1
|
Park JK, Lee EB, Winthrop KL. What rheumatologists need to know about mRNA vaccines: current status and future of mRNA vaccines in autoimmune inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:687-695. [PMID: 38413167 DOI: 10.1136/ard-2024-225492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Messenger RNA (mRNA) vaccines as a novel vaccine platform offer new tools to effectively combat both emerging and existing pathogens which were previously not possible. The 'plug and play' feature of mRNA vaccines enables swift design and production of vaccines targeting complex antigens and rapid incorporation of new vaccine constituents as needed. This feature makes them likely to be adopted for widespread clinical use in the future.Currently approved mRNA vaccines include only those against SARS-CoV-2 virus. These vaccines demonstrate robust immunogenicity and offer substantial protection against severe disease. Numerous mRNA vaccines against viral pathogens are in the early to late phase of development. Several mRNA vaccines for influenza are tested in clinical trials, with some already in phase 3 studies. Other vaccines in the early and late phases of development include those targeting Cytomegalovirus, varicella zoster virus, respiratory syncytial virus and Epstein-Barr virus. Many of these vaccines will likely be indicated for immunosuppressed populations including those with autoimmune inflammatory rheumatic diseases (AIIRD). This review focuses on the mechanism, safety and efficacy of mRNA in general and summarises the status of mRNA vaccines in development for common infectious diseases of particular interest for patients with AIIRD.
Collapse
Affiliation(s)
- Jin Kyun Park
- Rheumatology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea (the Republic of)
| | - Eun Bong Lee
- Internal Medicine, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea (the Republic of)
| | - Kevin L Winthrop
- School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Zhang J, Xia Y, Li X, He R, Xie X. Case report: A case of Acute Macular Neuroretinopathy secondary to Influenza A virus during Long COVID. Front Immunol 2024; 14:1302504. [PMID: 38288123 PMCID: PMC10822910 DOI: 10.3389/fimmu.2023.1302504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024] Open
Abstract
Ocular abnormalities have been reported in association with viral infections, including Long COVID, a debilitating illness caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This report presents a case of a female patient diagnosed with Acute Macular Neuroretinopathy (AMN) following an Influenza A virus infection during Long COVID who experienced severe inflammation symptoms and ocular complications. We hypothesize that the rare occurrence of AMN in this patient could be associated with the immune storm secondary to the viral infection during Long COVID.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yihao Xia
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaodong Li
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Runxi He
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Wu M, Pei Z, Long G, Chen H, Jia Z, Xia W. Mitochondrial antiviral signaling protein: a potential therapeutic target in renal disease. Front Immunol 2023; 14:1266461. [PMID: 37901251 PMCID: PMC10602740 DOI: 10.3389/fimmu.2023.1266461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Mitochondrial antiviral signaling protein (MAVS) is a key innate immune adaptor on the outer mitochondrial membrane that acts as a switch in the immune signal transduction response to viral infections. Some studies have reported that MAVS mediates NF-κB and type I interferon signaling during viral infection and is also required for optimal NLRP3 inflammasome activity. Recent studies have reported that MAVS is involved in various cancers, systemic lupus erythematosus, kidney diseases, and cardiovascular diseases. Herein, we summarize the structure, activation, pathophysiological roles, and MAVS-based therapies for renal diseases. This review provides novel insights into MAVS's role and therapeutic potential in the pathogenesis of renal diseases.
Collapse
Affiliation(s)
- Meng Wu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyin Pei
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Guangfeng Long
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Krchlíková V, Hron T, Těšický M, Li T, Ungrová L, Hejnar J, Vinkler M, Elleder D. Dynamic Evolution of Avian RNA Virus Sensors: Repeated Loss of RIG-I and RIPLET. Viruses 2022; 15:3. [PMID: 36680044 PMCID: PMC9861763 DOI: 10.3390/v15010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) are key RNA virus sensors belonging to the RIG-I-like receptor (RLR) family. The activation of the RLR inflammasome leads to the establishment of antiviral state, mainly through interferon-mediated signaling. The evolutionary dynamics of RLRs has been studied mainly in mammals, where rare cases of RLR gene losses were described. By in silico screening of avian genomes, we previously described two independent disruptions of MDA5 in two bird orders. Here, we extend this analysis to approximately 150 avian genomes and report 16 independent evolutionary events of RIG-I inactivation. Interestingly, in almost all cases, these inactivations are coupled with genetic disruptions of RIPLET/RNF135, an ubiquitin ligase RIG-I regulator. Complete absence of any detectable RIG-I sequences is unique to several galliform species, including the domestic chicken (Gallus gallus). We further aimed to determine compensatory evolution of MDA5 in RIG-I-deficient species. While we were unable to show any specific global pattern of adaptive evolution in RIG-I-deficient species, in galliforms, the analyses of positive selection and surface charge distribution support the hypothesis of some compensatory evolution in MDA5 after RIG-I loss. This work highlights the dynamic nature of evolution in bird RNA virus sensors.
Collapse
Affiliation(s)
- Veronika Krchlíková
- Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Tomáš Hron
- Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Martin Těšický
- Department of Zoology, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Tao Li
- Department of Zoology, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Lenka Ungrová
- Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jiří Hejnar
- Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Daniel Elleder
- Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| |
Collapse
|
5
|
Li YJ, Chen CY, Yang JH, Chiu YF. Modulating cholesterol-rich lipid rafts to disrupt influenza A virus infection. Front Immunol 2022; 13:982264. [PMID: 36177026 PMCID: PMC9513517 DOI: 10.3389/fimmu.2022.982264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) is widely disseminated across different species and can cause recurrent epidemics and severe pandemics in humans. During infection, IAV attaches to receptors that are predominantly located in cell membrane regions known as lipid rafts, which are highly enriched in cholesterol and sphingolipids. Following IAV entry into the host cell, uncoating, transcription, and replication of the viral genome occur, after which newly synthesized viral proteins and genomes are delivered to lipid rafts for assembly prior to viral budding from the cell. Moreover, during budding, IAV acquires an envelope with embedded cholesterol from the host cell membrane, and it is known that decreased cholesterol levels on IAV virions reduce infectivity. Statins are commonly used to inhibit cholesterol synthesis for preventing cardiovascular diseases, and several studies have investigated whether such inhibition can block IAV infection and propagation, as well as modulate the host immune response to IAV. Taken together, current research suggests that there may be a role for statins in countering IAV infections and modulating the host immune response to prevent or mitigate cytokine storms, and further investigation into this is warranted.
Collapse
Affiliation(s)
- Yu-Jyun Li
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Yuan Chen
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Jeng-How Yang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, New Taipei, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
6
|
Repeated MDA5 Gene Loss in Birds: An Evolutionary Perspective. Viruses 2021; 13:v13112131. [PMID: 34834938 PMCID: PMC8619217 DOI: 10.3390/v13112131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Two key cytosolic receptors belonging to the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family sense the viral RNA-derived danger signals: RIG-I and melanoma differentiation-associated protein 5 (MDA5). Their activation establishes an antiviral state by downstream signaling that ultimately activates interferon-stimulated genes (ISGs). While in rare cases RIG-I gene loss has been detected in mammalian and avian species, most notably in the chicken, MDA5 pseudogenization has only been detected once in mammals. We have screened over a hundred publicly available avian genome sequences and describe an independent disruption of MDA5 in two unrelated avian lineages, the storks (Ciconiiformes) and the rallids (Gruiformes). The results of our RELAX analysis confirmed the absence of negative selection in the MDA5 pseudogene. In contrast to our prediction, we have shown, using multiple dN/dS-based approaches, that the MDA5 loss does not appear to have resulted in any compensatory evolution in the RIG-I gene, which may partially share its ligand-binding specificity. Together, our results indicate that the MDA5 pseudogenization may have important functional effects on immune responsiveness in these two avian clades.
Collapse
|
7
|
Park WJ, Han SH, Kim DH, Song YJ, Lee JB, Park SY, Song CS, Lee SW, Choi IS. Induction of IFN-β through TLR-3- and RIG-I-Mediated Signaling Pathways in Canine Respiratory Epithelial Cells Infected with H3N2 Canine Influenza Virus. J Microbiol Biotechnol 2021; 31:942-948. [PMID: 34099596 PMCID: PMC9705827 DOI: 10.4014/jmb.2010.10047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022]
Abstract
Canine influenza virus (CIV) induces acute respiratory disease in dogs. In this study, we aimed to determine the signaling pathways leading to the induction of IFN-β in a canine respiratory epithelial cell line (KU-CBE) infected with the H3N2 subtype of CIV. Small interfering RNAs (siRNAs) specific to pattern recognition receptors (PRRs) and transcription factors were used to block the IFN-β induction signals in H3N2 CIV-infected KU-CBE cells. Among the PRRs, only the TLR3 and RIG-I expression levels significantly (p < 0.001) increased in CIV-infected cells. Following transfection with siRNA specific to TLR3 (siTLR3) or RIG-I (siRIG-I), the mRNA expression levels of IFN-β significantly (p < 0.001) decreased, and the protein expression of IFN-β also decreased in infected cells. In addition, co-transfection with both siTLR3 and siRIG-I significantly reduced IRF3 (p < 0.001) and IFN-β (p < 0.001) mRNA levels. Moreover, the protein concentration of IFN-β was significantly (p < 0.01) lower in cells co-transfected with both siTLR3 and siRIG-I than in cells transfected with either siTLR3 or siRIGI alone. Also, the antiviral protein MX1 was only expressed in KU-CBE cells infected with CIV or treated with IFN-β or IFN-α. Thus, we speculate that IFN-β further induces MX1 expression, which might suppress CIV replication. Taken together, these data indicate that TLR3 and RIG-I synergistically induce IFN-β expression via the activation of IRF3, and the produced IFN-β further induces the production of MX1, which would suppress CIV replication in CIV-infected cells.
