1
|
Liu L, Zhang L, Hao X, Wang Y, Zhang X, Ge L, Wang P, Tian B, Zhang M. Coronavirus envelope protein activates TMED10-mediated unconventional secretion of inflammatory factors. Nat Commun 2024; 15:8708. [PMID: 39379362 PMCID: PMC11461611 DOI: 10.1038/s41467-024-52818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
The precise cellular mechanisms underlying heightened proinflammatory cytokine production during coronavirus infection remain incompletely understood. Here we identify the envelope (E) protein in severe coronaviruses (SARS-CoV-2, SARS, or MERS) as a potent inducer of interleukin-1 release, intensifying lung inflammation through the activation of TMED10-mediated unconventional protein secretion (UcPS). In contrast, the E protein of mild coronaviruses (229E, HKU1, or OC43) demonstrates a less pronounced effect. The E protein of severe coronaviruses contains an SS/DS motif, which is not present in milder strains and facilitates interaction with TMED10. This interaction enhances TMED10-oligomerization, facilitating UcPS cargo translocation into the ER-Golgi intermediate compartment (ERGIC)-a pivotal step in interleukin-1 UcPS. Progesterone analogues were identified as compounds inhibiting E-enhanced release of proinflammatory factors and lung inflammation in a Mouse Hepatitis Virus (MHV) infection model. These findings elucidate a molecular mechanism driving coronavirus-induced hyperinflammation, proposing the E-TMED10 interaction as a potential therapeutic target to counteract the adverse effects of coronavirus-induced inflammation.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Lijingyao Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyan Hao
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Peihui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Min Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Giacon N, Lo Cascio E, Pennacchietti V, De Maio F, Santarelli G, Sibilia D, Tiberio F, Sanguinetti M, Lattanzi W, Toto A, Arcovito A. PDZ2-conjugated-PLGA nanoparticles are tiny heroes in the battle against SARS-CoV-2. Sci Rep 2024; 14:13059. [PMID: 38844490 PMCID: PMC11156922 DOI: 10.1038/s41598-024-63239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has highlighted the urgent need for innovative antiviral strategies to fight viral infections. Although a substantial part of the overall effort has been directed at the Spike protein to create an effective global vaccination strategy, other proteins have also been examined and identified as possible therapeutic targets. Among them, although initially underestimated, there is the SARS-CoV-2 E-protein, which turned out to be a key factor in viral pathogenesis due to its role in virus budding, assembly and spreading. The C-terminus of E-protein contains a PDZ-binding motif (PBM) that plays a key role in SARS-CoV-2 virulence as it is recognized and bound by the PDZ2 domain of the human tight junction protein ZO-1. The binding between the PDZ2 domain of ZO-1 and the C-terminal portion of SARS-CoV-2 E-protein has been extensively characterized. Our results prompted us to develop a possible adjuvant therapeutic strategy aimed at slowing down or inhibiting virus-mediated pathogenesis. Such innovation consists in the design and synthesis of externally PDZ2-ZO1 functionalized PLGA-based nanoparticles to be used as intracellular decoy. Contrary to conventional strategies, this innovative approach aims to capitalize on the E protein-PDZ2 interaction to prevent virus assembly and replication. In fact, the conjugation of the PDZ2 domain to polymeric nanoparticles increases the affinity toward the E protein effectively creating a "molecular sponge" able to sequester E proteins within the intracellular environment of infected cells. Our in vitro studies on selected cellular models, show that these nanodevices significantly reduce SARS-CoV-2-mediated virulence, emphasizing the importance of exploiting viral-host interactions for therapeutic benefit.
Collapse
Affiliation(s)
- Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Ettore Lo Cascio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Flavio De Maio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Giulia Santarelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Diego Sibilia
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Federica Tiberio
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Wanda Lattanzi
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy.
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy.
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy.
| |
Collapse
|
3
|
Xu JB, Guan WJ, Zhang YL, Qiu ZE, Chen L, Hou XC, Yue J, Zhou YY, Sheng J, Zhao L, Zhu YX, Sun J, Zhao J, Zhou WL, Zhong NS. SARS-CoV-2 envelope protein impairs airway epithelial barrier function and exacerbates airway inflammation via increased intracellular Cl - concentration. Signal Transduct Target Ther 2024; 9:74. [PMID: 38528022 DOI: 10.1038/s41392-024-01753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 03/27/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection disrupts the epithelial barrier and triggers airway inflammation. The envelope (E) protein, a core virulence structural component of coronaviruses, may play a role in this process. Pathogens could interfere with transepithelial Cl- transport via impairment of the cystic fibrosis transmembrane conductance regulator (CFTR), which modulates nuclear factor κB (NF-κB) signaling. However, the pathological effects of SARS-CoV-2 E protein on airway epithelial barrier function, Cl- transport and the robust inflammatory response remain to be elucidated. Here, we have demonstrated that E protein down-regulated the expression of tight junctional proteins, leading to the disruption of the airway epithelial barrier. In addition, E protein triggered the activation of Toll-like receptor (TLR) 2/4 and downstream c-Jun N-terminal kinase (JNK) signaling, resulting in an increased intracellular Cl- concentration ([Cl-]i) via up-regulating phosphodiesterase 4D (PDE4D) expression in airway epithelial cells. This elevated [Cl-]i contributed to the heightened airway inflammation through promoting the phosphorylation of serum/glucocorticoid regulated kinase 1 (SGK1). Moreover, blockade of SGK1 or PDE4 alleviated the robust inflammatory response induced by E protein. Overall, these findings provide novel insights into the pathogenic role of SARS-CoV-2 E protein in airway epithelial damage and the ongoing airway inflammation during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jian-Bang Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Guangzhou National Laboratory, Guangzhou, P. R. China.
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Junqing Yue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangzhou National Laboratory, Guangzhou, P. R. China
| | - Yu-Yun Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jie Sheng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Lei Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, P. R. China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangzhou National Laboratory, Guangzhou, P. R. China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangzhou National Laboratory, Guangzhou, P. R. China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China.
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Guangzhou National Laboratory, Guangzhou, P. R. China.
| |
Collapse
|
4
|
Baral B, Saini V, Tandon A, Singh S, Rele S, Dixit AK, Parmar HS, Meena AK, Jha HC. SARS-CoV-2 envelope protein induces necroptosis and mediates inflammatory response in lung and colon cells through receptor interacting protein kinase 1. Apoptosis 2023; 28:1596-1617. [PMID: 37658919 DOI: 10.1007/s10495-023-01883-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
SARS-CoV-2 Envelope protein (E) is one of the crucial components in virus assembly and pathogenesis. The current study investigated its role in the SARS-CoV-2-mediated cell death and inflammation in lung and gastrointestinal epithelium and its effect on the gastrointestinal-lung axis. We observed that transfection of E protein increases the lysosomal pH and induces inflammation in the cell. The study utilizing Ethidium bromide/Acridine orange and Hoechst/Propidium iodide staining demonstrated necrotic cell death in E protein transfected cells. Our study revealed the role of the necroptotic marker RIPK1 in cell death. Additionally, inhibition of RIPK1 by its specific inhibitor Nec-1s exhibits recovery from cell death and inflammation manifested by reduced phosphorylation of NFκB. The E-transfected cells' conditioned media induced inflammation with differential expression of inflammatory markers compared to direct transfection in the gastrointestinal-lung axis. In conclusion, SARS-CoV-2 E mediates inflammation and necroptosis through RIPK1, and the E-expressing cells' secretion can modulate the gastrointestinal-lung axis. Based on the data of the present study, we believe that during severe COVID-19, necroptosis is an alternate mechanism of cell death besides ferroptosis, especially when the disease is not associated with drastic increase in serum ferritin.
Collapse
Affiliation(s)
- Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Vaishali Saini
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Akrati Tandon
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Siddharth Singh
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Samiksha Rele
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Amit Kumar Dixit
- Central Ayurveda Research Institute, 4-CN Block, Sector-V, Bidhannagar, Kolkata, 700091, India
| | - Hamendra Singh Parmar
- School of Biotechnology, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Indore, Madhya Pradesh, 452001, India
| | - Ajay Kumar Meena
- Regional Ayurveda Research Institute, Amkhoh, Gwalior, Madhya Pradesh, 474001, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
5
|
Easley KF, Edenfield RC, Lott MEJ, Reed RC, Das Sarma J, Mehta AJ, Staitieh BS, Lipp EK, Cho IK, Johnson SK, Jones CA, Bebin-Blackwell AG, Levy JM, Tompkins SM, Easley CA, Koval M. Chronic alcohol use primes bronchial cells for altered inflammatory response and barrier dysfunction during SARS-CoV-2 infection. Am J Physiol Lung Cell Mol Physiol 2023; 325:L647-L661. [PMID: 37786945 PMCID: PMC11498272 DOI: 10.1152/ajplung.00381.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/26/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023] Open
Abstract
Alcohol use disorder (AUD) is a significant public health concern and people with AUD are more likely to develop severe acute respiratory distress syndrome (ARDS) in response to respiratory infections. To examine whether AUD was a risk factor for more severe outcome in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we examined early responses to infection using cultured differentiated bronchial epithelial cells derived from brushings obtained from people with AUD or without AUD. RNA-seq analysis of uninfected cells determined that AUD cells were enriched for expression of epidermal genes as compared with non-AUD cells. Bronchial epithelial cells from patients with AUD showed a significant decrease in barrier function 72 h postinfection, as determined by transepithelial electrical resistance. In contrast, barrier function of non-AUD cells was enhanced 72 h after SARS-CoV-2 infection. AUD cells showed claudin-7 that did not colocalize with zonula occludens-1 (ZO-1), indicative of disorganized tight junctions. However, both AUD and non-AUD cells showed decreased β-catenin expression following SARS-CoV-2 infection. To determine the impact of AUD on the inflammatory response to SARS-CoV-2 infection, cytokine secretion was measured by multiplex analysis. SARS-CoV-2-infected AUD bronchial cells had enhanced secretion of multiple proinflammatory cytokines including TNFα, IL-1β, and IFNγ as opposed to non-AUD cells. In contrast, secretion of the barrier-protective cytokines epidermal growth factor (EGF) and granulocyte macrophage-colony stimulating factor (GM-CSF) was enhanced for non-AUD bronchial cells. Taken together, these data support the hypothesis that AUD is a risk factor for COVID-19, where alcohol primes airway epithelial cells for increased inflammation and increased barrier dysfunction and increased inflammation in response to infection by SARS-CoV-2.NEW & NOTEWORTHY Alcohol use disorder (AUD) is a significant risk factor for severe acute respiratory distress syndrome. We found that AUD causes a phenotypic shift in gene expression in human bronchial epithelial cells, enhancing expression of epidermal genes. AUD cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had higher levels of proinflammatory cytokine secretion and barrier dysfunction not present in infected non-AUD cells, consistent with increased early COVID-19 severity due to AUD.
