1
|
Li X, Shen S, Feng Y, Shen H, Hu F, Wu X. First report of IS Kpn26 element mediating mgrB gene disruption in the ST1 colistin- and carbapenem-resistant Klebsiella pneumoniae cluster isolated from a patient with chest infection. Microbiol Spectr 2024; 12:e0095224. [PMID: 39315782 PMCID: PMC11537006 DOI: 10.1128/spectrum.00952-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Colistin is used as a last-line therapy against carbapenem-resistant Klebsiella pneumoniae (CRKP). However, colistin resistance in Klebsiella pneumoniae is increasingly reported worldwide. This study aims to investigate the instrumental role of insertion sequence (IS) elements in colistin resistance through mgrB disruption in K. pneumoniae during treatment. Five clinical isolates of CRKP, designated KPN1~KPN5 were collected from the lower respiratory tract of a patient with chest infection before and after treatment with colistin. Antimicrobial susceptibility testing was performed using the broth microdilution method. Whole genome sequencing and bioinformatics were used to analyze the sequence types (STs), resistance genes, and genetic characteristics of the five isolates of K. pneumoniae. Antimicrobial susceptibility testing indicated that all five K. pneumoniae isolates were resistant to cephalosporins (ceftriaxone, ceftazidime, and cefepime), several carbapenems (imipenem, meropenem), cefoperazone-sulbactam, piperacillin-tazobactam, ciprofloxacin, and fosfomycin, whereas they were sensitive to amikacin and tigecycline. In addition, three of these isolates were resistant to colistin, with minimum inhibitory concentration values of >8 mg/L. Whole genome sequencing revealed that all five K. pneumoniae isolates belonged to sequence type 1 (ST1), which shared an identical blaKPC-2. Notably, disruption of mgrB by the ISKpn26 insertion sequence was shown to be the primary colistin resistance mechanism during the treatment. To our knowledge, this is the first report of ISKpn26 element mediating mgrB disruption in the ST1 colistin and CRKP obtained from a patient with chest infection in mainland China. This study provides new research ideas to explore the clinical drug resistance mechanism of CRKP and the critical need to monitor and understand resistance mechanisms to preserve the efficacy of last-line antibiotics such as colistin. IMPORTANCE Of note, this chapter gives an update on colistin resistance in sequence type 1 Klebsiella pneumoniae, by focusing on the mgrB disrupted by ISKpn26 element.
Collapse
Affiliation(s)
- Xiaosi Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Feng
- Department of Laboratory Medicine, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, China
| | - Heping Shen
- Department of Infectious Disease, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Wu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
2
|
Li X, Fu M, Len Y, Hu R, Xu C, Xiong X, Zhou Y. Characteristics of multidrug-resistant hypervirulent Klebsiella pneumoniae strains ST29 and K212 harbouring tmexC2-tmexD2-toprJ2. J Glob Antimicrob Resist 2024; 38:349-353. [PMID: 39002612 DOI: 10.1016/j.jgar.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/15/2024] Open
Abstract
OBJECTIVES This study aimed to characterize a tigecycline-resistant hypervirulent Klebsiella pneumoniae (HvKP) strain, identified as KLZT, which carries the tigecycline resistance gene cluster tmexC2-tmexD2-toprJ2 belonging to ST29 and serotype K212. METHODS Antimicrobial susceptibility and virulence phenotypes were assessed, followed by whole-genome sequencing (WGS) using PacBio II and MiSeq sequencers. Genome annotation was carried out using the RAST server and bioinformatics analysis revealed the genetic characteristics of this strain. RESULTS Antimicrobial and virulence phenotype testing indicated that K. pneumoniae strain KLZT could be considered as a multidrug-resistant HvKP. WGS analysis showed that KLZT has a single 5,536,506-bp chromosome containing three plasmids 290,963 bp (pKLZT-1), 199,302 bp (pKLZT-2), and 4820 bp (pKLZT-3) in size, and also includes the ST29 and K212 serotypes. Four (blaSHV-187, oqxA, oqxB, and fosA6) and six resistance genes (tmexC2-tmxeD2-toprJ2, blaOXA-1, aac(6')-Ib-cr, catB3, arr-3, and blaLEN27) were identified from chromosomal and plasmid pKLZT-1, respectively. Gene-based analysis of the resistance genes of plasmid pKLZT-1 showed that the tigecycline resistance gene cluster-carrying region was flanked by umuC and umuD (umuD-hps-IS5-tmexC2-tmexD2-toprJ2-umuC), as well as other resistance genes and virulence factors (ureB, ureC, and ureG), which were carried by IS5075-Tn3-intI1 -aac(6')-Ib-cr-blaOXA-1-catB3-arr-3-blaLEN27-Tn3-ISkpn26-ureBCG-IS5075. CONCLUSIONS WGS has revealed that a multidrug-resistant strain, HvKP KLZT, belonging to ST29 with capsular serotype K212, contains a multidrug-resistance plasmid.