Collapse
Affiliation(s)
- Woo-Jung Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang-Hoon Han
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Hwi Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Young-Jo Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang-Won Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-2049 6055 Fax: +82-2-3436-5880 E-mail:
| |
Collapse
|
8
|
Sun B, Zeng H, Liang J, Zhang L, Hu H, Wang Q, Meng W, Li C, Ye F, Wang C, Zhu J. NSUN5 Facilitates Viral RNA Recognition by RIG-I Receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:3408-3418. [PMID: 33177158 DOI: 10.4049/jimmunol.1901455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 10/14/2020] [Indexed: 11/19/2022]
Abstract
The RIG-I receptor induces the innate antiviral responses upon sensing RNA viruses. The mechanisms through which RIG-I optimizes the strength of the downstream signaling remain incompletely understood. In this study, we identified that NSUN5 could potentiate the RIG-I innate signaling pathway. Deficiency of NSUN5 enhanced RNA virus proliferation and inhibited the induction of the downstream antiviral genes. Consistently, NSUN5-deficient mice were more susceptible to RNA virus infection than their wild-type littermates. Mechanistically, NSUN5 bound directly to both viral RNA and RIG-I, synergizing the recognition of dsRNA by RIG-I. Collectively, to our knowledge, this study characterized NSUN5 as a novel RIG-I coreceptor, playing a vital role in restricting RNA virus infection.
Collapse
Affiliation(s)
- Boyue Sun
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Haoyang Zeng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaqian Liang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Lele Zhang
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; and
| | - Haiyang Hu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Quanyi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Meng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Chenhui Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Fuqiang Ye
- Department of Disease Control and Prevention, Center for Disease Control and Prevention of Eastern Theater Command, Nanjing 210002, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China;
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China;
| |
Collapse
|
9
|
Brazee PL, Morales-Nebreda L, Magnani ND, Garcia JG, Misharin AV, Ridge KM, Budinger GRS, Iwai K, Dada LA, Sznajder JI. Linear ubiquitin assembly complex regulates lung epithelial-driven responses during influenza infection. J Clin Invest 2020; 130:1301-1314. [PMID: 31714898 DOI: 10.1172/jci128368] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
Influenza A virus (IAV) is among the most common causes of pneumonia-related death worldwide. Pulmonary epithelial cells are the primary target for viral infection and replication and respond by releasing inflammatory mediators that recruit immune cells to mount the host response. Severe lung injury and death during IAV infection result from an exuberant host inflammatory response. The linear ubiquitin assembly complex (LUBAC), composed of SHARPIN, HOIL-1L, and HOIP, is a critical regulator of NF-κB-dependent inflammation. Using mice with lung epithelial-specific deletions of HOIL-1L or HOIP in a model of IAV infection, we provided evidence that, while a reduction in the inflammatory response was beneficial, ablation of the LUBAC-dependent lung epithelial-driven response worsened lung injury and increased mortality. Moreover, we described a mechanism for the upregulation of HOIL-1L in infected and noninfected cells triggered by the activation of type I IFN receptor and mediated by IRF1, which was maladaptive and contributed to hyperinflammation. Thus, we propose that lung epithelial LUBAC acts as a molecular rheostat that could be selectively targeted to modulate the immune response in patients with severe IAV-induced pneumonia.
Collapse
Affiliation(s)
- Patricia L Brazee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Natalia D Magnani
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Joe Gn Garcia
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Kyoto, Japan
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
10
|
Brazee PL, Sznajder JI. Targeting the Linear Ubiquitin Assembly Complex to Modulate the Host Response and Improve Influenza A Virus Induced Lung Injury. Arch Bronconeumol 2020; 56:586-591. [PMID: 33994643 PMCID: PMC7489339 DOI: 10.1016/j.arbr.2020.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/15/2020] [Indexed: 12/01/2022]
Abstract
Influenza virus infection is characterized by symptoms ranging from mild congestion and body aches to severe pulmonary edema and respiratory failure. While the majority of those exposed have minor symptoms and recover with little morbidity, an estimated 500,000 people succumb to IAV-related complications each year worldwide. In these severe cases, an exaggerated inflammatory response, known as "cytokine storm", occurs which results in damage to the respiratory epithelial barrier and development of acute respiratory distress syndrome (ARDS). Data from retrospective human studies as well as experimental animal models of influenza virus infection highlight the fine line between an excessive and an inadequate immune response, where the host response must balance viral clearance with exuberant inflammation. Current pharmacological modulators of inflammation, including corticosteroids and statins, have not been successful in improving outcomes during influenza virus infection. We have reported that the amplitude of the inflammatory response is regulated by Linear Ubiquitin Assembly Complex (LUBAC) activity and that dampening of LUBAC activity is protective during severe influenza virus infection. Therapeutic modulation of LUBAC activity may be crucial to improve outcomes during severe influenza virus infection, as it functions as a molecular rheostat of the host response. Here we review the evidence for modulating inflammation to ameliorate influenza virus infection-induced lung injury, data on current anti-inflammatory strategies, and potential new avenues to target viral inflammation and improve outcomes.
Collapse
Affiliation(s)
- Patricia L Brazee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, United States
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, United States
| |
Collapse
|
11
|
Casalino-Matsuda SM, Chen F, Gonzalez-Gonzalez FJ, Nair A, Dib S, Yemelyanov A, Gates KL, Budinger GRS, Beitel GJ, Sporn PHS. Hypercapnia Suppresses Macrophage Antiviral Activity and Increases Mortality of Influenza A Infection via Akt1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:489-501. [PMID: 32540997 PMCID: PMC7343622 DOI: 10.4049/jimmunol.2000085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Hypercapnia (HC), elevation of the partial pressure of CO2 in blood and tissues, is a risk factor for mortality in patients with severe acute and chronic lung diseases. We previously showed that HC inhibits multiple macrophage and neutrophil antimicrobial functions and increases the mortality of bacterial pneumonia in mice. In this study, we show that normoxic HC increases viral replication, lung injury, and mortality in mice infected with influenza A virus (IAV). Elevated CO2 increased IAV replication and inhibited antiviral gene and protein expression in macrophages in vivo and in vitro. HC potentiated IAV-induced activation of Akt, whereas specific pharmacologic inhibition or short hairpin RNA knockdown of Akt1 in alveolar macrophages blocked HC's effects on IAV growth and the macrophage antiviral response. Our findings suggest that targeting Akt1 or the downstream pathways through which elevated CO2 signals could enhance macrophage antiviral host defense and improve clinical outcomes in hypercapnic patients with advanced lung disease.
Collapse
Affiliation(s)
- S Marina Casalino-Matsuda
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611;
| | - Fei Chen
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Francisco J Gonzalez-Gonzalez
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Aisha Nair
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Sandra Dib
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Alex Yemelyanov
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Khalilah L Gates
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612; and
| | - Greg J Beitel
- Department of Molecular Biosciences, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Peter H S Sporn
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612; and
| |
Collapse
|
12
|
Brazee PL, Sznajder JI. Targeting the Linear Ubiquitin Assembly Complex to Modulate the Host Response and Improve Influenza A Virus Induced Lung Injury. Arch Bronconeumol 2020; 56:586-591. [PMID: 32405132 PMCID: PMC7218391 DOI: 10.1016/j.arbres.2020.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022]
Abstract
Influenza virus infection is characterized by symptoms ranging from mild congestion and body aches to severe pulmonary edema and respiratory failure. While the majority of those exposed have minor symptoms and recover with little morbidity, an estimated 500,000 people succumb to IAV-related complications each year worldwide. In these severe cases, an exaggerated inflammatory response, known as "cytokine storm", occurs which results in damage to the respiratory epithelial barrier and development of acute respiratory distress syndrome (ARDS). Data from retrospective human studies as well as experimental animal models of influenza virus infection highlight the fine line between an excessive and an inadequate immune response, where the host response must balance viral clearance with exuberant inflammation. Current pharmacological modulators of inflammation, including corticosteroids and statins, have not been successful in improving outcomes during influenza virus infection. We have reported that the amplitude of the inflammatory response is regulated by Linear Ubiquitin Assembly Complex (LUBAC) activity and that dampening of LUBAC activity is protective during severe influenza virus infection. Therapeutic modulation of LUBAC activity may be crucial to improve outcomes during severe influenza virus infection, as it functions as a molecular rheostat of the host response. Here we review the evidence for modulating inflammation to ameliorate influenza virus infection-induced lung injury, data on current anti-inflammatory strategies, and potential new avenues to target viral inflammation and improve outcomes.
Collapse
Affiliation(s)
- Patricia L Brazee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, United States
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, United States.
| |
Collapse
|
13
|
Rawling DC, Jagdmann GE, Potapova O, Pyle AM. Small-Molecule Antagonists of the RIG-I Innate Immune Receptor. ACS Chem Biol 2020; 15:311-317. [PMID: 31944652 DOI: 10.1021/acschembio.9b00810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The RIG-I receptor plays a key role in the vertebrate innate immune system, where it functions as a sensor for detecting infection by RNA viruses. Although agonists of RIG-I show great potential as antitumor and antimicrobial therapies, antagonists of RIG-I remain undeveloped, despite the role of RIG-I hyperstimulation in a range of diseases, including COPD and autoimmune disorders. There is now a wealth of information on RIG-I structure, enzymatic function, and signaling mechanism that can drive new drug design strategies. Here, we used the enzymatic activity of RIG-I to develop assays for high-throughput screening, SAR, and downstream optimization of RIG-I antagonists. Using this approach, we have developed potent RIG-I antagonists that interact directly with the receptor and which inhibit RIG-I signaling and interferon response in living cells.