Collapse
Affiliation(s)
- Kristen F Easley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - R Clayton Edenfield
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, United States
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, United States
| | - Megan E J Lott
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, United States
| | - Ryan C Reed
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ashish J Mehta
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, United States
| | - Bashar S Staitieh
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Erin K Lipp
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, United States
| | - In Ki Cho
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, United States
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, United States
| | - Scott K Johnson
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States
| | - Cheryl A Jones
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States
| | | | - Joshua M Levy
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, United States
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - S Mark Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, United States
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
6
|
Giacon N, Lo Cascio E, Davidson DS, Polêto MD, Lemkul JA, Pennacchietti V, Pagano L, Zamparelli C, Toto A, Arcovito A. Monomeric and dimeric states of human ZO1-PDZ2 are functional partners of the SARS-CoV-2 E protein. Comput Struct Biotechnol J 2023; 21:3259-3271. [PMID: 37293240 PMCID: PMC10210826 DOI: 10.1016/j.csbj.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
The Envelope (E) protein of SARS-CoV-2 plays a key role in virus maturation, assembly, and virulence mechanisms. The E protein is characterized by the presence of a PDZ-binding motif (PBM) at its C-terminus that allows it to interact with several PDZ-containing proteins in the intracellular environment. One of the main binding partners of the SARS-CoV-2 E protein is the PDZ2 domain of ZO1, a protein with a crucial role in the formation of epithelial and endothelial tight junctions (TJs). In this work, through a combination of analytical ultracentrifugation analysis and equilibrium and kinetic folding experiments, we show that ZO1-PDZ2 domain is able to fold in a monomeric state, an alternative form to the dimeric conformation that is reported to be functional in the cell for TJs assembly. Importantly, surface plasmon resonance (SPR) data indicate that the PDZ2 monomer is fully functional and capable of binding the C-terminal portion of the E protein of SARS-CoV-2, with a measured affinity in the micromolar range. Moreover, we present a detailed computational analysis of the complex between the C-terminal portion of E protein with ZO1-PDZ2, both in its monomeric conformation (computed as a high confidence AlphaFold2 model) and dimeric conformation (obtained from the Protein Data Bank), by using both polarizable and nonpolarizable simulations. Together, our results indicate both the monomeric and dimeric states of PDZ2 to be functional partners of the E protein, with similar binding mechanisms, and provide mechanistic and structural information about a fundamental interaction required for the replication of SARS-CoV-2.
Collapse
Affiliation(s)
- Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Ettore Lo Cascio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Darcy S. Davidson
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Marcelo D. Polêto
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
- Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Carlotta Zamparelli
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| |
Collapse
|
7
|
Tsounis EP, Triantos C, Konstantakis C, Marangos M, Assimakopoulos SF. Intestinal barrier dysfunction as a key driver of severe COVID-19. World J Virol 2023; 12:68-90. [PMID: 37033148 PMCID: PMC10075050 DOI: 10.5501/wjv.v12.i2.68] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 03/21/2023] Open
Abstract
The intestinal lumen harbors a diverse consortium of microorganisms that participate in reciprocal crosstalk with intestinal immune cells and with epithelial and endothelial cells, forming a multi-layered barrier that enables the efficient absorption of nutrients without an excessive influx of pathogens. Despite being a lung-centered disease, severe coronavirus disease 2019 (COVID-19) affects multiple systems, including the gastrointestinal tract and the pertinent gut barrier function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can inflict either direct cytopathic injury to intestinal epithelial and endothelial cells or indirect immune-mediated damage. Alternatively, SARS-CoV-2 undermines the structural integrity of the barrier by modifying the expression of tight junction proteins. In addition, SARS-CoV-2 induces profound alterations to the intestinal microflora at phylogenetic and metabolomic levels (dysbiosis) that are accompanied by disruption of local immune responses. The ensuing dysregulation of the gut-lung axis impairs the ability of the respiratory immune system to elicit robust and timely responses to restrict viral infection. The intestinal vasculature is vulnerable to SARS-CoV-2-induced endothelial injury, which simultaneously triggers the activation of the innate immune and coagulation systems, a condition referred to as “immunothrombosis” that drives severe thrombotic complications. Finally, increased intestinal permeability allows an aberrant dissemination of bacteria, fungi, and endotoxin into the systemic circulation and contributes, to a certain degree, to the over-exuberant immune responses and hyper-inflammation that dictate the severe form of COVID-19. In this review, we aim to elucidate SARS-CoV-2-mediated effects on gut barrier homeostasis and their implications on the progression of the disease.
Collapse
Affiliation(s)
- Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Christos Konstantakis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Patras 26504, Greece
| | - Stelios F Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Patras 26504, Greece
| |
Collapse
|
8
|
In Silico Screening of Drugs That Target Different Forms of E Protein for Potential Treatment of COVID-19. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Recently the E protein of SARS-CoV-2 has become a very important target in the potential treatment of COVID-19 since it is known to regulate different stages of the viral cycle. There is biochemical evidence that E protein exists in two forms, as monomer and homopentamer. An in silico screening analysis was carried out employing 5852 ligands (from Zinc databases), and performing an ADMET analysis, remaining a set of 2155 compounds. Furthermore, docking analysis was performed on specific sites and different forms of the E protein. From this study we could identify that the following ligands showed the highest binding affinity: nilotinib, dutasteride, irinotecan, saquinavir and alectinib. We carried out some molecular dynamics simulations and free energy MM–PBSA calculations of the protein–ligand complexes (with the mentioned ligands). Of worthy interest is that saquinavir, nilotinib and alectinib are also considered as a promising multitarget ligand because it seems to inhibit three targets, which play an important role in the viral cycle. On the other side, saquinavir was shown to be able to bind to E protein both in its monomeric as well as pentameric forms. Finally, further experimental assays are needed to probe our hypothesis derived from in silico studies.
Collapse
|
9
|
Tilston-Lunel AM, Varelas X. Polarity in respiratory development, homeostasis and disease. Curr Top Dev Biol 2023; 154:285-315. [PMID: 37100521 DOI: 10.1016/bs.ctdb.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology. Here, we summarize the current knowledge of cell polarity in lung development and homeostasis, highlighting key roles for polarity in alveolar and airway epithelial function and outlining relationships with microbial infections and diseases, such as cancer.
Collapse
|
10
|
Abavisani M, Rahimian K, Mahdavi B, Tokhanbigli S, Mollapour Siasakht M, Farhadi A, Kodori M, Mahmanzar M, Meshkat Z. Mutations in SARS-CoV-2 structural proteins: a global analysis. Virol J 2022; 19:220. [PMID: 36528612 PMCID: PMC9759450 DOI: 10.1186/s12985-022-01951-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Emergence of new variants mainly variants of concerns (VOC) is caused by mutations in main structural proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, we aimed to investigate the mutations among structural proteins of SARS-CoV-2 globally. METHODS We analyzed samples of amino-acid sequences (AASs) for envelope (E), membrane (M), nucleocapsid (N), and spike (S) proteins from the declaration of the coronavirus 2019 (COVID-19) as pandemic to January 2022. The presence and location of mutations were then investigated by aligning the sequences to the reference sequence and categorizing them based on frequency and continent. Finally, the related human genes with the viral structural genes were discovered, and their interactions were reported. RESULTS The results indicated that the most relative mutations among the E, M, N, and S AASs occurred in the regions of 7 to 14, 66 to 88, 164 to 205, and 508 to 635 AAs, respectively. The most frequent mutations in E, M, N, and S proteins were T9I, I82T, R203M/R203K, and D614G. D614G was the most frequent mutation in all six geographical areas. Following D614G, L18F, A222V, E484K, and N501Y, respectively, were ranked as the most frequent mutations in S protein globally. Besides, A-kinase Anchoring Protein 8 Like (AKAP8L) was shown as the linkage unit between M, E, and E cluster genes. CONCLUSION Screening the structural protein mutations can help scientists introduce better drug and vaccine development strategies.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Rahimian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Bahar Mahdavi
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Tokhanbigli
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Mollapour Siasakht
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Amin Farhadi
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Mansoor Kodori
- Non Communicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mohammadamin Mahmanzar
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish, Iran.
| | - Zahra Meshkat
- Department of Microbiology and Virology, School of Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Rizwan T, Kothidar A, Meghwani H, Sharma V, Shobhawat R, Saini R, Vaishnav HK, Singh V, Pratap M, Sihag H, Kumar S, Dey JK, Dey SK. Comparative analysis of SARS-CoV-2 envelope viroporin mutations from COVID-19 deceased and surviving patients revealed implications on its ion-channel activities and correlation with patient mortality. J Biomol Struct Dyn 2022; 40:10454-10469. [PMID: 34229570 DOI: 10.1080/07391102.2021.1944319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One major obstacle in designing a successful therapeutic regimen to combat COVID-19 pandemic is the frequent occurrence of mutations in the SARS-CoV-2 resulting in patient to patient variations. Out of the four structural proteins of SARS-CoV-2 namely, spike, envelope, nucleocapsid and membrane, envelope protein governs the virus pathogenicity and induction of acute-respiratory-distress-syndrome which is the major cause of death in COVID-19 patients. These effects are facilitated by the viroporin (ion-channel) like activities of the envelope protein. Our current work reports metagenomic analysis of envelope protein at the amino acid sequence level through mining all the available SARS-CoV-2 genomes from the GISAID and coronapp servers. We found majority of mutations in envelope protein were localized at or near PDZ binding motif. Our analysis also demonstrates that the acquired mutations might have important implications on its structure and ion-channel activity. A statistical correlation between specific mutations (e.g. F4F, R69I, P71L, L73F) with patient mortalities were also observed, based on the patient data available for 18,691 SARS-CoV-2-genomes in the GISAID database till 30 April 2021. Albeit, whether these mutations exist as the cause or the effect of co-infections and/or co-morbid disorders within COVID-19 patients is still unclear. Moreover, most of the current vaccine and therapeutic interventions are revolving around spike protein. However, emphasizing on envelope protein's (1) conserved epitopes, (2) pathogenicity attenuating mutations, and (3) mutations present in the deceased patients, as reported in our present study, new directions to the ongoing efforts of therapeutic developments against COVID-19 can be achieved by targeting envelope viroporin.
