1
|
Gupta A, Shivachandran A, Saleena LM. Oral microbiome insights: Tracing acidic culprits in dental caries with functional metagenomics. Arch Oral Biol 2024; 168:106064. [PMID: 39216430 DOI: 10.1016/j.archoralbio.2024.106064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study aimed to investigate the presence and abundance of acid-producing bacteria in dental caries samples using functional gene prediction techniques. DESIGN A total of 24 dental caries samples were collected for analysis. DNA isolation was performed followed by shotgun metagenomic sequencing. Functional gene prediction techniques were used to identify enzymes responsible for acid production from primary metabolites. Enzymes responsible for converting primary metabolites into acids were identified from the KEGG database. Subsequently, 840 contigs were examined, and their genus and species were characterized. RESULTS Analysis of the obtained data revealed 31 KEGG IDs corresponding to enzymes involved in the conversion of primary metabolites into acids. All 117 identified genera from the contig analysis were found to be part of the oral microbiome. In addition, A higher prevalence of acid-producing bacteria was noted in dental caries samples compared to earlier reports. CONCLUSION The study indicates the significant role of acid-producing bacteria in the initiation and progression of dental caries. The findings highlight the importance of microbial activity in the demineralization process of tooth enamel. Methods for preventing dental decay may be promising if specific measures are implemented to reduce the amount of acid produced by oral bacteria.
Collapse
Affiliation(s)
- Annapurna Gupta
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203, India
| | - A Shivachandran
- Department of Oral Pathology, SRM Dental College and Hospital, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203, India
| | - Lilly M Saleena
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203, India.
| |
Collapse
|
2
|
de Oliveira TA, Drumond VZ, Kimura ACRS, de Arruda JAA, Pani SC, Mesquita RA, da Rocha NB, Abreu LG. Comprehensive assessment of periodontal health in cerebral palsy: A systematic review and meta-analysis. SPECIAL CARE IN DENTISTRY 2024; 44:1547-1557. [PMID: 39080876 DOI: 10.1111/scd.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 11/14/2024]
Abstract
AIMS Cerebral palsy (CP) is the term for a set of neurological disorders resulting from brain damage that impairs motor function. The aim of the present study was to perform a systematic review of the literature to determine whether individuals with CP are at a greater risk of negative periodontal health outcomes compared to those without CP. METHODS This study followed the recommendations of the MOOSE guidelines. Electronic searches were conducted in the PubMed, Web of Science, Scopus, Ovid, Embase, and PsycInfo databases. Observational studies assessing periodontal outcomes in individuals with CP were included. Risk of bias was appraised using the Newcastle-Ottawa scale. Meta-analyses were conducted and the results were presented using standardized mean differences (SMD), odds ratios (OR), and 95% confidence intervals (CI). The strength of the evidence was also assessed. RESULTS A total of 316 records were retrieved from the electronic databases, 17 of which were included in the qualitative synthesis. Meta-analyses revealed significantly higher scores in individuals with CP compared to those without CP for the oral hygiene index (SMD = 0.47 [95% CI: 0.17-0.78, I2 = 80%), gingival index (SMD = 0.75 [95% CI: 0.39-1.11], I2 = 79%), plaque index (SMD = 0.70 [95% CI: 0.07-1.33], I2 = 93%), and calculus index (SMD = 0.98 [95% CI: 0.76-1.20], I2 = 0%). However, no significant difference was found between groups for the prevalence of gingivitis (OR = 1.27 [95% CI: 0.28-5.66], I2 = 93%). The risk of bias for the outcome assessment and statistical tests was low. The strength of the evidence was deemed very low. CONCLUSION Individuals with CP may experience more significant negative periodontal health outcomes compared to those without CP.
Collapse
Affiliation(s)
| | - Victor Zanetti Drumond
- Department of Oral Surgery, Pathology, and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - José Alcides Almeida de Arruda
- Department of Oral Diagnosis and Pathology, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sharat Chandra Pani
- Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Ricardo Alves Mesquita
- Department of Oral Surgery, Pathology, and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Najara Barbosa da Rocha
- Department of Social and Preventive Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Guimarães Abreu
- Department of Child and Adolescent Oral Health, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Okeke KI, Ahamefule CS, Nnabuife OO, Orabueze IN, Iroegbu CU, Egbe KA, Ike AC. Antiseptics: An expeditious third force in the prevention and management of coronavirus diseases. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100293. [PMID: 39497935 PMCID: PMC11532748 DOI: 10.1016/j.crmicr.2024.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Notably, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease 2019 (COVID-19) have all had significant negative impact on global health and economy. COVID-19 alone, has resulted to millions of deaths with new cases and mortality still being reported in its various waves. The development and use of vaccines have not stopped the transmission of SARS coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, even among vaccinated individuals. The use of vaccines and curative drugs should be supplemented with adoption of simple hygiene preventive measures in the fight against the spread of the virus, especially for healthcare workers. Several virucidal topical antiseptics, such as povidone-iodine (PVP-I), citrox, cyclodextrins among others, have been demonstrated to be efficacious in the inactivation of SARS-CoV-2 and other coronaviruses in both in vitro and in vivo studies. The strategic application of these virucidal formulations could provide the additional impetus needed to effectively control the spread of the virus. We have here presented a simple dimension towards curtailing the dissemination of COVID-19, and other coronaviruses, through the application of effective oral, nasal and eye antiseptics among patients and medical personnel. We have further discussed the mechanism of action of some of these commonly available virucidal solutions while also highlighting some essential controversies in their use.
Collapse
Affiliation(s)
- Kizito I. Okeke
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Chukwuemeka Samson Ahamefule
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Obianuju O. Nnabuife
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Ibuchukwu N. Orabueze
- Department of Medical Microbiology, University of Nigeria Teaching Hospital Enugu, Enugu State, Nigeria
| | - Christian U. Iroegbu
- Department of Microbiology, Cross River University of Technology, Calabar, Cross River State, Nigeria
| | - Kingsley A. Egbe
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Anthony C. Ike
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| |
Collapse
|
4
|
Muchova M, Kuehne SA, Grant MM, Smith PP, Nagi M, Chapple ILC, Hirschfeld J. Fusobacterium nucleatum elicits subspecies-specific responses in human neutrophils. Front Cell Infect Microbiol 2024; 14:1449539. [PMID: 39450334 PMCID: PMC11499235 DOI: 10.3389/fcimb.2024.1449539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024] Open
Abstract
Fusobacterium nucleatum as a Gram-negative anaerobe plays a key bridging role in oral biofilms. It is involved in periodontal and extraoral diseases, the most prominent being colorectal cancer. Five subspecies are recognised: animalis, fusiforme, nucleatum, polymorphum and vincentii. Subspecies interact with neutrophils constantly patrolling tissues to remove microbial intruders. Neutrophil antimicrobial activities include generation of reactive oxygen species (ROS), formation of neutrophil extracellular traps (NETs) and release of cytokines and neutrophil enzymes. Subspecies-specific differences in immunogenicity have previously been observed in a neutrophil-like cell line but were not investigated in human neutrophils. Additionally, neutrophil responses to planktonic and biofilm-grown F. nucleatum have not been studied to date. The aims of this study were to compare the immunogenicity of planktonic and biofilm-grown F. nucleatum and to investigate potential differences in human neutrophil responses when stimulated with individual F. nucleatum subspecies. Human neutrophils isolated from peripheral blood were stimulated with planktonic and biofilm-grown F. nucleatum subspecies. Generation of ROS and NET formation were quantified by luminescence and fluorescence assays, respectively. Secretion of cytokines (IL-1β, TNF-α, IL-6, IL-8), neutrophil elastase and matrix metalloproteinase-9 was quantified by enzyme-linked immunosorbent assay (ELISA). Neutrophil responses showed biofilm-grown bacteria induced a significantly higher total and intracellular ROS response, as well as shorter time to total ROS release. Biofilm-grown F. nucleatum led to significantly lower IL-1β release. We found significant differences among individual subspecies in terms of total, intracellular ROS and extracellular superoxide. Subspecies polymorphum stimulated the highest mean amount of NET release. Amounts of cytokines released differed significantly among subspecies, while no differences were found in lysosomal enzyme release. Immunogenicity of F. nucleatum in human neutrophils is highly subspecies-specific in vitro with regard to ROS release and cytokine production. Understanding subspecies-specific immunogenicity of F. nucleatum may facilitate the discovery of novel therapeutic targets in F. nucleatum-mediated diseases.
Collapse
Affiliation(s)
- Maria Muchova
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Sarah A. Kuehne
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Melissa M. Grant
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
- Birmingham Dental Hospital, Birmingham Community Health National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Birmingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre (BRC) in Inflammation, Birmingham University, Birmingham, United Kingdom
| | - Peter P. Smith
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Malee Nagi
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Iain L. C. Chapple
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
- Birmingham Dental Hospital, Birmingham Community Health National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Birmingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre (BRC) in Inflammation, Birmingham University, Birmingham, United Kingdom
| | - Josefine Hirschfeld
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
- Birmingham Dental Hospital, Birmingham Community Health National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Birmingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre (BRC) in Inflammation, Birmingham University, Birmingham, United Kingdom
| |
Collapse
|
5
|
Belizário LCG, Figueredo CMS, Rodrigues JVS, Cirelli T, de Molon RS, Garcia VG, Theodoro LH. The Impact of Type 2 Diabetes Mellitus on Non-Surgical Periodontal Treatment: A Non-Randomized Clinical Trial. J Clin Med 2024; 13:5978. [PMID: 39408037 PMCID: PMC11477662 DOI: 10.3390/jcm13195978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Periodontitis (P), a chronic inflammatory condition that affects the supportive tissues around the teeth, is three to four times more prevalent in individuals with diabetes mellitus (DM), with a direct correlation between its severity and the levels of glycosylated hemoglobin (HbA1c). This study aimed to evaluate the periodontal clinical parameters following non-surgical periodontal treatment (NSPT) in P patients with or without type 2 DM. Methods: Forty patients with P were divided into two groups: Group DM/P and Group P. All the patients were assessed at baseline and at 90 and 180 days after receiving NSPT. The parameters evaluated included the HbA1c level, plaque index (PI), probing pocket depth (PPD), clinical attachment level (CAL), and bleeding on probing (BoP). A statistical analysis was performed with a significance level set at α = 5%. Results: There were significant differences in the HbA1c levels between the DM/P and P groups at baseline, 90, and 180 days, as expected. Importantly, the HbA1c levels did not change after NSPT. Group P showed a significant reduction in both the PI and the BoP values at 90 and 180 days (p < 0.05). In contrast, Group DM/P demonstrated a significant increase in the percentage of sites with a PPD ≥ 5 mm at 180 days (p < 0.05). Additionally, Group P exhibited an increase in sites with a PPD ≤ 4 mm and a decrease in sites with a PPD ≥ 5 mm at both 90 and 180 days (p < 0.05). Conclusions: Our findings suggest that DM may compromise the effectiveness of NSPT, potentially hindering favorable outcomes during the follow-up period.
Collapse
Affiliation(s)
- Lícia Clara Garcia Belizário
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (L.C.G.B.); (J.V.S.R.); (R.S.d.M.); (L.H.T.)
| | - Carlos Marcelo S. Figueredo
- School of Medicine and Dentistry, Griffith University, Brisbane, QLD 4101, Australia
- Department of Dental Medicine, Karolinska Institutet, 171 77 Solna, Sweden
| | - João Victor Soares Rodrigues
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (L.C.G.B.); (J.V.S.R.); (R.S.d.M.); (L.H.T.)
- Center for Dental Assistance to Persons with Disabilities (CAOE), School of Dentistry, São Paulo State University (UNESP), Araçatuba 16018-805, SP, Brazil
| | - Thamiris Cirelli
- Department of Dentistry, University Center of Associated School—UNIFAE, São João da Boa Vista 13870-377, SP, Brazil;
| | - Rafael Scaf de Molon
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (L.C.G.B.); (J.V.S.R.); (R.S.d.M.); (L.H.T.)
| | - Valdir Gouveia Garcia
- Latin American Institute of Dental Research and Education (ILAPEO), Curitiba 80710-150, PR, Brazil;
| | - Letícia Helena Theodoro
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (L.C.G.B.); (J.V.S.R.); (R.S.d.M.); (L.H.T.)
- Center for Dental Assistance to Persons with Disabilities (CAOE), School of Dentistry, São Paulo State University (UNESP), Araçatuba 16018-805, SP, Brazil
| |
Collapse
|
6
|
da Costa ALA, Soares MA, Lourenço TGB, Guimarães-Pinto K, Filardy AD, de Oliveira AM, de Luca BG, Magliano DAC, Araujo OMO, Moura L, Lopes RT, Palhares de Miranda AL, Tributino JLM, Vieira Colombo AP. Periodontal pathogen Aggregatibacter actinomycetemcomitans JP2 correlates with colonic leukocytes decrease and gut microbiome imbalance in mice. J Periodontal Res 2024; 59:961-973. [PMID: 38757372 DOI: 10.1111/jre.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
AIM Evidence suggests that translocation of oral pathogens through the oral-gut axis may induce intestinal dysbiosis. This study aimed to evaluate the impact of a highly leukotoxic Aggregatibacter actinomycetemcomitans (Aa) strain on the gut microbiota, intestinal mucosal integrity and immune system in healthy mice. METHODS Eight-week-old male C57BL6 mice were divided into control (n = 16) and JP2 groups (n = 19), which received intragastric gavage with PBS and with a suspension of Aa JP2 (HK921), respectively, twice a week for 4 weeks. Colonic lamina propria, fecal material, serum, gingival tissues, and mandibles were obtained for analyses of leukocyte populations, inflammatory mediators, mucosal integrity, alveolar bone loss, and gut microbiota. Differences between groups for these parameters were examined by non-parametric tests. RESULTS The gut microbial richness and the number of colonic macrophages, neutrophils, and monocytes were significantly lower in Aa JP2-infected mice than in controls (p < .05). In contrast, infected animals showed higher abundance of Clostridiaceae, Lactobacillus taiwanensis, Helicobacter rodentium, higher levels of IL-6 expression in colonic tissues, and higher splenic MPO activity than controls (p < .05). No differences in tight junction expression, serum endotoxin levels, and colonic inflammatory cytokines were observed between groups. Infected animals presented also slightly more alveolar bone loss and gingival IL-6 levels than controls (p < .05). CONCLUSION Based on this model, intragastric administration of Aa JP2 is associated with changes in the gut ecosystem of healthy hosts, characterized by less live/recruited myeloid cells, enrichment of the gut microbiota with pathobionts and decrease in commensals. Negligible levels of colonic pro-inflammatory cytokines, and no signs of mucosal barrier disruption were related to these changes.