Collapse
Affiliation(s)
- David C Rawling
- Inflammatix, Inc , Burlingame , California 94010 , United States
| | - G Erik Jagdmann
- Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , Connecticut 06520 , United States
| | - Olga Potapova
- Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , Connecticut 06520 , United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , Connecticut 06520 , United States
- Howard Hughes Medical Institute , New Haven , Connecticut 06520 , United States
| |
Collapse
|
14
|
Ng K, Raheem J, St Laurent CD, Marcet CT, Vliagoftis H, Befus AD, Moon TC. Responses of human mast cells and epithelial cells following exposure to influenza A virus. Antiviral Res 2019; 171:104566. [PMID: 31348951 DOI: 10.1016/j.antiviral.2019.104566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/03/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
As a part of innate immune defense, the role of mast cells during viral replication has been incompletely understood. In this study, we characterized and compared the responses of the human mast cell line, LAD2, and human lung epithelial cell line, Calu-3, against three influenza A virus strains; A/PR/8/34 (H1N1), A/WS/33 (H1N1) and A/HK/8/68 (H3N2). We found that there were strain-dependent mast cell responses, and different profiles of cytokine, chemokine and antiviral gene expression between the two cell types. All three strains did not induce histamine or β-hexosaminidase release in LAD2. A/HK/8/68 induced release of prostaglandin D2 in LAD2, whereas A/PR/8/34 and A/WS/33 did not. We found that, among those examined, only CCL4 (by A/PR/8/34) was statistically significantly released from LAD2 cells. Furthermore, there was increased mRNA expression of viral recognition receptors (RIG-I and MDA5) and antiviral protein, viperin, but levels and kinetics of the expression were different among the cell types, as well as by the strains examined. Our findings highlight the variability in innate response to different strains of influenza A virus in two human cell types, indicating that further investigation is needed to understand better the role of mast cells and epithelial cells in innate immunity against influenza A viruses.
Collapse
Affiliation(s)
- Kurtis Ng
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Javeria Raheem
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Chris D St Laurent
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Candy Tsang Marcet
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - A Dean Befus
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | - Tae Chul Moon
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
15
|
Dang W, Xu L, Yin Y, Chen S, Wang W, Hakim MS, Chang KO, Peppelenbosch MP, Pan Q. IRF-1, RIG-I and MDA5 display potent antiviral activities against norovirus coordinately induced by different types of interferons. Antiviral Res 2018; 155:48-59. [PMID: 29753657 DOI: 10.1016/j.antiviral.2018.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/06/2018] [Accepted: 05/08/2018] [Indexed: 11/19/2022]
Abstract
Norovirus represents the main cause of acute nonbacterial gastroenteritis worldwide. In immunocompromised patients, it bears high risk of causing chronic infection with significant morbidity and mortality. The lack of specific treatment prompts the development of anti-norovirus agents. In this study, we have investigated the role of interferon (IFN) response and evaluated antiviral activities of different IFNs against human norovirus (HuNoV) replication using a HuNoV replicon model. We found that HuNoV RNA replication was sensitive to all types of IFNs, including IFNα (type I), IFNγ (type II), IFNλ1 and 3 (type III). IFNs canonically induce interferon-stimulated genes (ISGs) to exert their antiviral activities. By profiling a subset of important human ISGs using an overexpression approach, we have identified RTP4 and HPSE as moderate anti-norovirus ISGs, whereas IRF-1, RIG-I (also known as DDX58) and MDA5 (also known as IFIH1) were identified as potent anti-norovirus effectors. Interestingly, type I and III IFNs coordinately induced IRF-1, RIG-I and MDA5; whereas type II IFN predominantly induced IRF-1 to exhibit their anti-norovirus activities. Combination of different IFNs revealed that IFNγ worked cooperatively with type I or type III IFNs to induce ISGs and subsequently inhibit HuNoV replication. Of note, replication of HuNoV did not interfere with antiviral IFN response. In summary, we showed the potent anti-norovirus activities of different types of IFNs and identified the key anti-norovirus effectors. These findings are important for understanding norovirus-host interactions and developing antiviral therapies.
Collapse
Affiliation(s)
- Wen Dang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Lei Xu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yuebang Yin
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Sunrui Chen
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Mohamad S Hakim
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, USA
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
16
|
Monguió-Tortajada M, Franquesa M, Sarrias MR, Borràs FE. Low doses of LPS exacerbate the inflammatory response and trigger death on TLR3-primed human monocytes. Cell Death Dis 2018; 9:499. [PMID: 29717111 PMCID: PMC5931601 DOI: 10.1038/s41419-018-0520-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022]
Abstract
TLR sensing of pathogens triggers monocyte activation to initiate the host innate immune response to infection. Monocytes can dynamically adapt to different TLR agonists inducing different patterns of inflammatory response, and the sequence of exposure to TLRs can dramatically modulate cell activation. Understanding the interactions between TLR signalling that lead to synergy, priming and tolerance to TLR agonists may help explain how prior infections and inflammatory conditioning can regulate the innate immune response to subsequent infections. Our goal was to investigate the role of MyD88-independent/dependent TLR priming on modulating the monocyte response to LPS exposure. We stimulated human blood monocytes with agonists for TLR4 (LPS), TLR3 (poly(I:C)) and TLR7/8 (R848) and subsequently challenged them to low doses of endotoxin. The different TLR agonists promoted distinct inflammatory signatures in monocytes. Upon subsequent LPS challenge, LPS- and R848-primed monocytes did not enhance the previous response, whereas poly(I:C)-primed monocytes exhibited a significant inflammatory response concomitant with a sharp reduction on cell viability. Our results show that TLR3-primed monocytes are prompted to cell death by apoptosis in the presence of low endotoxin levels, concurrent with the production of high levels of TNFα and IL6. Of note, blocking of TNFR I/II in those monocytes did reduce TNFα production but did not abrogate cell death. Instead, direct signalling through TLR4 was responsible of such effect. Collectively, our study provides new insights on the effects of cross-priming and synergism between TLR3 and TLR4, identifying the selective induction of apoptosis as a strategy for TLR-mediated host innate response.
Collapse
Affiliation(s)
- Marta Monguió-Tortajada
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marcella Franquesa
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Spain
- Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Maria-Rosa Sarrias
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol, Badalona, Spain
- Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Badalona, Spain
| | - Francesc E Borràs
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain.
| |
Collapse
|
17
|
Yu L, Zhang X, Wu T, Su J, Wang Y, Wang Y, Ruan B, Niu X, Wu Y. Avian infectious bronchitis virus disrupts the melanoma differentiation associated gene 5 (MDA5) signaling pathway by cleavage of the adaptor protein MAVS. BMC Vet Res 2017; 13:332. [PMID: 29132350 PMCID: PMC5683607 DOI: 10.1186/s12917-017-1253-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Melanoma differentiation associated gene 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I) selectively sense cytoplasmic viral RNA to induce an antiviral immune response. Infectious bronchitis virus (IBV) is one of the most important infectious agents in chickens, and in chicken cells, it can be recognized by MDA5 to activate interferon production. RIG-I is considered to be absent in chickens. However, the absence of RIG-I in chickens raises the question of whether this protein influences the antiviral immune response against IBV infection. RESULTS Here, we showed that chicken cells transfected with domestic goose RIG-I (dgRIG-I) exhibited increased IFN-β activity after IBV infection. We also found that IBV can cleave MAVS, an adaptor protein downstream of RIG-I and MDA5 that acts as a platform for antiviral innate immunity at an early stage of infection. CONCLUSIONS Although chicken MDA5 (chMDA5) is functionally active during IBV infection, the absence of RIG-I may increase the susceptibility of chickens to IBV infection, and IBV may disrupt the activation of the host antiviral response through the cleavage of MAVS.
Collapse
Affiliation(s)
- Liping Yu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tianqi Wu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jin Su
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yuyang Wang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yuexin Wang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Baoyang Ruan
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaosai Niu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
18
|
Lamborn IT, Jing H, Zhang Y, Drutman SB, Abbott JK, Munir S, Bade S, Murdock HM, Santos CP, Brock LG, Masutani E, Fordjour EY, McElwee JJ, Hughes JD, Nichols DP, Belkadi A, Oler AJ, Happel CS, Matthews HF, Abel L, Collins PL, Subbarao K, Gelfand EW, Ciancanelli MJ, Casanova JL, Su HC. Recurrent rhinovirus infections in a child with inherited MDA5 deficiency. J Exp Med 2017; 214:1949-1972. [PMID: 28606988 PMCID: PMC5502429 DOI: 10.1084/jem.20161759] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/13/2017] [Accepted: 05/26/2017] [Indexed: 12/15/2022] Open
Abstract
MDA5 is a cytosolic sensor of double-stranded RNA (ds)RNA including viral byproducts and intermediates. We studied a child with life-threatening, recurrent respiratory tract infections, caused by viruses including human rhinovirus (HRV), influenza virus, and respiratory syncytial virus (RSV). We identified in her a homozygous missense mutation in IFIH1 that encodes MDA5. Mutant MDA5 was expressed but did not recognize the synthetic MDA5 agonist/(ds)RNA mimic polyinosinic-polycytidylic acid. When overexpressed, mutant MDA5 failed to drive luciferase activity from the IFNB1 promoter or promoters containing ISRE or NF-κB sequence motifs. In respiratory epithelial cells or fibroblasts, wild-type but not knockdown of MDA5 restricted HRV infection while increasing IFN-stimulated gene expression and IFN-β/λ. However, wild-type MDA5 did not restrict influenza virus or RSV replication. Moreover, nasal epithelial cells from the patient, or fibroblasts gene-edited to express mutant MDA5, showed increased replication of HRV but not influenza or RSV. Thus, human MDA5 deficiency is a novel inborn error of innate and/or intrinsic immunity that causes impaired (ds)RNA sensing, reduced IFN induction, and susceptibility to the common cold virus.
