor progression by different mechanisms, including direct growth inhibition and immune-mediated mechanisms, in particular complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, and antibody-dependent cellular cytotoxicity (ADCC). ADCC can be mediated by various types of immune cells, including neutrophils, the most abundant leukocyte in circulation. Neutrophils express a number of Fc receptors, including Fcγ- and Fcα-receptors, and can therefore kill tumor cells opsonized with either IgG or IgA antibodies. In recent years, important insights have been obtained with respect to the mechanism(s) by which neutrophils engage and kill antibody-opsonized cancer cells and these findings are reviewed here. In addition, we consider a number of additional ways in which neutrophils may affect cancer progression, in particular by regulating adaptive anti-cancer immunity.
Collapse
Affiliation(s)
- Leonie M. Behrens
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
- Department of Surgery, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
| | | |
Collapse
|
9
|
Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9966750. [PMID: 36111166 PMCID: PMC9470311 DOI: 10.1155/2022/9966750] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Plant preparations have been used to treat various diseases and discussed for centuries. Research has advanced to discover and identify the plant components with beneficial effects and reveal their underlying mechanisms. Flavonoids are phytoconstituents with anti-inflammatory, antimutagenic, anticarcinogenic, and antimicrobial properties. Herein, we listed and contextualized various aspects of the protective effects of the flavonols quercetin, isoquercetin, kaempferol, and myricetin and the flavones luteolin, apigenin, 3
,4
-dihydroxyflavone, baicalein, scutellarein, lucenin-2, vicenin-2, diosmetin, nobiletin, tangeretin, and 5-O-methyl-scutellarein. We presented their structural characteristics and subclasses, importance, occurrence, and food sources. The bioactive compounds present in our diet, such as fruits and vegetables, may affect the health and disease state. Therefore, we discussed the role of these compounds in inflammation, oxidative mechanisms, and bacterial metabolism; moreover, we discussed their synergism with antibiotics for better disease outcomes. Indiscriminate use of antibiotics allows the emergence of multidrug-resistant bacterial strains; thus, bioactive compounds may be used for adjuvant treatment of infectious diseases caused by resistant and opportunistic bacteria via direct and indirect mechanisms. We also focused on the reported mechanisms and intracellular targets of flavonols and flavones, which support their therapeutic role in inflammatory and infectious diseases.
Collapse
|
10
|
Kang SH, Ham HY, Hong CW, Song DK. Glycine induces enhancement of bactericidal activity of neutrophils. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:229-238. [PMID: 35766001 PMCID: PMC9247710 DOI: 10.4196/kjpp.2022.26.4.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
Abstract
Severe bacterial infections are frequently accompanied by depressed neutrophil functions. Thus, agents that increase the microbicidal activity of neutrophils could add to a direct antimicrobial therapy. Lysophosphatidylcholine augments neutrophil bactericidal activity via the glycine (Gly)/glycine receptor (GlyR) α2/TRPM2/p38 mitogen-activated protein kinase (MAPK) pathway. However, the direct effect of glycine on neutrophil bactericidal activity was not reported. In this study, the effect of glycine on neutrophil bactericidal activity was examined. Glycine augmented bactericidal activity of human neutrophils (EC50 = 238 μM) in a strychnine (a GlyR antagonist)-sensitive manner. Glycine augmented bacterial clearance in mice, which was also blocked by strychnine (0.4 mg/kg, s.c.). Glycine enhanced NADPH oxidase-mediated reactive oxygen species (ROS) production and TRPM2-mediated [Ca2+]i increase in neutrophils that had taken up E. coli. Glycine augmented Lucifer yellow uptake (fluid-phase pinocytosis) and azurophil granule-phagosome fusion in neutrophils that had taken up E. coli in an SB203580 (a p38 MAPK inhibitor)-sensitive manner. These findings indicate that glycine augments neutrophil microbicidal activity by enhancing azurophil granule-phagosome fusion via the GlyRα2/ROS/calcium/p38 MAPK pathway. We suggest that glycine could be a useful agent for increasing neutrophil bacterial clearance.
Collapse
Affiliation(s)
- Shin-Hae Kang
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hwa-Yong Ham
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
11
|
Ravarotto V, Bertoldi G, Stefanelli LF, Gobbi L, Calò LA. Molecular aspects of the altered Angiotensin II signalling in Gitelman’s syndrome. Expert Opin Orphan Drugs 2022. [DOI: 10.1080/21678707.2022.2066996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Verdiana Ravarotto
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED) University of Padova, Italy
| | - Giovanni Bertoldi
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED) University of Padova, Italy
| | - Lucia Federica Stefanelli
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED) University of Padova, Italy
| | - Laura Gobbi
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED) University of Padova, Italy
| | - Lorenzo A. Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED) University of Padova, Italy
| |
Collapse
|
12
|
Fine definition of the epitopes on the human gp91 phox/NOX2 for the monoclonal antibodies CL-5 and 48. J Immunol Methods 2021; 501:113213. [PMID: 34971634 DOI: 10.1016/j.jim.2021.113213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022]
Abstract
Superoxide-producing NADPH oxidase, gp91phox/NOX2, in phagocytes plays a critical role in the host defenses against pathogens. Moreover, gp91phox/NOX2 contributes to the oxidative stress in endothelial cells. Therefore, investigating the level of gp91phox/NOX2 with immunoblotting is important for estimating the amount of superoxide produced. Here, we showed that the epitopes in human gp91phox/NOX2 recognized by monoclonal antibodies (mAbs) CL-5 and 48 were in amino acids 132-147 and 136-144, respectively. Although the epitopes were close to the N-glycosylation sites, N-glycan maturation did not affect mAbs recognition. When Pro-136 was substituted with Arg, the corresponding mouse residue, human gp91phox/NOX2 was not recognized by mAbs CL-5 and 48; however, the substitution did not affect gp91phox/NOX2-based oxidase activity. This finding explains why these mAbs specifically recognize the human but not mouse gp91phox/NOX2. Hence, these mAbs are useful for investigating the level of gp91phox/NOX2 without amino acid substitutions in the epitopes.
Collapse
|
13
|
Seera S, Nagarajaram HA. Effect of Disease Causing Missense Mutations on Intrinsically Disordered Regions in Proteins. Protein Pept Lett 2021; 29:254-267. [PMID: 34825861 DOI: 10.2174/0929866528666211126161200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND It is well known that disease-causing missense mutations (DCMMs) reduce the structural stability/integrity of the proteins with well-defined 3D structures, thereby impacting their molecular functions. However, it is not known in what way DCMMs affect the intrinsically disordered proteins (IDPs) that do not adopt well defined stable 3D structures. METHODS In order to investigate how DCMMs may impact intrinsically disordered regions (IDRs) in proteins, we undertook Molecular Dynamics (MD) based studies on three different examples of functionally important IDRs with known DCMMs. Our studies revealed that the functional impact of DCMMs is in reducing the conformational heterogeneity of IDRs, which is intrinsic and quintessential for their multi-faceted cellular roles. RESULTS These results are reinforced by energy landscapes of the wildtype and mutant IDRs where the former is characterized by many local minima separated by low barriers, whereas the latter are characterized by one global minimum and several local minima separated by high energy barriers. Our MD based studies also indicate that DCMMs stabilize very few structural possibilities of IDRs either by the newly formed interactions induced by the substituted side chains or by means of restricted or increased flexibilities of the backbone conformations at the mutation sites. CONCLUSION Furthermore, the structural possibilities stabilized by DCMMs do not support the native functional roles of the IDRs, thereby leading to disease conditions.
Collapse
Affiliation(s)
| | - Hampapathalu A Nagarajaram
- Laboratory of Computational Biology, Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
14
|
Gluba-Brzózka A, Franczyk B, Rysz-Górzyńska M, Rokicki R, Koziarska-Rościszewska M, Rysz J. Pathomechanisms of Immunological Disturbances in β-Thalassemia. Int J Mol Sci 2021; 22:ijms22189677. [PMID: 34575839 PMCID: PMC8469188 DOI: 10.3390/ijms22189677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/19/2023] Open
Abstract
Thalassemia, a chronic disease with chronic anemia, is caused by mutations in the β-globin gene, leading to reduced levels or complete deficiency of β-globin chain synthesis. Patients with β-thalassemia display variable clinical severity which ranges from asymptomatic features to severe transfusion-dependent anemia and complications in multiple organs. They not only are at increased risk of blood-borne infections resulting from multiple transfusions, but they also show enhanced susceptibility to infections as a consequence of coexistent immune deficiency. Enhanced susceptibility to infections in β-thalassemia patients is associated with the interplay of several complex biological processes. β-thalassemia-related abnormalities of the innate immune system include decreased levels of complement, properdin, and lysozyme, reduced absorption and phagocytic ability of polymorphonuclear neutrophils, disturbed chemotaxis, and altered intracellular metabolism processes. According to available literature data, immunological abnormalities observed in patients with thalassemia can be caused by both the disease itself as well as therapies. The most important factors promoting such alterations involve iron overload, phenotypical and functional abnormalities of immune system cells resulting from chronic inflammation oxidative stress, multiple blood transfusion, iron chelation therapy, and splenectomy. Unravelling the mechanisms underlying immune deficiency in β-thalassemia patients may enable the designing of appropriate therapies for this group of patients.