Collapse
Affiliation(s)
- Tayyeba Rizwan
- Department of Biochemistry, University of Delhi South Campus, New Delhi, Delhi, India
| | - Akansha Kothidar
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Himanshu Meghwani
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Vaibhav Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Rahul Shobhawat
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, Maharashtra, India
| | - Rajpal Saini
- Department of Statistics, Faculty of Mathematical Sciences, University of Delhi, New Delhi, Delhi, India
| | - Hemendra Kumar Vaishnav
- Operations Management, Quantitative Methods and Information Systems Area, Indian Institute of Management Udaipur, Udaipur, Rajasthan, India
| | - Vikramaditya Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
| | - Mukut Pratap
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Hitaishi Sihag
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shakti Kumar
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Joy Kumar Dey
- Central Council for Research in Homoeopathy, Ministry of AYUSH, Govt. of India, New Delhi, Delhi, India
| | - Sanjay Kumar Dey
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| |
Collapse
|
12
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
13
|
Rocchi G, Giovanetti M, Benedetti F, Borsetti A, Ceccarelli G, Zella D, Altomare A, Ciccozzi M, Guarino MPL. Gut Microbiota and COVID-19: Potential Implications for Disease Severity. Pathogens 2022; 11:1050. [PMID: 36145482 PMCID: PMC9503814 DOI: 10.3390/pathogens11091050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 pandemic resulted in an unprecedented global crisis. SARS-CoV-2 primarily causes lung infection trough the binding of the virus with the ACE-2 cell receptor located on the surface of the alveolar epithelial cells. Notably, ACE-2 cell receptors are also expressed in the epithelial cells of the intestinal tract (GI). Recent data showed that the microbial communities of the GI might act as local and systematic inflammatory modulators. Gastrointestinal symptoms, including diarrhea, are frequently observed in infected individuals, and recent released data indicate that SARS-CoV-2 may also spread by fecal-oral transmission. Moreover, the gut microbiota's ecosystem can regulate and be regulated by invading pathogens, including viruses, facilitating an effective immune response, which in turn results in less severe diseases. In this regard, increased SARS-CoV-2 mortality and morbidities appear to be frequently observed in elderly immunocompromised patients and in people with essential health problems, such as diabetes, who, indeed, tend to have a less diverse gut microbiota (dysbiosis). Therefore, it is important to understand how the interaction between the gut microbiota and SARS-CoV-2 might shape the intensity of the infection and different clinical outcomes. Here, we provide insights into the current knowledge of dysbiosis during SARS-CoV-2 infection and methods that may be used to re-establish a more correct microbiota composition.
Collapse
Affiliation(s)
- Giulia Rocchi
- Department of Science and Engineering for Human and the Environment, University of Campus Bio-Medico, 00128 Rome, Italy
| | - Marta Giovanetti
- Laboratorio de Flavivirus, lnstituto Oswaldo Cruz/Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico, 00128 Rome, Italy
| | - Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Annamaria Altomare
- Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico, 00128 Rome, Italy
- Unit of Digestive Disease, Campus Bio-Medico University, 00128 Rome, Italy
| | - Massimo Ciccozzi
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, 00128 Rome, Italy
| | | |
Collapse
|
14
|
Mishra PM, Anjum F, Uversky VN, Nandi CK. SARS-CoV-2 Spike mutations modify the interaction between virus Spike and human ACE2 receptors. Biochem Biophys Res Commun 2022; 620:8-14. [PMID: 35772213 PMCID: PMC9221686 DOI: 10.1016/j.bbrc.2022.06.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022]
Abstract
The high mutability of the SARS-CoV-2 virus is a growing concern among scientific communities and health professionals since it brings the effectiveness of repurposed drugs and vaccines for COVID-19 into question. Although the mutational investigation of the Spike protein of the SARS-CoV-2 virus has been confirmed by many different researchers, there is no thorough investigation carried out at the interacting region to reveal the mutational status and its associated severity. All the energetically favorable mutations and their detailed analytical features that could impact the infection severity of the SARS-CoV-2 virus need to be identified. Therefore, we have thoroughly investigated the most important site of the SARS-CoV-2 virus, which is the interface region (Residue 417–505) of the virus Spike that interacts with the human ACE2 receptor. Further, we have utilized molecular dynamic simulation to observe the relative stability of the Spike protein with partner ACE2, as a consequence of these mutations. In our study, we have identified 52 energetically favorable Spike mutations at the interface while binding to ACE2, of which only 36 significantly enhance the stabilization of the Spike-ACE2 complex. The stability order and molecular interactions of these mutations were also identified. The highest stabilizing mutation V503D confirmed in our study is also known for neutralization resistance.
Collapse
Affiliation(s)
- Pushpendra Mani Mishra
- School of Basic Sciences, Indian Institute of Technology, Mandi, HP, 175005, India; Advanced Material Research Centre, Indian Institute of Technology, Mandi, HP, 175005, India; Bio-X Centre, Indian Institute of Technology, Mandi, HP, 175005, India
| | - Farhan Anjum
- School of Basic Sciences, Indian Institute of Technology, Mandi, HP, 175005, India; Advanced Material Research Centre, Indian Institute of Technology, Mandi, HP, 175005, India; Bio-X Centre, Indian Institute of Technology, Mandi, HP, 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Chayan Kanti Nandi
- School of Basic Sciences, Indian Institute of Technology, Mandi, HP, 175005, India; Advanced Material Research Centre, Indian Institute of Technology, Mandi, HP, 175005, India; Bio-X Centre, Indian Institute of Technology, Mandi, HP, 175005, India.
| |
Collapse
|
15
|
Gao N, Raduka A, Rezaee F. Respiratory syncytial virus disrupts the airway epithelial barrier by decreasing cortactin and destabilizing F-actin. J Cell Sci 2022; 135:jcs259871. [PMID: 35848790 PMCID: PMC9481929 DOI: 10.1242/jcs.259871] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/11/2022] [Indexed: 01/26/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection is the leading cause of acute lower respiratory tract infection in young children worldwide. Our group recently revealed that RSV infection disrupts the airway epithelial barrier in vitro and in vivo. However, the underlying molecular pathways were still elusive. Here, we report the critical roles of the filamentous actin (F-actin) network and actin-binding protein cortactin in RSV infection. We found that RSV infection causes F-actin depolymerization in 16HBE cells, and that stabilizing the F-actin network in infected cells reverses the epithelial barrier disruption. RSV infection also leads to significantly decreased cortactin in vitro and in vivo. Cortactin-knockout 16HBE cells presented barrier dysfunction, whereas overexpression of cortactin protected the epithelial barrier against RSV. The activity of Rap1 (which has Rap1A and Rap1B forms), one downstream target of cortactin, declined after RSV infection as well as in cortactin-knockout cells. Moreover, activating Rap1 attenuated RSV-induced epithelial barrier disruption. Our study proposes a key mechanism in which RSV disrupts the airway epithelial barrier via attenuating cortactin expression and destabilizing the F-actin network. The identified pathways will provide new targets for therapeutic intervention toward RSV-related disease. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Andjela Raduka
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, Ohio 44195, USA
| |
Collapse
|
16
|
Schoeman D, Cloete R, Fielding BC. The Flexible, Extended Coil of the PDZ-Binding Motif of the Three Deadly Human Coronavirus E Proteins Plays a Role in Pathogenicity. Viruses 2022; 14:v14081707. [PMID: 36016329 PMCID: PMC9416557 DOI: 10.3390/v14081707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
The less virulent human (h) coronaviruses (CoVs) 229E, NL63, OC43, and HKU1 cause mild, self-limiting respiratory tract infections, while the more virulent SARS-CoV-1, MERS-CoV, and SARS-CoV-2 have caused severe outbreaks. The CoV envelope (E) protein, an important contributor to the pathogenesis of severe hCoV infections, may provide insight into this disparate severity of the disease. We, therefore, generated full-length E protein models for SARS-CoV-1 and -2, MERS-CoV, HCoV-229E, and HCoV-NL63 and docked C-terminal peptides of each model to the PDZ domain of the human PALS1 protein. The PDZ-binding motif (PBM) of the SARS-CoV-1 and -2 and MERS-CoV models adopted a more flexible, extended coil, while the HCoV-229E and HCoV-NL63 models adopted a less flexible alpha helix. All the E peptides docked to PALS1 occupied the same binding site and the more virulent hCoV E peptides generally interacted more stably with PALS1 than the less virulent ones. We hypothesize that the increased flexibility of the PBM in the more virulent hCoVs facilitates more stable binding to various host proteins, thereby contributing to more severe disease. This is the first paper to model full-length 3D structures for both the more virulent and less virulent hCoV E proteins, providing novel insights for possible drug and/or vaccine development.
Collapse
Affiliation(s)
- Dewald Schoeman
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa;
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa;
| | - Burtram C. Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa;
- Correspondence:
| |
Collapse
|
17
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
18
|
Troyano-Hernáez P, Reinosa R, Holguín Á. Evolution of SARS-CoV-2 in Spain during the First Two Years of the Pandemic: Circulating Variants, Amino Acid Conservation, and Genetic Variability in Structural, Non-Structural, and Accessory Proteins. Int J Mol Sci 2022; 23:6394. [PMID: 35742840 PMCID: PMC9223475 DOI: 10.3390/ijms23126394] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Monitoring SARS-CoV-2’s genetic diversity and emerging mutations in this ongoing pandemic is crucial to understanding its evolution and ensuring the performance of COVID-19 diagnostic tests, vaccines, and therapies. Spain has been one of the main epicenters of COVID-19, reaching the highest number of cases and deaths per 100,000 population in Europe at the beginning of the pandemic. This study aims to investigate the epidemiology of SARS-CoV-2 in Spain and its 18 Autonomous Communities across the six epidemic waves established from February 2020 to January 2022. We report on the circulating SARS-CoV-2 variants in each epidemic wave and Spanish region and analyze the mutation frequency, amino acid (aa) conservation, and most frequent aa changes across each structural/non-structural/accessory viral protein among the Spanish sequences deposited in the GISAID database during the study period. The overall SARS-CoV-2 mutation frequency was 1.24 × 10−5. The aa conservation was >99% in the three types of protein, being non-structural the most conserved. Accessory proteins had more variable positions, while structural proteins presented more aa changes per sequence. Six main lineages spread successfully in Spain from 2020 to 2022. The presented data provide an insight into the SARS-CoV-2 circulation and genetic variability in Spain during the first two years of the pandemic.
Collapse
Affiliation(s)
| | | | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology Department and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) in Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), 28034 Madrid, Spain; (P.T.-H.); (R.R.)
| |
Collapse
|
19
|
Smith AP, Williams EP, Plunkett TR, Selvaraj M, Lane LC, Zalduondo L, Xue Y, Vogel P, Channappanavar R, Jonsson CB, Smith AM. Time-Dependent Increase in Susceptibility and Severity of Secondary Bacterial Infections During SARS-CoV-2. Front Immunol 2022; 13:894534. [PMID: 35634338 PMCID: PMC9134015 DOI: 10.3389/fimmu.2022.894534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Secondary bacterial infections can exacerbate SARS-CoV-2 infection, but their prevalence and impact remain poorly understood. Here, we established that a mild to moderate infection with the SARS-CoV-2 USA-WA1/2020 strain increased the risk of pneumococcal (type 2 strain D39) coinfection in a time-dependent, but sex-independent, manner in the transgenic K18-hACE2 mouse model of COVID-19. Bacterial coinfection increased lethality when the bacteria was initiated at 5 or 7 d post-virus infection (pvi) but not at 3 d pvi. Bacterial outgrowth was accompanied by neutrophilia in the groups coinfected at 7 d pvi and reductions in B cells, T cells, IL-6, IL-15, IL-18, and LIF were present in groups coinfected at 5 d pvi. However, viral burden, lung pathology, cytokines, chemokines, and immune cell activation were largely unchanged after bacterial coinfection. Examining surviving animals more than a week after infection resolution suggested that immune cell activation remained high and was exacerbated in the lungs of coinfected animals compared with SARS-CoV-2 infection alone. These data suggest that SARS-CoV-2 increases susceptibility and pathogenicity to bacterial coinfection, and further studies are needed to understand and combat disease associated with bacterial pneumonia in COVID-19 patients.