Collapse
Affiliation(s)
- Ian T Lamborn
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Department of Pathology and Laboratory Medicine, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Huie Jing
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Yu Zhang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Scott B Drutman
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jordan K Abbott
- Immunodeficiency Diagnosis and Treatment Program, Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver, CO
| | - Shirin Munir
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | - Heardley M Murdock
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Celia P Santos
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Linda G Brock
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Evan Masutani
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Emmanuel Y Fordjour
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | | | - Dave P Nichols
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, National Jewish Health, Denver, CO
| | - Aziz Belkadi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Necker Hospital for Sick Children, Paris, France
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Corinne S Happel
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Helen F Matthews
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Necker Hospital for Sick Children, Paris, France
| | - Peter L Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Erwin W Gelfand
- Immunodeficiency Diagnosis and Treatment Program, Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver, CO
| | - Michael J Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Pediatric Immuno-Hematology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY
| | - Helen C Su
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Department of Pathology and Laboratory Medicine, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
19
|
MDA5 Is Critical to Host Defense during Infection with Murine Coronavirus. J Virol 2015; 89:12330-40. [PMID: 26423942 DOI: 10.1128/jvi.01470-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Infection with the murine coronavirus mouse hepatitis virus (MHV) activates the pattern recognition receptors melanoma differentiation-associated gene 5 (MDA5) and Toll-like receptor 7 (TLR7) to induce transcription of type I interferon. Type I interferon is crucial for control of viral replication and spread in the natural host, but the specific contributions of MDA5 signaling to this pathway as well as to pathogenesis and subsequent immune responses are largely unknown. In this study, we use MHV infection of the liver as a model to demonstrate that MDA5 signaling is critically important for controlling MHV-induced pathology and regulation of the immune response. Mice deficient in MDA5 expression (MDA5(-/-) mice) experienced more severe disease following MHV infection, with reduced survival, increased spread of virus to additional sites of infection, and more extensive liver damage than did wild-type mice. Although type I interferon transcription decreased in MDA5(-/-) mice, the interferon-stimulated gene response remained intact. Cytokine production by innate and adaptive immune cells was largely intact in MDA5(-/-) mice, but perforin induction by natural killer cells and levels of interferon gamma, interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) in serum were elevated. These data suggest that MDA5 signaling reduces the severity of MHV-induced disease, at least in part by reducing the intensity of the proinflammatory cytokine response. IMPORTANCE Multicellular organisms employ a wide range of sensors to detect viruses and other pathogens. One such sensor, MDA5, detects viral RNA and triggers induction of type I interferons, chemical messengers that induce inflammation and help regulate the immune responses. In this study, we sought to determine the role of MDA5 during infection with mouse hepatitis virus, a murine coronavirus used to model viral hepatitis as well as other human diseases. We found that mice lacking the MDA5 sensor were more susceptible to infection than were mice with MDA5 and experienced decreased survival. Viral replication in the liver was similar in mice with and without MDA5, but liver damage was increased in MDA5(-/-) mice, suggesting that the immune response is causing the damage. Production of several proinflammatory cytokines was elevated in MDA5(-/-) mice, suggesting that MDA5 may be responsible for keeping pathological inflammatory responses in check.
Collapse
|
20
|
Meunier I, Morisseau O, Garneau É, Marois I, Cloutier A, Richter MV. Infection with a Mouse-Adapted Strain of the 2009 Pandemic Virus Causes a Highly Severe Disease Associated with an Impaired T Cell Response. PLoS One 2015; 10:e0138055. [PMID: 26381265 PMCID: PMC4575127 DOI: 10.1371/journal.pone.0138055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Despite a relatively low fatality rate, the 2009 H1N1 pandemic virus differed from other seasonal viruses in that it caused mortality and severe pneumonia in the young and middle-aged population (18–59 years old). The mechanisms underlying this increased disease severity are still poorly understood. In this study, a human isolate of the 2009 H1N1 pandemic virus was adapted to the mouse (MAp2009). The pathogenicity of the MAp2009 virus and the host immune responses were evaluated in the mouse model and compared to the laboratory H1N1 strain A/Puerto Rico/8/1934 (PR8). The MAp2009 virus reached consistently higher titers in the lungs over 14 days compared to the PR8 virus, and caused severe disease associated with high morbidity and 85% mortality rate, contrasting with the 0% death rate in the PR8 group. During the early phase of infection, both viruses induced similar pathology in the lungs. However, MAp2009-induced lung inflammation was sustained until the end of the study (day 14), while there was no sign of inflammation in the PR8-infected group by day 10. Furthermore, at day 3 post-infection, MAp2009 induced up to 10- to 40-fold more cytokine and chemokine gene expression, respectively. More importantly, the numbers of CD4+ T cells and virus-specific CD8+ T cells were significantly lower in the lungs of MAp2009-infected mice compared to PR8-infected mice. Interestingly, there was no difference in the number of dendritic cells in the lung and in the draining lymph node. Moreover, mice infected with PR8 or MAp2009 had similar numbers of CCR5 and CXCR3-expressing T cells, suggesting that the impaired T cell response was not due to a lack of chemokine responsiveness or priming of T cells. This study demonstrates that a mouse-adapted virus from an isolate of the 2009 pandemic virus interferes with the adaptive immune response leading to a more severe disease.
Collapse
Affiliation(s)
- Isabelle Meunier
- Pulmonary Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Québec, Canada
| | - Olivier Morisseau
- Pulmonary Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Québec, Canada
| | - Émilie Garneau
- Pulmonary Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Québec, Canada
| | - Isabelle Marois
- Pulmonary Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Québec, Canada
| | - Alexandre Cloutier
- Pulmonary Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Québec, Canada
| | - Martin V. Richter
- Pulmonary Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
21
|
Cheng Y, Huang Q, Ji W, Du B, Fu Q, An H, Li J, Wang H, Yan Y, Ding C, Sun J. Muscovy duck retinoic acid-induced gene I (MdRIG-I) functions in innate immunity against H9N2 avian influenza viruses (AIV) infections. Vet Immunol Immunopathol 2015; 163:183-93. [DOI: 10.1016/j.vetimm.2014.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/28/2014] [Accepted: 12/16/2014] [Indexed: 11/27/2022]
|
22
|
Disease severity is associated with differential gene expression at the early and late phases of infection in nonhuman primates infected with different H5N1 highly pathogenic avian influenza viruses. J Virol 2014; 88:8981-97. [PMID: 24899188 DOI: 10.1128/jvi.00907-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Occasional transmission of highly pathogenic avian H5N1 influenza viruses to humans causes severe pneumonia with high mortality. To better understand the mechanisms via which H5N1 viruses induce severe disease in humans, we infected cynomolgus macaques with six different H5N1 strains isolated from human patients and compared their pathogenicity and the global host responses to the virus infection. Although all H5N1 viruses replicated in the respiratory tract, there was substantial heterogeneity in their replicative ability and in the disease severity induced, which ranged from asymptomatic to fatal. A comparison of global gene expression between severe and mild disease cases indicated that interferon-induced upregulation of genes related to innate immunity, apoptosis, and antigen processing/presentation in the early phase of infection was limited in severe disease cases, although interferon expression was upregulated in both severe and mild cases. Furthermore, coexpression analysis of microarray data, which reveals the dynamics of host responses during the infection, demonstrated that the limited expression of these genes early in infection led to a failure to suppress virus replication and to the hyperinduction of genes related to immunity, inflammation, coagulation, and homeostasis in the late phase of infection, resulting in a more severe disease. Our data suggest that the attenuated interferon-induced activation of innate immunity, apoptosis, and antigen presentation in the early phase of H5N1 virus infection leads to subsequent severe disease outcome. IMPORTANCE Highly pathogenic avian H5N1 influenza viruses sometimes transmit to humans and cause severe pneumonia with ca. 60% lethality. The continued circulation of these viruses poses a pandemic threat; however, their pathogenesis in mammals is not fully understood. We, therefore, investigated the pathogenicity of six H5N1 viruses and compared the host responses of cynomolgus macaques to the virus infection. We identified differences in the viral replicative ability of and in disease severity caused by these H5N1 viruses. A comparison of global host responses between severe and mild disease cases identified the limited upregulation of interferon-stimulated genes early in infection in severe cases. The dynamics of the host responses indicated that the limited response early in infection failed to suppress virus replication and led to hyperinduction of pathological condition-related genes late in infection. These findings provide insight into the pathogenesis of H5N1 viruses in mammals.
Collapse
|
23
|
de Geus ED, Vervelde L. Regulation of macrophage and dendritic cell function by pathogens and through immunomodulation in the avian mucosa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:341-351. [PMID: 23542704 DOI: 10.1016/j.dci.2013.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/14/2013] [Indexed: 06/02/2023]
Abstract
Macrophages (MPh) and dendritic cells (DC) are members of the mononuclear phagocyte system. In chickens, markers to distinguish MPh from DC are lacking, but whether MPh and DC can be distinguished in humans and mice is under debate, despite the availability of numerous markers. Mucosal MPh and DC are strategically located to ingest foreign antigens, suggesting they can rapidly respond to invading pathogens. This review addresses our current understanding of DC and MPh function, the receptors expressed by MPh and DC involved in pathogen recognition, and the responses of DC and MPh against respiratory and intestinal pathogens in the chicken. Furthermore, potential opportunities are described to modulate MPh and DC responses to enhance disease resistance, highlighting modulation through nutraceuticals and vaccination.
Collapse
Affiliation(s)
- Eveline D de Geus
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | | |
Collapse
|
24
|
Hafner AM, Corthésy B, Merkle HP. Particulate formulations for the delivery of poly(I:C) as vaccine adjuvant. Adv Drug Deliv Rev 2013; 65:1386-99. [PMID: 23751781 DOI: 10.1016/j.addr.2013.05.013] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 12/18/2022]
Abstract
Current research and development of antigens for vaccination often center on purified recombinant proteins, viral subunits, synthetic oligopeptides or oligosaccharides, most of them suffering from being poorly immunogenic and subject to degradation. Hence, they call for efficient delivery systems and potent immunostimulants, jointly denoted as adjuvants. Particulate delivery systems like emulsions, liposomes, nanoparticles and microspheres may provide protection from degradation and facilitate the co-formulation of both the antigen and the immunostimulant. Synthetic double-stranded (ds) RNA, such as polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a mimic of viral dsRNA and, as such, a promising immunostimulant candidate for vaccines directed against intracellular pathogens. Poly(I:C) signaling is primarily dependent on Toll-like receptor 3 (TLR3), and on melanoma differentiation-associated gene-5 (MDA-5), and strongly drives cell-mediated immunity and a potent type I interferon response. However, stability and toxicity issues so far prevented the clinical application of dsRNAs as they undergo rapid enzymatic degradation and bear the potential to trigger undue immune stimulation as well as autoimmune disorders. This review addresses these concerns and suggests strategies to improve the safety and efficacy of immunostimulatory dsRNA formulations. The focus is on technological means required to lower the necessary dosage of poly(I:C), to target surface-modified microspheres passively or actively to antigen-presenting cells (APCs), to control their interaction with non-professional phagocytes and to modulate the resulting cytokine secretion profile.