Collapse
Affiliation(s)
- Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (M.K.-R.); (J.R.)
- Correspondence: or ; Tel.: +48-42-639-3750
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (M.K.-R.); (J.R.)
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Robert Rokicki
- Clinic of Hand Surgery, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Małgorzata Koziarska-Rościszewska
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (M.K.-R.); (J.R.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (M.K.-R.); (J.R.)
| |
Collapse
|
15
|
McDaniel J. Regulation of Neutrophil Function by Marine n-3 Fatty Acids-A Mini Review. Cell Biochem Biophys 2021; 79:641-648. [PMID: 34047941 DOI: 10.1007/s12013-021-01001-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 01/24/2023]
Abstract
While normal functioning neutrophils contribute in various, critical ways to the maintenance of a stable immune system, their hypo- or hyper-activation has been implicated in the onset or exacerbation of multiple inflammatory conditions often affecting the vulnerable, aging population. As such, many would benefit from interventions capable of targeting neutrophils in disease-specific ways without disrupting their primary role in maintaining immune function. After consumption, marine omega-3 fatty acids are rapidly incorporated into the phospholipid bilayer of neutrophils, changing the fatty acid composition and consequently modifying neutrophil function. In addition to eicosanoid synthesis, the mechanisms by which marine n-3 fatty acids and their metabolites alter neutrophil function involve blockage of transcription factors that subsequently reduce pro-inflammatory gene expression by neutrophils and through the disruption of lipid rafts. In the current mini-review, a brief explanation of marine n-3 fatty acid metabolism is provided and the subsequent impact on neutrophil function is discussed. In addition, current evidence of the effects of marine n-3 fatty acid supplementation on neutrophil function from clinical trials conducted in the past 15 years is summarized.
Collapse
Affiliation(s)
- J McDaniel
- The Ohio State University, College of Nursing, 1585 Neil Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
16
|
Bergmann CB, Hammock BD, Wan D, Gogolla F, Goetzman H, Caldwell CC, Supp DM. TPPU treatment of burned mice dampens inflammation and generation of bioactive DHET which impairs neutrophil function. Sci Rep 2021; 11:16555. [PMID: 34400718 PMCID: PMC8368302 DOI: 10.1038/s41598-021-96014-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Oxylipins modulate the behavior of immune cells in inflammation. Soluble epoxide hydrolase (sEH) converts anti-inflammatory epoxyeicosatrienoic acid (EET) to dihydroxyeicosatrienoic acid (DHET). An sEH-inhibitor, TPPU, has been demonstrated to ameliorate lipopolysaccharide (LPS)- and sepsis-induced inflammation via EETs. The immunomodulatory role of DHET is not well characterized. We hypothesized that TPPU dampens inflammation and that sEH-derived DHET alters neutrophil functionality in burn induced inflammation. Outbred mice were treated with vehicle, TPPU or 14,15-DHET and immediately subjected to either sham or dorsal scald 28% total body surface area burn injury. After 6 and 24 h, interleukin 6 (IL-6) serum levels and neutrophil activation were analyzed. For in vitro analyses, bone marrow derived neutrophil functionality and mRNA expression were examined. In vivo, 14,15-DHET and IL-6 serum concentrations were decreased after burn injury with TPPU administration. In vitro, 14,15-DHET impaired neutrophil chemotaxis, acidification, CXCR1/CXCR2 expression and reactive oxygen species (ROS) production, the latter independent from p38MAPK and PI3K signaling. We conclude that TPPU administration decreases DHET post-burn. Furthermore, DHET downregulates key neutrophil immune functions and mRNA expression. Altogether, these data reveal that TPPU not only increases anti-inflammatory and inflammation resolving EET levels, but also prevents potential impairment of neutrophils by DHET in trauma.
Collapse
Affiliation(s)
- Christian B Bergmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Bruce D Hammock
- Department of Entomology, University of California, Davis, CA, USA
| | - Debin Wan
- Department of Entomology, University of California, Davis, CA, USA
| | - Falk Gogolla
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Holly Goetzman
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Charles C Caldwell
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Dorothy M Supp
- Division of Plastic, Reconstructive and Hand Surgery/Burn Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Scientific Staff, Shriners Children's Ohio, Dayton, OH, USA.
| |
Collapse
|
17
|
Yerra P, Sistla SC, Krishnaraj B, Shankar G, Sistla S, Kundra P, Sundaramurthi S. Effect of Peri-Operative Hyperoxygenation on Surgical Site Infection in Patients Undergoing Emergency Abdominal Surgery: A Randomized Controlled Trial. Surg Infect (Larchmt) 2021; 22:1052-1058. [PMID: 34314615 DOI: 10.1089/sur.2021.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: The rationale for hyperoxygenation in controlling surgical site infection (SSI) has been described in many studies yet has not been defined clearly. Some studies in colorectal surgery have reported beneficial effects, whereas studies in gynecologic surgery have reported either no effect or a deleterious effect. This study assessed the effectiveness of hyperoxygenation on the reduction of SSI in patients undergoing emergency abdominal surgery. Patients and Methods: Eligible patients were assigned randomly to two groups (study group, 80% oxygen or control group, 30% oxygen). The patients in the study group received 80% oxygen and the patients in the control group received 30% oxygen intra-operatively and for two hours after surgery. Arterial blood gas analysis was done after resuscitation, at the end of the surgery, and at two hours after extubation. All patients were assessed for SSI, post-operative nausea and vomiting, and respiratory complications. Patients were followed post-operatively for 14 days. Surgical site infection was diagnosed according to U.S. Centers for Disease Control and Infection (CDC) criteria and by aerobic wound cultures. Results: After exclusion, 85 patients in the control group and 93 patients in the study group were analyzed. There was no difference for baseline, intra-operative, and post-operative characteristics between the two groups, except for higher oxygen saturation at closure and two hours post-operatively, in the 80% group (p = 0.01). Surgical site infection occurred in 29 patients (34.11%) in 30% fraction of inspired oxygen (FIO2) group and in 19 patients (20.43%) in 80% FIO2 group (p = 0.04). The risk of SSI was 59% lower in the 80% FIO2 group (adjusted odds ratio, 0.41; 95% confidence interval [CI], 0.19-0.88 vs. the 30% FIO2 group). There were no differences in post-operative nausea and vomiting and respiratory complications between the two treatment groups. Conclusions: Administration of 80% peri-operative hyperoxygenation in emergency abdominal surgery reduces SSI and is a cost-effective method.
Collapse
Affiliation(s)
- Prasad Yerra
- Department of Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sarath Chandra Sistla
- Department of Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Balamourougan Krishnaraj
- Department of Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Gomathi Shankar
- Department of Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sujatha Sistla
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Pankaj Kundra
- Department of Anaesthesiology and Critical Care, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sudharsanan Sundaramurthi
- Department of Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
18
|
Anti-Cancer and Anti-Inflammatory Activities of Three New Chromone Derivatives from the Marine-Derived Penicillium citrinum. Mar Drugs 2021; 19:md19080408. [PMID: 34436247 PMCID: PMC8398383 DOI: 10.3390/md19080408] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Three new and uncommon chromone analogs, epiremisporine F (1), epiremisporine G (2), and epiremisporine H (3), were isolated from marine-origin Penicillium citrinum. Among the isolated compounds, compounds 2–3 remarkably suppressed fMLP-induced superoxide anion generation by human neutrophils, with IC50 values of 31.68 ± 2.53, and 33.52 ± 0.42 μM, respectively. Compound 3 exhibited cytotoxic activities against human colon carcinoma (HT-29) and non-small lung cancer cell (A549) with IC50 values of 21.17 ± 4.89 and 31.43 ± 3.01 μM, respectively, and Western blot assay confirmed that compound 3 obviously induced apoptosis of HT-29 cells, via Bcl-2, Bax, and caspase 3 signaling cascades.
Collapse
|
19
|
The critical roles of iron during the journey from fetus to adolescent: Developmental aspects of iron homeostasis. Blood Rev 2021; 50:100866. [PMID: 34284901 DOI: 10.1016/j.blre.2021.100866] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Iron is indispensable for human life. However, it is also potentially toxic, since it catalyzes the formation of harmful oxidative radicals in unbound form and may facilitate pathogen growth. Therefore, iron homeostasis needs to be tightly regulated. Rapid growth and development require large amounts of iron, while (especially young) children are vulnerable to infections with iron-dependent pathogens due to an immature immune system. Moreover, unbalanced iron status early in life may have effects on the nervous system, immune system and gut microbiota that persist into adulthood. In this narrative review, we assess the critical roles of iron for growth and development and elaborate how the body adapts to physiologically high iron demands during the journey from fetus to adolescent. As a first step towards the development of clinical guidelines for the management of iron disorders in children, we summarize the unmet needs regarding the developmental aspects of iron homeostasis.