Collapse
Affiliation(s)
- Amanda P. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Taylor R. Plunkett
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Muneeswaran Selvaraj
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lindey C. Lane
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lillian Zalduondo
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yi Xue
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Rudragouda Channappanavar
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, United States
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
20
|
Dumache R, Enache A, Macasoi I, Dehelean CA, Dumitrascu V, Mihailescu A, Popescu R, Vlad D, Vlad CS, Muresan C. SARS-CoV-2: An Overview of the Genetic Profile and Vaccine Effectiveness of the Five Variants of Concern. Pathogens 2022; 11:pathogens11050516. [PMID: 35631037 PMCID: PMC9144800 DOI: 10.3390/pathogens11050516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
With the onset of the COVID-19 pandemic, enormous efforts have been made to understand the genus SARS-CoV-2. Due to the high rate of global transmission, mutations in the viral genome were inevitable. A full understanding of the viral genome and its possible changes represents one of the crucial aspects of pandemic management. Structural protein S plays an important role in the pathogenicity of SARS-CoV-2, mutations occurring at this level leading to viral forms with increased affinity for ACE2 receptors, higher transmissibility and infectivity, resistance to neutralizing antibodies and immune escape, increasing the risk of infection and disease severity. Thus, five variants of concern are currently being discussed, Alpha, Beta, Gamma, Delta and Omicron. In the present review, a comprehensive summary of the following critical aspects regarding SARS-CoV-2 has been made: (i) the genomic characteristics of SARS-CoV-2; (ii) the pathological mechanism of transmission, penetration into the cell and action on specific receptors; (iii) mutations in the SARS-CoV-2 genome; and (iv) possible implications of mutations in diagnosis, treatment, and vaccination.
Collapse
Affiliation(s)
- Raluca Dumache
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
| | - Alexandra Enache
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
| | - Ioana Macasoi
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (I.M.); (C.A.D.)
| | - Cristina Adriana Dehelean
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (I.M.); (C.A.D.)
| | - Victor Dumitrascu
- Department of Pharmacology and Biochemistry, Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.D.); (D.V.); (C.S.V.)
| | - Alexandra Mihailescu
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
- Genetics, Genomic Medicine Research Center, Department of Microscopic Morphology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Roxana Popescu
- Department of Microscopic Morphology, Discipline of Molecular and Cell Biology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Daliborca Vlad
- Department of Pharmacology and Biochemistry, Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.D.); (D.V.); (C.S.V.)
| | - Cristian Sebastian Vlad
- Department of Pharmacology and Biochemistry, Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.D.); (D.V.); (C.S.V.)
| | - Camelia Muresan
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
| |
Collapse
|
21
|
Medeiros-Silva J, Somberg NH, Wang HK, McKay MJ, Mandala VS, Dregni AJ, Hong M. pH- and Calcium-Dependent Aromatic Network in the SARS-CoV-2 Envelope Protein. J Am Chem Soc 2022; 144:6839-6850. [PMID: 35380805 DOI: 10.1021/jacs.2c00973] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use 13C and 19F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. 19F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca2+ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses.
Collapse
Affiliation(s)
- João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Noah H Somberg
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Harrison K Wang
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Matthew J McKay
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Vindeirinho JM, Pinho E, Azevedo NF, Almeida C. SARS-CoV-2 Diagnostics Based on Nucleic Acids Amplification: From Fundamental Concepts to Applications and Beyond. Front Cell Infect Microbiol 2022; 12:799678. [PMID: 35402302 PMCID: PMC8984495 DOI: 10.3389/fcimb.2022.799678] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 pandemic ignited the development of countless molecular methods for the diagnosis of SARS-CoV-2 based either on nucleic acid, or protein analysis, with the first establishing as the most used for routine diagnosis. The methods trusted for day to day analysis of nucleic acids rely on amplification, in order to enable specific SARS-CoV-2 RNA detection. This review aims to compile the state-of-the-art in the field of nucleic acid amplification tests (NAATs) used for SARS-CoV-2 detection, either at the clinic level, or at the Point-Of-Care (POC), thus focusing on isothermal and non-isothermal amplification-based diagnostics, while looking carefully at the concerning virology aspects, steps and instruments a test can involve. Following a theme contextualization in introduction, topics about fundamental knowledge on underlying virology aspects, collection and processing of clinical samples pave the way for a detailed assessment of the amplification and detection technologies. In order to address such themes, nucleic acid amplification methods, the different types of molecular reactions used for DNA detection, as well as the instruments requested for executing such routes of analysis are discussed in the subsequent sections. The benchmark of paradigmatic commercial tests further contributes toward discussion, building on technical aspects addressed in the previous sections and other additional information supplied in that part. The last lines are reserved for looking ahead to the future of NAATs and its importance in tackling this pandemic and other identical upcoming challenges.
Collapse
Affiliation(s)
- João M. Vindeirinho
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Eva Pinho
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno F. Azevedo
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Carina Almeida
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| |
Collapse
|
23
|
Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy. Int J Mol Sci 2022; 23:ijms23062995. [PMID: 35328419 PMCID: PMC8951934 DOI: 10.3390/ijms23062995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The published literature makes a very strong case that a wide range of disease morbidity associates with and may in part be due to epithelial barrier leak. An equally large body of published literature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models. Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity now exists in critical care—but also medical prophylactic and therapeutic care in general—to consider implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.
Collapse
|
24
|
Smith AP, Williams EP, Plunkett TR, Selvaraj M, Lane LC, Zalduondo L, Xue Y, Vogel P, Channappanavar R, Jonsson CB, Smith AM. Time-Dependent Increase in Susceptibility and Severity of Secondary Bacterial Infection during SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.28.482305. [PMID: 35262077 PMCID: PMC8902874 DOI: 10.1101/2022.02.28.482305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Secondary bacterial infections can exacerbate SARS-CoV-2 infection, but their prevalence and impact remain poorly understood. Here, we established that a mild to moderate SARS-CoV-2 infection increased the risk of pneumococcal coinfection in a time-dependent, but sexindependent, manner in the transgenic K18-hACE mouse model of COVID-19. Bacterial coinfection was not established at 3 d post-virus, but increased lethality was observed when the bacteria was initiated at 5 or 7 d post-virus infection (pvi). Bacterial outgrowth was accompanied by neutrophilia in the groups coinfected at 7 d pvi and reductions in B cells, T cells, IL-6, IL-15, IL-18, and LIF were present in groups coinfected at 5 d pvi. However, viral burden, lung pathology, cytokines, chemokines, and immune cell activation were largely unchanged after bacterial coinfection. Examining surviving animals more than a week after infection resolution suggested that immune cell activation remained high and was exacerbated in the lungs of coinfected animals compared with SARS-CoV-2 infection alone. These data suggest that SARS-CoV-2 increases susceptibility and pathogenicity to bacterial coinfection, and further studies are needed to understand and combat disease associated with bacterial pneumonia in COVID-19 patients.
Collapse
Affiliation(s)
- Amanda P. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Taylor R. Plunkett
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Muneeswaran Selvaraj
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lindey C. Lane
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lillian Zalduondo
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yi Xue
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rudragouda Channappanavar
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
25
|
Dey S, Bose A, Saha S, Chakraborty P, Ghalwash M, Guzm X E N-Sáenz A, Utro F, Ng K, Hu J, Parida L, Sow D. Impact of Clinical and Genomic Factors on COVID-19 Disease Severity. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2022; 2021:378-387. [PMID: 35308982 PMCID: PMC8861728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To date, there have been 180 million confirmed cases of COVID-19, with more than 3.8 million deaths, reported to WHO worldwide. In this paper we address the problem of understanding the host genome's influence, in concert with clinical variables, on the severity of COVID-19 manifestation in the patient. Leveraging positive-unlabeled machine learning algorithms coupled with RubricOE, a state-of-the-art genomic analysis framework, on UK BioBank data we extract novel insights on the complex interplay. The algorithm is also sensitive enough to detect the changing influence of the emergent B.1.1.7 SARS-CoV-2 (alpha) variant on disease severity, and, changing treatment protocols. The genomic component also implicates biological pathways that can help in understanding the disease etiology. Our work demonstrates that it is possible to build a robust and sensitive model despite significant bias, noise and incompleteness in both clinical and genomic data by a careful interleaving of clinical and genomic methodologies.
Collapse
Affiliation(s)
- Sanjoy Dey
- Center for Computational Health, IBM Research, Yorktown Heights, NY, USA
| | - Aritra Bose
- Computational Genomics, IBM Research, Yorktown Heights, NY, USA
| | - Subrata Saha
- Columbia University Irving Medical Center, Columbia University, NY, USA
| | | | - Mohamed Ghalwash
- Center for Computational Health, IBM Research, Yorktown Heights, NY, USA
| | | | - Filippo Utro
- Computational Genomics, IBM Research, Yorktown Heights, NY, USA
| | - Kenney Ng
- Center for Computational Health, IBM Research, Yorktown Heights, NY, USA
| | - Jianying Hu
- Center for Computational Health, IBM Research, Yorktown Heights, NY, USA
| | - Laxmi Parida
- Computational Genomics, IBM Research, Yorktown Heights, NY, USA
| | - Daby Sow
- Center for Computational Health, IBM Research, Yorktown Heights, NY, USA
| |
Collapse
|
26
|
Pizzato M, Baraldi C, Boscato Sopetto G, Finozzi D, Gentile C, Gentile MD, Marconi R, Paladino D, Raoss A, Riedmiller I, Ur Rehman H, Santini A, Succetti V, Volpini L. SARS-CoV-2 and the Host Cell: A Tale of Interactions. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2021.815388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of a virus to spread between individuals, its replication capacity and the clinical course of the infection are macroscopic consequences of a multifaceted molecular interaction of viral components with the host cell. The heavy impact of COVID-19 on the world population, economics and sanitary systems calls for therapeutic and prophylactic solutions that require a deep characterization of the interactions occurring between virus and host cells. Unveiling how SARS-CoV-2 engages with host factors throughout its life cycle is therefore fundamental to understand the pathogenic mechanisms underlying the viral infection and to design antiviral therapies and prophylactic strategies. Two years into the SARS-CoV-2 pandemic, this review provides an overview of the interplay between SARS-CoV-2 and the host cell, with focus on the machinery and compartments pivotal for virus replication and the antiviral cellular response. Starting with the interaction with the cell surface, following the virus replicative cycle through the characterization of the entry pathways, the survival and replication in the cytoplasm, to the mechanisms of egress from the infected cell, this review unravels the complex network of interactions between SARS-CoV-2 and the host cell, highlighting the knowledge that has the potential to set the basis for the development of innovative antiviral strategies.