Collapse
Affiliation(s)
- Xingming Li
- The First People's Hospital Of Neijiang, Neijiang, 641000, China; Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Min Fu
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000,China
| | - Yaxu Len
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, 214000, China
| | - Changwen Xu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 640000, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China; Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Yan W, Xu D, Shen Y, Dong F, Ji L. Molecular epidemiology of string test-positive Klebsiella pneumoniae isolates in Huzhou, China, 2020-2023. Front Cell Infect Microbiol 2024; 14:1411658. [PMID: 39165917 PMCID: PMC11333340 DOI: 10.3389/fcimb.2024.1411658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
Objective This study used whole-genome sequencing (WGS) to explore the genetic diversity, virulence factors, and antimicrobial resistance determinants of string test-positive Klebsiella pneumoniae (KP) over a 4-year surveillance period in Huzhou, China. Methods In total, 632 clinical isolates were collected via hospital surveillance from 2020 to 2023; 100 were positive in the string test and these 100 strains were subjected to antimicrobial susceptibility testing using an agar dilution method followed by WGS. Results The resistance rates to cefotaxime (77.0%), trimethoprim-sulfamethoxazole (67.0%), and nalidixic acid (64.0%) were high. Multilocus sequence typing revealed high genetic diversity; there were 33 sequence types (STs) and 15 capsular serotypes. The most common ST was ST23 (16.0%) and the most common capsular serotype was K1 (22.5%). Virulome analysis revealed among-strain differences in virulence factors that affected bacterial adherence, efflux pump action, iron uptake, nutritional factors, metabolic regulation, the secretion system, and toxin production. The Kleborate strain-specific virulence scores of all 100 string test-positive KPs were derived: 28 strains scored 5, 28 scored 4, 21 scored 3, 12 scored 1, and 11 scored 0. All 77 strains with scores of 3 to 5 contained the iucA gene. The phylogeny based on whole-genome single nucleotide polymorphisms (wgSNPs) indicated high clonality; the string test-positive KP strains were grouped into six clades. Closely related isolates in each genetic cluster usually shared STs. Conclusion The present study highlights the significance of the KP iucA gene in terms of hypervirulence and the diverse genotypes of string test-positive KP strains isolated in Huzhou hospitals.
Collapse
Affiliation(s)
| | | | | | | | - Lei Ji
- Microbe Laboratory, Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| |
Collapse
|
4
|
Chen Q, Zhang F, Bai J, Che Q, Xiang L, Zhang Z, Wang Y, Sjöling Å, Martín-Rodríguez AJ, Zhu B, Fu L, Zhou Y. Bacteriophage-resistant carbapenem-resistant Klebsiella pneumoniae shows reduced antibiotic resistance and virulence. Int J Antimicrob Agents 2024; 64:107221. [PMID: 38810938 DOI: 10.1016/j.ijantimicag.2024.107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 04/21/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Phage therapy has shown great promise in the treatment of bacterial infections. However, the effectiveness of phage therapy is compromised by the inevitable emergence of phage-resistant strains. In this study, a phage-resistant carbapenem-resistant Klebsiella pneumoniae strain SWKP1711R, derived from parental carbapenem-resistant K. pneumoniae strain SWKP1711 was identified. The mechanism of bacteriophage resistance in SWKP1711R was investigated and the molecular determinants causing altered growth characteristics, antibiotic resistance, and virulence of SWKP1711R were tested. Compared to SWKP1711, SWKP1711R showed slower growth, smaller colonies, filamentous cells visible under the microscope, reduced production of capsular polysaccharide (CPS) and lipopolysaccharide, and reduced resistance to various antibiotics accompanied by reduced virulence. Adsorption experiments showed that phage vB_kpnM_17-11 lost the ability to adsorb onto SWKP1711R, and the adsorption receptor was identified to be bacterial surface polysaccharides. Genetic variation analysis revealed that, compared to the parental strain, SWKP1711R had only one thymine deletion at position 78 of the open reading frame of the lpcA gene, resulting in a frameshift mutation that caused alteration of the bacterial surface polysaccharide and inhibition of phage adsorption, ultimately leading to phage