Collapse
|
20
|
Lim KYL, Mullally CA, Haese EC, Kibble EA, McCluskey NR, Mikucki EC, Thai VC, Stubbs KA, Sarkar-Tyson M, Kahler CM. Anti-Virulence Therapeutic Approaches for Neisseria gonorrhoeae. Antibiotics (Basel) 2021; 10:antibiotics10020103. [PMID: 33494538 PMCID: PMC7911339 DOI: 10.3390/antibiotics10020103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/15/2023] Open
Abstract
While antimicrobial resistance (AMR) is seen in both Neisseria gonorrhoeae and Neisseria meningitidis, the former has become resistant to commonly available over-the-counter antibiotic treatments. It is imperative then to develop new therapies that combat current AMR isolates whilst also circumventing the pathways leading to the development of AMR. This review highlights the growing research interest in developing anti-virulence therapies (AVTs) which are directed towards inhibiting virulence factors to prevent infection. By targeting virulence factors that are not essential for gonococcal survival, it is hypothesized that this will impart a smaller selective pressure for the emergence of resistance in the pathogen and in the microbiome, thus avoiding AMR development to the anti-infective. This review summates the current basis of numerous anti-virulence strategies being explored for N. gonorrhoeae.
Collapse
Affiliation(s)
- Katherine Y. L. Lim
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Christopher A. Mullally
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Ethan C. Haese
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Emily A. Kibble
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Edward C. Mikucki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Van C. Thai
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Charlene M. Kahler
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- Correspondence:
| |
Collapse
|
21
|
Rare Chromone Derivatives from the Marine-Derived Penicillium citrinum with Anti-Cancer and Anti-Inflammatory Activities. Mar Drugs 2021; 19:md19010025. [PMID: 33430124 PMCID: PMC7827422 DOI: 10.3390/md19010025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/15/2023] Open
Abstract
Three new and rare chromone derivatives, epiremisporine C (1), epiremisporine D (2), and epiremisporine E (3), were isolated from marine-derived Penicillium citrinum, together with four known compounds, epiremisporine B (4), penicitrinone A (5), 8-hydroxy-1-methoxycarbonyl-6-methylxanthone (6), and isoconiochaetone C (7). Among the isolated compounds, compounds 2–5 significantly decreased fMLP-induced superoxide anion generation by human neutrophils, with IC50 values of 6.39 ± 0.40, 8.28 ± 0.29, 3.62 ± 0.61, and 2.67 ± 0.10 μM, respectively. Compounds 3 and 4 exhibited cytotoxic activities with IC50 values of 43.82 ± 6.33 and 32.29 ± 4.83 μM, respectively, against non-small lung cancer cell (A549), and Western blot assay confirmed that compounds 3 and 4 markedly induced apoptosis of A549 cells, through Bcl-2, Bax, and caspase 3 signaling cascades.
Collapse
|
22
|
Chang HC, Wang SW, Chen CY, Hwang TL, Cheng MJ, Sung PJ, Liao KW, Chen JJ. Secoiridoid Glucosides and Anti-Inflammatory Constituents from the Stem Bark of Fraxinus chinensis. Molecules 2020; 25:E5911. [PMID: 33327368 PMCID: PMC7764309 DOI: 10.3390/molecules25245911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Qin Pi (Fraxinus chinensis Roxb.) is commercially used in healthcare products for the improvement of intestinal function and gouty arthritis in many countries. Three new secoiridoid glucosides, (8E)-4''-O-methylligstroside (1), (8E)-4''-O-methyldemethylligstroside (2), and 3'',4''-di-O-methyl-demethyloleuropein (3), have been isolated from the stem bark of Fraxinus chinensis, together with 23 known compounds (4-26). The structures of the new compounds were established by spectroscopic analyses (1D, 2D NMR, IR, UV, and HRESIMS). Among the isolated compounds, (8E)-4''-O-methylligstroside (1), (8E)-4''-O-methyldemethylligstroside (2), 3'',4''-di-O-methyldemethyloleuropein (3), oleuropein (6), aesculetin (9), isoscopoletin (11), aesculetin dimethyl ester (12), fraxetin (14), tyrosol (21), 4-hydroxyphenethyl acetate (22), and (+)-pinoresinol (24) exhibited inhibition (IC50 ≤ 7.65 μg/mL) of superoxide anion generation by human neutrophils in response to formyl-L-methionyl-L-leuckyl-L-phenylalanine/cytochalasin B (fMLP/CB). Compounds 1, 9, 11, 14, 21, and 22 inhibited fMLP/CB-induced elastase release with IC50 ≤ 3.23 μg/mL. In addition, compounds 2, 9, 11, 14, and 21 showed potent inhibition with IC50 values ≤ 27.11 μM, against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation. The well-known proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), were also inhibited by compounds 1, 9, and 14. Compounds 1, 9, and 14 displayed an anti-inflammatory effect against NO, TNF-α, and IL-6 through the inhibition of activation of MAPKs and IκBα in LPS-activated macrophages. In addition, compounds 1, 9, and 14 stimulated anti-inflammatory M2 phenotype by elevating the expression of arginase 1 and Krüppel-like factor 4 (KLF4). The above results suggested that compounds 1, 9, and 14 could be considered as potential compounds for further development of NO production-targeted anti-inflammatory agents.
Collapse
Affiliation(s)
- Hao-Chiun Chang
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Ph.D. Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu City 30068, Taiwan;
| | - Shih-Wei Wang
- Department of Medicine, MacKay Medical College, New Taipei City 25242, Taiwan;
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Chin-Yen Chen
- Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 90741, Taiwan;
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan;
- Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Jen Cheng
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 30062, Taiwan;
| | - Ping-Jyun Sung
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan
| | - Kuang-Wen Liao
- Ph.D. Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu City 30068, Taiwan;
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu City 30068, Taiwan
| | - Jih-Jung Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
23
|
Lima SNP, Cerdeira CD, Santos GB, Fernandes MDM, Giusti-Paiva A, Brigagão MRPL. Tempol modulates the leukocyte response to inflammatory stimuli and attenuates endotoxin-induced sickness behaviour in mice. Arch Physiol Biochem 2020; 126:341-347. [PMID: 30465447 DOI: 10.1080/13813455.2018.1538247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background and aims: Lipopolysaccharide (LPS), an endotoxin, is a component of the outer membrane of Gram-negative bacteria that is able to activate the peripheral immune system, leading to changes in signalling pathways that act locally and systemically to achieve adaptive responses. Sickness behaviour is a motivational state in response to endotoxin exposure and includes depressed activity and a reduction of exploratory behaviour, potentially reorganising organism priorities to cope with infectious diseases. We hypothesised that 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol) modulates the leukocyte response to endotoxins and decreases LPS-induced sickness behaviour in mice.Methods: The effects of Tempol on LPS-induced peritonitis and the respiratory burst of neutrophils primed with LPS and triggered by phorbol 12-myristate-13-acetate (PMA) were evaluated. To evaluate the effects of Tempol on sickness behaviour, the mice were submitted to an open field and forced swim tests.Results: Tempol (50-100 μM/106 cells) decreased the respiratory burst of LPS-primed and PMA-stimulated neutrophils in vitro. In vivo, this nitroxide (30 and 100 mg/kg body weight) inhibited leukocyte migration to the peritoneal cavity after LPS administration in mice. Moreover, Tempol pretreatment (30 and 100 mg/kg body weight) before LPS administration also attenuated sickness behavioural changes.Conclusions: Together, these findings shed light on the mechanisms underlying the anti-inflammatory potential and confirm the therapeutic potential of nitroxides.
Collapse
Affiliation(s)
- Samuel Nuno Pereira Lima
- Department of Biochemistry (DBq), Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Cláudio Daniel Cerdeira
- Department of Biochemistry (DBq), Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Gérsika Bitencourt Santos
- Department of Biochemistry (DBq), Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Mateus de Mello Fernandes
- Department of Biochemistry (DBq), Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Alexandre Giusti-Paiva
- Department of Physiology, Institute of Biomedical Sciences; Federal University of Alfenas, Alfenas, Brazil
| | | |
Collapse
|
24
|
|
25
|
Zhou Z, Jian X, Zhou B, Lu K, Wang Y. Changes in the immune function of rainbow trout (Oncorhynchus mykiss) provide insights into strategies against BDE-47 stress. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122212. [PMID: 32078968 DOI: 10.1016/j.jhazmat.2020.122212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous in marine ecosystems and have been suggested to bioaccumulate in aquatic food webs, with potentially negative impacts on marine organism. In this study, a 21-day experiment was performed under controlled laboratory conditions, in which 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), the most biotoxic PBDE in the marine environment, was fed to rainbow trout (Oncorhynchus mykiss) at concentrations of 50 and 500 ng g-1 in the diet. BDE-47 significantly decreased the specific growth rate of O. mykiss and was highly concentrated in the liver and head kidney, as evidenced by increased bioaccumulation factor (BAF) values. Tissue observation revealed impairment of the microstructure of the head kidney. Important immune factors in the skin, blood and head kidney were significantly inhibited by BDE-47 treatment (p < 0.05), whereas the respiratory burst activity of macrophages was enhanced. Additionally, immune-related genes were strongly downregulated following BDE-47 exposure (p < 0.05). In a bacterial challenge, the treatment groups had much higher mortality than did the control group (p < 0.05). BDE-47 accumulated and impaired immune organs, and the hierarchy of immune responses was impaired, consequently reducing O. mykiss resistance to pathogen invasion.