Collapse
|
27
|
Erdem Ö, Eş I, Saylan Y, Inci F. Unifying the Efforts of Medicine, Chemistry, and Engineering in Biosensing Technologies to Tackle the Challenges of the COVID-19 Pandemic. Anal Chem 2022; 94:3-25. [PMID: 34874149 DOI: 10.1021/acs.analchem.1c04454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Özgecan Erdem
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Ismail Eş
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
28
|
Kiryanov SA, Levina TA, Konopleva MV, Suslov AP. Identification of Hotspot Mutations in the N Gene of SARS-CoV-2 in Russian Clinical Samples That May Affect the Detection by Reverse Transcription-PCR. Diagnostics (Basel) 2022; 12:diagnostics12010147. [PMID: 35054314 PMCID: PMC8774456 DOI: 10.3390/diagnostics12010147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022] Open
Abstract
Sensitive and reliable diagnostic test systems based on real-time PCR are of great importance in the fight against the ongoing SARS-CoV-2 pandemic. The genetic variability of the SARS-CoV-2 virus leads to the accumulation of mutations, some of which may affect the sensitivity of modern PCR assays. The aim of this study was to search in Russian clinical samples for new mutations in SARS-CoV-2 gene N that can affect the detection by RT-PCR. In this study, the polymorphisms in the regions of the target gene N causing failed or poor detection of the target N in the RT-PCR assay on 12 selected samples were detected. Sequencing the entire N and E genes in these samples along with other 195 samples that were positive for both target regions was performed. Here, we identified a number of nonsynonymous mutations and one novel deletion in the N gene that affected the ability to detect a target in the N gene as well a few mutations in the E gene of SARS-CoV-2 that did not affect detection. Sequencing revealed that majority of the mutations in the N gene were located in the variable region between positions 193 and 235 aa, inside and nearby the phosphorylated serine-rich region of the protein N. This study highlights the importance of the further characterization of the genetic variability and evolution of gene N, the most common target for detecting SARS-CoV-2. The use of at least two targets for detecting SARS-CoV-2, including one for the E gene, will be necessary for reliable diagnostics.
Collapse
Affiliation(s)
- Sergei A. Kiryanov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (T.A.L.); (M.V.K.); (A.P.S.)
- Correspondence:
| | - Tatiana A. Levina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (T.A.L.); (M.V.K.); (A.P.S.)
- OOO “DNA-Technology”, 117587 Moscow, Russia
| | - Maria V. Konopleva
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (T.A.L.); (M.V.K.); (A.P.S.)
| | - Anatoly P. Suslov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (T.A.L.); (M.V.K.); (A.P.S.)
| |
Collapse
|
29
|
Yavarian J, Zebardast A, Latifi T. The role of severe acute respiratory syndrome coronavirus 2 viroporins in inflammation. ADVANCES IN HUMAN BIOLOGY 2022. [DOI: 10.4103/aihb.aihb_108_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Mösbauer K, Fritsch VN, Adrian L, Bernhardt J, Gruhlke MCH, Slusarenko AJ, Niemeyer D, Antelmann H. The Effect of Allicin on the Proteome of SARS-CoV-2 Infected Calu-3 Cells. Front Microbiol 2021; 12:746795. [PMID: 34777295 PMCID: PMC8581659 DOI: 10.3389/fmicb.2021.746795] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Allicin (diallyl thiosulfinate) is the major thiol-reactive organosulfur compound produced by garlic plants (Allium sativum) upon tissue damage. Allicin exerts its strong antimicrobial activity against bacteria and fungi via S-thioallylation of protein thiols and low molecular weight thiols. Here, we investigated the effect of allicin on SARS-CoV-2 infected Vero E6 and Calu-3 cells. Toxicity tests revealed that Calu-3 cells showed greater allicin tolerance, probably due to >4-fold higher GSH levels compared to the very sensitive Vero E6 cells. Exposure of infected Vero E6 and Calu-3 cells to biocompatible allicin doses led to a ∼60–70% decrease of viral RNA and infectious viral particles. Label-free quantitative proteomics was used to investigate the changes in the Calu-3 proteome after SARS-CoV-2 infection and the effect of allicin on the host-virus proteome. SARS-CoV-2 infection of Calu-3 cells caused a strong induction of the antiviral interferon-stimulated gene (ISG) signature, including several antiviral effectors, such as cGAS, Mx1, IFIT, IFIH, IFI16, IFI44, OAS, and ISG15, pathways of vesicular transport, tight junctions (KIF5A/B/C, OSBPL2, CLTCL1, and ARHGAP17) and ubiquitin modification (UBE2L3/5), as well as reprogramming of host metabolism, transcription and translation. Allicin treatment of infected Calu-3 cells reduced the expression of IFN signaling pathways and ISG effectors and reverted several host pathways to levels of uninfected cells. Allicin further reduced the abundance of the structural viral proteins N, M, S and ORF3 in the host-virus proteome. In conclusion, our data demonstrate the antiviral and immunomodulatory activity of biocompatible doses of allicin in SARS-CoV-2-infected cell cultures. Future drug research should be directed to exploit the thiol-reactivity of allicin derivatives with increased stability and lower human cell toxicity as antiviral lead compounds.
Collapse
Affiliation(s)
- Kirstin Mösbauer
- Institute of Virology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Berlin, Germany.,German Centre for Infection Research (DZIF), Berlin, Germany
| | | | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Fachgebiet Geobiotechnologie, Technische Universität Berlin, Berlin, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | | | | | - Daniela Niemeyer
- Institute of Virology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Berlin, Germany.,German Centre for Infection Research (DZIF), Berlin, Germany
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
31
|
Kaur A, Chopra M, Bhushan M, Gupta S, Kumari P H, Sivagurunathan N, Shukla N, Rajagopal S, Bhalothia P, Sharma P, Naravula J, Suravajhala R, Gupta A, Abbasi BA, Goswami P, Singh H, Narang R, Polavarapu R, Medicherla KM, Valadi J, Kumar S A, Chaubey G, Singh KK, Bandapalli OR, Kavi Kishor PB, Suravajhala P. The Omic Insights on Unfolding Saga of COVID-19. Front Immunol 2021; 12:724914. [PMID: 34745097 PMCID: PMC8564481 DOI: 10.3389/fimmu.2021.724914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
The year 2019 has seen an emergence of the novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease of 2019 (COVID-19). Since the onset of the pandemic, biological and interdisciplinary research is being carried out across the world at a rapid pace to beat the pandemic. There is an increased need to comprehensively understand various aspects of the virus from detection to treatment options including drugs and vaccines for effective global management of the disease. In this review, we summarize the salient findings pertaining to SARS-CoV-2 biology, including symptoms, hosts, epidemiology, SARS-CoV-2 genome, and its emerging variants, viral diagnostics, host-pathogen interactions, alternative antiviral strategies and application of machine learning heuristics and artificial intelligence for effective management of COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Arvinpreet Kaur
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Punjab, India
- Bioclues.org, Hyderabad, India
| | - Mehak Chopra
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Mahak Bhushan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Sonal Gupta
- Bioclues.org, Hyderabad, India
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | | | - Narmadhaa Sivagurunathan
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Nidhi Shukla
- Bioclues.org, Hyderabad, India
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Shalini Rajagopal
- Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Purva Bhalothia
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Purnima Sharma
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Punjab, India
| | - Jalaja Naravula
- Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Renuka Suravajhala
- Bioclues.org, Hyderabad, India
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | - Ayam Gupta
- Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Bilal Ahmed Abbasi
- Functional Genomics Unit, Council of Scientific and Industrial Research- Institute of Genomics & Integrative Biology (CSIR-IGIB), Delhi, India
| | - Prittam Goswami
- Department of Biotechnology, Haldia Institute of Technology, West Bengal, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Punjab, India
- Bioclues.org, Hyderabad, India
| | - Rahul Narang
- Department of Microbiology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | | | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Jayaraman Valadi
- Bioclues.org, Hyderabad, India
- Department of Computer Science, Flame University, Pune, India
| | - Anil Kumar S
- Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Benaras Hindu University, Varanasi, India
| | - Keshav K. Singh
- Department of Genetics, University of Alabama, Birmingham, AL, United States
| | - Obul Reddy Bandapalli
- Bioclues.org, Hyderabad, India
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Polavarapu Bilhan Kavi Kishor
- Bioclues.org, Hyderabad, India
- Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Prashanth Suravajhala
- Bioclues.org, Hyderabad, India
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kerala, India
| |
Collapse
|
32
|
Guo Y, Wang B, Gao H, Gao L, Hua R, Xu JD. ACE2 in the Gut: The Center of the 2019-nCoV Infected Pathology. Front Mol Biosci 2021; 8:708336. [PMID: 34631794 PMCID: PMC8493804 DOI: 10.3389/fmolb.2021.708336] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
The 2019-nCoV is a rapidly contagious pneumonia caused by the recently discovered coronavirus. Although generally the most noticeable symptoms are concentrated in the lungs, the disorders in the gastrointestinal tract are of great importance in the diagnosis of 2019-nCoV. The angiotensin-converting enzyme 2 (ACE2), an important regulator of many physiological functions, including blood pressure and nutrients absorption, is recently identified as a vital entry for 2019-nCoV to enter host cells. In this review, we summarize its functions both physiologically and pathologically. We also elaborate its conflicting roles from the clews of contemporary researches, which may provide significant indications for pharmacological investigations and clinical uses.