resistance. Transcriptome analysis and quantitative reverse transcriptase PCR revealed that genes encoding lipopolysaccharide synthesis, ompK35, blaTEM-1, and type II and Hha-TomB toxin-antitoxin systems, were all downregulated in SWKP1711R. Taken together, the evidence presented here indicates that the phenotypic alterations and phage resistance displayed by the mutant may be related to the frameshift mutation of lpcA and altered gene expression. While evolution of phage resistance remains an issue, our study suggests that the reduced antibiotic resistance and virulence of phage-resistant strain derivatives might be beneficial in alleviating the burden caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Qiao Chen
- Department of Pathogeic Biology, School of Basic Medical, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Feiyang Zhang
- Department of Pathogeic Biology, School of Basic Medical, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jiawei Bai
- Department of Pathogeic Biology, School of Basic Medical, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qian Che
- Sichuan Center For Disease Control And Prevention, Chengdu, 610000, China
| | - Li Xiang
- Department of Pathogeic Biology, School of Basic Medical, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhikun Zhang
- Department of Pathogeic Biology, School of Basic Medical, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ying Wang
- Department of Pathogeic Biology, School of Basic Medical, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Stockholm, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Alberto J Martín-Rodríguez
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Stockholm, Sweden; Department of Clinical Sciences, University of Las Palmas de Gran Canaria, 35016, Las Palmas de Gran Canaria, Spain
| | - Baoli Zhu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Fu
- The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Yingshun Zhou
- Department of Pathogeic Biology, School of Basic Medical, Southwest Medical University, Luzhou, Sichuan, 646000, China; Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
P SR, Durai Singh C, Kumar S, Muthusamy R. Prevalence and Antibiotic Resistance of Klebsiella pneumoniae in Diabetic Foot Ulcer. Cureus 2024; 16:e67824. [PMID: 39323709 PMCID: PMC11423928 DOI: 10.7759/cureus.67824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction A serious global threat of antimicrobial resistance has emerged due to the improper use of antibiotics, including polypharmacy and inappropriate prescribing. This misuse has led bacteria to develop immunity against these drugs. Klebsiella pneumoniae, a concerning gram-negative bacterium, has become resistant, especially among immunocompromised diabetic patients for multiple antibiotics. To fight effectively this growing crisis and regain control of these infections, it is crucial to comprehend the resistance mechanisms utilized by the bacteria and develop a new therapeutic strategy to prevent antibiotic resistance. Materials and methods A five-month study from January 2023 to May 2023 was conducted at the tertiary healthcare facility of Saveetha Medical College by collecting 122 clinical specimens from patients with diabetic foot ulcers (DFUs) and ulcer-related infections. The microbiological testing methods followed by the identification of bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) and antimicrobial susceptibility testing (AST) by the VITEK 2 Compact system were performed. Results A stout, rod-shaped, gram-negative bacilli was observed in gram staining, and growth of mucoid γ-hemolytic colonies and lactose-fermenting mucoid colonies were seen in blood and MacConkey agar plates. MALDI-TOF analysis confirmed the presence of Klebsiella pneumoniae along with other bacteria such as Klebsiella oxytoca, Staphylococcus spp., Proteus spp., and Escherichia coli. VITEK showed high resistance rates to commonly used antibiotics, including carbapenems. Notably, isolates showed sensitivity and intermediate to tigecycline and colistin. Resistance patterns varied across specimen types, emphasizing the importance of considering clinical sources when interpreting data. Conclusion Hence, this study underscores the urgent need for novel antimicrobial agents and effective infection control measures to combat multidrug-resistant Klebsiella pneumoniae infections. Understanding resistance mechanisms is essential for the incorporation of treatment strategies and preserving antibiotic efficacy.