Collapse
Affiliation(s)
- André L A da Costa
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana A Soares
- Department of Pharmaceutical Biotechnology, Laboratory of Studies in Experimental Pharmacology, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Talita G B Lourenço
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kamila Guimarães-Pinto
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra D Filardy
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Miranda de Oliveira
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Olga M O Araujo
- Laboratory of Nuclear Instrumentation, Nuclear Engineering Program, Institute Alberto Luiz de Coimbra of Graduate and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Moura
- Laboratory of Nuclear Instrumentation, Nuclear Engineering Program, Institute Alberto Luiz de Coimbra of Graduate and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Tadeu Lopes
- Laboratory of Nuclear Instrumentation, Nuclear Engineering Program, Institute Alberto Luiz de Coimbra of Graduate and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Luisa Palhares de Miranda
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge L M Tributino
- Molecular Pharmacology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Vieira Colombo
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Łasica A, Golec P, Laskus A, Zalewska M, Gędaj M, Popowska M. Periodontitis: etiology, conventional treatments, and emerging bacteriophage and predatory bacteria therapies. Front Microbiol 2024; 15:1469414. [PMID: 39391608 PMCID: PMC11464445 DOI: 10.3389/fmicb.2024.1469414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Inflammatory periodontal diseases associated with the accumulation of dental biofilm, such as gingivitis and periodontitis, are very common and pose clinical problems for clinicians and patients. Gingivitis is a mild form of gum disease and when treated quickly and properly is completely reversible. Periodontitis is an advanced and irreversible disease of the periodontium with periods of exacerbations, progressions and remission. Periodontitis is a chronic inflammatory condition that damages the tissues supporting the tooth in its socket, i.e., the gums, periodontal ligaments, root cementum and bone. Periodontal inflammation is most commonly triggered by bacteria present in excessive accumulations of dental plaque (biofilm) on tooth surfaces. This disease is driven by disproportionate host inflammatory immune responses induced by imbalance in the composition of oral bacteria and changes in their metabolic activities. This microbial dysbiosis favors the establishment of inflammatory conditions and ultimately results in the destruction of tooth-supporting tissues. Apart microbial shift and host inflammatory response, environmental factors and genetics are also important in etiology In addition to oral tissues destruction, periodontal diseases can also result in significant systemic complications. Conventional methods of periodontal disease treatment (improving oral hygiene, dental biofilm control, mechanical plaque removal, using local or systemic antimicrobial agents) are not fully effective. All this prompts the search for new methods of therapy. Advanced periodontitis with multiple abscesses is often treated with antibiotics, such as amoxicillin, tetracycline, doxycycline, minocycline, clindamycin, or combined therapy of amoxicillin with metronidazole. However, due to the growing problem of antibiotic resistance, treatment does not always achieve the desired therapeutic effect. This review summarizes pathogenesis, current approaches in treatment, limitations of therapy and the current state of research on the possibility of application of bacteriophages and predatory bacteria to combat bacteria responsible for periodontitis. We present the current landscape of potential applications for alternative therapies for periodontitis based on phages and bacteria, and highlight the gaps in existing knowledge that need to be addressed before clinical trials utilizing these therapeutic strategies can be seriously considered.
Collapse
Affiliation(s)
- Anna Łasica
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Gędaj
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Mo C, Huang M, Yan F, Song M, Fan J, Zhang J. Correlation Between Gut Microbiota Composition and Serum Interleukin 17 (IL-17) in Mice With Type 2 Diabetes and Experimental Periodontitis. Cureus 2024; 16:e68005. [PMID: 39211822 PMCID: PMC11360949 DOI: 10.7759/cureus.68005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Objective To preliminarily explore the composition characteristics of gut microbiota in mice with type 2 diabetes mellitus (T2DM) and experimental periodontitis, and their correlation with serum IL-17 levels, aiming to provide new insights and evidence for related experimental studies. Methods A total of 42 SPF-grade C57BL/6J mice were randomly selected, with 24 used for T2DM modeling. Successfully modeled T2DM mice were divided into the T2DM group (ND group, n=8) and T2DM with experimental periodontitis group (PD group, n=8). Non-T2DM mice were divided into the blank control group (NC group, n=8) and the experimental periodontitis group (NP group, n=8). After modeling, body weight and fasting plasma glucose (FPG) were measured weekly. Each group of mice underwent an oral glucose tolerance test (OGTT) and an insulin tolerance test (ITT). Six weeks after modeling experimental periodontitis, serum IL-17 levels were measured using ELISA, intestinal inflammation was assessed using HE staining, and gut microbiota composition in cecal contents was analyzed by 16S rRNA sequencing to determine its correlation with serum IL-17 levels. Results FPG in the PD group was higher than in the ND group, with a statistically significant difference in the 12th week (p<0.05). The glucose tolerance level in the PD group was lower than in the ND group (p<0.01). Compared with the NC group, other groups showed varying degrees of inflammatory cell infiltration in the intestinal mucosa, and serum IL-17 levels were lower in both the ND and PD groups compared to the NC group (p<0.01), with the PD group also lower than the NP group (p<0.01). The Shannon and Pielou-e indices of gut microbiota in the PD group were significantly lower than those in the NP group (p<0.05). In terms of microbiota composition, Firmicutes were increased in both the ND and PD groups compared to the NC and NP groups (p<0.05), while Bacteroidetes were decreased (p<0.05). Proteobacteria were increased in the PD group compared to the ND group (p<0.05). The abundance of Bacteroidetes and the Bacteroidetes/Firmicutes ratio was moderately positively correlated with serum IL-17 levels (p<0.01) and moderately negatively correlated with blood glucose levels (p<0.01); serum IL-17 levels were strongly negatively correlated with blood glucose levels (p<0.01). Conclusion Comorbidity of experimental periodontitis and T2DM may exacerbate glucose metabolism impairment in T2DM mice by increasing the abundance of Proteobacteria and intestinal mucosal damage. Serum IL-17 levels may serve as an indicator of gut microbiota dysbiosis in T2DM mice with experimental periodontitis.
Collapse
Affiliation(s)
- Chaolun Mo
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, CHN
| | - Mingkun Huang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, CHN
| | - Fuhua Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing University Medical School & Nanjing University Institute of Stomatology, Nanjing, CHN
| | - Minghui Song
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, CHN
| | - Jiabing Fan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, CHN
| | - Junmei Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, CHN
| |
Collapse
|
9
|
Melkam A, Sionov RV, Shalish M, Steinberg D. Enhanced Anti-Bacterial Activity of Arachidonic Acid against the Cariogenic Bacterium Streptococcus mutans in Combination with Triclosan and Fluoride. Antibiotics (Basel) 2024; 13:540. [PMID: 38927206 PMCID: PMC11200779 DOI: 10.3390/antibiotics13060540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Dental caries is a global health problem that requires better prevention measures. One of the goals is to reduce the prevalence of the cariogenic Gram-positive bacterium Streptococcus mutans. We have recently shown that naturally occurring arachidonic acid (AA) has both anti-bacterial and anti-biofilm activities against this bacterium. An important question is how these activities are affected by other anti-bacterial compounds commonly used in mouthwashes. Here, we studied the combined treatment of AA with chlorhexidine (CHX), cetylpyridinium chloride (CPC), triclosan, and fluoride. Checkerboard microtiter assays were performed to determine the effects on bacterial growth and viability. Biofilms were quantified using the MTT metabolic assay, crystal violet (CV) staining, and live/dead staining with SYTO 9/propidium iodide (PI) visualized by spinning disk confocal microscopy (SDCM). The bacterial morphology and the topography of the biofilms were visualized by high-resolution scanning electron microscopy (HR-SEM). The effect of selected drug combinations on cell viability and membrane potential was investigated by flow cytometry using SYTO 9/PI staining and the potentiometric dye DiOC2(3), respectively. We found that CHX and CPC had an antagonistic effect on AA at certain concentrations, while an additive effect was observed with triclosan and fluoride. This prompted us to investigate the triple treatment of AA, triclosan, and fluoride, which was more effective than either compound alone or the double treatment. We observed an increase in the percentage of PI-positive bacteria, indicating increased bacterial cell death. Only AA caused significant membrane hyperpolarization, which was not significantly enhanced by either triclosan or fluoride. In conclusion, our data suggest that AA can be used together with triclosan and fluoride to improve the efficacy of oral health care.
Collapse
Affiliation(s)
- Avraham Melkam
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (A.M.); (R.V.S.)
- Hadassah Medical Center, Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| | - Ronit Vogt Sionov
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (A.M.); (R.V.S.)
| | - Miriam Shalish
- Hadassah Medical Center, Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| | - Doron Steinberg
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (A.M.); (R.V.S.)
| |
Collapse
|
10
|
Najm KK, Gul SS, Abdulkareem AA. Efficacy of Non-Surgical Periodontal Therapy with Adjunctive Methylene Blue and Toluidine Blue O Mediated Photodynamic in Treatment of Periodontitis: A Randomized Clinical Trial. Clin Pract 2024; 14:954-964. [PMID: 38804408 PMCID: PMC11130800 DOI: 10.3390/clinpract14030076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND This study aimed to examine the efficacy of methylene blue (MB) and toluidine blue O (TBO) photodynamic therapy (PDT) as adjuncts to root surface debridement (RSD). METHODS This split-mouth, randomized, controlled clinical trial included eighteen patients, and a total of 332 sites (control = 102, MB = 124 and TBO = 106) were examined. Two sessions of PDT were completed at baseline and two weeks after RSD. Clinical parameters of bleeding on probing (BOP), plaque index (PI), probing pocket depth (PPD), and clinical attachment level (CAL) were measured pre- and post-treatment. RESULTS PPD and BOP reductions in sites treated by RSD with adjunctive photosensitizers (MB and TBO) were significantly higher than in control sites. RSD with MB showed higher efficacy in improving moderately deep pockets (OR 3.350), while adjunctive TBO showed better results in treating deeper pockets (OR 4.643). CONCLUSIONS Results suggested that adjunctive use of MB and TBO to RSD could significantly improve periodontal pocket closure and reduce signs of inflammation. In addition, TBO seems to be more efficient in treating deep periodontal pockets than MB, which is more effective in resolving shallower pockets.
Collapse
Affiliation(s)
- Kashan Kamal Najm
- Department of Periodontics, College of Dentistry, University of Sulaimani, Sulaymaniyah 46001, Iraq;
| | - Sarhang Sarwat Gul
- Department of Periodontics, College of Dentistry, University of Sulaimani, Sulaymaniyah 46001, Iraq;
- Medical Laboratory Department, College of Health and Medical Technology, Sulaimani Polytechnic University, Sulaymaniyah 46001, Iraq
| | - Ali Abbas Abdulkareem
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad 10011, Iraq;
| |
Collapse
|
11
|
Girija ASS. Acinetobacter baumannii as an oro-dental pathogen: a red alert!! J Appl Oral Sci 2024; 32:e20230382. [PMID: 38747806 PMCID: PMC11090480 DOI: 10.1590/1678-7757-2023-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/01/2024] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVES This review highlights the existence and association of Acinetobacter baumannii with the oro-dental diseases, transforming this systemic pathogen into an oral pathogen. The review also hypothesizes possible reasons for the categorization of this pathogen as code blue due to its stealthy entry into the oral cavity. METHODOLOGY Study data were retrieved from various search engines reporting specifically on the association of A. baumannii in dental diseases and tray set-ups. Articles were also examined regarding obtained outcomes on A. baumannii biofilm formation, iron acquisitions, magnitude of antimicrobial resistance, and its role in the oral cancers. RESULTS A. baumannii is associated with the oro-dental diseases and various virulence factors attribute for the establishment and progression of oro-mucosal infections. Its presence in the oral cavity is frequent in oral microbiomes, conditions of impaired host immunity, age related illnesses, and hospitalized individuals. Many sources also contribute for its prevalence in the dental health care environment and the presence of drug resistant traits is also observed. Its association with oral cancers and oral squamous cell carcinoma is also evident. CONCLUSIONS The review calls for awareness on the emergence of A. baumannii in dental clinics and for the need for educational programs to monitor and control the sudden outbreaks of such virulent and resistant traits in the dental health care settings.
Collapse
Affiliation(s)
- A S Smiline Girija
- Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Department of Microbiology, Chennai-600077, Tamilnadu, India
| |
Collapse
|
12
|
Putrino A, Marinelli E, Galeotti A, Ferrazzano GF, Ciribè M, Zaami S. A Journey into the Evolution of Human Host-Oral Microbiome Relationship through Ancient Dental Calculus: A Scoping Review. Microorganisms 2024; 12:902. [PMID: 38792733 PMCID: PMC11123932 DOI: 10.3390/microorganisms12050902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
One of the most promising areas of research in palaeomicrobiology is the study of the human microbiome. In particular, ancient dental calculus helps to reconstruct a substantial share of oral microbiome composition by mapping together human evolution with its state of health/oral disease. This review aims to trace microbial characteristics in ancient dental calculus to describe the evolution of the human host-oral microbiome relationship in oral health or disease in children and adults. Following the PRISMA-Extension for Scoping Reviews guidelines, the main scientific databases (PubMed, Scopus, Lilacs, Cochrane Library) have been drawn upon. Eligibility criteria were established, and all the data collected on a purpose-oriented collection form were analysed descriptively. From the initial 340 records, only 19 studies were deemed comprehensive enough for the purpose of this review. The knowledge of the composition of ancient oral microbiomes has broadened over the past few years thanks to increasingly well-performing decontamination protocols and additional analytical avenues. Above all, metagenomic sequencing, also implemented by state-of-the-art bioinformatics tools, allows for the determination of the qualitative-quantitative composition of microbial species associated with health status and caries/periodontal disease. Some microbial species, especially periodontal pathogens, do not appear to have changed in history, while others that support caries disease or oral health could be connected to human evolution through lifestyle and environmental contributing factors.