Collapse
|
25
|
Mawson AR. Role of Fat-Soluble Vitamins A and D in the Pathogenesis of Influenza: A New Perspective. ACTA ACUST UNITED AC 2013. [DOI: 10.5402/2013/246737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reduced exposure to solar radiation, leading to a deficiency of vitamin D and hence impaired innate immunity, has been suggested as a trigger for influenza viral replication and as an explanation of seasonal influenza. Although this hypothesis accounts for many unexplained facts about the epidemiology of influenza, gaps remain in understanding the pathogenesis and manifestations of the disease. Several observations suggest a role for vitamin A compounds (retinoids) in the disease. This paper presents a new model of the etiopathogenesis of influenza, suggesting that host resistance and susceptibility depend importantly on the ratio of vitamin D to vitamin A activity. Retinoid concentrations within normal physiological limits appear to inhibit influenza pathogenesis whereas higher background concentrations (i.e., very low vitamin D : A ratios) increase the risk of severe complications of the disease. There is also evidence that influenza-induced or preexisting liver disease, diabetes, and obesity worsen the severity of infection, possibly via liver dysfunction and alterations in retinoid metabolism. The model could be tested by determining the presence of retinoids in the secretions of patients with influenza and by studies of retinoid profiles in patients and controls. Potential strategies for prevention and treatment are discussed.
Collapse
Affiliation(s)
- Anthony R. Mawson
- Department of Health Policy and Management, School of Health Sciences, College of Public Service, Jackson State University,
350 West Woodrow Wilson Avenue, Room 229, Jackson, MS 39213, USA
| |
Collapse
|
26
|
Devhare PB, Chatterjee SN, Arankalle VA, Lole KS. Analysis of antiviral response in human epithelial cells infected with hepatitis E virus. PLoS One 2013; 8:e63793. [PMID: 23671700 PMCID: PMC3650073 DOI: 10.1371/journal.pone.0063793] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 04/10/2013] [Indexed: 12/24/2022] Open
Abstract
Hepatitis E virus (HEV) is a major cause of enterically transmitted acute hepatitis in developing nations and occurs in sporadic and epidemic forms. The disease may become severe with high mortality (20%) among pregnant women. Due to lack of efficient cell culture system and small animal model, early molecular events of HEV infection are not yet known. In the present study, human lung epithelial cells, A549, were infected with HEV to monitor expression levels of genes/proteins in antiviral pathways. Both live and UV inactivated virus elicited robust induction of inflammatory cytokines/chemokines such as IL-6, IL-8, TNF-α, and RANTES within 12 h of infection. Cells exposed to soluble capsid protein showed no induction suggesting the capsid structure and not the protein being detected as the pathogen pattern by cells. A delayed up-regulation of type I interferon genes only by the live virus at 48 h post HEV infection indicated the need of virus replication. However, absence of secreted interferons till 96 h suggested possible involvement of post-transcriptional regulation of type I IFN expression. HEV infected cells showed activation of both NF-κB and IRF3 transcription factors when seen at protein levels; however, reporter gene assays showed predominant expression via NF-κB promoter as compared to IRF3 promoter. Knockdown experiments done using siRNAs showed involvement of MyD88 and TRIF adaptors in generating antiviral response thus indicating role of TLR2, TLR4 and TLR3 in sensing viral molecules. MAVS knockdown surprisingly enhanced only proinflammatory cytokines and not type I IFNs. This suggested that HEV not only down-regulates RIG-I helicase like receptor mediated IFN induction but also employs MAVS in curtailing host inflammatory response. Our findings uncover an early cellular response in HEV infection and associated molecular mechanisms suggesting the potential role of inflammatory response triggered by HEV infection in host immune response and pathogenesis.
Collapse
Affiliation(s)
- Pradip B. Devhare
- Hepatitis Division, National Institute of Virology, Microbial Containment Complex, Pashan, Pune, India
| | - Subhashis N. Chatterjee
- Hepatitis Division, National Institute of Virology, Microbial Containment Complex, Pashan, Pune, India
| | - Vidya A. Arankalle
- Hepatitis Division, National Institute of Virology, Microbial Containment Complex, Pashan, Pune, India
| | - Kavita S. Lole
- Hepatitis Division, National Institute of Virology, Microbial Containment Complex, Pashan, Pune, India
- * E-mail:
| |
Collapse
|
27
|
Andries O, Filette MD, De Smedt SC, Demeester J, Poucke MV, Peelman L, Sanders NN. Innate immune response and programmed cell death following carrier-mediated delivery of unmodified mRNA to respiratory cells. J Control Release 2013; 167:157-66. [DOI: 10.1016/j.jconrel.2013.01.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/14/2013] [Accepted: 01/30/2013] [Indexed: 12/12/2022]
|
28
|
Belgnaoui SM, Paz S, Samuel S, Goulet ML, Sun Q, Kikkert M, Iwai K, Dikic I, Hiscott J, Lin R. Linear ubiquitination of NEMO negatively regulates the interferon antiviral response through disruption of the MAVS-TRAF3 complex. Cell Host Microbe 2013; 12:211-22. [PMID: 22901541 DOI: 10.1016/j.chom.2012.06.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/30/2012] [Accepted: 06/14/2012] [Indexed: 01/07/2023]
Abstract
The RIG-I/Mda5 sensors recognize viral intracellular RNA and trigger host antiviral responses. RIG-I signals through the adaptor protein MAVS, which engages various TRAF family members and results in type I interferon (IFNs) and proinflammatory cytokine production via activation of IRFs and NF-κB, respectively. Both the IRF and NF-κB pathways also require the adaptor protein NEMO. We determined that the RIG-I pathway is differentially regulated by the linear ubiquitin assembly complex (LUBAC), which consists of the E3 ligases HOIL-1L, HOIP, and the accessory protein SHARPIN. LUBAC downregulated virus-mediated IFN induction by targeting NEMO for linear ubiquitination. Linear ubiquitinated NEMO associated with TRAF3 and disrupted the MAVS-TRAF3 complex, which inhibited IFN activation while stimulating NF-κB-dependent signaling. In SHARPIN-deficient MEFs, vesicular stomatitis virus replication was decreased due to increased IFN production. Linear ubiquitination thus switches NEMO from a positive to a negative regulator of RIG-I signaling, resulting in an attenuated IFN response.
Collapse
Affiliation(s)
- S Mehdi Belgnaoui
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kolli D, Bao X, Casola A. Human metapneumovirus antagonism of innate immune responses. Viruses 2012; 4:3551-71. [PMID: 23223197 PMCID: PMC3528279 DOI: 10.3390/v4123551] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/20/2012] [Accepted: 11/30/2012] [Indexed: 12/03/2022] Open
Abstract
Human metapneumovirus (hMPV) is a recently identified RNA virus belonging to the Paramyxoviridae family, which includes several major human and animal pathogens. Epidemiological studies indicate that hMPV is a significant human respiratory pathogen with worldwide distribution. It is associated with respiratory illnesses in children, adults, and immunocompromised patients, ranging from upper respiratory tract infections to severe bronchiolitis and pneumonia. Interferon (IFN) represents a major line of defense against virus infection, and in response, viruses have evolved countermeasures to inhibit IFN production as well as IFN signaling. Although the strategies of IFN evasion are similar, the specific mechanisms by which paramyxoviruses inhibit IFN responses are quite diverse. In this review, we will present an overview of the strategies that hMPV uses to subvert cellular signaling in airway epithelial cells, the major target of infection, as well as in primary immune cells.
Collapse
Affiliation(s)
- Deepthi Kolli
- Departments of Pediatrics, University of Texas Medical Branch at Galveston, Texas, USA; E-Mail: (D.K.); (X.B.)
| | - Xiaoyong Bao
- Departments of Pediatrics, University of Texas Medical Branch at Galveston, Texas, USA; E-Mail: (D.K.); (X.B.)
| | - Antonella Casola
- Departments of Pediatrics, University of Texas Medical Branch at Galveston, Texas, USA; E-Mail: (D.K.); (X.B.)
- Microbiology and Immunology, University of Texas Medical Branch at Galveston, Texas, USA
- Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Texas, USA
| |
Collapse
|
30
|
Gillespie MJ, Stanley D, Chen H, Donald JA, Nicholas KR, Moore RJ, Crowley TM. Functional similarities between pigeon 'milk' and mammalian milk: induction of immune gene expression and modification of the microbiota. PLoS One 2012; 7:e48363. [PMID: 23110233 PMCID: PMC3482181 DOI: 10.1371/journal.pone.0048363] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/24/2012] [Indexed: 11/19/2022] Open
Abstract
Pigeon ‘milk’ and mammalian milk have functional similarities in terms of nutritional benefit and delivery of immunoglobulins to the young. Mammalian milk has been clearly shown to aid in the development of the immune system and microbiota of the young, but similar effects have not yet been attributed to pigeon ‘milk’. Therefore, using a chicken model, we investigated the effect of pigeon ‘milk’ on immune gene expression in the Gut Associated Lymphoid Tissue (GALT) and on the composition of the caecal microbiota. Chickens fed pigeon ‘milk’ had a faster rate of growth and a better feed conversion ratio than control chickens. There was significantly enhanced expression of immune-related gene pathways and interferon-stimulated genes in the GALT of pigeon ‘milk’-fed chickens. These pathways include the innate immune response, regulation of cytokine production and regulation of B cell activation and proliferation. The caecal microbiota of pigeon ‘milk’-fed chickens was significantly more diverse than control chickens, and appears to be affected by prebiotics in pigeon ‘milk’, as well as being directly seeded by bacteria present in pigeon ‘milk’. Our results demonstrate that pigeon ‘milk’ has further modes of action which make it functionally similar to mammalian milk. We hypothesise that pigeon ‘lactation’ and mammalian lactation evolved independently but resulted in similarly functional products.