Collapse
Affiliation(s)
- Zhongyuan Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xiaoyang Jian
- North China Sea Environmental Monitoring Centre, State Oceanic Administration, Fushun Road 22, Qingdao, 266003, China
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Keyu Lu
- Department of Geography, University College London, London, WC1E 6BT, UK
| | - You Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
26
|
Lai YW, Wang SW, Hu YY, Hwang TL, Cheng MJ, Chen IS, Sung PJ, Chen JJ. Anti-inflammatory alkaloids from the root bark of Hernandia nymphaeifolia. PHYTOCHEMISTRY 2020; 173:112326. [PMID: 32120117 DOI: 10.1016/j.phytochem.2020.112326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Four undescribed alkaloids, 7-ethoxy-6-methoxy-2-methylisoquinolin-1(2H)-one, 7,8-dihydroxy-6-methoxy-2-methylisoquinolin-1(2H)-one, N-formylhernagine, and 5,6-dihydroxy-N-methylphthalimide, were obtained from the root bark of Hernanadia nymphaeifolia, along with fourteen known compounds. The structures of these compounds were determined through spectroscopic and MS analyses. 7,8-Dihydroxy-6-methoxy-2-methylisoquinolin-1(2H)-one, N-formylhernagine, 5,6-dihydroxy-N-methylphthalimide, oxohernagine, hernandonine, and N-trans-feruloylmethoxytyramine inhibited the superoxide anion (O2-) production (IC50 values ≤ 6.23 μg/mL) by neutrophils stimulated with formyl-L-methionyl-L-leuckyl-L-phenyl-alanine/cytochalasin B (fMLP/CB). Furthermore, 7,8-dihydroxy-6-methoxy-2-methylisoquinolin-1(2H)-one, N-formylhernagine, 5,6-dihydroxy-N-methylphthalimide, oxohernagine, and N-trans-feruloylmethoxytyramine inhibited fMLP/CB-induced elastase release with IC50 values ≤ 7.41 μg/mL. In addition, 7,8-dihydroxy-6-methoxy-2-methylisoquinolin-1(2H)-one, N-formylhernagine, oxohernagine, and N-trans-feruloylmethoxytyramine showed potent inhibition with IC50 values ≤ 28.55 μM, against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation.
Collapse
Affiliation(s)
- Yu-Wei Lai
- Division of Urology, Taipei City Hospital Renai Branch, Taipei, Taiwan; Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Wei Wang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Ya-Yun Hu
- Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Ming-Jen Cheng
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu, Taiwan
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Jih-Jung Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
27
|
Kumar A, Baruah A, Tomioka M, Iino Y, Kalita MC, Khan M. Caenorhabditis elegans: a model to understand host-microbe interactions. Cell Mol Life Sci 2020; 77:1229-1249. [PMID: 31584128 PMCID: PMC11104810 DOI: 10.1007/s00018-019-03319-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Host-microbe interactions within the gut are fundamental to all higher organisms. Caenorhabditis elegans has been in use as a surrogate model to understand the conserved mechanisms in host-microbe interactions. Morphological and functional similarities of C. elegans gut with the human have allowed the mechanistic investigation of gut microbes and their effects on metabolism, development, reproduction, behavior, pathogenesis, immune responses and lifespan. Recent reports suggest their suitability for functional investigations of human gut bacteria, such as gut microbiota of healthy and diseased individuals. Our knowledge on the gut microbial diversity of C. elegans in their natural environment and the effect of host genetics on their core gut microbiota is important. Caenorhabditis elegans, as a model, is continuously bridging the gap in our understanding the role of genetics, environment, and dietary factors on physiology of the host.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, 781035, India
| | - Aiswarya Baruah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Mojibur Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, 781035, India.
| |
Collapse
|
28
|
Yoo YJ, Sun JS, Lee JH, Jung HJ, Koh YH, Jung J, Kim HG. Atypical Presentation of Chronic Granulomatous Disease in a Neonate with a Pulmonary Granuloma Mimicking a Tumor: A Case Report. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2020; 81:990-995. [PMID: 36238165 PMCID: PMC9432210 DOI: 10.3348/jksr.2020.81.4.990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/15/2019] [Accepted: 10/30/2019] [Indexed: 11/15/2022]
Abstract
Chronic granulomatous disease (CGD) is an uncommon primary immune deficiency caused by phagocytes defective in oxygen metabolite production. It results in recurrent bacterial or fungal infections. Herein, we present a case of CGD with a large pulmonary granuloma in a neonate and review the imaging findings. The patient was a 24-day-old neonate admitted to the hospital with fever. A round opacified lesion was identified on the chest radiograph. Subsequent CT and MRI revealed a round mass with heterogeneous enhancement in the right lower lobe. There were foci of diffusion restriction in the mass. Surgical biopsy of the mass revealed chronic granuloma. Finally, the neonate was diagnosed with CGD caused by mutation of the gp91phox gene. Herein, we present the clinical and imaging findings of this unusual case of CGD.
Collapse
Affiliation(s)
- Young Jin Yoo
- Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Joo Sung Sun
- Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Jang Hoon Lee
- Department of Pediatrics, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Hyun Joo Jung
- Department of Pediatrics, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Yeong Hwa Koh
- Department of Pathology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Joonho Jung
- Department of Cardiac Surgery, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Hyun Gi Kim
- Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
29
|
Matlung HL, Babes L, Zhao XW, van Houdt M, Treffers LW, van Rees DJ, Franke K, Schornagel K, Verkuijlen P, Janssen H, Halonen P, Lieftink C, Beijersbergen RL, Leusen JHW, Boelens JJ, Kuhnle I, van der Werff Ten Bosch J, Seeger K, Rutella S, Pagliara D, Matozaki T, Suzuki E, Menke-van der Houven van Oordt CW, van Bruggen R, Roos D, van Lier RAW, Kuijpers TW, Kubes P, van den Berg TK. Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis. Cell Rep 2019; 23:3946-3959.e6. [PMID: 29949776 DOI: 10.1016/j.celrep.2018.05.082] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/30/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
Destruction of cancer cells by therapeutic antibodies occurs, at least in part, through antibody-dependent cellular cytotoxicity (ADCC), and this can be mediated by various Fc-receptor-expressing immune cells, including neutrophils. However, the mechanism(s) by which neutrophils kill antibody-opsonized cancer cells has not been established. Here, we demonstrate that neutrophils can exert a mode of destruction of cancer cells, which involves antibody-mediated trogocytosis by neutrophils. Intimately associated with this is an active mechanical disruption of the cancer cell plasma membrane, leading to a lytic (i.e., necrotic) type of cancer cell death. Furthermore, this mode of destruction of antibody-opsonized cancer cells by neutrophils is potentiated by CD47-SIRPα checkpoint blockade. Collectively, these findings show that neutrophil ADCC toward cancer cells occurs by a mechanism of cytotoxicity called trogoptosis, which can be further improved by targeting CD47-SIRPα interactions.
Collapse
Affiliation(s)
- Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Liane Babes
- Immunology Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Xi Wen Zhao
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michel van Houdt
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Louise W Treffers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dieke J van Rees
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Katka Franke
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin Schornagel
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Verkuijlen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans Janssen
- Division of Cell Biology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pasi Halonen
- Division of Molecular Carcinogenesis and the NKI Robotics and Screening Center, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis and the NKI Robotics and Screening Center, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis and the NKI Robotics and Screening Center, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jeanette H W Leusen
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap J Boelens
- U-DANCE, Laboratory for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands; Department of Pediatrics, Blood and Marrow Transplantation Program, UMC Utrecht, Utrecht, the Netherlands
| | - Ingrid Kuhnle
- Department of Pediatrics, University Medicine Göttingen, Göttingen, Germany
| | | | - Karl Seeger
- Department of Pediatric Oncology/Hematology, Otto-Heubner-Center for Pediatric and Adolescent Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sergio Rutella
- Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Daria Pagliara
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Takashi Matozaki
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Signaling, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Eiji Suzuki
- Department of Breast Surgery, Kyoto University Hospital, Kyoto, Japan
| | | | - Robin van Bruggen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rene A W van Lier
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Kubes
- Immunology Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, VU Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
30
|
Treffers LW, Ten Broeke T, Rösner T, Jansen JHM, van Houdt M, Kahle S, Schornagel K, Verkuijlen PJJH, Prins JM, Franke K, Kuijpers TW, van den Berg TK, Valerius T, Leusen JHW, Matlung HL. IgA-Mediated Killing of Tumor Cells by Neutrophils Is Enhanced by CD47-SIRPα Checkpoint Inhibition. Cancer Immunol Res 2019; 8:120-130. [PMID: 31690649 DOI: 10.1158/2326-6066.cir-19-0144] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/15/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022]
Abstract
Therapeutic monoclonal antibodies (mAb), directed toward either tumor antigens or inhibitory checkpoints on immune cells, are effective in cancer therapy. Increasing evidence suggests that the therapeutic efficacy of these tumor antigen-targeting mAbs is mediated-at least partially-by myeloid effector cells, which are controlled by the innate immune-checkpoint interaction between CD47 and SIRPα. We and others have previously demonstrated that inhibiting CD47-SIRPα interactions can substantially potentiate antibody-dependent cellular phagocytosis and cytotoxicity of tumor cells by IgG antibodies both in vivo and in vitro IgA antibodies are superior in killing cancer cells by neutrophils compared with IgG antibodies with the same variable regions, but the impact of CD47-SIRPα on IgA-mediated killing has not been investigated. Here, we show that checkpoint inhibition of CD47-SIRPα interactions further enhances destruction of IgA antibody-opsonized cancer cells by human neutrophils. This was shown for multiple tumor types and IgA antibodies against different antigens, i.e., HER2/neu and EGFR. Consequently, combining IgA antibodies against HER2/neu or EGFR with SIRPα inhibition proved to be effective in eradicating cancer cells in vivo In a syngeneic in vivo model, the eradication of cancer cells was predominantly mediated by granulocytes, which were actively recruited to the tumor site by SIRPα blockade. We conclude that IgA-mediated tumor cell destruction can be further enhanced by CD47-SIRPα checkpoint inhibition. These findings provide a basis for targeting CD47-SIRPα interactions in combination with IgA therapeutic antibodies to improve their potential clinical efficacy in tumor patients.