Collapse
Affiliation(s)
- Alessandra Putrino
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
| | - Angela Galeotti
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
- U.N.-E.U. INTERNATIONAL RESEARCH PROJECT ON HUMAN HEALTH-ORAL HEALTH SECTION, 1200 Géneve, Switzerland;
| | - Gianmaria Fabrizio Ferrazzano
- U.N.-E.U. INTERNATIONAL RESEARCH PROJECT ON HUMAN HEALTH-ORAL HEALTH SECTION, 1200 Géneve, Switzerland;
- UNESCO Chair in Health Education and Sustainable Development, Dentistry Section, University of Naples “Federico II”, 80138 Naples, Italy
- East-Asian-Pacific International Academic Consortium
| | - Massimiliano Ciribè
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
13
|
Pan D, Chung S, Nielsen E, Niederman MS. Aspiration Pneumonia. Semin Respir Crit Care Med 2024; 45:237-245. [PMID: 38211629 DOI: 10.1055/s-0043-1777772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Aspiration pneumonia is a lower respiratory tract infection that results from inhalation of foreign material, often gastric and oropharyngeal contents. It is important to distinguish this from a similar entity, aspiration with chemical pneumonitis, as treatment approaches may differ. An evolving understanding of the human microbiome has shed light on the pathogenesis of aspiration pneumonia, suggesting that dysbiosis, repetitive injury, and inflammatory responses play a role in its development. Risk factors for aspiration events involve a complex interplay of anatomical and physiological dysfunctions in the nervous, gastrointestinal, and pulmonary systems. Current treatment strategies have shifted away from anaerobic organisms as leading pathogens. Prevention of aspiration pneumonia primarily involves addressing oropharyngeal dysphagia, a significant risk factor for aspiration pneumonia, particularly among elderly individuals and those with cognitive and neurodegenerative disorders.
Collapse
Affiliation(s)
- Di Pan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Samuel Chung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Erik Nielsen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Michael S Niederman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
14
|
Cláudio MM, Garcia VG, Freitas RM, Rodrigues JVS, Wainwright M, Casarin RCV, Duque C, Theodoro LH. Association of active oxygen-releasing gel and photodynamic therapy in the treatment of residual periodontal pockets in type 2 diabetic patients: A randomized controlled clinical study. J Periodontol 2024; 95:360-371. [PMID: 38112075 DOI: 10.1002/jper.23-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND The aim of this study was to evaluate the effect of active oxygen-releasing gel as an adjuvant, with and without antimicrobial photodynamic therapy (aPDT), in the treatment of residual pockets in periodontal patients with type 2 diabetes mellitus (DM2). METHODS Patients with residual pockets with probing depth (PD) ≥4 mm and bleeding on probing (BOP) were divided into the following groups: SI (n = 17)-subgingival instrumentation in a single session; BM (n = 17)-SI followed by local application of active oxygen-releasing gel inside the periodontal pocket for 3 min; BM + aPDT (n = 17)-SI followed by application of BM for 3 min and pocket irrigation with methylene blue, and 660-nm diode laser irradiation at 100 mW for 50 s. The periodontal clinical parameters, serum levels of glycated hemoglobin, and immunological analysis of crevicular fluid were evaluated. All data were submitted to statistical analysis (α = 5%). RESULTS A significant reduction in BOP was verified at 90 and 180 days in the BM + aPDT group. The percentage of sites with PD ≥ 4 mm was significantly reduced at 90 days in BM + aPDT and BM, whereas after 180 days only BM showed a significant reduction. In the BM + aPDT group, there was a significant reduction in tumor necrosis factor α levels at 90 days. There were no differences between the treatments. CONCLUSION The use of adjuvant active oxygen-releasing gel, with or without aPDT, resulted in the same clinical benefits as SI in the treatment of residual pockets in poorly controlled DM2 patients.
Collapse
Affiliation(s)
- Marina M Cláudio
- Department of Diagnostics and Surgery, Periodontics Division, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Valdir G Garcia
- Latin American Institute of Dental Research and Teaching (ILAPEO), Curitiba, PR, Brazil
| | - Rubens M Freitas
- Latin American Institute of Dental Research and Teaching (ILAPEO), Curitiba, PR, Brazil
| | - João Victor S Rodrigues
- Department of Diagnostics and Surgery, Periodontics Division, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
- Center for Dental Assistance to Persons with Disabilities (CAOE), School of Dentistry, Araçatuba, SP, Brazil
| | - Mark Wainwright
- Department of Biology, Edge Hill University, Ormskirk, Lancashire, UK
| | - Renato C V Casarin
- Department of Periodontics, State University of Campinas, Piracicaba, SP, Brazil
| | - Cristiane Duque
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Leticia H Theodoro
- Department of Diagnostics and Surgery, Periodontics Division, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
- Center for Dental Assistance to Persons with Disabilities (CAOE), School of Dentistry, Araçatuba, SP, Brazil
| |
Collapse
|
15
|
Park SG, Lee HJ, Ji T, Kim K, Ohk SH. Aptamer Based SPREETA Sensor for the Detection of Porphyromonas gingivalis G-Protein. J Microbiol Biotechnol 2024; 34:289-295. [PMID: 38111313 PMCID: PMC10940744 DOI: 10.4014/jmb.2310.10042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
We have developed an aptamer that specifically binds to Porphyromonas gingivalis to reduce the cellular damage caused by P. gingivalis infection and applied it as a biosensor. P. gingivalis is one of the major pathogens causing destructive periodontal disease among the periodontal microorganisms constituting complex biofilms. Porphyromonas gingivalis G-protein (PGP) known to play an important role in the transmission of germs was used as a target protein for the screening of aptamer. The aptamer that has binds to the G-protein of P. gingivalis, was screened and developed through the Systemic Evolution of Ligands by Exponential Energy (SELEX) method. Modified-Western blot analysis was performed with the aptamer which consisted of 38 single-stranded DNA to confirm the selectivity. ELONA (enzyme linked oligonucleotide assay) used to confirm that the aptamer was sensitive to PGP even at low concentration of 1 μg/ml. For the rapid detection of P. gingivalis, we constructed a surface plasmon resonance biosensor with SPREETA using the PGP aptamer. It was confirmed that PGP could be detected as low concentration as at 0.1 pM, which is the minimum concentration of aptamer sensor within 5 min. Based on these results, we have constructed a SPREETA biosensor based on aptamer that can bind to P. gingivalis G-protein. It can be used as an infection diagnosis system to rapidly diagnose and analyze oral diseases caused by P. gingivalis.
Collapse
Affiliation(s)
- Suk-Gyun Park
- Department of Oral Microbiology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyun Ju Lee
- Department of Cosmetic Science, Kwangju Women’s University, Gwangju 62396, Republic of Korea
| | - Taeksoo Ji
- School of Electronics and Computer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyungbaek Kim
- School of Electronics and Computer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seung-Ho Ohk
- Department of Oral Microbiology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
16
|
Schwartz-Filho HO, Martins TR, Sano PR, Araújo MT, Chan DCH, Saldanha NR, Silva KDP, Graziano TS, Brandt WC, Torres CVR, Cogo-Müller K. Nanotopography and oral bacterial adhesion on titanium surfaces: in vitro and in vivo studies. Braz Oral Res 2024; 38:e021. [PMID: 38477807 PMCID: PMC11376621 DOI: 10.1590/1807-3107bor-2024.vol38.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 10/03/2023] [Indexed: 03/14/2024] Open
Abstract
The present study aimed to evaluate the influence of titanium surface nanotopography on the initial bacterial adhesion process by in vivo and in vitro study models. Titanium disks were produced and characterized according to their surface topography: machined (Ti-M), microtopography (Ti-Micro), and nanotopography (Ti-Nano). For the in vivo study, 18 subjects wore oral acrylic splints containing 2 disks from each group for 24 h (n = 36). After this period, the disks were removed from the splints and evaluated by microbial culture method, scanning electron microscopy (SEM), and qPCR for quantification of Streptococcus oralis, Actinomyces naeslundii, Fusobacterium nucleatum, as well as total bacteria. For the in vitro study, adhesion tests were performed with the species S. oralis and A. naeslundii for 24 h. Data were compared by ANOVA, with Tukey's post-test. Regarding the in vivo study, both the total aerobic and total anaerobic bacteria counts were similar among groups (p > 0.05). In qPCR, there was no difference among groups of bacteria adhered to the disks (p > 0.05), except for A. naeslundii, which was found in lower proportions in the Ti-Nano group (p < 0.05). In the SEM analysis, the groups had a similar bacterial distribution, with a predominance of cocci and few bacilli. In the in vitro study, there was no difference in the adhesion profile for S. oralis and A. naeslundii after 24 h of biofilm formation (p > 0.05). Thus, we conclude that micro- and nanotopography do not affect bacterial adhesion, considering an initial period of biofilm formation.
Collapse
Affiliation(s)
| | | | - Paulo Roberto Sano
- Universidade de Santo Amaro - Unisa, Department of Dentistry, São Paulo, SP, Brazil
| | - Marcela Takemoto Araújo
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Physiological Sciences, Piracicaba, SP, Brazil
| | - Daniel Cheuk Hong Chan
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Physiological Sciences, Piracicaba, SP, Brazil
| | | | - Kátia de Pádua Silva
- Universidade Estadual de Campinas - Unicamp, School of Pharmaceutical Sciences, Laboratory of Antimicrobial Pharmacology and Microbiology, Campinas, SP, Brazil
| | - Talita Signoreti Graziano
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Physiological Sciences, Piracicaba, SP, Brazil
| | - William Cunha Brandt
- Universidade de Santo Amaro - Unisa, Department of Dentistry, São Paulo, SP, Brazil
| | | | - Karina Cogo-Müller
- Universidade Estadual de Campinas - Unicamp, School of Pharmaceutical Sciences, Laboratory of Antimicrobial Pharmacology and Microbiology, Campinas, SP, Brazil
| |
Collapse
|
17
|
Takallu S, Mirzaei E, Zakeri Bazmandeh A, Ghaderi Jafarbeigloo HR, Khorshidi H. Addressing Antimicrobial Properties in Guided Tissue/Bone Regeneration Membrane: Enhancing Effectiveness in Periodontitis Treatment. ACS Infect Dis 2024; 10:779-807. [PMID: 38300991 DOI: 10.1021/acsinfecdis.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are the two surgical techniques generally used for periodontitis disease treatment. These techniques are based on a barrier membrane to direct the growth of new bone and gingival tissue at sites with insufficient volumes or dimensions of bone or gingiva for proper function, esthetics, or prosthetic restoration. Numerous studies have highlighted biocompatibility, space-creation, cell-blocking, bioactivity, and proper handling as essential characteristics of a membrane's performance. Given that bacterial infection is the primary cause of periodontitis, we strongly believe that addressing the antimicrobial properties of these membranes is of utmost importance. Indeed, the absence of effective inhibition of periodontal pathogens has been recognized as a primary factor contributing to the failure of GTR/GBR membranes. Therefore, we suggest considering antimicrobial properties as one of the key factors in the design of GTR/GBR membranes. Antibiotics are potent medications frequently administered systemically to combat microbes and mitigate bacterial infections. Nevertheless, the excessive use of antibiotics has resulted in a surge in bacterial resistance. To overcome this challenge, alternative antibacterial substances have been developed. In this review, we explore the utilization of alternative substances with antimicrobial properties for topical application in membranes. The use of antibacterial nanoparticles, phytochemical compounds, and antimicrobial peptides in this context was investigated. By carefully selecting and integrating antimicrobial agents into GTR/GBR membranes, we can significantly enhance their effectiveness in combating periodontitis. These antibacterial substances not only act as barriers against pathogenic bacteria but also promote the process of periodontal healing.
Collapse
Affiliation(s)
- Sara Takallu
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Abbas Zakeri Bazmandeh
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Hamid Reza Ghaderi Jafarbeigloo
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, University of Medical Sciences, Fasa 7461686688, Iran
- Student Research Center committee, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Hooman Khorshidi
- Department of Periodontology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 7195615878, Iran
| |
Collapse
|
18
|
Hernández-Ruiz P, Escalona Montaño AR, Amezcua-Guerra LM, González-Pacheco H, Niccolai E, Amedei A, Aguirre-García MM. Potential Association of the Oral Microbiome with Trimethylamine N-Oxide Quantification in Mexican Patients with Myocardial Infarction. Mediators Inflamm 2024; 2024:3985731. [PMID: 38415052 PMCID: PMC10898950 DOI: 10.1155/2024/3985731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/29/2024] Open
Abstract
Many attempts have been proposed to evaluate the linkage between the oral-gut-liver axis and the mechanisms related to the diseases' establishment. One of them is the oral microbiota translocation into the bloodstream, liver, and gut, promoting a host dysbiosis and triggering the presence of some metabolites such as trimethylamine N-oxide (TMAO), known as a risk marker for cardiovascular disease, and especially the myocardial infarction (MI). In the present pilot study, the involvement of oral dysbiosis related to the presence of TMAO has been considered an independent component of the standard risk factors (SRs) in the development of MI, which has not been previously described in human cohorts. A positive and significant correlation of TMAO levels with Porphyromonas was identified; likewise, the increase of the genus Peptidiphaga in patients without SRs was observed. We determined that the presence of SRs does not influence the TMAO concentration in these patients. This report is the first study where the relationship between oral dysbiosis and TMAO is specified in the Mexican population. Our findings provide information on the possible contribution of the oral pathogens associated with gut dysbiosis in the development of MI, although further analysis should be performed.