Collapse
Affiliation(s)
- Meagan J Gillespie
- Australian Animal Health Laboratory, CSIRO Animal, Food and Health Sciences, Geelong, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
31
|
Melén K, Tynell J, Fagerlund R, Roussel P, Hernandez-Verdun D, Julkunen I. Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin. Virol J 2012; 9:167. [PMID: 22909121 PMCID: PMC3493336 DOI: 10.1186/1743-422x-9-167] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/08/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Influenza A virus non-structural protein 1 (NS1) is a virulence factor, which is targeted into the cell cytoplasm, nucleus and nucleolus. NS1 is a multi-functional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. Previously, we have shown that the NS1 protein of the H3N2 subtype influenza viruses possesses a C-terminal nuclear localization signal (NLS) that also functions as a nucleolar localization signal (NoLS) and targets the protein into the nucleolus. RESULTS Here, we show that the NS1 protein of the human H3N2 virus subtype interacts in vitro primarily via its C-terminal NLS2/NoLS and to a minor extent via its N-terminal NLS1 with the nucleolar proteins, nucleolin and fibrillarin. Using chimeric green fluorescence protein (GFP)-NS1 fusion constructs, we show that the nucleolar retention of the NS1 protein is determined by its C-terminal NLS2/NoLS in vivo. Confocal laser microscopy analysis shows that the NS1 protein colocalizes with nucleolin in nucleoplasm and nucleolus and with B23 and fibrillarin in the nucleolus of influenza A/Udorn/72 virus-infected A549 cells. Since some viral proteins contain NoLSs, it is likely that viruses have evolved specific nucleolar functions. CONCLUSION NS1 protein of the human H3N2 virus interacts primarily via the C-terminal NLS2/NoLS and to a minor extent via the N-terminal NLS1 with the main nucleolar proteins, nucleolin, B23 and fibrillarin.
Collapse
Affiliation(s)
- Krister Melén
- Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Mannerheimintie 166, FIN-00300, Helsinki, Finland
| | - Janne Tynell
- Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Mannerheimintie 166, FIN-00300, Helsinki, Finland
| | - Riku Fagerlund
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Pascal Roussel
- Functional Organization of the Nucleolus, RNA Biology-FRE 3402 CNRS, Université Pierre et Marie Curie, 75252, Paris cedex 5, France
| | - Danièle Hernandez-Verdun
- Nuclei and Cell Cycle, Institut Jacques Monod-UMR 7592 CNRS, Université Paris Diderot, 75205, Paris cedex 13, France
| | - Ilkka Julkunen
- Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Mannerheimintie 166, FIN-00300, Helsinki, Finland
| |
Collapse
|
32
|
Buggele WA, Johnson KE, Horvath CM. Influenza A virus infection of human respiratory cells induces primary microRNA expression. J Biol Chem 2012; 287:31027-40. [PMID: 22822053 DOI: 10.1074/jbc.m112.387670] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The cellular response to virus infection is initiated by recognition of the invading pathogen and subsequent changes in gene expression mediated by both transcriptional and translational mechanisms. In addition to well established means of regulating antiviral gene expression, it has been demonstrated that RNA interference (RNAi) can play an important role in antiviral responses. Virus-derived small interfering RNA (siRNA) is a primary antiviral response exploited by plants and invertebrate animals, and host-encoded microRNA (miRNA) species have been clearly implicated in the regulation of innate and adaptive immune responses in mammals and other vertebrates. Examination of miRNA abundance in human lung cell lines revealed endogenous miRNAs, including miR-7, miR-132, miR-146a, miR-187, miR-200c, and miR-1275, to specifically accumulate in response to infection with two influenza A virus strains, A/Udorn/72 and A/WSN/33. Known antiviral response pathways, including Toll-like receptor, RIG-I-like receptor, and direct interferon or cytokine stimulation did not alter the abundance of the tested miRNAs to the extent of influenza A virus infection, which initiates primary miRNA transcription via a secondary response pathway. Gene expression profiling identified 26 cellular mRNAs targeted by these miRNAs, including IRAK1, MAPK3, and other components of innate immune signaling systems.
Collapse
Affiliation(s)
- William A Buggele
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
33
|
Szabo A, Bene K, Gogolák P, Réthi B, Lányi Á, Jankovich I, Dezső B, Rajnavölgyi E. RLR-mediated production of interferon-β by a human dendritic cell subset and its role in virus-specific immunity. J Leukoc Biol 2012; 92:159-69. [PMID: 22517920 DOI: 10.1189/jlb.0711360] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cytosolic RIG-I-like helicases (RLR) are PRRs involved in type I IFN production and antiviral immunity. This study focuses to the comparison of the expression, function, and signaling cascades associated to RLR in the previously identified CD14(-)DC-SIGN(+)PPARγ(low)CD1a(+) and CD14(low)DC-SIGN(+)PPARγ(high)CD1a(-) human moDC subsets. Our results revealed that the expression of RLR genes and proteins as well as the activity of the coupled signaling pathways are significantly higher in the CD1a(+) subset than in its phenotypically and functionally distinct counterpart. Specific activation of RLR in moDCs by poly(I:C) or influenza virus was shown to induce the secretion of IFN-β via IRF3, whereas induction of proinflammatory cytokine responses were predominantly controlled by TLR3. The requirement of RLR-mediated signaling in CD1a(+) moDCs for priming naïve CD8(+) T lymphocytes and inducing influenza virus-specific cellular immune responses was confirmed by RIG-I/MDA5 silencing, which abrogated these functions. Our results demonstrate the subset-specific activation of RLR and the underlying mechanisms behind its cytokine secretion profile and identify CD1a(+) moDCs as an inflammatory subset with specialized functional activities. We also provide evidence that this migratory DC subset can be detected in human tonsil and reactive LNs.
Collapse
Affiliation(s)
- Attila Szabo
- Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Brown MG, McAlpine SM, Huang YY, Haidl ID, Al-Afif A, Marshall JS, Anderson R. RNA sensors enable human mast cell anti-viral chemokine production and IFN-mediated protection in response to antibody-enhanced dengue virus infection. PLoS One 2012; 7:e34055. [PMID: 22479521 PMCID: PMC3316603 DOI: 10.1371/journal.pone.0034055] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/24/2012] [Indexed: 12/13/2022] Open
Abstract
Dengue hemorrhagic fever and/or dengue shock syndrome represent the most serious pathophysiological manifestations of human dengue virus infection. Despite intensive research, the mechanisms and important cellular players that contribute to dengue disease are unclear. Mast cells are tissue-resident innate immune cells that play a sentinel cell role in host protection against infectious agents via pathogen-recognition receptors by producing potent mediators that modulate inflammation, cell recruitment and normal vascular homeostasis. Most importantly, mast cells are susceptible to antibody-enhanced dengue virus infection and respond with selective cytokine and chemokine responses. In order to obtain a global view of dengue virus-induced gene regulation in mast cells, primary human cord blood-derived mast cells (CBMCs) and the KU812 and HMC-1 mast cell lines were infected with dengue virus in the presence of dengue-immune sera and their responses were evaluated at the mRNA and protein levels. Mast cells responded to antibody-enhanced dengue virus infection or polyinosiniċpolycytidylic acid treatment with the production of type I interferons and the rapid and potent production of chemokines including CCL4, CCL5 and CXCL10. Multiple interferon-stimulated genes were also upregulated as well as mRNA and protein for the RNA sensors PKR, RIG-I and MDA5. Dengue virus-induced chemokine production by KU812 cells was significantly modulated by siRNA knockdown of RIG-I and PKR, in a negative and positive manner, respectively. Pretreatment of fresh KU812 cells with supernatants from dengue virus-infected mast cells provided protection from subsequent infection with dengue virus in a type I interferon-dependent manner. These findings support a role for tissue-resident mast cells in the early detection of antibody-enhanced dengue virus infection via RNA sensors, the protection of neighbouring cells through interferon production and the potential recruitment of leukocytes via chemokine production.
Collapse
Affiliation(s)
- Michael G. Brown
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Center for Vaccinology, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Sarah M. McAlpine
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yan Y. Huang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Center for Vaccinology, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Ian D. Haidl
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ayham Al-Afif
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Center for Vaccinology, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Jean S. Marshall
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert Anderson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Center for Vaccinology, IWK Health Centre, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
35
|
Hsu ACY, Parsons K, Barr I, Lowther S, Middleton D, Hansbro PM, Wark PAB. Critical role of constitutive type I interferon response in bronchial epithelial cell to influenza infection. PLoS One 2012; 7:e32947. [PMID: 22396801 PMCID: PMC3292582 DOI: 10.1371/journal.pone.0032947] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/07/2012] [Indexed: 12/25/2022] Open
Abstract
Innate antiviral responses in bronchial epithelial cells (BECs) provide the first line of defense against respiratory viral infection and the effectiveness of this response is critically dependent on the type I interferons (IFNs). However the importance of the antiviral responses in BECs during influenza infection is not well understood. We profiled the innate immune response to infection with H3N2 and H5N1 virus using Calu-3 cells and primary BECs to model proximal airway cells. The susceptibility of BECs to influenza infection was not solely dependent on the sialic acid-bearing glycoprotein, and antiviral responses that occurred after viral endocytosis was more important in limiting viral replication. The early antiviral response and apoptosis correlated with the ability to limit viral replication. Both viruses reduced RIG-I associated antiviral responses and subsequent induction of IFN-β. However it was found that there was constitutive release of IFN-β by BECs and this was critical in inducing late antiviral signaling via type I IFN receptors, and was crucial in limiting viral infection. This study characterizes anti-influenza virus responses in airway epithelial cells and shows that constitutive IFN-β release plays a more important role in initiating protective late IFN-stimulated responses during human influenza infection in bronchial epithelial cells.
Collapse
Affiliation(s)
- Alan C-Y Hsu
- Centre for Asthma and Respiratory Disease, The University of Newcastle, Newcastle, New South Wales, Australia.
| | | | | | | | | | | | | |
Collapse
|
36
|
Host regulatory network response to infection with highly pathogenic H5N1 avian influenza virus. J Virol 2011; 85:10955-67. [PMID: 21865398 DOI: 10.1128/jvi.05792-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During the last decade, more than half of humans infected with highly pathogenic avian influenza (HPAI) H5N1 viruses have died, yet virus-induced host signaling has yet to be clearly elucidated. Airway epithelia are known to produce inflammatory mediators that contribute to HPAI H5N1-mediated pathogenicity, but a comprehensive analysis of the host response in this cell type is lacking. Here, we leveraged a system approach to identify and statistically validate signaling subnetworks that define the dynamic transcriptional response of human bronchial epithelial cells after infection with influenza A/Vietnam/1203/2004 (H5N1, VN1203). Importantly, we validated a subset of transcripts from one subnetwork in both Calu-3 cells and mice. A more detailed examination of two subnetworks involved in the immune response and keratinization processes revealed potential novel mediators of HPAI H5N1 pathogenesis and host response signaling. Finally, we show how these results compare to those for a less virulent strain of influenza virus. Using emergent network properties, we provide fresh insight into the host response to HPAI H5N1 virus infection and identify novel avenues for perturbation studies and potential therapeutic interventions for fatal HPAI H5N1 disease.