Collapse
Affiliation(s)
- Yuexin Guo
- Department of Oral Medicine "5+3" Program, Basic Medical College, Capital Medical University, Beijing, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, China
| | - Han Gao
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Bioinformatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Rongxuan Hua
- Department of Clinical Medicine "5+3" Program, Basic Medical College, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Zhang Q, Friedman PA. Receptor-Loaded Virion Endangers GPCR Signaling: Mechanistic Exploration of SARS-CoV-2 Infections and Pharmacological Implications. Int J Mol Sci 2021; 22:ijms222010963. [PMID: 34681624 PMCID: PMC8535999 DOI: 10.3390/ijms222010963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 01/14/2023] Open
Abstract
SARS-CoV-2 exploits the respiratory tract epithelium including lungs as the primary entry point and reaches other organs through hematogenous expansion, consequently causing multiorgan injury. Viral E protein interacts with cell junction-associated proteins PALS1 or ZO-1 to gain massive penetration by disrupting the inter-epithelial barrier. Conversely, receptor-mediated viral invasion ensures limited but targeted infections in multiple organs. The ACE2 receptor represents the major virion loading site by virtue of its wide tissue distribution as demonstrated in highly susceptible lung, intestine, and kidney. In brain, NRP1 mediates viral endocytosis in a similar manner to ACE2. Prominently, PDZ interaction involves the entire viral loading process either outside or inside the host cells, whereas E, ACE2, and NRP1 provide the PDZ binding motif required for interacting with PDZ domain-containing proteins PALS1, ZO-1, and NHERF1, respectively. Hijacking NHERF1 and β-arrestin by virion loading may impair specific sensory GPCR signalosome assembling and cause disordered cellular responses such as loss of smell and taste. PDZ interaction enhances SARS-CoV-2 invasion by supporting viral receptor membrane residence, implying that the disruption of these interactions could diminish SARS-CoV-2 infections and be another therapeutic strategy against COVID-19 along with antibody therapy. GPCR-targeted drugs are likely to alleviate pathogenic symptoms-associated with SARS-CoV-2 infection.
Collapse
|
34
|
Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers 2021; 9:1943274. [PMID: 34241579 DOI: 10.1080/21688370.2021.19432749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Oropharyngeal, airway, intestinal, and genital mucosal epithelia are the main portals of entry for the majority of human pathogenic viruses. To initiate systemic infection, viruses must first be transmitted across the mucosal epithelium and then spread across the body. However, mucosal epithelia have well-developed tight junctions, which have a strong barrier function that plays a critical role in preventing the spread and dissemination of viral pathogens. Viruses can overcome these barriers by disrupting the tight junctions of mucosal epithelia, which facilitate paracellular viral penetration and initiate systemic disease. Disruption of tight and adherens junctions may also release the sequestered viral receptors within the junctional areas, and liberation of hidden receptors may facilitate viral infection of mucosal epithelia. This review focuses on possible molecular mechanisms of virus-associated disruption of mucosal epithelial junctions and its role in transmucosal viral transmission and spread.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
35
|
Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers 2021; 9:1943274. [PMID: 34241579 DOI: 10.1080/21688370.2021.1943274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Oropharyngeal, airway, intestinal, and genital mucosal epithelia are the main portals of entry for the majority of human pathogenic viruses. To initiate systemic infection, viruses must first be transmitted across the mucosal epithelium and then spread across the body. However, mucosal epithelia have well-developed tight junctions, which have a strong barrier function that plays a critical role in preventing the spread and dissemination of viral pathogens. Viruses can overcome these barriers by disrupting the tight junctions of mucosal epithelia, which facilitate paracellular viral penetration and initiate systemic disease. Disruption of tight and adherens junctions may also release the sequestered viral receptors within the junctional areas, and liberation of hidden receptors may facilitate viral infection of mucosal epithelia. This review focuses on possible molecular mechanisms of virus-associated disruption of mucosal epithelial junctions and its role in transmucosal viral transmission and spread.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
36
|
Shirvaliloo M. The blood-gas barrier in COVID-19: an overview of the effects of SARS-CoV-2 infection on the alveolar epithelial and endothelial cells of the lung. Tissue Barriers 2021; 9:1937013. [PMID: 34232823 PMCID: PMC8794501 DOI: 10.1080/21688370.2021.1937013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
Blood-gas barrier (BGB) or alveolar-capillary barrier is the primary tissue barrier affected by coronavirus disease 2019 (COVID-19). Comprising alveolar epithelial cells (AECs), endothelial cells (ECs) and the extracellular matrix (ECM) in between, the BGB is damaged following the action of multiple pro-inflammatory cytokines during acute inflammation. The infection of AECs and ECs with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen behind COVID-19, triggers an inflammatory response at the BGB, inducing the release of interleukin 1 (IL-1), IL-6, tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), high mobility group box 1 (HMGB1), matrix metalloproteinases (MMPs), intercellular adhesion molecule-1 (ICAM-1) and platelet activating factor (PAF). The end result is the disassembly of adherens junctions (AJs) and tight junctions (TJs) in both AECs and ECs, AEC hyperplasia, EC pyroptosis, ECM remodeling and deposition of fibrin clots in the alveolar capillaries, leading to disintegration and thickening of the BGB, and ultimately, hypoxia. This commentary seeks to provide a brief account of how the BGB might become affected in COVID-19.
Collapse
Affiliation(s)
- Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Polat C, Ergunay K. Insights into the virologic and immunologic features of SARS-COV-2. World J Clin Cases 2021; 9:5007-5018. [PMID: 34307551 PMCID: PMC8283606 DOI: 10.12998/wjcc.v9.i19.5007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
The host immunity is crucial in determining the clinical course and prognosis of coronavirus disease 2019, where some systemic and severe manifestations are associated with excessive or suboptimal responses. Several antigenic epitopes in spike, nucleocapsid and membrane proteins of severe acute respiratory syndrome coronavirus 2 are targeted by the immune system, and a robust response with innate and adaptive components develops in infected individuals. High titer neutralizing antibodies and a balanced T cell response appears to constitute the optimal immune response to severe acute respiratory syndrome coronavirus 2, where innate and mucosal defenses also contribute significantly. Following exposure, immunological memory seems to develop and be maintained for substantial periods. Here, we provide an overview of the main aspects in antiviral immunity involving innate and adaptive responses with insights into virus structure, individual variations pertaining to disease severity as well as long-term protective immunity expected to be attained by vaccination.
Collapse
Affiliation(s)
- Ceylan Polat
- Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Koray Ergunay
- Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| |
Collapse
|
38
|
Megyeri K, Dernovics Á, Al-Luhaibi ZII, Rosztóczy A. COVID-19-associated diarrhea. World J Gastroenterol 2021; 27:3208-3222. [PMID: 34163106 PMCID: PMC8218355 DOI: 10.3748/wjg.v27.i23.3208] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged as a highly virulent respiratory pathogen that is known as the causative agent of coronavirus disease 2019 (COVID-19). Diarrhea is a common early symptom in a significant proportion of patients with SARS-CoV-2 infection. SARS-CoV-2 can infect and replicate in esophageal cells and enterocytes, leading to direct damage to the intestinal epithelium. The infection decreases the level of angiotensin-converting enzyme 2 receptors, thereby altering the composition of the gut microbiota. SARS-CoV-2 elicits a cytokine storm, which contributes to gastrointestinal inflammation. The direct cytopathic effects of SARS-CoV-2, gut dysbiosis, and aberrant immune response result in increased intestinal permeability, which may exacerbate existing symptoms and worsen the prognosis. By exploring the elements of pathogenesis, several therapeutic options have emerged for the treatment of COVID-19 patients, such as biologics and biotherapeutic agents. However, the presence of SARS-CoV-2 in the feces may facilitate the spread of COVID-19 through fecal-oral transmission and contaminate the environment. Thus gastrointestinal SARS-CoV-2 infection has important epidemiological significance. The development of new therapeutic and preventive options is necessary to treat and restrict the spread of this severe and widespread infection more effectively. Therefore, we summarize the key elements involved in the pathogenesis and the epidemiology of COVID-19-associated diarrhea.
Collapse
Affiliation(s)
- Klara Megyeri
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged 6720, Csongrad, Hungary
| | - Áron Dernovics
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged 6720, Csongrad, Hungary
| | - Zaid I I Al-Luhaibi
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged 6720, Csongrad, Hungary
| | - András Rosztóczy
- Division of Gastroenterology, Department of Internal Medicine, University of Szeged, Szeged 6720, Csongrad, Hungary
| |
Collapse
|
39
|
Anand G, Perry AM, Cummings CL, St Raymond E, Clemens RA, Steed AL. Surface Proteins of SARS-CoV-2 Drive Airway Epithelial Cells to Induce IFN-Dependent Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:3000-3009. [PMID: 34078711 PMCID: PMC8278276 DOI: 10.4049/jimmunol.2001407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/06/2021] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2, the virus that has caused the COVID-19 pandemic, robustly activates the host immune system in critically ill patients. Understanding how the virus engages the immune system will facilitate the development of needed therapeutic strategies. In this study, we demonstrate both in vitro and in vivo that the SARS-CoV-2 surface proteins spike (S) and envelope (E) activate the key immune signaling IFN pathway in both human and mouse immune and epithelial cells independent of viral infection and replication. These proteins induce reactive oxidative species generation and increases in human- and murine-specific, IFN-responsive cytokines and chemokines, similar to their upregulation in critically ill COVID-19 patients. Induction of IFN signaling is dependent on canonical but discrepant inflammatory signaling mediators, as the activation induced by S is dependent on IRF3, TBK1, and MyD88, whereas that of E is largely MyD88 independent. Furthermore, these viral surface proteins, specifically E, induced peribronchial inflammation and pulmonary vasculitis in a mouse model. Finally, we show that the organized inflammatory infiltrates are dependent on type I IFN signaling, specifically in lung epithelial cells. These findings underscore the role of SARS-CoV-2 surface proteins, particularly the understudied E protein, in driving cell specific inflammation and their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Gautam Anand
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Alexandra M Perry
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Celeste L Cummings
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Emma St Raymond
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Regina A Clemens
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Ashley L Steed
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
40
|
Shepley-McTaggart A, Sagum CA, Oliva I, Rybakovsky E, DiGuilio K, Liang J, Bedford MT, Cassel J, Sudol M, Mullin JM, Harty RN. SARS-CoV-2 Envelope (E) protein interacts with PDZ-domain-2 of host tight junction protein ZO1. PLoS One 2021; 16:e0251955. [PMID: 34106957 PMCID: PMC8189464 DOI: 10.1371/journal.pone.0251955] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
Newly emerged SARS-CoV-2 is the cause of an ongoing global pandemic leading to severe respiratory disease in humans. SARS-CoV-2 targets epithelial cells in the respiratory tract and lungs, which can lead to amplified chloride secretion and increased leak across epithelial barriers, contributing to severe pneumonia and consolidation of the lungs as seen in many COVID-19 patients. There is an urgent need for a better understanding of the molecular aspects that contribute to SARS-CoV-2-induced pathogenesis and for the development of approaches to mitigate these damaging pathologies. The multifunctional SARS-CoV-2 Envelope (E) protein contributes to virus assembly/egress, and as a membrane protein, also possesses viroporin channel properties that may contribute to epithelial barrier damage, pathogenesis, and disease severity. The extreme C-terminal (ECT) sequence of E also contains a putative PDZ-domain binding motif (PBM), similar to that identified in the E protein of SARS-CoV-1. Here, we screened an array of GST-PDZ domain fusion proteins using either a biotin-labeled WT or mutant ECT peptide from the SARS-CoV-2 E protein. Notably, we identified a singular specific interaction between the WT E peptide and the second PDZ domain of human Zona Occludens-1 (ZO1), one of the key regulators of TJ formation/integrity in all epithelial tissues. We used homogenous time resolve fluorescence (HTRF) as a second complementary approach to further validate this novel modular E-ZO1 interaction. We postulate that SARS-CoV-2 E interacts with ZO1 in infected epithelial cells, and this interaction may contribute, in part, to tight junction damage and epithelial barrier compromise in these cell layers leading to enhanced virus spread and severe dysfunction that leads to morbidity. Prophylactic/therapeutic intervention targeting this virus-host interaction may effectively reduce airway and/or gastrointestinal barrier damage and mitigate virus spread.