Collapse
Affiliation(s)
- Paulina Hernández-Ruiz
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Alma R Escalona Montaño
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Luis M Amezcua-Guerra
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Héctor González-Pacheco
- Unidad de Cuidados Coronarios, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence 50134, Italy
| | - María M Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| |
Collapse
|
19
|
Sukmarini L, Atikana A, Hertiani T. Antibiofilm activity of marine microbial natural products: potential peptide- and polyketide-derived molecules from marine microbes toward targeting biofilm-forming pathogens. J Nat Med 2024; 78:1-20. [PMID: 37930514 DOI: 10.1007/s11418-023-01754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Controlling and treating biofilm-related infections is challenging because of the widespread presence of multidrug-resistant microbes. Biofilm, a naturally occurring matrix of microbial aggregates, has developed intricate and diverse resistance mechanisms against many currently used antibiotics. This poses a significant problem, especially for human health, including clinically chronic infectious diseases. Thus, there is an urgent need to search for and develop new and more effective antibiotics. As the marine environment is recognized as a promising reservoir of new biologically active molecules with potential pharmacological properties, marine natural products, particularly those of microbial origin, have emerged as a promising source of antibiofilm agents. Marine microbes represent an untapped source of secondary metabolites with antimicrobial activity. Furthermore, marine natural products, owing to their self-defense mechanisms and adaptation to harsh conditions, encompass a wide range of chemical compounds, including peptides and polyketides, which are primarily found in microbes. These molecules can be exploited to provide novel and unique structures for developing alternative antibiotics as effective antibiofilm agents. This review focuses on the possible antibiofilm mechanism of these marine microbial molecules against biofilm-forming pathogens. It provides an overview of biofilm development, its recalcitrant mode of action, strategies for the development of antibiofilm agents, and their assessments. The review also revisits some selected peptides and polyketides from marine microbes reported between 2016 and 2023, highlighting their moderate and considerable antibiofilm activities. Moreover, their antibiofilm mechanisms, such as adhesion modulation/inhibition targeting biofilm-forming pathogens, quorum sensing intervention and inhibition, and extracellular polymeric substance disruption, are highlighted herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), KST Soekarno, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, West Java, 16911, Indonesia.
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia.
| | - Akhirta Atikana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), KST Soekarno, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, West Java, 16911, Indonesia
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Triana Hertiani
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia.
- Pharmaceutical Biology Department, Faculty of Pharmacy, Gadjah Mada University, Jl. Sekip Utara, Yogyakarta, 55281, Indonesia.
| |
Collapse
|
20
|
Ghaffarpour M, Karami‐Zarandi M, Rahdar HA, Feyisa SG, Taki E. Periodontal disease in down syndrome: Predisposing factors and potential non-surgical therapeutic approaches. J Clin Lab Anal 2024; 38:e25002. [PMID: 38254289 PMCID: PMC10829694 DOI: 10.1002/jcla.25002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 11/06/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Periodontal diseases (PDs) have been documented to be significantly more prevalent and severe in patients with Down syndrome (DS). Different immunological and microbiological factors contributed to predisposing these patients to progressive and recurrent PDs. AIM The aim of this review was to investigate the altered immunological responses and oral microbiota disorders as well as focus on adjunctive non-surgical methods for the treatment of PDs and its applicability in patients with DS. MATERIAL AND METHODS A literature review was conducted addressing the following topics: (1) the altered immunological responses, (2) orofacial disorders related to DS patients, (3) oral microbiota changing, and (4) adjunctive non-surgical treatment and its efficacy in patients with DS. RESULTS Due to the early onset of PDs in children with DS, the need for prompt and effective treatment in these patients is essential. DISCUSSION AND CONCLUSION So, investigating underlying factors may open a new window to better understand the pathology of PDs in DS people and thus, find better strategies for treatment in such group. Although non-surgical treatments such as photodynamic therapy and probiotic consumption represented acceptable outcomes in different examined patients without DS, data about the application of these convenience and no need for local anesthesia methods in patients with DS is limited.
Collapse
Affiliation(s)
- Mahdie Ghaffarpour
- Department of Oral Medicine, School of DentistryTehran University of Medical SciencesTehranIran
| | - Morteza Karami‐Zarandi
- Department of Microbiology, School of MedicineZanjan University of Medical SciencesZanjanIran
| | - Hossein Ali Rahdar
- Department of Microbiology, School of MedicineIranshahr University of Medical SciencesIranshahrIran
| | - Seifu Gizaw Feyisa
- Department of Medical LaboratorySalale University College of Health SciencesFicheEthiopia
| | - Elahe Taki
- Department of Microbiology, School of MedicineKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
21
|
Tanev MZ, Dobrev IN. Microscopic study of cultural and diffusion kinetics of the effects of a prototype extracellular matrix on the photodynamic therapy of periopathogenic bacteria - a pilot study. Folia Med (Plovdiv) 2023; 65:922-928. [PMID: 38351781 DOI: 10.3897/folmed.65.e102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/03/2023] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION In dental medicine, photodynamic therapy is a promising treatment for bacterial infections. Oral biofilms, on the other hand, can produce an extracellular matrix that provides protection and stability against external forces.
Collapse
|
22
|
Zhou S, He TC, Zhang Y, Zhang H. Comparison of the main pathogenic microorganisms of various common oral diseases in children and adults. PEDIATRIC DISCOVERY 2023; 1:e35. [PMID: 38371743 PMCID: PMC10874635 DOI: 10.1002/pdi3.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 02/20/2024]
Abstract
The microorganisms in the human body gradually change and maintain a dynamic balance with the development of physiology and pathology. Oral microbiota is one of the most important microbiota in human body. It is not only closely related to the occurrence and development of oral diseases, but also plays an important role in the overall health. In childhood, the population of oral microorganisms is relatively small, but with the growth of age and tooth development, the species and quantity of oral microorganisms are gradually increasing. Different oral diseases also have their corresponding main microorganisms, and these dominant microorganisms change at different stages of the disease. In this review, we summarized and compared the main pathogenic microorganisms of several common oral diseases in children and adults. In addition, the possible association and difference between adults and children of the main pathogenic microorganisms in different stages of the same or different diseases are also discussed in order to provide research data for the development and diagnosis of common oral diseases in children and adults.
Collapse
Affiliation(s)
- Siqi Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Yuxin Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Monleón-Getino A, Pujol-Muncunill G, Méndez Viera J, Álvarez Carnero L, Sanseverino W, Paytuví-Gallart A, Martín de Carpí J. A pilot study of the use of the oral and faecal microbiota for the diagnosis of ulcerative colitis and Crohn's disease in a paediatric population. Front Pediatr 2023; 11:1220976. [PMID: 38034829 PMCID: PMC10687547 DOI: 10.3389/fped.2023.1220976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory bowel diseases (IBD) that affect the gastrointestinal tract. Changes in the microbiome and its interaction with the immune system are thought to play a key role in their development. The aim of this study was to determine whether metagenomic analysis is a feasible non-invasive diagnostic tool for IBD in paediatric patients. A pilot study of oral and faecal microbiota was proposed with 36 paediatric patients divided in three cohorts [12 with CD, 12 with UC and 12 healthy controls (HC)] with 6 months of follow-up. Finally, 30 participants were included: 13 with CD, 11 with UC and 8 HC (6 dropped out during follow-up). Despite the small size of the study population, a differential pattern of microbial biodiversity was observed between IBD patients and the control group. Twenty-one bacterial species were selected in function of their discriminant accuracy, forming three sets of potential markers of IBD. Although IBD diagnosis requires comprehensive medical evaluation, the findings of this study show that faecal metagenomics or a reduced set of bacterial markers could be useful as a non-invasive tool for an easier and earlier diagnosis.
Collapse
Affiliation(s)
- A. Monleón-Getino
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
- GRBIO, Research Group in Biostatistics and Bioinformatics, Barcelona, Spain
- BIOST3, Research Group in Biostatistics, Data Science and Bioinformatics, Barcelona, Spain
| | - G. Pujol-Muncunill
- Unit for the Comprehensive Care of Paediatric Inflammatory Bowel Disease, Paediatric Gastroenterology, Hepatology and Nutrition Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - J. Méndez Viera
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
- BIOST3, Research Group in Biostatistics, Data Science and Bioinformatics, Barcelona, Spain
| | - L. Álvarez Carnero
- Unit for the Comprehensive Care of Paediatric Inflammatory Bowel Disease, Paediatric Gastroenterology, Hepatology and Nutrition Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | | | - J. Martín de Carpí
- Unit for the Comprehensive Care of Paediatric Inflammatory Bowel Disease, Paediatric Gastroenterology, Hepatology and Nutrition Department, Hospital Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
24
|
Alves JM, Germano DB, Kim YJ, Fonseca FAH, Izar MC, Tuleta ID, Nagai R, Novo NF, Juliano Y, Neves LM, Pallos D, França CN. Modulation of monocyte subtypes in diabetes after non-surgical periodontal treatment. Clin Oral Investig 2023; 27:6847-6854. [PMID: 37843636 DOI: 10.1007/s00784-023-05299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES The current study aims to evaluate the effect of non-surgical periodontal treatment on the modulation of monocyte phenotype, in the presence or absence of diabetes. MATERIALS AND METHODS The identification, quantification, and phenotypic characterization of monocyte subtypes (classical, intermediate, and non-classical) were performed by flow cytometry, at baseline and 1 month after the end of non-surgical periodontal treatment, in patients with periodontitis, associated or not with diabetes. RESULTS There was an increase in non-classical monocytes after treatment and a reduction in intermediate monocytes, without differences for the classical subtype, regardless of the diabetes status. Furthermore, there was a reduction in intermediate monocytes and an increase in non-classical and classical monocytes after treatment in the diabetes group, while no significant differences were observed for classical, intermediate, and non-classical monocytes in the group without diabetes. Comparisons between the two groups showed significant differences for classical, intermediate, and non-classical monocytes at baseline; these differences were not found one month after treatment. CONCLUSIONS Non-surgical periodontal treatment leads to modulation of monocytes to a less inflammatory phenotype, especially in individuals with diabetes. CLINICAL RELEVANCE A better understanding of the role of these biomarkers in the periodontitis contex may constitute a new strategic target for a better treatment of patiens with diabetes associated to periodontitis. CLINICAL TRIAL REGISTRATION Brazilian Registry of Clinical Trials-RBR-35szwc. Jhefferson Miranda Alves and Danielle Borges Germano contributed equality to this study and should be considered first authors.
Collapse
Affiliation(s)
- Jhefferson Miranda Alves
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Danielle Borges Germano
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Yeon Jung Kim
- Post Graduation Program in Odontology, Santo Amaro University, Sao Paulo, Brazil
| | | | - Maria Cristina Izar
- Department of Medicine, Federal University of Sao Paulo, Cardiology Division, Sao Paulo, Brazil
| | | | - Rogério Nagai
- Post Graduation Program in Odontology, Santo Amaro University, Sao Paulo, Brazil
| | - Neil Ferreira Novo
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Yára Juliano
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Lucas Melo Neves
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Débora Pallos
- Post Graduation Program in Odontology, Santo Amaro University, Sao Paulo, Brazil
| | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil.
| |
Collapse
|
25
|
Ergün E, Toraman E, Barış Ö, Budak H, Demir T. Quantitative investigation of the bacterial content of periodontal abscess samples by real-time PCR. J Microbiol Methods 2023; 213:106826. [PMID: 37742798 DOI: 10.1016/j.mimet.2023.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVES Periodontal abscesses, which are part of the acute periodontal disease group characterized by the destruction of periodontal tissue with deep periodontal pockets, bleeding on probing, suppuration, and localized pus accumulation, cause rapid destruction of tooth-supporting tissues. This study aimed to evaluate the microbial content of periodontal abscesses by specific and culture-independent qPCR. METHODS This study was conducted on 30 volunteers diagnosed with periodontal abscesses and presenting with complaints of localized pain, swelling, and tenderness in the gingiva. Genomic DNA was isolated from the samples taken. Escherichia coli bacteria were used for the standard curve created to calculate the prevalence of target bacteria in the total bacterial load. 16S rRNA Universal primers were used to assess the total bacterial load and prevalence. Bacterial counts were analyzed with Spearman's rank correlation coefficients (ρ) matrix. RESULTS From the analysis of Real-Time PCR, Porphyromonas gingivalis (30, 100%), Prevotella intermedia (30, 100%), and Fusobacterium nucleatum (30, 100%) were detected in all samples. Campylobacter rectus (29, 96.6%), Porphyromonas endodontalis (29, 96.6%), Tannerella forsythia (28, 93.3%), Filifactor alocis (28, 93.3%), and Actinomyces naeslundii (28, 93.3%) were also frequently detected. CONCLUSIONS Periodontal abscesses were found to be polymicrobial, and not only periodontal pathogens appeared to be associated with the development of periodontal abscesses. The presence, prevalence, and number of Porphyromonas endodontalis and Propionibacterium acnes in the contents of periodontal abscesses were determined for the first time in our study. Further studies are needed to better understand the roles of bacteria in periodontal disease, including abscesses.