Collapse
Affiliation(s)
- Louise W Treffers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Toine Ten Broeke
- Immunotherapy Laboratory, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thies Rösner
- Section for Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University, Kiel, Germany
| | - J H Marco Jansen
- Immunotherapy Laboratory, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michel van Houdt
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Steffen Kahle
- Section for Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University, Kiel, Germany
| | - Karin Schornagel
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul J J H Verkuijlen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan M Prins
- Department of Internal Medicine, Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Katka Franke
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University, Kiel, Germany
| | - Jeanette H W Leusen
- Immunotherapy Laboratory, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
31
|
Meda Spaccamela V, Valencia RG, Pastukhov O, Duppenthaler A, Dettmer MS, Erb J, Steiner UC, Hillinger S, Speckmann C, Ehl S, Reichenbach J, Siler U. High Levels of IL-18 and IFN-γ in Chronically Inflamed Tissue in Chronic Granulomatous Disease. Front Immunol 2019; 10:2236. [PMID: 31681257 PMCID: PMC6813411 DOI: 10.3389/fimmu.2019.02236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Chronic granulomatous disease (CGD) is caused by a malfunctioning nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex in phagocytes, leading to impaired bacterial and fungal killing and hyperinflammation. Objective: To characterize macrophage subsets and cytokine/chemokine signaling loops involved in CGD tissue hyperinflammation. Methods: Cytokine/chemokine production and surface marker expression were analyzed in inflamed tissue of four CGD patients and compared to cytokine/chemokine released by CGD macrophages upon priming to different macrophage subpopulations. Furthermore, the re-priming capacity of CGD pro-inflammatory M1 to M2a anti-inflammatory macrophages was evaluated. Results: In human CGD inflammatory tissue, IL-18 and IFN-γ were detected in significant quantity. Immunofluorescence analysis identified macrophages as one source of IL-18 in inflamed tissue. In vitro, CGD macrophages could be primed and re-primed into all inflammatory/anti-inflammatory macrophage subpopulations. IL-18 was also released by M1 CGD and control macrophages. Conclusion: CGD pro-inflammatory M1 macrophages remain M1 primed in vivo. As CGD M1 macrophages can be re-primed to anti-inflammatory M2a phenotype in vitro, macrophages are kept in M1 state in vivo by a persistent pro-inflammatory environment. Our results suggest a paracrine signaling loop between M1 macrophage derived IL-18 and non-macrophage derived IFN-γ maintaining macrophage pro-inflammatory activity in CGD tissue.
Collapse
Affiliation(s)
- Virginia Meda Spaccamela
- Division of Immunology, University Children's Hospital and Children's Research Center, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Rocio G Valencia
- Division of Immunology, University Children's Hospital and Children's Research Center, Zurich, Switzerland
| | - Oleksandr Pastukhov
- Division of Immunology, University Children's Hospital and Children's Research Center, Zurich, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Andrea Duppenthaler
- Unit of Pediatric Infectious Diseases, University Children's Hospital Bern, Bern, Switzerland
| | | | - Juliane Erb
- Center for Dentistry, University of Zurich, Zurich, Switzerland
| | - Urs C Steiner
- Department of Clinical Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Sven Hillinger
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Carsten Speckmann
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Janine Reichenbach
- Division of Immunology, University Children's Hospital and Children's Research Center, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Unit of Pediatric Infectious Diseases, University Children's Hospital Bern, Bern, Switzerland.,Center for Applied Biotechnology and Molecular Medicine, University Zurich, Zurich, Switzerland
| | - Ulrich Siler
- Division of Immunology, University Children's Hospital and Children's Research Center, Zurich, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Hamam HJ, Palaniyar N. Post-Translational Modifications in NETosis and NETs-Mediated Diseases. Biomolecules 2019; 9:E369. [PMID: 31416265 PMCID: PMC6723044 DOI: 10.3390/biom9080369] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
: Neutrophils undergo a unique form of cell death that generates neutrophil extracellular traps (NETs) that may help to neutralize invading pathogens and restore homeostasis. However, uncontrolled NET formation (NETosis) can result in numerous diseases that adversely affect health. Recent studies further elucidate the mechanistic details of the different forms of NETosis and their common end structure, as NETs were constantly found to contain DNA, modified histones and cytotoxic enzymes. In fact, emerging evidence reveal that the post translational modifications (PTMs) of histones in neutrophils have a critical role in regulating neutrophil death. Histone citrullination is shown to promote a rapid form of NET formation independent of NADPH oxidase (NOX), which relies on calcium influx. Interestingly, few studies suggest an association between histone citrullination and other types of PTMs to control cell survival and death, such as histone methylation. Even more exciting is the finding that histone acetylation has a biphasic effect upon NETosis, where histone deacetylase (HDAC) inhibitors promote baseline, NOX-dependent and -independent NETosis. However, increasing levels of histone acetylation suppresses NETosis, and to switch neutrophil death to apoptosis. Interestingly, in the presence of NETosis-promoting stimuli, high levels of HDACis limit both NETosis and apoptosis, and promote neutrophil survival. Recent studies also reveal the importance of the PTMs of neutrophils in influencing numerous pathologies. Histone modifications in NETs can act as a double-edged sword, as they are capable of altering multiple types of neutrophil death, and influencing numerous NET-mediated diseases, such as acute lung injury (ALI), thrombosis, sepsis, systemic lupus erythematosus, and cancer progression. A clear understanding of the role of different PTMs in neutrophils would be important for an understanding of the molecular mechanisms of NETosis, and to appropriately treat NETs-mediated diseases.
Collapse
Affiliation(s)
- Hussein J Hamam
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nades Palaniyar
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
33
|
Hidalgo A, Chilvers ER, Summers C, Koenderman L. The Neutrophil Life Cycle. Trends Immunol 2019; 40:584-597. [PMID: 31153737 DOI: 10.1016/j.it.2019.04.013] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 02/07/2023]
Abstract
Neutrophils are recognized as an essential part of the innate immune response, but an active debate still exists regarding the life cycle of these cells. Neutrophils first differentiate in the bone marrow through progenitor intermediaries before entering the blood, in a process that gauges the extramedullary pool size. Once believed to be directly eliminated in the marrow, liver, and spleen, neutrophils, after circulating for less than 1 day, are now known to redistribute into multiple tissues with poorly understood kinetics. In this review, we provide an update on the dynamic distribution of neutrophils across tissues in health and disease, and emphasize differences between humans and model organisms. We further highlight issues to be addressed to exploit the unique features of neutrophils in the clinic.
Collapse
Affiliation(s)
- Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones, Cardiovasculares Carlos III (CNIC), Madrid, Spain; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.
| | - Edwin R Chilvers
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Charlotte Summers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Leo Koenderman
- Laboratory of Translational Immunology, Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
34
|
Raad H, Derkawi RA, Tlili A, Belambri SA, Dang PMC, El-Benna J. Phosphorylation of gp91 phox/NOX2 in Human Neutrophils. Methods Mol Biol 2019; 1982:341-352. [PMID: 31172483 DOI: 10.1007/978-1-4939-9424-3_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The phagocyte NADPH oxidase NOX2 was the first NOX family member to be discovered. It is responsible for the production of reactive oxygen species that are required for bacterial killing and host defense. Activated NOX2 is an enzymatic complex composed of two membrane proteins, p22phox and gp91phox (renamed NOX2), which form the cytochrome b558, and four cytosolic proteins, p47phox, p67phox, p40phox, and the small GTPase Rac2. Except for Rac2, all proteins from the complex become phosphorylated during neutrophil activation, suggesting the importance of this process in NOX2 regulation. The phosphorylation of the cytosolic components, and in particular p47phox, has been extensively studied; however, the phosphorylation of the membrane proteins was less studied, in part due to the lack of good antibodies and accurate membrane solubilization techniques. In this chapter, we describe a method we have used to study NOX2 phosphorylation, which is based on the labeling of the intracellular ATP pool with 32P prior to applying a stimulus inducing protein phosphorylation. We also describe the solubilization of membrane-bound gp91phox/NOX2 and analysis by immunoprecipitation, polyacrylamide gel electrophoresis, electrophoretic transfer, phosphoamino acid analysis, and autoradiography. This protocol can also be used to study the possible phosphorylation of other NOX family members.