Collapse
Affiliation(s)
- Ariel Shepley-McTaggart
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cari A. Sagum
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America
| | - Isabela Oliva
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth Rybakovsky
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Katie DiGuilio
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Jingjing Liang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America
| | - Joel Cassel
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Marius Sudol
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - James M. Mullin
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Ronald N. Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
41
|
Battaglini D, Robba C, Fedele A, Trancǎ S, Sukkar SG, Di Pilato V, Bassetti M, Giacobbe DR, Vena A, Patroniti N, Ball L, Brunetti I, Torres Martí A, Rocco PRM, Pelosi P. The Role of Dysbiosis in Critically Ill Patients With COVID-19 and Acute Respiratory Distress Syndrome. Front Med (Lausanne) 2021; 8:671714. [PMID: 34150807 PMCID: PMC8211890 DOI: 10.3389/fmed.2021.671714] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
In late December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) quickly spread worldwide, and the syndrome it causes, coronavirus disease 2019 (COVID-19), has reached pandemic proportions. Around 30% of patients with COVID-19 experience severe respiratory distress and are admitted to the intensive care unit for comprehensive critical care. Patients with COVID-19 often present an enhanced immune response with a hyperinflammatory state characterized by a "cytokine storm," which may reflect changes in the microbiota composition. Moreover, the evolution to acute respiratory distress syndrome (ARDS) may increase the severity of COVID-19 and related dysbiosis. During critical illness, the multitude of therapies administered, including antibiotics, sedatives, analgesics, body position, invasive mechanical ventilation, and nutritional support, may enhance the inflammatory response and alter the balance of patients' microbiota. This status of dysbiosis may lead to hyper vulnerability in patients and an inappropriate response to critical circumstances. In this context, the aim of our narrative review is to provide an overview of possible interaction between patients' microbiota dysbiosis and clinical status of severe COVID-19 with ARDS, taking into consideration the characteristic hyperinflammatory state of this condition, respiratory distress, and provide an overview on possible nutritional strategies for critically ill patients with COVID-19-ARDS.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Chiara Robba
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Andrea Fedele
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Sebastian Trancǎ
- Department of Anesthesia and Intensive Care II, Clinical Emergency County Hospital of Cluj, Iuliu Hatieganu, University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Anaesthesia and Intensive Care 1, Clinical Emergency County Hospital Cluj-Napoca, Cluj-Napoca, Romania
| | - Samir Giuseppe Sukkar
- Dietetics and Clinical Nutrition Unit, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Matteo Bassetti
- Clinica Malattie Infettive, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Dipartimento di Scienze della Salute (DISSAL), Università degli Studi di Genova, Genova, Italy
| | - Daniele Roberto Giacobbe
- Clinica Malattie Infettive, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Dipartimento di Scienze della Salute (DISSAL), Università degli Studi di Genova, Genova, Italy
| | - Antonio Vena
- Clinica Malattie Infettive, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Nicolò Patroniti
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Iole Brunetti
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Antoni Torres Martí
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Division of Animal Experimentation, Department of Pulmonology, Hospital Clinic, Barcelona, Spain
- Centro de Investigacion en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Institut d'investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- COVID-19-Network, Ministry of Science, Technology, Innovation and Communication, Brasilia, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
42
|
Lo Cascio E, Toto A, Babini G, De Maio F, Sanguinetti M, Mordente A, Della Longa S, Arcovito A. Structural determinants driving the binding process between PDZ domain of wild type human PALS1 protein and SLiM sequences of SARS-CoV E proteins. Comput Struct Biotechnol J 2021; 19:1838-1847. [PMID: 33758649 PMCID: PMC7970798 DOI: 10.1016/j.csbj.2021.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022] Open
Abstract
Short Linear Motifs (SLiMs) are functional protein microdomains that typically mediate interactions between a short linear region in one protein and a globular domain in another. Surface Plasmon Resonance assays have been performed to determine the binding affinity between PDZ domain of wild type human PALS1 protein and tetradecapeptides representing the SLiMs sequences of SARS-CoV-1 and SARS-CoV-2 E proteins (E-SLiMs). SARS-CoV-2 E-SLiM binds to the human target protein with a higher affinity compared to SARS-CoV-1, showing a difference significantly greater than previously reported using the F318W mutant of PALS1 protein and shorter target peptides. Moreover, molecular dynamics simulations have provided clear evidence of the structural determinants driving this binding process. Specifically, the Arginine 69 residue in the SARS-CoV-2 E-SLiM is the key residue able to both enhance the specific polar interaction with negatively charged pockets of the PALS1 PDZ domain and reduce significantly the mobility of the viral peptide. These experimental and computational data are reinforced by the comparison of the interaction between the PALS1 PDZ domain with the natural ligand CRB1, as well as the corresponding E-SLiMs of other coronavirus members such as MERS and OCF43. Our results provide a model at the molecular level of the strategies used to mimic the endogenous SLiM peptide in the binding of the tight junctions of the host cell, explaining one of the possible reasons of the severity of the infection and pulmonary inflammation by SARS-CoV-2.
Collapse
Affiliation(s)
- Ettore Lo Cascio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Angelo Toto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Gabriele Babini
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Flavio De Maio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy.,Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy.,Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Alvaro Mordente
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy.,Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Stefano Della Longa
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy.,Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| |
Collapse
|
43
|
Hancock JT, Rouse RC, Stone E, Greenhough A. Interacting Proteins, Polymorphisms and the Susceptibility of Animals to SARS-CoV-2. Animals (Basel) 2021; 11:797. [PMID: 33809265 PMCID: PMC8000148 DOI: 10.3390/ani11030797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a world-wide problem for the human population. It is known that some animal species, such as mink, can become infected and transmit the virus. However, the susceptibility of most animals is not known. Here, we review the use of sequence analysis of the proteins which are known to interact with SARS-CoV-2 as a way to estimate an animal's susceptibility. Although most such work concentrates on the angiotensin-converting enzyme 2 receptor (ACE2), here TMPRSS2 (Transmembrane Serine Protease 2), neuropilin-1 and furin are also considered. Polymorphisms, especially ones which are known to alter viral/host interactions are also discussed. Analysis of ACE2 and TMPRSS2 protein sequences across species suggests this approach may be of some utility in predicting susceptibility; however, this analysis fails to highlight some susceptible animals such as mink. However, combined with observational data which emerges over time about which animals actually become infected, this may, in the future, be a useful tool to assist the management of risks associated with human/animal contact and support conservation and animal welfare measures.
Collapse
Affiliation(s)
- John T. Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (E.S.); (A.G.)
| | - Ros C. Rouse
- Research, Business and Innovation, University of the West of England, Bristol BS16 1QY, UK;
| | - Emma Stone
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (E.S.); (A.G.)
| | - Alexander Greenhough
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (E.S.); (A.G.)
| |
Collapse
|
44
|
Triggle CR, Bansal D, Ding H, Islam MM, Farag EABA, Hadi HA, Sultan AA. A Comprehensive Review of Viral Characteristics, Transmission, Pathophysiology, Immune Response, and Management of SARS-CoV-2 and COVID-19 as a Basis for Controlling the Pandemic. Front Immunol 2021; 12:631139. [PMID: 33717166 PMCID: PMC7952616 DOI: 10.3389/fimmu.2021.631139] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 emerged from China in December 2019 and during 2020 spread to every continent including Antarctica. The coronavirus, SARS-CoV-2, has been identified as the causative pathogen, and its spread has stretched the capacities of healthcare systems and negatively affected the global economy. This review provides an update on the virus, including the genome, the risks associated with the emergence of variants, mode of transmission, immune response, COVID-19 in children and the elderly, and advances made to contain, prevent and manage the disease. Although our knowledge of the mechanics of virus transmission and the immune response has been substantially demystified, concerns over reinfection, susceptibility of the elderly and whether asymptomatic children promote transmission remain unanswered. There are also uncertainties about the pathophysiology of COVID-19 and why there are variations in clinical presentations and why some patients suffer from long lasting symptoms-"the long haulers." To date, there are no significantly effective curative drugs for COVID-19, especially after failure of hydroxychloroquine trials to produce positive results. The RNA polymerase inhibitor, remdesivir, facilitates recovery of severely infected cases but, unlike the anti-inflammatory drug, dexamethasone, does not reduce mortality. However, vaccine development witnessed substantial progress with several being approved in countries around the globe.
Collapse
Affiliation(s)
- Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Devendra Bansal
- Department of Health Protection & Communicable Diseases Control, Ministry of Public Health, Doha, Qatar
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Md Mazharul Islam
- Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar
| | | | - Hamad Abdel Hadi
- Communicable Diseases Centre, Hamad Medical Corporations, Doha, Qatar
| | - Ali A. Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Doha, Qatar
| |
Collapse
|
45
|
Abstract
The apical junctional complexes (AJCs) of airway epithelial cells are a key component of the innate immune system by creating barriers to pathogens, inhaled allergens, and environmental particles. AJCs form between adjacent cells and consist of tight junctions (TJs) and adherens junctions (AJs). Respiratory viruses have been shown to target various components of the AJCs, leading to airway epithelial barrier dysfunction by different mechanisms. Virus-induced epithelial permeability may allow for allergens and bacterial pathogens to subsequently invade. In this review, we discuss the pathophysiologic mechanisms leading to disruption of AJCs and the potential ensuing ramifications. We focus on the following viruses that affect the pulmonary system: respiratory syncytial virus, rhinovirus, influenza viruses, immunodeficiency virus, and other viruses such as coxsackievirus, adenovirus, coronaviruses, measles, parainfluenza virus, bocavirus, and vaccinia virus. Understanding the mechanisms by which viruses target the AJC and impair barrier function may help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Debra T Linfield
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Andjela Raduka
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Mahyar Aghapour
- Institute of Medical Microbiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA.,Center for Pediatric Pulmonary Medicine, Cleveland, Ohio, USA
| |
Collapse
|
46
|
Abstract
In March 2020, the World Health Organization (WHO) declared that the COVID-19 outbreak can be characterized as a pandemic. Human-to-human transmission of the SARS-CoV-2 virus may initially be blamed as the first cause of spread, but can an infection be contracted by ingestion of contaminated food or touching contaminated food surfaces? Recently cold-chain food contamination has been indicated as a possible source of many human cases in China. However, the risk of a food-related COVID-19 infection is still debated since the virus may reach people through a fresh product or packaging, which have been touched/sneezed on by infected people. This review summarizes the most recent evidence on the zoonotic origin of the pandemic, reports the main results regarding the transmission of SARS-CoV-2 through food or a food chain, as well as the persistence of the virus at different environmental conditions and surfaces. Emphasis is also posed on how to manage the risk of food-related COVID-19 spread and potential approaches that can reduce the risk of SARS-CoV-2 contamination.