Collapse
Affiliation(s)
- Ercan Ergün
- Atatürk University, Department of Periodontology, Faculty of Dentistry, Erzurum, Turkey
| | - Emine Toraman
- Atatürk University, Science Faculty, Department of Molecular Biology and Genetics, Erzurum, Turkey
| | - Özlem Barış
- Atatürk University, Science Faculty, Department of Biology, Erzurum, Turkey
| | - Harun Budak
- Atatürk University, Science Faculty, Department of Molecular Biology and Genetics, Erzurum, Turkey
| | - Turgut Demir
- Atatürk University, Department of Periodontology, Faculty of Dentistry, Erzurum, Turkey.
| |
Collapse
|
26
|
Toraman A, Sağlam E, Savran L, Sağlam M, Köseoğlu S. Salivary levels of NLRC4 inflammasome in different periodontal clinical status. Oral Dis 2023; 29:2765-2771. [PMID: 36327138 DOI: 10.1111/odi.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/20/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Nucleotide-binding and oligomerization domain (NOD)-like receptor family CARD domain-containing protein 4 (NLRC4) has a critical role in the regulation of interleukin-1β (IL-1β), an important cytokine in the pathogenesis of the periodontal diseases. In this study, we aimed to evaluate levels of salivary NLRC4 inflammasomes in different periodontal clinical statuses. METHODS The individuals with 20 periodontally healthy (healthy), 20 gingivitis, and 20 periodontitis were periodontally examined. Saliva samples were collected, after the clinical measurements (plaque index, gingival index, gingival bleeding index, probing depth, and clinical attachment level). The levels of salivary NLRC4, IL-1β, and interleukin 10 (IL-10) were examined by enzyme-linked immunosorbent assay. RESULTS The results demonstrated that levels of salivary NLRC4 (p < 0.01), and IL-1β (p < 0.001) were significantly higher in gingivitis and periodontitis than in the healthy group. No significant difference was salivary IL-10 levels between the groups (p > 0.05). Positive significant correlations among NLRC4 and IL-1β salivary levels and clinical parameters were detected (p < 0.05). CONCLUSION The findings of this study suggest that the NLRC4 is elevated in periodontal disease. Larger randomized controlled clinical studies are needed to use salivary NLRC4 levels as a potential marker for detecting the presence and/or severity of the periodontal disease.
Collapse
Affiliation(s)
- Ayşe Toraman
- Department of Periodontology, Hamidiye Faculty of Dentistry, Health Sciences University, İstanbul, Turkey
| | - Ebru Sağlam
- Department of Periodontology, Hamidiye Faculty of Dentistry, Health Sciences University, İstanbul, Turkey
| | - Levent Savran
- Department of Periodontology, Faculty of Dentistry, İzmir Katip Çelebi University, İzmir, Turkey
| | - Mehmet Sağlam
- Department of Periodontology, Faculty of Dentistry, İzmir Katip Çelebi University, İzmir, Turkey
| | - Serhat Köseoğlu
- Department of Periodontology, Faculty of Dentistry, İstanbul Medeniyet University, İstanbul, Turkey
| |
Collapse
|
27
|
Silva-Boghossian CM, Duarte PT, Silva DGD, Lourenço TGB, Colombo APV. Colonization dynamics of subgingival microbiota in recently installed dental implants compared to healthy teeth in the same individual: a 6-month prospective observational study. J Appl Oral Sci 2023; 31:e20230134. [PMID: 37729258 PMCID: PMC10519670 DOI: 10.1590/1678-7757-2023-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
OBJECTIVES To evaluate the colonization dynamics of subgingival microbiota established over six months around newly installed dental implants in periodontally healthy individuals, compared with their corresponding teeth. METHODOLOGY Seventeen healthy individuals assigned to receive single dental implants participated in the study. Subgingival biofilm was sampled from all implant sites and contralateral/ antagonist teeth on days 7, 30, 90, and 180 after implant installation. Microbiological analysis was performed using the Checkerboard DNA-DNA hybridization technique for detection of classical oral taxa and non-oral microorganisms. Significant differences were estimated by Mann-Whitney and Friedman tests, while associations between implants/teeth and target species levels were assessed by linear regression analysis (LRA). Significance level was set at 5%. RESULTS Levels of some species were significantly higher in teeth compared to implants, respectively, at day 7 ( V.parvula , 6 × 10 5 vs 3 × 105 ; Milleri streptococci , 2 × 10 6 vs 6 × 10 5 ; Capnocytophaga spp., 2 × 10 6 vs 9 × 10 5 ; E.corrodens , 2 × 10 6 vs 5 × 10 5 ; N. mucosa , 2 × 10 6 vs 5 × 10 5 ; S.noxia , 2 × 10 6 vs 3 × 10 5 ; T.socranskii , 2 × 10 6 vs 5 × 10 5 ; H.alvei , 4 × 10 5 vs 2 × 10 5 ; and Neisseria spp., 6 × 10 5 vs 4 × 10 4 ), day 30 ( V.parvula , 5 × 10 5 vs 10 5 ; Capnocytophaga spp., 1.3 × 10 6 vs 6.8 × 10 4 ; F.periodonticum , 2 × 10 6 vs 10 6 ; S.noxia , 6 × 10 5 vs 2 × 10 5 ; H.alvei , 8 × 10 5 vs 9 × 10 4 ; and Neisseria spp., 2 × 10 5 vs 10 6 ), day 120 ( V.parvula , 8 × 10 5 vs 3 × 10 5 ; S.noxia , 2 × 10 6 vs 0; and T.socranskii , 3 × 10 5 vs 8 × 10 4 ), and day 180 ( S.enterica subsp. enterica serovar Typhi, 8 × 10 6 vs 2 × 10 6 ) (p<0.05). Implants showed significant increases over time in the levels of F.nucleatum , Gemella spp., H.pylori , P.micra , S.aureus , S.liquefaciens , and T.forsythia (p<0.05). LRA found that dental implants were negatively correlated with high levels of S. noxia and V. parvula (β=-0.5 to -0.3; p<0.05). CONCLUSIONS Early submucosal microbiota is diverse and only a few species differ between teeth and implants in the same individual. Only 7 days after implant installation, a rich microbiota can be found in the peri-implant site. After six months of evaluation, teeth and implants show similar prevalence and levels of the target species, including known and new periodontopathic species.
Collapse
Affiliation(s)
- Carina Maciel Silva-Boghossian
- Universidade Federal Rio de Janeiro, Faculdade de Odontologia, Departamento de Clínica Odontológica, Rio de Janeiro, Brasil
| | - Pablo Torquilho Duarte
- Universidade do Grande Rio, Programa de Pós-graduação em Odontologia, Duque de Caxias, Rio de Janeiro, Brasil
| | - Denise Gome da Silva
- Universidade do Grande Rio, Programa de Pós-graduação em Odontologia, Duque de Caxias, Rio de Janeiro, Brasil
| | - Talita Gomes Baêta Lourenço
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, Brasil
| | - Ana Paula Vieira Colombo
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, Brasil
| |
Collapse
|
28
|
Wang S, Zhao Y, Breslawec AP, Liang T, Deng Z, Kuperman LL, Yu Q. Strategy to combat biofilms: a focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes 2023; 9:63. [PMID: 37679355 PMCID: PMC10485009 DOI: 10.1038/s41522-023-00427-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial biofilms, which consist of three-dimensional extracellular polymeric substance (EPS), not only function as signaling networks, provide nutritional support, and facilitate surface adhesion, but also serve as a protective shield for the residing bacterial inhabitants against external stress, such as antibiotics, antimicrobials, and host immune responses. Biofilm-associated infections account for 65-80% of all human microbial infections that lead to serious mortality and morbidity. Tremendous effort has been spent to address the problem by developing biofilm-dispersing agents to discharge colonized microbial cells to a more vulnerable planktonic state. Here, we discuss the recent progress of enzymatic eradicating strategies against medical biofilms, with a focus on dispersal mechanisms. Particularly, we review three enzyme classes that have been extensively investigated, namely glycoside hydrolases, proteases, and deoxyribonucleases.
Collapse
Affiliation(s)
- Shaochi Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yanteng Zhao
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Alexandra P Breslawec
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | - Tingting Liang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus, 475004, Kaifeng, Henan, China
| | - Zhifen Deng
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Laura L Kuperman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA.
- Mirimus Inc., 760 Parkside Avenue, Brooklyn, NY, 11226, USA.
| | - Qiuning Yu
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
29
|
Senpuku H, Yoshimura K, Takai H, Maruoka Y, Yamashita E, Tominaga A, Ogata Y. Role of Macrophage Colony-Stimulating Factor for Staphylococcal Infection in the Oral Cavity. J Clin Med 2023; 12:5825. [PMID: 37762764 PMCID: PMC10532062 DOI: 10.3390/jcm12185825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE There are few valid indicators of oral infection owing to the complexity of pathogenic factors in oral diseases. Salivary markers are very useful for scrutinizing the symptoms of disease. To provide a reliable and useful predictive indicator of infection for opportunistic pathogens in individuals with compromised immune systems, such as those with periodontal diseases and Human Immunodeficiency Virus (HIV), this study examines opportunistic pathogens such as C. albicans and staphylococci and macrophage colony-stimulating factor (M-CSF) and CA125/MUC16 in saliva. The aim was to explore the correlations investigated among these factors. METHODS Samples were divided into two groups (based on patient sex, the absence and presence of dentures in elderly, or HIV-positive patients and healthy subjects), and the correlation was analyzed in two groups of elderly patients with periodontal disease (64.5 ± 11.2 years old) and HIV-infected patients (41.9 ± 8.4 years old). Healthy subjects (33.8 ± 9.1 years old) were also analyzed as a control. Levels of C. albicans, staphylococci, and M-CSF, which is an immunological factor for the differentiation of macrophage, and CA125/MUC16, which provides a protective lubricating barrier against infection, were investigated. RESULTS A significant and positive correlation between the levels of M-CSF and staphylococci was found in elderly individuals and HIV-positive patients treated with antiretroviral therapy. A significant and positive correlation between the levels of M-CSF and CD125/MUC16 was also found in both patients. These correlations were enhanced in both patients as compared with healthy subjects. CONCLUSION Salivary M-CSF might be useful as a new indicator of opportunistic infection caused by staphylococci and a defense against infection in immunocompromised hosts.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Department of Microbiology and Immunology, Nihon University of School of Dentistry at Matsudo, Matsudo 271-8587, Japan
| | | | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Japan; (H.T.)
| | - Yutaka Maruoka
- National Center for Global Health and Medicine, Tokyo 162-8655, Japan;
| | - Erika Yamashita
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Japan;
| | - Akira Tominaga
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Japan; (H.T.)
| |
Collapse
|
30
|
Almhöjd US, Lehrkinder A, Roos-Jansåker AM, Lingström P. Antimicrobial efficacy of chlorine agents against selected oral pathogens. Clin Oral Investig 2023; 27:5695-5707. [PMID: 37606720 PMCID: PMC10492701 DOI: 10.1007/s00784-023-05190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVES Method-dependent comparison of antimicrobial agents' efficacy against oral pathogens. MATERIALS AND METHODS Several sodium hypochlorite solutions (NaOCl)-Perisolv®, Carisolv® and Dakin's solution-were equated with chlorhexidine (CHX) and hydrogen peroxide (H2O2) against ten oral micro-organisms related to caries and periodontitis using different minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) techniques. Agents were adjusted to the final 70 mmol/L concentration of active chlorine molecule. RESULTS Apart from H2O2 and the amino acids of Perisolv®, all the agents revealed an antimicrobial effect. Agar diffusion test ranked CHX (p < 0.05) as the most effective against all ten specimens, followed by the NaOCl of Perisolv® and Dakin's solution. Correspondingly, in broth microdilution on agar, CHX was the most effective in eradicating micro-organisms at 0.03 mmol/L compared with 2.2 mmol/L of Dakin's solution. In contrast, the bactericidal concentration of Dakin's solution was the most effective at 0.2 mmol/L, (p < 0.001), followed by Perisolv® (2.14 mmol/L), CHX (2.38 mmol/L) and Carisolv® (3.33 mmol/L) after 5 and 10 min in broth dilution test. In live/dead analysis, 60-min exposure to a 2-fold concentration of agents resulted in two-log Aggregatibacter actinomycetemcomitans inhibition by CHX (35 mmol/L) whilst Streptococcus mutans was more susceptible, in 0.8 and 8.8 mmol/L, after 10 min to CHX and Dakin's respectively. CONCLUSION Replacement of CHX with tested hypochlorite agents showed evident potential and promoted rapid antimicrobial effect. CLINICAL RELEVANCE Effective antimicrobial agents are crucial in controlling pathogen-induced oral infections increasing clinical possibilities to combat oral biofilms. Additionally, CHX substitution with hypochlorite agents could eliminate CHX's adverse effects.
Collapse
Affiliation(s)
- Ulrica Scherdin Almhöjd
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Box 450, SE-405 30, Gothenburg, Sweden.
| | - Anna Lehrkinder
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Box 450, SE-405 30, Gothenburg, Sweden
| | - Ann-Marie Roos-Jansåker
- Department of Periodontology, Faculty of Odontology, Malmö University, SE-205 06, Malmö, Sweden
| | - Peter Lingström
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Box 450, SE-405 30, Gothenburg, Sweden
| |
Collapse
|
31
|
Ohara H, Odanaka K, Shiine M, Hayasaka M. Antimicrobial effect of oral care gel containing hinokitiol and 4-isopropyl-3-methylphenol against intraoral pathogenic microorganisms. PLoS One 2023; 18:e0283295. [PMID: 37656688 PMCID: PMC10473516 DOI: 10.1371/journal.pone.0283295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
OBJECTIVE Deterioration of oral hygiene is closely related to an increase in severity and mortality of corona virus disease-19 (COVID-19), and also contributes to the development of various diseases such as aspiration pneumonia or Alzheimer's. Oral care is attracting high interest in Japan, which has entered a super-aging society. In this study, we aimed to investigate whether commercially available Hinora® (HO), an oral care gel containing hinokitiol and 4-isopropyl-3-methylphenol (IPMP), has biofilm formation inhibitory and antimicrobial activities against various intraoral pathogen microorganisms. METHOD Candida species, Aggregatibacter actinomycetemcomitans, Staphylococcus aureus, and Pseudomonas aeruginosa were selected during the study period, all of which were analyzed using antimicrobial disc, microorganism turbidity, and crystal violet assays. In addition, the germ tube test using Candida albicans (C. albicans) was performed with a modification of Mackenzie's method. Images for morphological observation of the germ tubes were acquired using an inverted microscope. For comparison between products, we used Refrecare® (RC), which only contains hinokitiol (not containing IPMP). RESULTS All the intraoral pathogenic microorganisms showed drug susceptibility against undiluted forms of HO and/or RC. In particular, HO was more effective at lower concentrations than RC. In the HO-added group, inhibition circles were observed in all bacteria except P. aeruginosa when added at a concentration of 0.5 g/mL or more. The optical density values at 590 nm (crystal violet) and/or 600 nm (microorganism turbidity) of all the fungi and bacteria were significantly lower when cultured in medium with HO. Inhibition of growth or biofilm formation was observed when HO was added at a concentration of 0.05 g/mL or higher. To investigate the action mechanism of HO, germ tube tests were performed in C. albicans. The results showed that culturing C. albicans in soybean-casein digest broth with HO (0.05 g/mL) significantly suppressed germ tube formation. CONCLUSIONS These data suggest that oral care gel-containing hinokitiol and IPMP has strong biofilm formation inhibitory activity, as well as antifungal and antimicrobial effects against Candida fungi and multiple intraoral pathogenic microorganisms. Therefore, it may be a promising treatment option for oral infections.