Collapse
Affiliation(s)
- Houssam Raad
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Riad Arabi Derkawi
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Asma Tlili
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Sahra A Belambri
- Stress Oxydatif et Inflammation, Laboratoire de Biochimie Appliquée, Département de Biochimie, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbes 1, Sétif, Algeria
| | - Pham My-Chan Dang
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France.
| | - Jamel El-Benna
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France.
| |
Collapse
|
35
|
Regli IB, Fernández OL, Martínez-Salazar B, Gómez MA, Saravia NG, Tacchini-Cottier F. Resistance of Leishmania (Viannia) Panamensis to Meglumine Antimoniate or Miltefosine Modulates Neutrophil Effector Functions. Front Immunol 2018; 9:3040. [PMID: 30622537 PMCID: PMC6308327 DOI: 10.3389/fimmu.2018.03040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/10/2018] [Indexed: 01/16/2023] Open
Abstract
Leishmania (Viannia) panamensis (L. (V.) p.) is the main causative agent of cutaneous leishmaniasis in Colombia and is usually treated with either meglumine antimoniate (MA) or miltefosine (MIL). In recent years, there has been increasing evidence of the emergence of drug-resistance against these compounds. Neutrophils are known to play an important role in immunity against Leishmania. These cells are rapidly recruited upon infection and are also present in chronic lesions. However, their involvement in the outcome of infection with drug-resistant Leishmania has not been examined. In this study, human and murine neutrophils were infected in vitro with MA or MIL drug-resistant L. (V.) p. lines derived from a parental L. (V.) p. drug-susceptible strain. Neutrophil effector functions were assessed analyzing the production of reactive oxygen species (ROS), the formation of neutrophil extracellular trap (NET) and the expression of cell surface activation markers. Parasite killing by neutrophils was assessed using L. (V.) p. transfected with a luciferase reporter. We show here that MA and MIL-resistant L. (V.) p. lines elicited significantly increased NET formation and MA-resistant L. (V.) p. induced significantly increased ROS production in both murine and human neutrophils, compared to infections with the parental MIL and MA susceptible strain. Furthermore, neutrophils exposed to drug-resistant lines showed increased activation, as revealed by decreased expression of CD62L and increased expression of CD66b in human neutrophils yet presented higher survival within neutrophils than the drug-susceptible strain. These results provide evidence that parasite drug-susceptibility may influences neutrophil activation and function as well as parasite survival within neutrophils. Further investigaton of the inter-relationship of drug susceptibility and neutrophil effector function should contribute to better understanding of the factors involved in susceptibility to anti-Leishmania drugs.
Collapse
Affiliation(s)
- Ivo B Regli
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland
| | - Olga Lucía Fernández
- Centro Internacional de Entrenamiento e Investigaciones Médicas, Cali, Colombia.,CIDEIM, Universidad ICESI, Cali, Colombia
| | - Berenice Martínez-Salazar
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland
| | - Maria Adelaida Gómez
- Centro Internacional de Entrenamiento e Investigaciones Médicas, Cali, Colombia.,CIDEIM, Universidad ICESI, Cali, Colombia
| | - Nancy Gore Saravia
- Centro Internacional de Entrenamiento e Investigaciones Médicas, Cali, Colombia.,CIDEIM, Universidad ICESI, Cali, Colombia
| | - Fabienne Tacchini-Cottier
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
36
|
Rane D, Patil T, More V, Patra SS, Bodhale N, Dandapat J, Sarkar A. Neutrophils: Interplay between host defense, cellular metabolism and intracellular infection. Cytokine 2018; 112:44-51. [DOI: 10.1016/j.cyto.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022]
|
37
|
Belambri SA, Rolas L, Raad H, Hurtado-Nedelec M, Dang PMC, El-Benna J. NADPH oxidase activation in neutrophils: Role of the phosphorylation of its subunits. Eur J Clin Invest 2018; 48 Suppl 2:e12951. [PMID: 29757466 DOI: 10.1111/eci.12951] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
Neutrophils are key cells of innate immunity and during inflammation. Upon activation, they produce large amounts of superoxide anion (O2 -. ) and ensuing reactive oxygen species (ROS) to kill phagocytized microbes. The enzyme responsible for O2 -. production is called the phagocyte NADPH oxidase. This is a multicomponent enzyme system that becomes active after assembly of four cytosolic proteins (p47phox , p67phox , p40phox and Rac2) with the transmembrane proteins (p22phox and gp91phox , which form the cytochrome b558 ). gp91phox represents the catalytic subunit of the NADPH oxidase and is also called NOX2. NADPH oxidase-derived ROS are essential for microbial killing and innate immunity; however, excessive ROS production induces tissue injury and prolonged inflammatory reactions that contribute to inflammatory diseases. Thus, NADPH oxidase activation must be tightly regulated in time and space to limit ROS production. NADPH oxidase activation is regulated by several processes such as phosphorylation of its components, exchange of GDP/GTP on Rac2 and binding of p47phox and p40phox to phospholipids. This review aims to provide new insights into the role of the phosphorylation of the NADPH oxidase components, that is gp91phox , p22phox , p47phox , p67phox and p40phox , in the activation of this enzyme.
Collapse
Affiliation(s)
- Sahra A Belambri
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France.,Laboratoire de Biochimie Appliquée, Équipe de Recherche: Stress Oxydatif et Inflammation, Département de Biochimie, Faculté des Sciences De la Nature et de la Vie, Université Ferhat Abbes 1, Sétif, Algérie
| | - Loïc Rolas
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Houssam Raad
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Margarita Hurtado-Nedelec
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Pham My-Chan Dang
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Jamel El-Benna
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| |
Collapse
|
38
|
Chan YY, Wang CY, Hwang TL, Juang SH, Hung HY, Kuo PC, Chen PJ, Wu TS. The Constituents of the Stems of Cissus assamica and Their Bioactivities. Molecules 2018; 23:E2799. [PMID: 30373325 PMCID: PMC6278371 DOI: 10.3390/molecules23112799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 11/20/2022] Open
Abstract
Fifty-five compounds were isolated from the fresh stems of Cissus assamica, including 14 benzenoids, 11 triterpenes, nine steroids, five tocopherols, five chlorophylls, four flavonoids, two benzoquinones, two tannins, and three other compounds. Their structures were constructed by 1D and 2D nuclear magnetic resonance (NMR) and mass spectral data, and were also identified by a comparison of their spectral data with those reported in the literature. Among these isolates, 1,2-bis-(5--tocopheryl) ethane (51) was reported for the first time from natural sources. Some purified compounds were examined for their anti-inflammatory and anticancer bioactivities. The results indicated that betulinic acid (16) exhibited strong inhibition of superoxide anion generation with IC50 value of 0.2 ± 0.1 μM, while betulinic acid (16) and pheophytin-a (47) inhibited elastase release with IC50 value of 2.7 ± 0.3 and 5.3 ± 1.0 μM, respectively. In addition, betulinic acid (16) and epi-glut-5(6)-en-ol (18) exhibited potential cytotoxicity to non-small-cell lung carcinoma (NCI-H226) and colon cancer (HCT-116) cell lines with IC50 values in the range of 1.6 to 9.1 μM.
Collapse
Affiliation(s)
- Yu-Yi Chan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan.
| | - Chiu-Yuan Wang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Shin-Hun Juang
- Department of Pharmacy, Tajen University, Pingtung 90741, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Po-Jen Chen
- Department of Cosmetic Science, Providence University, Taichung 433, Taiwan.
| | - Tian-Shung Wu
- Department of Pharmacy, Tajen University, Pingtung 90741, Taiwan.
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
39
|
Kawai C, Yamauchi A, Kuribayashi F. Monoclonal antibody 7D5 recognizes the R147 epitope on the gp91 phox , phagocyte flavocytochrome b 558 large subunit. Microbiol Immunol 2018; 62:269-280. [PMID: 29573449 DOI: 10.1111/1348-0421.12584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 01/01/2023]
Abstract
Human phagocyte flavocytochrome b558 (Cyt b), the catalytic center of nicotinamide adenine dinucleotide phosphate oxidase, consists of a heavily glycosylated large subunit (gp91phox ; Nox2) and a small subunit (p22phox ). Cyt b is a membrane-spanning complex enzyme. Chronic granulomatous disease (CGD) is predominantly caused by a mutation in the CYBB gene encoding gp91phox on the X-chromosome. Because the phagocytes of patients with CGD are not able to generate the superoxide anion, these patients are susceptible to severe infections that can be fatal. It has been suggested that the extracellular region of gp91phox is necessary for and critical to forming the epitope of mAb 7D5 and that 7D5 provides a useful tool for rapid screening of X-linked CGD by FACS. To further elucidate the mAb 7D5 epitope on human gp91phox , chimeric DNA expressed human and mouse gp91phox recombinant protein were constructed. The fusion proteins were immunostained for mAb 7D5 and analyzed by FACS and western blot analysis. The 143 ELGDRQNES151 region was found to reside at the extracellular surface on human gp91phox and to be an important epitope for the interaction with mAb 7D5, as analyzed by FACS analysis. In particular, amino acid R147 is a unique epitope on the membrane-associated Cyt b for mAb 7D5. In conclusion, it is proposed that FACS analysis using mAb 7D5 is a valuable tool for early diagnosis of CGD.