Collapse
Affiliation(s)
- Shivani Reddy P
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Carmelin Durai Singh
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Sathish Kumar
- Neurology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Raman Muthusamy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
6
|
Liang Q, Chen N, Wang W, Zhang B, Luo J, Zhong Y, Zhang F, Zhang Z, Martín–Rodríguez AJ, Wang Y, Xiang L, Xiong X, Hu R, Zhou Y. Co-occurrence of ST412 Klebsiella pneumoniae isolates with hypermucoviscous and non-mucoviscous phenotypes in a short-term hospitalized patient. mSystems 2024; 9:e0026224. [PMID: 38904378 PMCID: PMC11265266 DOI: 10.1128/msystems.00262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Hypermucoviscosity (HMV) is a phenotype that is commonly associated with hypervirulence in Klebsiella pneumoniae. The factors that contribute to the emergence of HMV subpopulations remain unclear. In this study, eight K. pneumoniae strains were recovered from an inpatient who had been hospitalized for 20 days. Three of the isolates exhibited a non-HMV phenotype, which was concomitant with higher biofilm formation than the other five HMV isolates. All eight isolates were highly susceptible to serum killing, albeit HMV strains were remarkably more infective than non-HMV counterparts in a mouse model of infection. Whole genome sequencing (WGS) showed that the eight isolates belonged to the K57-ST412 lineage. Average nucleotide identity (FastANIb) analysis indicated that eight isolates share 99.96% to 99.99% similarity and were confirmed to be the same clone. Through comparative genomics analysis, 12 non-synonymous mutations were found among these isolates, eight of which in the non-HMV variants, including rmpA (c.285delG) and wbaP (c.1305T > A), which are assumed to be associated with the non-HMV phenotype. Mutations in manB (c.1318G > A), dmsB (c.577C > T) and tkt (c.1928C > A) occurred in HMV isolates only. RNA-Seq revealed transcripts of genes involved in energy metabolism, carbohydrate metabolism and membrane transport, including cysP, cydA, narK, tktA, pduQ, aceB, metN, and lsrA, to be significantly dysregulated in the non-HMV strains, suggesting a contribution to HMV phenotype development. This study suggests that co-occurrence of HMV and non-HMV phenotypes in the same clonal population may be mediated by mutational mechanisms as well as by certain genes involved in membrane transport and central metabolism. IMPORTANCE K. pneumoniae with a hypermucoviscosity (HMV) phenotype is a community-acquired pathogen that is associated with increased invasiveness and pathogenicity, and underlying diseases are the most common comorbid risk factors inducing metastatic complications. HMV was earlier attributed to the overproduction of capsular polysaccharide, and more data point to the possibility of several causes contributing to this bacterial phenotype. Here, we describe a unique event in which the same clonal population showed both HMV and non-HMV characteristics. Studies have demonstrated that this process is influenced by mutational processes and genes related to transport and central metabolism. These findings provide fresh insight into the mechanisms behind co-occurrence of HMV and non-HMV phenotypes in monoclonal populations as well as potentially being critical in developing strategies to control the further spread of HMV K. pneumoniae.
Collapse
Affiliation(s)
- Qinghua Liang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
- Department of Laboratory Medicine, Yilong County People’s Hospital, Nanchong, China
| | - Nan Chen
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Biying Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Jinjing Luo
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Ying Zhong
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Feiyang Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Zhikun Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Alberto J. Martín–Rodríguez
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ying Wang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Li Xiang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital,Southwest Medical University, Luzhou, China
| | - Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medicine University, Luzhou, China
| |
Collapse
|
7
|
Monteiro ADSS, Cordeiro SM, Reis JN. Virulence Factors in Klebsiella pneumoniae: A Literature Review. Indian J Microbiol 2024; 64:389-401. [PMID: 39011017 PMCID: PMC11246375 DOI: 10.1007/s12088-024-01247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 07/17/2024] Open
Abstract
Klebsiella pneumoniae, a member of the autochthonous human gut microbiota, utilizes a variety of virulence factors for survival and pathogenesis. Consequently, it is responsible for several human infections, including urinary tract infections, respiratory tract infections, liver abscess, meningitis, bloodstream infections, and medical device-associated infections. The main studied virulence factors in K. pneumoniae are capsule-associated, fimbriae, siderophores, Klebsiella ferric iron uptake, and the ability to metabolize allantoin. They are crucial for virulence and were associated with specific infections in the mice infection model. Notably, these factors are also prevalent in strains from the same infections in humans. However, the type and quantity of virulence factors may vary between strains, which defines the degree of pathogenicity. In this review, we summarize the main virulence factors investigated in K. pneumoniae from different human infections. We also cover the specific identification genes and their prevalence in K. pneumoniae, especially in hypervirulent strains.