Collapse
Affiliation(s)
- Hiroshi Ohara
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
- Department of Pharmacy, Ohu University Hospital, Koriyama, Japan
| | - Keita Odanaka
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| | - Miku Shiine
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| | - Masataka Hayasaka
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| |
Collapse
|
32
|
Colombo APV, do Souto RM, Araújo LL, Espíndola LCP, Hartenbach FARR, Magalhães CB, da Silva Oliveira Alves G, Lourenço TGB, da Silva-Boghossian CM. Antimicrobial resistance and virulence of subgingival staphylococci isolated from periodontal health and diseases. Sci Rep 2023; 13:11613. [PMID: 37463947 DOI: 10.1038/s41598-023-38599-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
The dysbiotic biofilm of periodontitis may function as a reservoir for opportunistic human pathogens of clinical relevance. This study explored the virulence and antimicrobial susceptibility of staphylococci isolated from the subgingival biofilm of individuals with different periodontal conditions. Subgingival biofilm was obtained from 142 individuals with periodontal health, 101 with gingivitis and 302 with periodontitis, and cultivated on selective media. Isolated strains were identified by mass spectrometry. Antimicrobial susceptibility was determined by disk diffusion. The mecA and virulence genes were surveyed by PCR. Differences among groups regarding species, virulence and antimicrobial resistance were examined by Chi-square, Kruskal-Wallis or Mann-Whitney tests. The overall prevalence of subgingival staphylococci was 46%, especially in severe periodontitis (> 60%; p < 0.01). S. epidermidis (59%) and S. aureus (22%) were the predominant species across groups. S. condimenti, S. hominis, S. simulans and S. xylosus were identified only in periodontitis. High rates of resistance/reduced sensitivity were found for penicillin (60%), amoxicillin (55%) and azithromycin (37%), but multidrug resistance was observed in 12% of the isolates. Over 70% of the mecA + strains in periodontitis were isolated from severe disease. Higher detection rates of fnB + isolates were observed in periodontitis compared to health and gingivitis, whereas luxF/luxS-pvl + strains were associated with sites with deep pockets and attachment loss (p < 0.05). Penicillin-resistant staphylococci is highly prevalent in the subgingival biofilm regardless of the periodontal status. Strains carrying virulence genes related to tissue adhesion/invasion, inflammation and cytotoxicity support the pathogenic potential of these opportunists in the periodontal microenvironment.
Collapse
Affiliation(s)
- Ana Paula Vieira Colombo
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Department of Clinics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Renata Martins do Souto
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lélia Lima Araújo
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Clinics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laís Christina Pontes Espíndola
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Clinics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fátima Aparecida R R Hartenbach
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Clinics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa Bichara Magalhães
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Clinics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Talita Gomes Baêta Lourenço
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carina Maciel da Silva-Boghossian
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Clinics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Lertsuphotvanit N, Tuntarawongsa S, Chantadee T, Phaechamud T. Phase Inversion-Based Doxycycline Hyclate-Incorporated Borneol In Situ Gel for Periodontitis Treatment. Gels 2023; 9:557. [PMID: 37504434 PMCID: PMC10380060 DOI: 10.3390/gels9070557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Borneol has been successfully employed as a gelling agent for in situ forming gel (ISG). While 40% borneol can regulate drug release, there is interest in novel approaches to achieve extended drug release, particularly through the incorporation of hydrophobic substances. Herein, triacetin was selected as a hydrophobic additive solvent for doxycycline hyclate (Dox)-loaded 40% borneol-based ISGs in N-methyl-2-pyrrolidone (NMP) or dimethyl sulfoxide (DMSO), which were subsequently evaluated in terms of their physicochemical properties, gel formation morphology, water sensitivity, drug release, and antimicrobial activities. ISG density and viscosity gradually decreased with the triacetin proportion to a viscosity of <12 cPs and slightly influenced the surface tension (33.14-44.33 mN/m). The low expelled force values (1.59-2.39 N) indicated the convenience of injection. All of the prepared ISGs exhibited favorable wettability and plastic deformation. Higher gel firmness from ISG prepared using NMP as a solvent contributed to the ability of more efficient controlled drug release. High triacetin (25%)-loaded ISG retarded solvent diffusion and gel formation, but diminished gel firmness and water sensitivity. ISG containing 5% triacetin efficiently prolonged Dox release up to 10 days with Fickian diffusion and presented effective antimicrobial activities against periodontitis pathogens such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Therefore, the Dox-loaded 40% borneol-based ISG with 5% triacetin is a potential effective local ISG for periodontitis treatment.
Collapse
Affiliation(s)
- Nutdanai Lertsuphotvanit
- Program of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000, Thailand
| | - Sarun Tuntarawongsa
- Pharmaceutical Intellectual Center "Prachote Plengwittaya", Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Takron Chantadee
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Phaechamud
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
34
|
Khalil W. A New Approach for Explaining and Treating Dry Sockets: A Pilot Retrospective Study. Cureus 2023; 15:e41347. [PMID: 37546073 PMCID: PMC10398614 DOI: 10.7759/cureus.41347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Objective Dry socket, a common complication following a tooth extraction, is characterized by severe and radiating pain that typically begins one to four days after the extraction. Despite several risk factors, the exact cause and underlying mechanisms of dry sockets remain unclear. This study aims to propose a novel pathogenesis and management approach for dry sockets based on an infectious process. Methods The study was conducted by reviewing medical records, at a private dental clinic, of patients who fit the inclusion criteria; these patients appeared to have come between April 2022 and April 2023. The study included all patients with age ≥17 years diagnosed with dry socket that was resistant to conventional topical treatment, and who received treatment with ciprofloxacin 500 mg three times per day during the study period. Results Out of 15 patients who received treatment with ciprofloxacin 500 mg three times per day during the study period, 11 patients (73.3%) were completely relieved of symptoms within 24 hours, with no need for additional painkillers or nonsteroidal anti-inflammatory drugs (NSAIDs). In addition, two patients (13.3%) had a partial response after 48 hours, where their pain was ameliorated from severe to moderate with the use of conventional painkillers (including paracetamol and NSAIDs) and steroidal anti-inflammatory drugs such as dexamethasone (8 mg IM daily) to have total relief. On the other hand, the other two patients (13.3%) had a negative response to the treatment and were out of reach for follow-up. Conclusion These clinical outcomes, coupled with previous laboratory data, could explain all clinical aspects of dry sockets and provide substantial support for the hypothesis that an infectious mechanism plays the principal role in the pathophysiology of dry sockets.
Collapse
Affiliation(s)
- Wael Khalil
- Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Lebanese University, Beirut, LBN
| |
Collapse
|
35
|
Adawi H, Aggarwal A, Jain S, Othman MA, Othman AAA, Zakri RA, Namazi SAM, Sori SA, Abuzawah LHA, Madkhali ZM. Influence of Bariatric Surgery on Oral Microbiota: A Systematic Review. Eur J Dent 2023; 17:602-614. [PMID: 36075269 PMCID: PMC10569860 DOI: 10.1055/s-0042-1753471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The study aims to systematically review the available literature to evaluate the changes in oral microbiota in patients after bariatric surgery (BS) and correlates these alterations in microorganisms with common oral manifestations. Relevant Electronic databases were systematically searched for indexed English literature. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed for framework designing, application, and reporting of the current systematic review. The focused PICO question was: "Is there any change in oral microbiota (O) of patients (P) who underwent BS (I) when compared with non-BS groups (C)?' Seven articles were selected for qualitative synthesis. On application of the National Institutes of Health (NIH) quality assessment tool, six studies were found to be of fair quality and one was of good quality. All the seven included studies evaluated the effect of BS on oral microbiota in humans. The outcomes of this review suggest that considerable changes take place in oral microbiota after BS which can be correlated with common oral manifestations. These changes are mainly due to the indirect effect of BS and may vary with the individuals. Due to variations in the included studies, it is difficult to proclaim any persistent pattern of oral microbiota found after BS.
Collapse
Affiliation(s)
- Hafiz Adawi
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Aparna Aggarwal
- Private Practice, Vitaldent Dental Clinic, Faridabad, Haryana, India
| | - Saurabh Jain
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Maha A. Othman
- Experimental Oral Pathology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ahlam A. A. Othman
- Department of Fixed Prosthodontics, Faculty of Dentistry, Sana'a University, Sana'a, Yemen
| | | | | | - Sara A.Y. Sori
- College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | | |
Collapse
|
36
|
Gerace E, Baldi S, Salimova M, Di Gloria L, Curini L, Cimino V, Nannini G, Russo E, Pallecchi M, Ramazzotti M, Bartolucci G, Occupati B, Lanzi C, Scarpino M, Lanzo G, Grippo A, Lolli F, Mannaioni G, Amedei A. Oral and fecal microbiota perturbance in cocaine users: Can rTMS-induced cocaine abstinence support eubiosis restoration? iScience 2023; 26:106627. [PMID: 37250301 PMCID: PMC10214473 DOI: 10.1016/j.isci.2023.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
The effects of cocaine on microbiota have been scarcely explored. Here, we investigated the gut (GM) and oral (OM) microbiota composition of cocaine use disorder (CUD) patients and the effects of repetitive transcranial magnetic stimulation (rTMS). 16S rRNA sequencing was used to characterize GM and OM, whereas PICRUST2 assessed functional changes in microbial communities, and gas-chromatography was used to evaluate fecal short and medium chain fatty acids. CUD patients reported a significant decrease in alpha diversity and modification of the abundances of several taxa in both GM and OM. Furthermore, many predicted metabolic pathways were differentially expressed in CUD patients' stool and saliva samples, as well as reduced levels of butyric acid that appear restored to normal amounts after rTMS treatment. In conclusion, CUD patients showed a profound dysbiotic fecal and oral microbiota composition and function and rTMS-induced cocaine abstinence determined the restoration of eubiotic microbiota.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, 50139 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Maya Salimova
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Virginia Cimino
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Brunella Occupati
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Cecilia Lanzi
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Maenia Scarpino
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Giovanni Lanzo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Antonello Grippo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Francesco Lolli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
37
|
Di Lodovico S, Dotta TC, Cellini L, Iezzi G, D’Ercole S, Petrini M. The Antibacterial and Antifungal Capacity of Eight Commercially Available Types of Mouthwash against Oral Microorganisms: An In Vitro Study. Antibiotics (Basel) 2023; 12:antibiotics12040675. [PMID: 37107037 PMCID: PMC10135288 DOI: 10.3390/antibiotics12040675] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
This work aimed to evaluate and compare the antimicrobial actions and effects over time of eight types of mouthwash, based on the impact of chlorhexidine on the main microorganisms that are responsible for oral diseases: Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans. The mouthwashes’ antimicrobial action was determined in terms of their minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and time-kill curves at different contact times (10 s, 30 s, 60 s, 5 min, 15 min, 30 min, and 60 min), against selected oral microorganisms. All the mouthwashes showed a notable effect against C. albicans (MICs ranging from 0.02% to 0.09%), and higher MIC values were recorded with P. aeruginosa (1.56% to >50%). In general, the mouthwashes showed similar antimicrobial effects at reduced contact times (10, 30, and 60 s) against all the tested microorganisms, except with P. aeruginosa, for which the most significant effect was observed with a long time (15, 30, and 60 min). The results demonstrate significant differences in the antimicrobial actions of the tested mouthwashes, although all contained chlorhexidine and most of them also contained cetylpyridinium chloride. The relevant antimicrobial effects of all the tested mouthwashes, and those with the best higher antimicrobial action, were recorded by A—GUM® PAROEX®A and B—GUM® PAROEX®, considering their effects against the resistant microorganisms and their MIC values.
Collapse
|
38
|
Michael, Waturangi DE. Antibiofilm activity from endophyte bacteria, Vibrio cholerae strains, and actinomycetes isolates in liquid and solid culture. BMC Microbiol 2023; 23:83. [PMID: 36991312 PMCID: PMC10053847 DOI: 10.1186/s12866-023-02829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
Biofilm-associated infections are a global threat to our economy and human health; as such, development of antibiofilm compounds is an urgent need. Our previous study identified eleven environmental isolates of endophyte bacteria, actinomycetes, and two strains of Vibrio cholerae as having strong antibiofilm activity, but only tested crude extracts from liquid culture. Here we grew the same bacteria in solid culture to induce the formation of colony biofilms and the expression of genes that may ultimately produce antibiofilm compounds. This research aimed to compare antibiofilm inhibition and destruction activities between liquid and solid cultures of these eleven environmental isolates against the biofilms of representative pathogenic bacteria.
Results
We measured antibiofilm activity using the static antibiofilm assay and crystal violet staining. The majority of our isolates exhibited higher inhibitory antibiofilm activity in liquid media, including all endophyte bacteria, V. cholerae V15a, and actinomycetes strains (CW01, SW03, CW17). However, for V. cholerae strain B32 and two actinomycetes bacteria (TB12 and SW12), the solid crude extracts showed higher inhibitory activity. Regarding destructive antibiofilm activity, many endophyte isolates and V. cholerae strains showed no significant difference between culture methods; the exceptions were endophyte bacteria isolate JerF4 and V. cholerae B32. The liquid extract of isolate JerF4 showed higher destructive activity relative to the corresponding solid culture extract, while for V. cholerae strain B32 the solid extract showed higher activity against some biofilms of pathogenic bacteria.