Collapse
Affiliation(s)
- Chikage Kawai
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| |
Collapse
|
40
|
New Anti-Inflammatory Aporphine and Lignan Derivatives from the Root Wood of Hernandia nymphaeifolia. Molecules 2018; 23:molecules23092286. [PMID: 30205430 PMCID: PMC6225223 DOI: 10.3390/molecules23092286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 11/16/2022] Open
Abstract
A new aporphine, 3-hydroxyhernandonine (1) and a new lignin, 4′-O-demethyl-7-O-methyldehydropodophyllotoxin (2), have been isolated from the root wood of Hernanadia nymphaeifolia, together with thirteen known compounds (3–15). The structures of these compounds were determined through mass spectrometry (MS) and spectroscopic analyses. The known isolate, 2-O-methyl-7-oxolaetine (3), was first isolated from natural sources. Among the isolated compounds, 3-hydroxyhernandonine (1), 4′-O-demethyl-7-O-methyldehydropodophyllotoxin (2), hernandonine (4), oxohernangerine (5), and oxohernagine (6) displayed inhibition (IC50 values ≤5.72 μg/mL) of superoxide anion production by human neutrophils in response to formyl-l-methionyl-l-leucyl-l-phenylalanine/cytochalasin B (fMLP/CB). In addition, 3-hydroxyhernandonine (1), 4′-O-demethyl-7-O-methyldehydropodophyllotoxin (2), oxohernangerine (5), and oxohernagine (6) suppressed fMLP/CB-induced elastase release with IC50 values ≤5.40 μg/mL.
Collapse
|
41
|
Chen M, Zhang J, Xie X, Wu C. Cloning and functional characterization of thioredoxin genes from large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2018; 77:385-391. [PMID: 29601992 DOI: 10.1016/j.fsi.2018.03.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Thioredoxin(Trx)with a redox-active disulfide/dithiol in the active site, is an ubiquitous disulfide reductase majorly responsible for maintaining the balance of reactive oxygen species. In this study, the complete thioredoxin-like protein 1 (designated as LcTrx) was cloned from large yellow croaker Larimichthys crocea through rapid amplification of cDNA ends. The full-length cDNA of LcTrx was 1295 bp in length containing a 131 bp 5' untranslated region (UTR) ,a 3'UTR of 294bp with a poly (A) tail, and an 870 bp open reading frame (ORF) encoding a polypeptide of 289 amino acids. Protein sequence analysis revealed that LcTrx contains the evolutionarily conserved redox motif CRPC (Cys-Arg-Pro-Cys-). Multiple alignments revealed that LcTrx is highly identical to Trx from other organisms, especially in the CRPC motifs. The recombinant LcTrx showed obvious insulin reduction activity in vitro. The LcTrx transcripts were constitutively expressed in all examined tissues with the highest levels found in the muscles and the lowest in the head kidney. Results of Vibrio parahaemolyticus infection experiment showed that the expression levels of LcTrx were tissue and time dependent. In the liver and kidney, LcTrx was down-regulated both at 12 h and 48 h post-infection. In contrast, LcTrx showed induced expression in the spleen and head kidney at same post-infection time points. The different responses to pathogen stimulation indicated the diversified physiological function of LcTrx in the four examined tissues.
Collapse
Affiliation(s)
- Mengnan Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Xiaoze Xie
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| |
Collapse
|
42
|
Jauhiainen LM, Suominen AL, Männistö S, Knuuttila M, Ylöstalo PV. Periodontal condition in relation to the adherence to nutrient recommendations in daily smokers. J Clin Periodontol 2018; 45:636-649. [DOI: 10.1111/jcpe.12878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Leena M. Jauhiainen
- Institute of Dentistry; University of Eastern Finland; Kuopio Finland
- Oral Health Care Services; Health Centre; Kuopio Finland
| | - Anna L. Suominen
- Institute of Dentistry; University of Eastern Finland; Kuopio Finland
- Department of Oral and Maxillofacial Diseases; Kuopio University Hospital; Kuopio Finland
- Living Environment and Health Unit; National Institute for Health and Welfare; Kuopio Finland
- Public Health Evaluation and Projection Unit; National Institute for Health and Welfare; Helsinki Finland
| | - Satu Männistö
- Department of Public Health Solutions; National Institute for Health and Welfare; Helsinki Finland
| | - Matti Knuuttila
- Department of Oral and Maxillofacial Surgery; Oulu University Hospital; Oulu Finland
- Unit of Oral Health Sciences; Medical Research Center Oulu (MRC Oulu); Oulu University Hospital and University of Oulu; Oulu Finland
| | - Pekka V. Ylöstalo
- Department of Oral and Maxillofacial Surgery; Oulu University Hospital; Oulu Finland
- Unit of Oral Health Sciences; Medical Research Center Oulu (MRC Oulu); Oulu University Hospital and University of Oulu; Oulu Finland
| |
Collapse
|
43
|
Bansal N, Gupta ND, Bey A, Sharma VK, Gupta N, Trivedi H. Impact of nonsurgical periodontal therapy on total antioxidant capacity in chronic periodontitis patients. J Indian Soc Periodontol 2018; 21:291-295. [PMID: 29456303 PMCID: PMC5813343 DOI: 10.4103/jisp.jisp_281_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aim: The aim of this study was to determine the utility of plasma total antioxidant capacity (TAC) as marker of periodontal disease by estimating TAC of periodontally healthy and chronic periodontitis patients and the impact of scaling and root planning on total antioxidant status of periodontitis patients. Materials and Methods: Blood plasma samples were collected from randomly selected eighty individuals (40 periodontally healthy controls and 40 chronic periodontitis patients), with an age range of 20–45 years and were analyzed for TAC by ferric reducing antioxidant power assay. Scaling and root planing was performed in periodontitis patients, and TAC level was measured again after 3 weeks. Data were analyzed with t-test, using SPSS software (PSAW, Windows version 18.0). Results: The mean plasma TAC was significantly lower (792.33 ± 124.33 μmol/L, P < 0.001) in chronic periodontitis patients compared to healthy control (1076.08 ± 193.82 μmol/L). Plasma TAC level increased significantly (989.75 ± 96.80, P < 0.001) after scaling and root planing. Conclusions: An inverse relationship exists between plasma TAC and severity of chronic periodontitis suggesting disturbed oxidant-antioxidant balance in chronic periodontitis. Scaling and root planing resulted in the restoration of TAC to normal levels. These results are important from the perspective of including antioxidants in periodontal therapy regime to boost up body's antioxidant defense system and to reduce oxidative stress-mediated periodontal tissue damage. We concluded that TAC can be used as a biomarker to evaluate the health of periodontium.
Collapse
Affiliation(s)
- Neha Bansal
- Department of Periodontology, Divya Jyoti College of Dental Sciences and Research, Ghaziabad, India
| | - Narender Dev Gupta
- Department of Periodontics and Community Dentistry, Dr Ziauddin Ahmad Dental College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Afshan Bey
- Department of Periodontics and Community Dentistry, Dr Ziauddin Ahmad Dental College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Vivek Kumar Sharma
- Department of Periodontics and Community Dentistry, Dr Ziauddin Ahmad Dental College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Namita Gupta
- Department of Periodontics, Postgraduate Institute of Dental Sciences, Rohtak, Haryana, India
| | - Himanshu Trivedi
- Department of Periodontics and Community Dentistry, Dr Ziauddin Ahmad Dental College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
44
|
Chen CH, Hwang TL, Chen LC, Chang TH, Wei CS, Chen JJ. Isoflavones and anti-inflammatory constituents from the fruits of Psoralea corylifolia. PHYTOCHEMISTRY 2017; 143:186-193. [PMID: 28825980 DOI: 10.1016/j.phytochem.2017.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 05/18/2023]
Abstract
The fruits of Psoralea corylifolia, known as Psoraleae Fructus (Buguzhi in Chinese), are traditionally used for the treatment of spermatorrhea, nephritis, asthma, pollakiuria, and various inflammatory diseases. Three previously undescribed isoflavone derivatives, 7-O-methylcorylifol A, 7-O-isoprenylcorylifol A, and 7-O-isoprenylneobavaisoflavone, have been isolated from the fruits of P. corylifolia, together with 9 known compounds. The structures of these compounds were determined through spectroscopic and MS analyses. Among the isolated compounds, 7-O-methylcorylifol A and psoralen exhibited potent inhibition (IC50 values ≤ 10.89 μM) of superoxide anion generation by human neutrophils in response to N-formyl-L-methionyl-L-leucyl-L-phenylalanine/cytochalasin B (fMLP/CB). 7-O-Isoprenylcorylifol A, 7-O-isoprenylneobavaisoflavone, and 12,13-dihydro-12,13-epoxybakuchiol inhibited fMLP/CB-induced elastase release with IC50 values ≤ 14.30 μM. In addition, 7-O-isoprenylcorylifol A, bakuchiol, 12,13-dihydro-12,13-epoxybakuchiol, and psoralidin showed potent inhibition with IC50 values ≤ 36.65 μM, against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation.