Collapse
|
37
|
Infection of nonhost species dendritic cells in vitro with an attenuated myxoma virus induces gene expression that predicts its efficacy as a vaccine vector. J Virol 2011; 85:12982-94. [PMID: 21835800 DOI: 10.1128/jvi.00128-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant myxoma virus (MYXV) can be produced without a loss of infectivity, and its highly specific host range makes it an ideal vaccine vector candidate, although careful examination of its interaction with the immune system is necessary. Similar to rabbit bone marrow-derived dendritic cells (BM-DCs), ovine dendritic cells can be infected by SG33, a MYXV vaccine strain, and support recombinant antigen expression. The frequency of infected cells in the nonhost was lower and the virus cycle was abortive in these cell types. Among BM-DC subpopulations, Langerhans cell-like DCs were preferentially infected at low multiplicities of infection. Interestingly, ovine BM-DCs remained susceptible to MYXV after maturation, although apoptosis occurred shortly after infection as a function of the virus titer. When gene expression was assessed in infected BM-DC cultures, type I interferon (IFN)-related and inflammatory genes were strongly upregulated. DC gene expression profiles were compared with the profiles produced by other poxviruses in interaction with DCs, but very few commonalities were found, although genes that were previously shown to predict vaccine efficacy were present. Collectively, these data support the idea that MYXV permits efficient priming of adaptive immune responses and should be considered a promising vaccine vector along with other poxviruses.
Collapse
|
38
|
Oslund KL, Baumgarth N. Influenza-induced innate immunity: regulators of viral replication, respiratory tract pathology & adaptive immunity. Future Virol 2011; 6:951-962. [PMID: 21909336 DOI: 10.2217/fvl.11.63] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Influenza virus infections usually cause mild to moderately severe respiratory disease, however some infections, like those involving the avian H5N1 virus, can cause massive viral pneumonia, systemic disease and death. The innate immune response of respiratory tract resident cells is the first line of defense and limits virus replication. Enhanced cytokine and chemokine production following infection, however, appears to underlie much of the pathology that develops after infection with highly pathogenic strains. A so-called `cytokine storm' can damage the lung tissue and cause systemic disease, despite the control of viral replication. By summarizing current knowledge of the innate responses mounted to influenza infection, this review highlights the importance of the respiratory tract epithelial cells as regulators of innate and adaptive immunity to influenza virus.
Collapse
Affiliation(s)
- Karen L Oslund
- Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | | |
Collapse
|
39
|
Qin CF, Zhao H, Liu ZY, Jiang T, Deng YQ, Yu XD, Yu M, Qin ED. Retinoic acid inducible gene-I and melanoma differentiation-associated gene 5 are induced but not essential for dengue virus induced type I interferon response. Mol Biol Rep 2011; 38:3867-73. [PMID: 21113677 DOI: 10.1007/s11033-010-0502-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 11/13/2010] [Indexed: 12/13/2022]
Abstract
Dengue viruses (DENVs) are important human pathogens that cause mild dengue fever, and severe dengue hemorrhagic fever/dengue shock syndrome, and no vaccine or antiviral therapy are currently available. At the initial stage of DENV infection, host pattern recognition receptors are responsible for sensing viral proteins or nucleic acids and initiating innate antiviral responses, including the activation of type I interferon (IFN) and proinflammatory cytokines. Two RNA helicases, retinoic acid inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5), are recently identified as cytoplasmic PPRs for virus infection. Here, in this study the involvement of RIG-I and MDA5 in DENV-induced IFN-β response A549 cells were investigated. DENV infection readily up-regulated RIG-I expression, activated IRF-3 and RIG-I mRNA transcription, and induced the production of IFN-β in A549 cells in a strain- and serotype-independent manner. While gene silencing of RIG-I by small interfering RNAs failed to significantly inhibit IFN-β production induced by DENV infection. Further experiments demonstrated that MDA5 was also induced by DENV infection, and MDA5 knockout did not block DENV induced IFN-β production in A549 cells. Our results demonstrated that both RIG-I and MDA5 were induced but neither of the two was essential for DENV induced IFN IFN-β response in A549 cells. These findings suggest that innate immune pathway are involved in the recognition of DENV by human non-immune cells, and provide insights for the understanding of the molecular mechanism for DENV-induced antiviral response.
Collapse
Affiliation(s)
- Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ejima M, Kadoi K, Honda A. Influenza virus infection induces cellular Ebp1 gene expression. Genes Cells 2011; 16:927-37. [DOI: 10.1111/j.1365-2443.2011.01541.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Soye KJ, Trottier C, Richardson CD, Ward BJ, Miller WH. RIG-I is required for the inhibition of measles virus by retinoids. PLoS One 2011; 6:e22323. [PMID: 21811588 PMCID: PMC3139622 DOI: 10.1371/journal.pone.0022323] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/24/2011] [Indexed: 12/17/2022] Open
Abstract
Vitamin A can significantly decrease measles-associated morbidity and mortality. Vitamin A can inhibit the replication of measles virus (MeV) in vitro through an RARα- and type I interferon (IFN)-dependent mechanism. Retinoid-induced gene I (RIG-I) expression is induced by retinoids, activated by MeV RNA and is important for IFN signaling. We hypothesized that RIG-I is central to retinoid-mediated inhibition of MeV in vitro. We demonstrate that RIG-I expression is increased in cells treated with retinoids and infected with MeV. The central role of RIG-I in the retinoid-anti-MeV effect was demonstrated in the Huh-7/7.5 model; the latter cells having non-functional RIG-I. RAR-dependent retinoid signaling was required for the induction of RIG-I by retinoids and MeV. Retinoid signaling was also found to act in combination with IFN to induce high levels of RIG-I expression. RIG-I promoter activation required both retinoids and MeV, as indicated by markers of active chromatin. IRF-1 is known to be regulated by retinoids and MeV, but we found recruitment of IRF-1 to the RIG-I promoter by retinoids alone. Using luciferase expression constructs, we further demonstrated that the IRF-1 response element of RIG-I was required for RIG-I activation by retinoids or IFN. These results reveal that retinoid treatment and MeV infection induces significant RIG-I. RIG-I is required for the retinoid-MeV antiviral response. The induction is dependent on IFN, retinoids and IRF-1.
Collapse
Affiliation(s)
- Kaitlin J. Soye
- McGill University Health Center Research Institute, Department of Infectious Diseases, McGill University, Montreal, Quebec, Canada
- Segal Cancer Centre, Lady Davis Institute for Medical Research, SMBD Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Claire Trottier
- McGill University Health Center Research Institute, Department of Infectious Diseases, McGill University, Montreal, Quebec, Canada
- Segal Cancer Centre, Lady Davis Institute for Medical Research, SMBD Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Chris D. Richardson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia
| | - Brian J. Ward
- McGill University Health Center Research Institute, Department of Infectious Diseases, McGill University, Montreal, Quebec, Canada
| | - Wilson H. Miller
- Segal Cancer Centre, Lady Davis Institute for Medical Research, SMBD Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
42
|
Karpala AJ, Lowenthal JW, Bean AGD. Identifying innate immune pathways of the chicken may lead to new antiviral therapies. Vet Immunol Immunopathol 2011; 148:100-9. [PMID: 21715024 DOI: 10.1016/j.vetimm.2011.05.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 03/25/2011] [Accepted: 05/30/2011] [Indexed: 12/23/2022]
Abstract
Zoonotic viruses, such as highly pathogenic avian influenza (HPAI), present a significant threat to both the poultry industry and public health. The present method of controlling avian influenza (AI) relies on good farming practice with limited use of vaccination in some countries. However, new ways to control disease outbreaks might be possible with additional knowledge of the natural host response to virus. Moreover, manipulation of the innate immune system in mammals improves the outcomes following viral infection. A similar approach might be applied to the chicken, nevertheless, a greater knowledge of the chicken innate immune system is required. This review outlines important mammalian antiviral mechanisms that have been modulated to strengthen viral immunity and highlights the potential application of these strategies in the chicken, especially in regards, to AI.
Collapse
Affiliation(s)
- Adam J Karpala
- CSIRO, Livestock Industries, Australian Animal Health Laboratory, Private Bag 24, Geelong, Victoria 3220, Australia.
| | | | | |
Collapse
|
43
|
Ohtani M, Hikima JI, Kondo H, Hirono I, Jung TS, Aoki T. Characterization and antiviral function of a cytosolic sensor gene, MDA5, in Japanese flounder, Paralichthys olivaceus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:554-562. [PMID: 21185857 DOI: 10.1016/j.dci.2010.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 05/30/2023]
Abstract
Cytosolic pattern recognition receptors such as retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) play an important role in sensing viral RNAs. The receptor encoded by melanoma differentiation-associated gene 5 (MDA5), an RLR, recognizes viral RNA in the cytoplasm and enhances antiviral response in host cells. The full-length MDA5 gene in Japanese flounder, Paralichthys olivaceus was cloned and found to have 11,251 nucleotides. MDA5 transcript abundance was significantly increased in whole kidney infected with viral hemorrhagic septicemia virus (VHSV) as well as whole kidney and peripheral blood leukocytes stimulated with poly I:C in vitro. Hirame natural embryo (HINAE) cells overexpressing MDA5 showed a lower cytopathic effect (CPE) against VHSV, hirame rhabdovirus (HIRRV) and infectious pancreatic necrosis virus (IPNV) infection. When infected with VHSV, MDA5-overexpressing HINAE cells had 24-75 fold lower virus titer than normal HINAE cells. These results suggest that Japanese flounder MDA5 is involved in the induction of antiviral response.