Conclusions
Culture conditions, namely solid or liquid culture, can influence the activity of culture extracts against biofilms of pathogenic bacteria. We compared the antibiofilm activity and presented the data that majority of isolates showed a higher antibiofilm activity in liquid culture. Interestingly, solid extracts from three isolates (B32, TB12, and SW12) have a better inhibition or/and destruction antibiofilm activity compared to their liquid culture. Further research is needed to characterize the activities of specific metabolites in solid and liquid culture extracts and to determine the mechanisms of their antibiofilm actions.
Collapse
|
39
|
Miranda LFB, Lima CV, Pagin R, Costa RC, Pereira MMA, de Avila ED, Bertolini M, Retamal-Valdes B, Shibli JA, Feres M, Barão VAR, Souza JGS. Effect of Processing Methods of Human Saliva on the Proteomic Profile and Protein-Mediated Biological Processes. J Proteome Res 2023; 22:857-870. [PMID: 36779809 DOI: 10.1021/acs.jproteome.2c00652] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The use of saliva as a protein source prior to microbiological and biological assays requires previous processing. However, the effect of these processing methods on the proteomic profile of saliva has not been tested. Stimulated human saliva was collected from eight healthy volunteers. Non-processed saliva was compared with 0.22 μm filtered, 0.45 μm filtered, and pasteurized saliva, by liquid chromatography-mass spectrometry. Data are available via ProteomeXchange with identifier PXD039248. The effect of processed saliva on microbial adhesion was tested using bacterial and fungus species and in biological cell behavior using HaCaT immortalized human keratinocytes. Two hundred and seventy-eight proteins were identified in non-processed saliva, of which 54 proteins (≈19%) were exclusive. Saliva processing reduced identified proteins to 222 (≈80%) for the 0.22 μm group, 219 (≈79%) for the 0.45 μm group, and 201 (≈72%) for the pasteurized saliva, compared to non-processed saliva. The proteomic profile showed similar molecular functions and biological processes. The different saliva processing methods did not alter microbial adhesion (ANOVA, p > 0.05). Interestingly, pasteurized saliva reduced keratinocyte cell viability. Saliva processing methods tested reduced the proteomic profile diversity of saliva but maintained similar molecular functions and biological processes, not interfering with microbial adhesion and cell viability, except for pasteurization, which reduced cell viability.
Collapse
Affiliation(s)
- Luis Fernando B Miranda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sa̅o Paulo 13414-903, Brazil
| | - Carolina V Lima
- Department of Restorative Dentistry, Federal University of Paraná (UFPR), Curitiba, Paraná 80210-170, Brazil
| | - Rafaela Pagin
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, Sa̅o Paulo 07023-070, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sa̅o Paulo 13414-903, Brazil
| | - Marta Maria A Pereira
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo 14801-385, Brazil
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo 14801-385, Brazil.,Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo 16066-840, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Belén Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, Sa̅o Paulo 07023-070, Brazil
| | - Jamil A Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, Sa̅o Paulo 07023-070, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, Sa̅o Paulo 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sa̅o Paulo 13414-903, Brazil
| | - João Gabriel S Souza
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, Sa̅o Paulo 07023-070, Brazil.,Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| |
Collapse
|
40
|
Viksne R, Racenis K, Broks R, Balode AO, Kise L, Kroica J. In Vitro Assessment of Biofilm Production, Antibacterial Resistance of Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Obtained from Tonsillar Crypts of Healthy Adults. Microorganisms 2023; 11:microorganisms11020258. [PMID: 36838220 PMCID: PMC9961825 DOI: 10.3390/microorganisms11020258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Tonsillar crypts can be considered a reservoir for a variety of bacterial species. Some bacterial species can be considered part of the normal oropharyngeal microbiota. The roles of other pathogens, for example, the so-called non-oral and respiratory pathogens Staphylococcus aureus, Klebsiella, Pseudomonas, and Acinetobacter spp., which have strong virulence factors, biofilm production capacity, and the ability to initiate infectious diseases, are unclear. The purpose of this study was to detect the presence of S. aureus, K. pneumoniae, P. aeruginosa, and Acinetobacter spp. within the tonsillar crypts of healthy individuals, and to analyze the pathogens' biofilm production and antibacterial resistances. RESULTS Only common oropharyngeal microbiota were cultivated from 37 participant samples (40.7%). The most commonly isolated pathogenic bacterium was S. aureus, which was isolated in 41 (45%) participant samples. K. pneumoniae was isolated in seven (7.7%) samples, Acinetobacter spp. were isolated in five (5.5%) samples, and P. aeruginosa was isolated in two (2.2%) samples. Biofilm producers predominated among the pathogenic bacteria; 51 strains were biofilm producers, and among them, 31 strains were moderate or strong biofilm producers. The tested S. aureus, K. pneumoniae, P. aeruginosa, and Acinetobacter spp. strains were sensitive to commonly used antibiotics (amoxicillin-clavulanic acid, clindamycin, or ciprofloxacin). One of the isolated S. aureus strains was MRSA. CONCLUSIONS Biofilm is a commonly observed feature that seems to be a naturally existing form of pathogenic bacteria colonizing human tissue. S. aureus, K. pneumoniae, P. aeruginosa, and Acinetobacter spp. occasionally occur in the tonsillar crypts of healthy individuals, and, therefore, it is most likely that S. aureus, K. pneumoniae, P. aeruginosa, and Acinetobacter spp. in opportunistic tonsillar infections originate from the tonsillar crypt microbiota.
Collapse
Affiliation(s)
- Renata Viksne
- Department of Otorhinolaryngology, Daugavpils Regional Hospital, LV-5401 Daugavpils, Latvia
- Department of Doctoral Studies, Riga Stradins University, LV-1007 Riga, Latvia
- Correspondence: ; Tel.: +371-28471191
| | - Karlis Racenis
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
- Center of Nephrology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| | - Renars Broks
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Arta Olga Balode
- Department of Microbiology, NMS Laboratory, LV-1039 Riga, Latvia
| | - Ligija Kise
- Department of Doctoral Studies, Riga Stradins University, LV-1007 Riga, Latvia
| | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
41
|
Téllez Corral MA, Herrera Daza E, Cuervo Jimenez HK, Bravo Becerra MDM, Villamil JC, Hidalgo Martinez P, Roa Molina NS, Otero L, Cortés ME, Parra Giraldo CM. Cryptic Oral Microbiota: What Is Its Role as Obstructive Sleep Apnea-Related Periodontal Pathogens? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1740. [PMID: 36767109 PMCID: PMC9913967 DOI: 10.3390/ijerph20031740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Periodontitis has been commonly linked to periodontopathogens categorized in Socransky's microbial complexes; however, there is a lack of knowledge regarding "other microorganisms" or "cryptic microorganisms", which are rarely thought of as significant oral pathogens and have been neither previously categorized nor connected to illnesses in the oral cavity. This study hypothesized that these cryptic microorganisms could contribute to the modulation of oral microbiota present in health or disease (periodontitis and/or obstructive sleep apnea (OSA) patients). For this purpose, the presence and correlation among these cultivable cryptic oral microorganisms were identified, and their possible role in both conditions was determined. Data from oral samples of individuals with or without periodontitis and with or without OSA were obtained from a previous study. Demographic data, clinical oral characteristics, and genera and species of cultivable cryptic oral microorganisms identified by MALDI-TOF were recorded. The data from 75 participants were analyzed to determine the relative frequencies of cultivable cryptic microorganisms' genera and species, and microbial clusters and correlations tests were performed. According to periodontal condition, dental-biofilm-induced gingivitis in reduced periodontium and stage III periodontitis were found to have the highest diversity of cryptic microorganism species. Based on the experimental condition, these findings showed that there are genera related to disease conditions and others related to healthy conditions, with species that could be related to different chronic diseases being highlighted as periodontitis and OSA comorbidities. The cryptic microorganisms within the oral microbiota of patients with periodontitis and OSA are present as potential pathogens, promoting the development of dysbiotic microbiota and the occurrence of chronic diseases, which have been previously proposed to be common risk factors for periodontitis and OSA. Understanding the function of possible pathogens in the oral microbiota will require more research.
Collapse
Affiliation(s)
- Mayra A. Téllez Corral
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
- Faculty of Dentistry and Innovation Technology Graduate Program, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Eddy Herrera Daza
- Departamento de Matemáticas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Hayde K. Cuervo Jimenez
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - María del Mar Bravo Becerra
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Jean Carlos Villamil
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Patricia Hidalgo Martinez
- Sleep Clinic, Hospital Universitario San Ignacio and Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Nelly S. Roa Molina
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Liliana Otero
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - María E. Cortés
- Faculty of Dentistry and Innovation Technology Graduate Program, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Claudia M. Parra Giraldo
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
- Departamento de Microbiología y Parasilogía, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
42
|
Iskander MMZ, Lamont GJ, Tan J, Pisano M, Uriarte SM, Scott DA. Tobacco smoke exacerbates Filifactor alocis pathogenicity. J Clin Periodontol 2023; 50:121-130. [PMID: 36122937 PMCID: PMC9976951 DOI: 10.1111/jcpe.13729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/11/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
AIM Filifactor alocis has recently emerged as a periodontal pathobiont that appears to thrive in the oral cavity of smokers. We hypothesized that identification of smoke-responsive F. alocis genes would provide insight into adaptive strategies and that cigarette smoke would enhance F. alocis pathogenesis in vivo. MATERIALS AND METHODS F. alocis was grown in vitro and cigarette smoke extract-responsive genes determined by RNAseq. Mice were exposed, or not, to mainstream 1R6F research cigarette smoke and infected with F. alocis, or not, in an acute ligature model of periodontitis. Key clinical, infectious, and immune data were collected. RESULTS In culture, F. alocis growth was unaffected by smoke conditioning and only a small number of genes were specifically regulated by smoke exposure. Reduced murine mass, differences in F. alocis-cognizant antibody production, and altered immune profiles as well as altered alveolar bone loss were all attributable to smoke exposure and/or F. alocis infection in vivo. CONCLUSIONS F. alocis is well-adapted to tobacco-rich conditions and its pathogenesis is enhanced by tobacco smoke exposure. A smoke-exposed ligature model of periodontitis shows promise as a tool with which to further unravel mechanisms underlying tobacco-enhanced, bacteria-induced disease.
Collapse
Affiliation(s)
- Mina M Z Iskander
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Gwyneth J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Jinlian Tan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Michele Pisano
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
43
|
Yuan X, Wu J, Chen R, Chen Z, Su Z, Ni J, Zhang M, Sun C, Zhang F, Liu Y, He J, Zhang L, Luo F, Wang R. Characterization of the oral microbiome of children with type 1 diabetes in the acute and chronic phases. J Oral Microbiol 2022; 14:2094048. [PMID: 35859767 PMCID: PMC9291685 DOI: 10.1080/20002297.2022.2094048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background and Aim The relationship between the oral microbiota and type 1 diabetes (T1D) remains unclear. We aimed to evaluate the variations in the oral microbiome in T1D and identify potentially associated bacterial factors. Methods We performed high-throughput sequencing of the V3-V4 area of the 16S rRNA gene to profile the oral bacterial composition of 47 healthy children (CON group), 46 children with new-onset T1D in the acute phase (NT1D group), and 10 children with T1D in the chronic phase receiving insulin treatment (CT1D group). Multivariate statistical analysis of sequencing data was performed. Results Compared to the CON group, the NT1D group was characterized by decreased diversity and increased abundance of genera harboring opportunistic pathogens, while this trend was partially reversed in the CT1D group. Differential genera between groups could distinguish the NT1D group from the CON group (AUC = 0.933) and CT1D group (AUC = 0.846), respectively. Moreover, T1D-enriched genera were closely correlated with HbA1c, FBG and WBCs levels. Conclusion Our results showed that the acute phase of T1D was characterized by oral microbiota dysbiosis, which could be partially ameliorated via glycemic control. The possible role of oral microbiota dysbiosis on oral health and systemic metabolic status in T1D warrants further mechanistic investigation.
Collapse
Affiliation(s)
- Xiaoxiao Yuan
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Jin Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruimin Chen
- Department of Pediatrics, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhihong Chen
- Department of Neuroendocrinology Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhe Su
- Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Jinwen Ni
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Miaoying Zhang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Chengjun Sun
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Fengwei Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yefei Liu
- Department of Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University Shanghai, China
| | - Junlin He
- Department of Periodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Lei Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feihong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
44
|
High Virulence and Multidrug Resistance of Escherichia coli Isolated in Periodontal Disease. Microorganisms 2022; 11:microorganisms11010045. [PMID: 36677337 PMCID: PMC9863014 DOI: 10.3390/microorganisms11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontal disease is caused by different gram-negative anaerobic bacteria; however, Escherichia coli has also been isolated from periodontitis and its role in periodontitis is less known. This study aimed to determine the variability in virulence genotype, antibiotic resistance phenotype, biofilm formation, phylogroups, and serotypes in different emerging periodontal strains of Escherichia coli, isolated from patients with periodontal disease and healthy controls. E. coli, virulence genes, and phylogroups, were identified by PCR, antibiotic susceptibility by the Kirby-Bauer method, biofilm formation was quantified using polystyrene microtiter plates, and serotypes were determined by serotyping. Although E. coli was not detected in the controls (n = 70), it was isolated in 14.7% (100/678) of the patients. Most of the strains (n = 81/100) were multidrug-resistance. The most frequent adhesion genes among the strains were fimH and iha, toxin genes were usp and hlyA, iron-acquisition genes were fyuA and irp2, and protectin genes were ompT, and KpsMT. Phylogroup B2 and serotype O25:H4 were the most predominant among the strains. These findings suggest that E. coli may be involved in periodontal disease due to its high virulence, multidrug-resistance, and a wide distribution of phylogroups and serotypes.