Collapse
Affiliation(s)
- Chiang-Hsiang Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, 112, Taiwan; Department of Pharmacy, Tajen University, Pingtung, 907, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Li-Chai Chen
- Department of Pharmacy, Tajen University, Pingtung, 907, Taiwan; Department of Pharmacy, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, 813, Taiwan
| | - Tsung-Hsien Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Chun-Sheng Wei
- Department of Pharmacy, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, 813, Taiwan
| | - Jih-Jung Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, 112, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
45
|
Dierking K, Yang W, Schulenburg H. Antimicrobial effectors in the nematode Caenorhabditis elegans: an outgroup to the Arthropoda. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0299. [PMID: 27160601 DOI: 10.1098/rstb.2015.0299] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 12/14/2022] Open
Abstract
Nematodes and arthropods likely form the taxon Ecdysozoa. Information on antimicrobial effectors from the model nematode Caenorhabditis elegans may thus shed light on the evolutionary origin of these defences in arthropods. This nematode species possesses an extensive armory of putative antimicrobial effector proteins, such as lysozymes, caenopores (or saposin-like proteins), defensin-like peptides, caenacins and neuropeptide-like proteins, in addition to the production of reactive oxygen species and autophagy. As C. elegans is a bacterivore that lives in microbe-rich environments, some of its effector peptides and proteins likely function in both digestion of bacterial food and pathogen elimination. In this review, we provide an overview of C. elegans immune effector proteins and mechanisms. We summarize the experimental evidence of their antimicrobial function and involvement in the response to pathogen infection. We further evaluate the microbe-induced expression of effector genes using WormExp, a recently established database for C. elegans gene expression analysis. We emphasize the need for further analysis at the protein level to demonstrate an antimicrobial activity of these molecules both in vitro and in vivoThis article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Katja Dierking
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel 24098, Germany
| | - Wentao Yang
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel 24098, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel 24098, Germany
| |
Collapse
|
46
|
Nazi N, Ladomenou F. Gastrointestinal manifestations of primary immune deficiencies in children. Int Rev Immunol 2017; 37:111-118. [PMID: 28876962 DOI: 10.1080/08830185.2017.1365147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Primary immune deficiencies (PID) in children are a rare but serious group of genetic disorders of the immune system which apart from the host's defenses, can also affect every system of the human body, including the gastrointestinal tract. In their severe form they can lead to increased susceptibility to serious infections during infancy and even death. In the less severe form, they can present later in childhood or adolescence with subtle signs and symptoms. As PID can often mimic gastrointestinal diseases, children presenting with atypical gastrointestinal disease and/or failure to respond to conventional therapy should be evaluated for an underlying primary immune disorder and initiated appropriate treatment. The current review of the literature will summarize the gastrointestinal manifestations of primary immune deficiencies in children.
Collapse
Affiliation(s)
- Naila Nazi
- a Department of Paediatric Infectious Diseases , St. George's Hospital , London , UK
| | - Fani Ladomenou
- b Department of Paediatric Immunology , Great Ormond Street Hospital , London , UK
| |
Collapse
|
47
|
Mycobacterium tuberculosis Multidrug-Resistant Strain M Induces Low IL-8 and Inhibits TNF- α Secretion by Bronchial Epithelial Cells Altering Neutrophil Effector Functions. Mediators Inflamm 2017; 2017:2810606. [PMID: 28852268 PMCID: PMC5568625 DOI: 10.1155/2017/2810606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 12/17/2022] Open
Abstract
M strain, the most prevalent multidrug-resistant strain of Mycobacterium tuberculosis (Mtb) in Argentina, has mounted mechanisms to evade innate immune response. The role of human bronchial epithelium in Mtb infection remains unknown as well as its crosstalk with neutrophils (PMN). In this work, we evaluate whether M and H37Rv strains invade and replicate within bronchial epithelial cell line Calu-6 and how conditioned media (CM) derived from infected cells alter PMN responses. We demonstrated that M infects and survives within Calu-6 without promoting death. CM from M-infected Calu-6 (M-CM) did not attract PMN in correlation with its low IL-8 content compared to H37Rv-CM. Also, PMN activation and ROS production in response to irradiated H37Rv were impaired after treatment with M-CM due to the lack of TNF-α. Interestingly, M-CM increased H37Rv replication in PMN which would allow the spreading of mycobacteria upon PMN death and sustain IL-8 release. Thus, our results indicate that even at low invasion/replication rate within Calu-6, M induces the secretion of factors altering the crosstalk between these nonphagocytic cells and PMN, representing an evasion mechanism developed by M strain to persist in the host. These data provide new insights on the role of bronchial epithelium upon M infection.
Collapse
|
48
|
Liu C, Mo L, Niu Y, Li X, Zhou X, Xu X. The Role of Reactive Oxygen Species and Autophagy in Periodontitis and Their Potential Linkage. Front Physiol 2017; 8:439. [PMID: 28690552 PMCID: PMC5481360 DOI: 10.3389/fphys.2017.00439] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/09/2017] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease that causes damage to periodontal tissues, which include the gingiva, periodontal ligament, and alveolar bone. The major cause of periodontal tissue destruction is an inappropriate host response to microorganisms and their products. Specifically, a homeostatic imbalance between reactive oxygen species (ROS) and antioxidant defense systems has been implicated in the pathogenesis of periodontitis. Elevated levels of ROS acting as intracellular signal transducers result in autophagy, which plays a dual role in periodontitis by promoting cell death or blocking apoptosis in infected cells. Autophagy can also regulate ROS generation and scavenging. Investigations are ongoing to elucidate the crosstalk mechanisms between ROS and autophagy. Here, we review the physiological and pathological roles of ROS and autophagy in periodontal tissues. The redox-sensitive pathways related to autophagy, such as mTORC1, Beclin 1, and the Atg12-Atg5 complex, are explored in depth to provide a comprehensive overview of the crosstalk between ROS and autophagy. Based on the current evidence, we suggest that a potential linkage between ROS and autophagy is involved in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Longyi Mo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Yulong Niu
- Key Lab of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Xin Li
- Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| |
Collapse
|
49
|
Jørgensen NP, Hansen K, Andreasen CM, Pedersen M, Fuursted K, Meyer RL, Petersen E. Hyperbaric Oxygen Therapy is Ineffective as an Adjuvant to Daptomycin with Rifampicin Treatment in a Murine Model of Staphylococcus aureus in Implant-Associated Osteomyelitis. Microorganisms 2017; 5:microorganisms5020021. [PMID: 28441320 PMCID: PMC5488092 DOI: 10.3390/microorganisms5020021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/16/2022] Open
Abstract
Implant-associated infections caused by bacterial biofilms are difficult to treat. Surgical intervention is often necessary to cure the patient, as the antibiotic recalcitrance of biofilms renders them untreatable with conventional antibiotics. Intermittent hyperbaric oxygen treatment (HBOT) has been proposed as an adjuvant to conventional antibiotic treatment and it has been speculated that combining HBOT with antibiotics could improve treatment outcomes for biofilm infections. In this study we addressed whether HBOT could improve treatment outcomes of daptomycin and rifampicin combination therapy. The effect of HBOT on the treatment outcomes of daptomycin and rifampicin against implant-associated osteomyelitis was quantified in a murine model. In total, 80 mice were randomized into two groups receiving antibiotics, either alone or in combination with daily intermittent HBOT (304 kPa for 60 min) following injection of antibiotics. Treatment was initiated 11 days after animals were infected with Staphylococcus aureus and treatment duration was 14 days. We found that HBOT did not improve the cure rate and did not reduce the bacterial load on the implant surface or in the surrounding tissue. Cure rates of daptomycin + rifampicin were 40% in infected tibias and 75% for implants while cure rates for HBOT-daptomycin + rifampicin were 50% and 85%, respectively, which were not significantly higher (Fisher’s exact test). While it is encouraging that the combination of daptomycin and rifampicin is very effective, our study demonstrates that this efficacy cannot be improved by adjuvant HBOT.
Collapse
Affiliation(s)
- Nis Pedersen Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark.
- Department of Clinical Microbiology, Aarhus University Hospital, 8200 Aarhus, Denmark.
| | - Kasper Hansen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark.
| | | | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark.
| | - Kurt Fuursted
- Microbiology and Infection Control, Statens Serum Institut, 2300 Copenhagen, Denmark.
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark.
- Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark.
| | - Eskild Petersen
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark.
- Department of Clinical Microbiology, Aarhus University Hospital, 8200 Aarhus, Denmark.
| |
Collapse
|
50
|
Minasyan H. Sepsis and septic shock: Pathogenesis and treatment perspectives. J Crit Care 2017; 40:229-242. [PMID: 28448952 DOI: 10.1016/j.jcrc.2017.04.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/06/2017] [Accepted: 04/08/2017] [Indexed: 12/12/2022]
Abstract
The majority of bacteremias do not develop to sepsis: bacteria are cleared from the bloodstream. Oxygen released from erythrocytes and humoral immunity kill bacteria in the bloodstream. Sepsis develops if bacteria are resistant to oxidation and proliferate in erythrocytes. Bacteria provoke oxygen release from erythrocytes to arterial blood. Abundant release of oxygen to the plasma triggers a cascade of events that cause: 1. oxygen delivery failure to cells; 2. oxidation of plasma components that impairs humoral regulation and inactivates immune complexes; 3. disseminated intravascular coagulation and multiple organs' failure. Bacterial reservoir inside erythrocytes provides the long-term survival of bacteria and is the cause of ineffectiveness of antibiotics and host immune reactions. Treatment perspectives that include different aspects of sepsis development are discussed.
Collapse
|