Collapse
Affiliation(s)
- Maki Ohtani
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, 900 Gajwa-dong, Jinju, Gyeongnam 660-710, South Korea
| | | | | | | | | | | |
Collapse
|
44
|
Karpala AJ, Stewart C, McKay J, Lowenthal JW, Bean AGD. Characterization of chicken Mda5 activity: regulation of IFN-β in the absence of RIG-I functionality. THE JOURNAL OF IMMUNOLOGY 2011; 186:5397-405. [PMID: 21444763 DOI: 10.4049/jimmunol.1003712] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In mammals, Mda5 and RIG-I are members of the evolutionary conserved RIG-like helicase family that play critical roles in the outcome of RNA virus infections. Resolving influenza infection in mammals has been shown to require RIG-I; however, the apparent absence of a RIG-I homolog in chickens raises intriguing questions regarding how this species deals with influenza virus infection. Although chickens are able to resolve certain strains of influenza, they are highly susceptible to others, such as highly pathogenic avian influenza H5N1. Understanding RIG-like helicases in the chicken is of critical importance, especially for developing new therapeutics that may use these systems. With this in mind, we investigated the RIG-like helicase Mda5 in the chicken. We have identified a chicken Mda5 homolog (ChMda5) and assessed its functional activities that relate to antiviral responses. Like mammalian Mda5, ChMda5 expression is upregulated in response to dsRNA stimulation and following IFN activation of cells. Furthermore, RNA interference-mediated knockdown of ChMda5 showed that ChMda5 plays an important role in the IFN response of chicken cells to dsRNA. Intriguingly, although ChMda5 levels are highly upregulated during influenza infection, knockdown of ChMda5 expression does not appear to impact influenza proliferation. Collectively, although Mda5 is functionally active in the chicken, the absence of an apparent RIG-I-like function may contribute to the chicken's susceptibility to highly pathogenic influenza.
Collapse
Affiliation(s)
- Adam J Karpala
- Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, Australian Animal Health Laboratory, Victoria 3220, Australia.
| | | | | | | | | |
Collapse
|
45
|
Dai X, Zhang L, Hong T. Host cellular signaling induced by influenza virus. SCIENCE CHINA-LIFE SCIENCES 2011; 54:68-74. [PMID: 21253874 DOI: 10.1007/s11427-010-4116-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 09/16/2010] [Indexed: 12/15/2022]
Abstract
A wide range of host cellular signal transduction pathways can be stimulated by influenza virus infection. Some of these signal transduction pathways induce the host cell's innate immune response against influenza virus, while others are essential for efficient influenza virus replication. This review examines the cellular signaling induced by influenza virus infection in host cells, including host pattern recognition receptor (PRR)-related signaling, protein kinase C (PKC), Raf/MEK/ERK and phosphatidy-linositol-3-kinase (PI3K)/Akt signaling, and the corresponding effects on the host cell and/or virus, such as recognition of virus by the host cell, viral absorption and entry, viral ribonucleoprotein (vRNP) export, translation control of cellular and viral proteins, and virus-induced cell apoptosis. Research into influenza virus-induced cell signaling promotes a clearer understanding of influenza virus-host interactions and assists in the identification of novel antiviral targets and antiviral strategies.
Collapse
Affiliation(s)
- XinXian Dai
- College of Life Science & Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | | | | |
Collapse
|
46
|
|
47
|
Lambda interferon is the predominant interferon induced by influenza A virus infection in vivo. J Virol 2010; 84:11515-22. [PMID: 20739515 DOI: 10.1128/jvi.01703-09] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The type I alpha/beta interferons (IFN-α/β) are known to play an important role in host defense against influenza A virus infection, but we have now discovered that the recently identified type III IFNs (IFN-λ) constitute the major response to intranasal infection with this virus. Type III IFNs were present at much higher levels than type I IFNs in the lungs of infected mice, and the enhanced susceptibility of STAT2-/- animals demonstrated that only signaling through the IFN-α/β or IFN-λ pathways was sufficient to mediate protection. This finding offers a possible explanation for the similar levels of antiviral protection found in wild-type (WT) mice and in animals lacking a functional type I IFN receptor (IFNAR-/-) but also argues that our current understanding of type III IFN induction is incomplete. While murine IFN-λ production is thought to depend on signaling through the type I IFN receptor, we demonstrate that intranasal influenza A virus infection leads to the robust type III IFN induction in the lungs of both WT and IFNAR-/- mice. This is consistent with previous studies showing that IFNAR-mediated protection is redundant for mucosal influenza virus infection and with data showing that the type III IFN receptor is expressed primarily by epithelial cells. However, the overlapping effects of these two cytokine families are limited by their differential receptor expression, with a requirement for IFN-α/β signaling in combating systemic disease.
Collapse
|
48
|
Yoboua F, Martel A, Duval A, Mukawera E, Grandvaux N. Respiratory syncytial virus-mediated NF-kappa B p65 phosphorylation at serine 536 is dependent on RIG-I, TRAF6, and IKK beta. J Virol 2010; 84:7267-77. [PMID: 20410276 PMCID: PMC2898247 DOI: 10.1128/jvi.00142-10] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 04/13/2010] [Indexed: 12/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the etiological agent of acute respiratory diseases, such as bronchiolitis and pneumonia. The exacerbated production of proinflammatory cytokines and chemokines in the airways in response to RSV is an important pillar in the development of these pathologies. As such, a keen understanding of the mechanisms that modulate the inflammatory response during RSV infection is of pivotal importance to developing effective treatment. The NF-kappaB transcription factor is a major regulator of proinflammatory cytokine and chemokine genes. However, RSV-mediated activation of NF-kappaB is far from characterized. We recently demonstrated that aside from the well-characterized IkappaBalpha phosphorylation and degradation, the phosphorylation of p65 at Ser536 is an essential event regulating the RSV-mediated NF-kappaB-dependent promoter transactivation. In the present study, using small interfering RNA and pharmacological inhibitors, we now demonstrate that RSV sensing by the RIG-I cytoplasmic receptor triggers a signaling cascade involving the MAVS and TRAF6 adaptors that ultimately leads to p65ser536 phosphorylation by the IKKbeta kinase. In a previous study, we highlighted a critical role of the NOX2-containing NADPH oxidase enzyme as an upstream regulator of both the IkappaBalphaSer32 and p65Ser536 in human airway epithelial cells. Here, we demonstrate that inhibition of NOX2 significantly decreases IKKbeta activation. Taken together, our data identify a new RIG-I/MAVS/TRAF6/IKKbeta/p65Ser536 pathway placed under the control of NOX2, thus characterizing a novel regulatory pathway involved in NF-kappaB-driven proinflammatory response in the context of RSV infection.
Collapse
Affiliation(s)
- Fabrice Yoboua
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 1P1, Canada, Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Alexis Martel
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 1P1, Canada, Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Annick Duval
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 1P1, Canada, Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Espérance Mukawera
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 1P1, Canada, Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Nathalie Grandvaux
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 1P1, Canada, Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
49
|
Barber MRW, Aldridge JR, Webster RG, Magor KE. Association of RIG-I with innate immunity of ducks to influenza. Proc Natl Acad Sci U S A 2010; 107:5913-8. [PMID: 20308570 PMCID: PMC2851864 DOI: 10.1073/pnas.1001755107] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ducks and wild waterfowl perpetuate all strains of influenza viruses in nature. In their natural host, influenza viruses typically cause asymptomatic infection and little pathology. Ducks are often resistant to influenza viruses capable of killing chickens. Here, we show that the influenza virus sensor, RIG-I, is present in ducks and plays a role in clearing an influenza infection. We show evidence suggesting that RIG-I may be absent in chickens, providing a plausible explanation for their increased susceptibility to influenza viruses compared with ducks. RIG-I detects RNA ligands derived from uncapped viral transcripts and initiates the IFN response. In this study, we show that the chicken embryonic fibroblast cell line, DF-1, cannot respond to a RIG-I ligand. However, transfection of duck RIG-I into DF-1 cells rescues the detection of ligand and induces IFN-beta promoter activity. Additionally, DF-1 cells expressing duck RIG-I have an augmented IFN response resulting in decreased influenza replication after challenge with either low or highly pathogenic avian influenza virus. Implicating RIG-I in the antiviral response to an infection in vivo, we found that RIG-I expression is induced 200 fold, early in an innate immune response in ducks challenged with the H5N1 virus A/Vietnam/1203/04. Finding this natural disease resistance gene in ducks opens the possibility of increasing influenza resistance through creation of a transgenic chicken.
Collapse
Affiliation(s)
- Megan R W Barber
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | | | | |
Collapse
|
50
|
Summerfield A, McCullough KC. Dendritic Cells in Innate and Adaptive Immune Responses against Influenza Virus. Viruses 2009; 1:1022-34. [PMID: 21994580 PMCID: PMC3185519 DOI: 10.3390/v1031022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/19/2009] [Accepted: 11/23/2009] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are major players in both innate and adaptive immune responses against influenza virus. These immune responses, as well as the important interface between the innate and adaptive systems, are orchestrated by specialized subsets of DC, including conventional steady-state DC, migratory DC and plasmacytoid DC. The characteristics and efficacy of the responses are dependent on the relative activity of these DC subsets, rendering DC crucial for the development of both naïve and memory immune responses. However, due to their critical role, DC also contribute to the immunopathological processes observed during acute influenza, such as that caused by the pathogenic H5N1 viruses. Therein, the role of different DC subsets in the induction of interferon type I, pro-inflammatory cytokine and chemokine responses is important for the outcome of interaction between the virus and host immune defences. The present review will present current knowledge on this area, relating to the importance of DC activity for the induction of efficacious humoral and cell-mediated immune responses. This will include the main viral elements associated with the triggering or inhibition of DC activation. Finally, the current knowledge on understanding how differences in various vaccines influence the manner of immune defence induction will be presented.
Collapse
Affiliation(s)
- Artur Summerfield
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +41 31 848 9377; Fax: +41 31 848 9222
| | | |
Collapse
|