Collapse
|
47
|
Syahrul S, Maliga HA, Ilmawan M, Fahriani M, Mamada SS, Fajar JK, Frediansyah A, Syahrul FN, Imran I, Haris S, Rambe AS, Emran TB, Rabaan AA, Tiwari R, Dhama K, Nainu F, Mutiawati E, Harapan H. Hemorrhagic and ischemic stroke in patients with coronavirus disease 2019: incidence, risk factors, and pathogenesis - a systematic review and meta-analysis. F1000Res 2021; 10:34. [PMID: 33708378 PMCID: PMC7934095 DOI: 10.12688/f1000research.42308.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
Background: In this study, we aimed to determine the global prevalence, chronological order of symptom appearance, and mortality rates with regard to hemorrhagic and ischemic stroke in patients with coronavirus disease 2019 (COVID-19) and to discuss possible pathogeneses of hemorrhagic and ischemic stroke in individuals with the disease. Methods: We searched the PubMed, Scopus, and Web of Science databases for relevant articles published up to November 8, 2020. Data regarding study characteristics, hemorrhagic stroke, ischemic stroke, and COVID-19 were retrieved in accordance with the PRISMA guidelines. The Newcastle-Ottawa scale was used to assess the quality of the eligible studies. The pooled prevalence and mortality rate of hemorrhagic and ischemic stroke were calculated. Results: The pooled estimate of prevalence of hemorrhagic stroke was 0.46% (95% CI 0.40%–0.53%;
I
2=89.81%) among 67,155 COVID-19 patients and that of ischemic stroke was 1.11% (95% CI 1.03%–1.22%;
I
2=94.07%) among 58,104 COVID-19 patients. Ischemic stroke was more predominant (incidence: 71.58%) than hemorrhagic stroke (incidence: 28.42%) in COVID-19 patients who experienced a stroke. In COVID-19 patients who experienced a stroke, hospital admission with respiratory symptoms was more commonly reported than that with neurological symptoms (20.83% for hemorrhagic stroke and 5.51% for ischemic stroke versus
6.94% for hemorrhagic stroke and 5.33% for ischemic stroke, respectively). The pooled mortality rate of COVID-19 patients who experienced a hemorrhagic and ischemic stroke was 44.72% (95% CI 36.73%–52.98%) and 36.23% (95% CI 30.63%–42.24%), respectively. Conclusions: Although the occurrence of hemorrhagic and ischemic stroke is low, the mortality rates of both stroke types in patients with COVID-19 are concerning, and therefore, despite several potential pathogeneses that have been proposed, studies aimed at definitively elucidating the mechanisms of hemorrhagic and ischemic stroke in individuals with COVID-19 are warranted. PROSPERO registration: CRD42020224470 (04/12/20)
Collapse
Affiliation(s)
- Syahrul Syahrul
- Department of Neurology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia.,Department of Neurology, Dr. Zainoel Abidin Hospital, Banda Aceh, Aceh, 23111, Indonesia
| | | | - Muhammad Ilmawan
- Faculty of Medicine, Universitas Brawijaya, Malang, East Java, 65117, Indonesia
| | - Marhami Fahriani
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Sukamto S Mamada
- Faculty of Pharmacy, Hasanuddin University, Makassar, South Sulawesi, 90245, Indonesia
| | - Jonny Karunia Fajar
- Faculty of Medicine, Universitas Brawijaya, Malang, East Java, 65117, Indonesia.,Brawijaya Internal Medicine Research Center, Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, 65145, Indonesia
| | - Andri Frediansyah
- Research Division for Natural Product Technology (BPTBA), Indonesian Institute of Sciences (LIPI), Wonosari, 55861, Indonesia
| | - Faza Nabila Syahrul
- Department of Neurology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Imran Imran
- Department of Neurology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia.,Department of Neurology, Dr. Zainoel Abidin Hospital, Banda Aceh, Aceh, 23111, Indonesia
| | - Salim Haris
- Department of Neurology, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Aldy Safruddin Rambe
- Department of Neurology, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatra, 20155, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong-4381, Bangladesh
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281 001, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243122, India
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, South Sulawesi, 90245, Indonesia
| | - Endang Mutiawati
- Department of Neurology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia.,Department of Neurology, Dr. Zainoel Abidin Hospital, Banda Aceh, Aceh, 23111, Indonesia
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia.,Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia.,Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| |
Collapse
|
48
|
Rahman MS, Hoque MN, Islam MR, Islam I, Mishu ID, Rahaman MM, Sultana M, Hossain MA. Mutational insights into the envelope protein of SARS-CoV-2. GENE REPORTS 2020; 22:100997. [PMID: 33319124 PMCID: PMC7723457 DOI: 10.1016/j.genrep.2020.100997] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/23/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023]
Abstract
The ongoing mutations in the structural proteins of SARS-CoV-2 are the major impediment for prevention and control of the COVID-19 disease. Presently we focused on evolution of the envelope (E) protein, one of the most enigmatic and less studied protein among the four structural proteins (S, E, M and N) associated with multitude of immunopathological functions of SARS-CoV-2. In the present study, we comprehensively analyzed 81,818 high quality E protein sequences of SARS-CoV-2 globally available in the GISAID database as of 20 August 2020. Compared to Wuhan reference strain, our mutational analysis explored only 1.2 % (982/81818) mutant strains undergoing a total of 115 unique amino acid (aa) substitutions in the E protein, highlighting the fact that most (98.8 %) of the E protein of SARS-CoV-2 strains are highly conserved. Moreover, we found 58.77 % (134 of 228) nucleotides (nt) positions of SARS-CoV-2 E gene encountering a total of 176 unique nt-level mutations globally, which may affect the efficacy of real time RT-PCR-based molecular detection of COVID-19. Importantly, higher aa variations observed in the C-terminal domain (CTD) of the E protein, particularly at Ser55-Phe56, Arg69 and the C-terminal end (DLLV: 72–75) may alter the binding of SARS-CoV-2 Envelope protein to tight junction-associated PALS1 and thus could play a key role in COVID-19 pathogenesis. Furthermore, this study revealed the V25A mutation in the transmembrane domain which is a key factor for the homopentameric conformation of E protein. Our analysis also observed a triple cysteine motif harboring mutation (L39M, A41S, A41V, C43F, C43R, C43S, C44Y, N45R) which may hinder the binding of E protein with spike glycoprotein. These results therefore suggest the continuous monitoring of the structural proteins including the envelope protein of SARS-CoV-2 since the number of genome sequences from across the world are continuously increasing.
Collapse
Key Words
- CTD, C-terminal domain
- E, envelope
- Envelope protein
- M, membrane
- Mutations
- N, nucleocapsid
- NC, negatively charged
- NP, non-polar
- PC, positively charged
- S, spike
- SARS-CoV-2
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus-2
- TMD, transmembrane domain
- Transmembrane domain
- Triple cysteine motif
- aa, amino acid
- nt, nucleotide
Collapse
Affiliation(s)
- M Shaminur Rahman
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Nazmul Hoque
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - M Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Israt Islam
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
49
|
Rastogi M, Pandey N, Shukla A, Singh SK. SARS coronavirus 2: from genome to infectome. Respir Res 2020; 21:318. [PMID: 33261606 PMCID: PMC7706175 DOI: 10.1186/s12931-020-01581-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the group of Betacoronaviruses. The SARS-CoV-2 is closely related to SARS-CoV-1 and probably originated either from bats or pangolins. SARS-CoV-2 is an etiological agent of COVID-19, causing mild to severe respiratory disease which escalates to acute respiratory distress syndrome (ARDS) or multi-organ failure. The virus was first reported from the animal market in Hunan, Hubei province of China in the month of December, 2019, and was rapidly transmitted from animal to human and human-to-human. The human-to-human transmission can occur directly or via droplets generated during coughing and sneezing. Globally, around 53.9 million cases of COVID-19 have been registered with 1.31 million confirmed deaths. The people > 60 years, persons suffering from comorbid conditions and immunocompromised individuals are more susceptible to COVID-19 infection. The virus primarily targets the upper and the lower respiratory tract and quickly disseminates to other organs. SARS-CoV-2 dysregulates immune signaling pathways which generate cytokine storm and leads to the acute respiratory distress syndrome and other multisystemic disorders.
Collapse
Affiliation(s)
- Meghana Rastogi
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Pandey
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Astha Shukla
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunit K Singh
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
50
|
Tilocca B, Britti D, Urbani A, Roncada P. Computational Immune Proteomics Approach to Target COVID-19. J Proteome Res 2020; 19:4233-4241. [PMID: 32914632 PMCID: PMC7640973 DOI: 10.1021/acs.jproteome.0c00553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 12/28/2022]
Abstract
Progress of the omics platforms widens their application to diverse fields, including immunology. This enables a deeper level of knowledge and the provision of a huge amount of data for which management and fruitful integration with the past evidence requires a steadily growing computational effort. In light of this, immunoinformatics emerges as a new discipline placed in between the traditional lab-based investigations and the computational analysis of the biological data. Immunoinformatics make use of tailored bioinformatics tools and data repositories to facilitate the analysis of data from a plurality of disciplines and help drive novel research hypotheses and in silico screening investigations in a fast, reliable, and cost-effective manner. Such computational immunoproteomics studies may as well prepare and guide lab-based investigations, representing valuable technology for the investigation of novel pathogens, to tentatively evaluate specificity of diagnostic products, to forecast on potential adverse effects of vaccines and to reduce the use of animal models. The present manuscript provides an overview of the COVID-19 pandemic and reviews the state of the art of the omics technologies employed in fighting SARS-CoV-2 infections. A comprehensive description of the immunoinformatics approaches and its potential role in contrasting COVID-19 pandemics is provided.
Collapse
Affiliation(s)
- Bruno Tilocca
- Department
of Health Sciences, University “Magna
Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Domenico Britti
- Department
of Health Sciences, University “Magna
Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Andrea Urbani
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Università Cattolica del
Sacro Cuore, Roma 00168, Italy
- Dipartimento
di Scienze di laboratorio e infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli, Roma 00168, Italy
| | - Paola Roncada
- Department
of Health Sciences, University “Magna
Graecia” of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|