Collapse
|
45
|
Ribeiro AA, Jiao Y, Girnary M, Alves T, Chen L, Farrell A, Wu D, Teles F, Inohara N, Swanson KV, Marchesan JT. Oral biofilm dysbiosis during experimental periodontitis. Mol Oral Microbiol 2022; 37:256-265. [PMID: 36189827 PMCID: PMC10034670 DOI: 10.1111/omi.12389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES We have previously characterized the main osteoimmunological events that occur during ligature periodontitis. This study aims to determine the polymicrobial community shifts that occur during disease development. METHODS Periodontitis was induced in C57BL/6 mice using the ligature-induced periodontitis model. Healthy oral mucosa swabs and ligatures were collected every 3 days from 0 to 18 days post-ligature placement. Biofilm samples were evaluated by 16SrRNA gene sequencing (Illumina MiSeq) and QIIME. Time-course changes were determined by relative abundance, diversity, and rank analyses (PERMANOVA, Bonferroni-adjusted). RESULTS Microbial differences between health and periodontal inflammation were observed at all phylogenic levels. An evident microbial community shift occurred in 25 genera during the advancement of "gingivitis" (3-6 days) to periodontitis (9-18 days). From day 0 to 18, dramatic changes were identified in Streptococcus levels, with an overall decrease (54.04%-0.02%) as well an overall increase of Enterococcus and Lactobacillus (23.7%-73.1% and 10.1%-70.2%, respectively). Alpha-diversity decreased to its lowest at 3 days, followed by an increase in diversity as disease advancement. Beta-diversity increased after ligature placement, indicating that bone loss develops in response to a greater microbial variability (p = 0.001). Levels of facultative and strict anaerobic bacteria augmented over the course of disease progression, with a total of eight species significantly different during the 18-day period. CONCLUSION The data supports that murine gingival inflammation and alveolar bone loss develop in response to microbiome shifts. Bacterial diversity increased during progression to bone loss. These findings further support the utilization of the periodontitis ligature model for microbial shift analysis under different experimental conditions.
Collapse
Affiliation(s)
- Apoena Aguiar Ribeiro
- Division of Diagnostic Sciences (Microbiology and Cariology), Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yizu Jiao
- Division of Comprehensive Oral Health (Periodontology), Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mustafa Girnary
- Division of Comprehensive Oral Health (Periodontology), Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tomaz Alves
- Division of Comprehensive Oral Health (Periodontology), Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Liang Chen
- Division of Comprehensive Oral Health (Periodontology), Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna Farrell
- Division of Diagnostic Sciences (Microbiology and Cariology), Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Di Wu
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Flavia Teles
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Naohiro Inohara
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Karen V Swanson
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Julie T Marchesan
- Division of Comprehensive Oral Health (Periodontology), Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
46
|
Romário-Silva D, Alencar SM, Bueno-Silva B, Sardi JDCO, Franchin M, de Carvalho RDP, Ferreira TEDSA, Rosalen PL. Antimicrobial Activity of Honey against Oral Microorganisms: Current Reality, Methodological Challenges and Solutions. Microorganisms 2022; 10:microorganisms10122325. [PMID: 36557578 PMCID: PMC9781356 DOI: 10.3390/microorganisms10122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Honey has been shown to have antimicrobial activity against different microorganisms, but its effects on oral biofilms are largely unknown. In this review, we analyzed the currently available literature on the antimicrobial activity of honey against oral biofilms in order to determine its potential as a functional food in the treatment and/or prevention of oral diseases. Here, we compare studies reporting on the antimicrobial activity of honey against systemic and oral bacteria, discuss methodological strategies, and point out current gaps in the literature. To date, there are no consistent studies supporting the use of honey as a therapy for oral diseases of bacterial origin, but current evidence in the field is promising. The lack of studies examining the antibiofilm activity of honey against oral microorganisms reveals a need for additional research to better define aspects such as chemical composition, the mechanism(s) of action, and antimicrobial action.
Collapse
Affiliation(s)
- Diego Romário-Silva
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
| | - Severino Matias Alencar
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture (Escola Superior de Agricultura “Luiz de Queiroz”—ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Bruno Bueno-Silva
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil
| | - Janaína de Cássia Orlandi Sardi
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil
| | - Marcelo Franchin
- School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, Brazil
- Correspondence: (M.F.); (P.L.R.)
| | | | - Thayná Ellen de Sousa Alves Ferreira
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Biological Sciences Graduate Program, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, Brazil
- Correspondence: (M.F.); (P.L.R.)
| |
Collapse
|
47
|
Bhuyan R, Bhuyan SK, Mohanty JN, Das S, Juliana N, Abu IF. Periodontitis and Its Inflammatory Changes Linked to Various Systemic Diseases: A Review of Its Underlying Mechanisms. Biomedicines 2022; 10:biomedicines10102659. [PMID: 36289921 PMCID: PMC9599402 DOI: 10.3390/biomedicines10102659] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease of the gums. The incidence of periodontitis is increasing all over the world. In patients with periodontitis, there is gradual destruction of the periodontal ligament and the alveolar bone, and later, in advanced stages, there is tooth loss. Different microorganisms, the host’s immune response, and various environmental factors interact in the progression of this chronic inflammatory disease. In the present review, we discuss the epidemiology, clinical features, diagnosis, and complications of periodontitis. We also discuss the association of chronic inflammation found in periodontitis with various other systemic diseases, which include cardiovascular, respiratory, diabetes, Alzheimer’s, cancer, adverse pregnancy, and multiple myeloma, and also highlight microbial carcinogenesis and the microRNAs involved. The latest updates on the molecular mechanism, possible biomarkers, and treatment procedures may be beneficial for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Ruchi Bhuyan
- Department of Oral Pathology & Microbiology, IMS and SUM Hospital, Siksha ‘O’ Anusandhan University (Deemed to be), Bhubaneswar 751003, India
- Department of Medical Research, IMS and SUM Hospital, Siksha ‘O’ Anusandhan University (Deemed to be), Bhubaneswar 751003, India
| | - Sanat Kumar Bhuyan
- Institute of Dental Sciences, Siksha ‘O’ Anusandhan University (Deemed to be), Bhubaneswar 751003, India
| | - Jatindra Nath Mohanty
- Department of Medical Research, IMS and SUM Hospital, Siksha ‘O’ Anusandhan University (Deemed to be), Bhubaneswar 751003, India
| | - Srijit Das
- School of Applied Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar 752050, India
- Correspondence:
| | - Norsham Juliana
- Department of Human and Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Izuddin Fahmy Abu
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| |
Collapse
|
48
|
Abe FC, Kodaira K, Motta CDCB, Barberato-Filho S, Silva MT, Guimarães CC, Martins CC, Lopes LC. Antimicrobial resistance of microorganisms present in periodontal diseases: A systematic review and meta-analysis. Front Microbiol 2022; 13:961986. [PMID: 36262326 PMCID: PMC9574196 DOI: 10.3389/fmicb.2022.961986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe aim of this study was to estimate the antimicrobial resistance in microorganisms present in periodontal diseases.MethodsA systematic review was conducted according to the PRISMA statement. The MEDLINE (PubMed/Ovid), EMBASE, BVS, CINAHL, and Web of Science databases were searched from January 2011 to December 2021 for observational studies which evaluated the antimicrobial resistance in periodontal diseases in permanent dentition. Studies that allowed the antimicrobial consumption until the time of sample collection, studies that used laboratory acquired strains, studies that only characterized the microbial strain present, assessment of cellular morphological changes, sequencing system validation, and time series were excluded. Six reviewers, working in pairs and independently, selected titles, abstracts, and full texts extracting data from all studies that met the eligibility criteria: characteristics of patients, diagnosis of infection, microbial species assessed, antimicrobial assessed, identification of resistance genes, and virulence factors. “The Joanna Briggs Institute” critical appraisal for case series was adapted to assess the risk of bias in the included studies.ResultsTwenty-four studies (N = 2.039 patients) were included. Prevotella and Porphyromonas species were the most cited microorganisms in the included studies, and the virulence factors were related to Staphylococcus aureus. The antimicrobial reported with the highest frequency of resistance in the included studies was ampicillin (39.5%) and ciprofloxacin showed the lowest frequency of resistance (3.4%). The most cited genes were related to macrolides. The quality of the included studies was considered critically low.ConclusionNo evidence was found regarding the profile of antimicrobial resistance in periodontal diseases, requiring further research that should focus on regional population studies to address this issue in the era of increasing antimicrobial resistance.Clinical relevanceThe knowledge about the present microorganism in periodontal diseases and their respective antimicrobial resistance profiles should guide dentists in prescribing complementary therapy for these infections.Systematic review registration[http://dx.doi.org/10.1097/MD.0000000000013158], identifier [CRD42018077810].
Collapse
Affiliation(s)
- Flávia Casale Abe
- Department of Pharmaceutical Sciences, University of Sorocaba, Sorocaba, Brazil
| | - Katia Kodaira
- Department of Pharmaceutical Sciences, University of Sorocaba, Sorocaba, Brazil
| | | | | | | | | | | | - Luciane Cruz Lopes
- Department of Pharmaceutical Sciences, University of Sorocaba, Sorocaba, Brazil
- *Correspondence: Luciane Cruz Lopes,
| |
Collapse
|
49
|
Téllez-Corral MA, Herrera-Daza E, Cuervo-Jimenez HK, Arango-Jimenez N, Morales-Vera DZ, Velosa-Porras J, Latorre-Uriza C, Escobar-Arregoces FM, Hidalgo-Martinez P, Cortés ME, Roa-Molina NS, Otero L, Parra-Giraldo CM. Patients with obstructive sleep apnea can favor the predisposing factors of periodontitis by the presence of P. melaninogenica and C. albicans, increasing the severity of the periodontal disease. Front Cell Infect Microbiol 2022; 12:934298. [PMID: 36189359 PMCID: PMC9519896 DOI: 10.3389/fcimb.2022.934298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Objective The aim of this study was to analyze the cultivable oral microbiota of patients with obstructive sleep apnea (OSA) and its association with the periodontal condition. Methods The epidemiology profile of patients and their clinical oral characteristics were determined. The microbiota was collected from saliva, subgingival plaque, and gingival sulcus of 93 patients classified into four groups according to the periodontal and clinical diagnosis: Group 1 (n = 25), healthy patients; Group 2 (n = 17), patients with periodontitis and without OSA; Group 3 (n = 19), patients with OSA and without periodontitis; and Group 4 (n = 32), patients with periodontitis and OSA. Microbiological samples were cultured, classified, characterized macroscopically and microscopically, and identified by MALDI-TOF-MS. The distribution of complexes and categories of microorganisms and correlations were established for inter- and intra-group of patients and statistically evaluated using the Spearman r test (p-value <0.5) and a multidimensional grouping analysis. Result There was no evidence between the severity of OSA and periodontitis (p = 0.2813). However, there is a relationship between the stage of periodontitis and OSA (p = 0.0157), with stage III periodontitis being the one with the highest presence in patients with severe OSA (prevalence of 75%; p = 0.0157), with more cases in men. The greatest distribution of the complexes and categories was found in oral samples of patients with periodontitis and OSA (Group 4 P-OSA); even Candida spp. were more prevalent in these patients. Periodontitis and OSA are associated with comorbidities and oral conditions, and the microorganisms of the orange and red complexes participate in this association. The formation of the dysbiotic biofilm was mainly related to the presence of these complexes in association with Candida spp. Conclusion Periodontopathogenic bacteria of the orange complex, such as Prevotella melaninogenica, and the yeast Candida albicans, altered the cultivable oral microbiota of patients with periodontitis and OSA in terms of diversity, possibly increasing the severity of periodontal disease. The link between yeasts and periodontopathogenic bacteria could help explain why people with severe OSA have such a high risk of stage III periodontitis. Antimicrobial approaches for treating periodontitis in individuals with OSA could be investigated in vitro using polymicrobial biofilms, according to our findings.
Collapse
Affiliation(s)
- Mayra A. Téllez-Corral
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Unidad de Investigación en Proteómica y Micosis Humanas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Facultade de Odontología, Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eddy Herrera-Daza
- Departamento de Matemáticas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Hayde K. Cuervo-Jimenez
- Unidad de Investigación en Proteómica y Micosis Humanas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Natalia Arango-Jimenez
- Periodoncia, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Darena Z. Morales-Vera
- Periodoncia, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Juliana Velosa-Porras
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Catalina Latorre-Uriza
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Periodoncia, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Francina M. Escobar-Arregoces
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Periodoncia, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Patricia Hidalgo-Martinez
- Clínica del Sueño, Hospital Universitario San Ignacio y Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Maria E. Cortés
- Facultade de Odontología, Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nelly S. Roa-Molina
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Liliana Otero
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Claudia M. Parra-Giraldo
- Unidad de Investigación en Proteómica y Micosis Humanas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- *Correspondence: Claudia M. Parra-Giraldo,
| |
Collapse
|
50
|
Griffith A, Mateen A, Markowitz K, Singer SR, Cugini C, Shimizu E, Wiedman GR, Kumar V. Alternative Antibiotics in Dentistry: Antimicrobial Peptides. Pharmaceutics 2022; 14:1679. [PMID: 36015305 PMCID: PMC9412702 DOI: 10.3390/pharmaceutics14081679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
The rise of antibiotic resistant bacteria due to overuse and misuse of antibiotics in medicine and dentistry is a growing concern. New approaches are needed to combat antibiotic resistant (AR) bacterial infections. There are a number of methods available and in development to address AR infections. Dentists conventionally use chemicals such as chlorohexidine and calcium hydroxide to kill oral bacteria, with many groups recently developing more biocompatible antimicrobial peptides (AMPs) for use in the oral cavity. AMPs are promising candidates in the treatment of (oral) infections. Also known as host defense peptides, AMPs have been isolated from animals across all kingdoms of life and play an integral role in the innate immunity of both prokaryotic and eukaryotic organisms by responding to pathogens. Despite progress over the last four decades, there are only a few AMPs approved for clinical use. This review summarizes an Introduction to Oral Microbiome and Oral Infections, Traditional Antibiotics and Alternatives & Antimicrobial Peptides. There is a focus on cationic AMP characteristics and mechanisms of actions, and an overview of animal-derived natural and synthetic AMPs, as well as observed microbial resistance.
Collapse
Affiliation(s)
- Alexandra Griffith
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Akilah Mateen
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Kenneth Markowitz
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Steven R. Singer
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Gregory R. Wiedman
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Department of Biology, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|