Collapse
Affiliation(s)
- Adriano de Souza Santos Monteiro
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia Brazil
| | | | - Joice Neves Reis
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia Brazil
- Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia Brazil
| |
Collapse
|
8
|
Zhang H, Tao S, Chen H, Fang Y, Xu Y, Chen L, Ma F, Liang W. The biological function of the type II toxin-antitoxin system ccdAB in recurrent urinary tract infections. Front Microbiol 2024; 15:1379625. [PMID: 38690370 PMCID: PMC11059956 DOI: 10.3389/fmicb.2024.1379625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Urinary tract infections (UTIs) represent a significant challenge in clinical practice, with recurrent forms (rUTIs) posing a continual threat to patient health. Escherichia coli (E. coli) is the primary culprit in a vast majority of UTIs, both community-acquired and hospital-acquired, underscoring its clinical importance. Among different mediators of pathogenesis, toxin-antitoxin (TA) systems are emerging as the most prominent. The type II TA system, prevalent in prokaryotes, emerges as a critical player in stress response, biofilm formation, and cell dormancy. ccdAB, the first identified type II TA module, is renowned for maintaining plasmid stability. This paper aims to unravel the physiological role of the ccdAB in rUTIs caused by E. coli, delving into bacterial characteristics crucial for understanding and managing this disease. We investigated UPEC-induced rUTIs, examining changes in type II TA distribution and number, phylogenetic distribution, and Multi-Locus Sequence Typing (MLST) using polymerase chain reaction (PCR). Furthermore, our findings revealed that the induction of ccdB expression in E. coli BL21 (DE3) inhibited bacterial growth, observed that the expression of both ccdAB and ccdB in E. coli BL21 (DE3) led to an increase in biofilm formation, and confirmed that ccdAB plays a role in the development of persistent bacteria in urinary tract infections. Our findings could pave the way for novel therapeutic approaches targeting these systems, potentially reducing the prevalence of rUTIs. Through this investigation, we hope to contribute significantly to the global effort to combat the persistent challenge of rUTIs.
Collapse
Affiliation(s)
- He Zhang
- Department of Medical Laboratory, Bengbu Medical University, Bengbu, China
| | - Shuan Tao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huimin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yewei Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Luyan Chen
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Fang Ma
- Department of Medical Laboratory, Bengbu Medical University, Bengbu, China
| | - Wei Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Hamed SM, Mohamed HO, Ashour HM, Fahmy LI. Comparative genomic analysis of strong biofilm-forming Klebsiella pneumoniae isolates uncovers novel IS Ecp1-mediated chromosomal integration of a full plasmid-like sequence. Infect Dis (Lond) 2024; 56:91-109. [PMID: 37897710 DOI: 10.1080/23744235.2023.2272624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The goal of the current study was to elucidate the genomic background of biofilm formation in Klebsiella pneumoniae. METHODS Clinical isolates were screened for biofilm formation using the crystal violet assay. Antimicrobial resistance (AMR) profiles were assessed by disk diffusion and broth microdilution tests. Biofilm formation was correlated to virulence and resistance genes screened by PCR. Draft genomes of three isolates that form strong biofilm were generated by Illumina sequencing. RESULTS Only the siderophore-coding gene iutA was significantly associated with more pronounced biofilm formation. ST1399-KL43-O1/O2v1 and ST11-KL15-O4 were assigned to the multidrug-resistant strain K21 and the extensively drug-resistant strain K237, respectively. ST1999-KL38-O12 was assigned to K57. Correlated with CRISPR/Cas distribution, more plasmid replicons and prophage sequences were identified in K21 and K237 compared to K57. The acquired AMR genes (blaOXA-48, rmtF, aac(6')-Ib and qnrB) and (blaNDM-1, blaCTX-M, aph(3')-VI, qnrS, and aac(6')-Ib-cr) were found in K237 and K21, respectively. The latter showed a novel ISEcp1-mediated chromosomal integration of replicon type IncM1 plasmid-like structure harboring blaCTX-M-14 and aph(3')-VI that uniquely interrupted rcsC. The plasmid-mediated heavy metal resistance genes merACDEPRT and arsABCDR were spotted in K21, which also exclusively carried the acquired virulence genes mrkABCDF and the hypervirulence-associated genes iucABCD-iutA, and rmpA/A2. Pangenome analysis revealed NTUH-K2044 accessory genes most frequently shared with K21. CONCLUSIONS While less virulent to Galleria mellonella than ST1999 (K57), the strong biofilm former, multidrug-resistant, NDM-producer K. pneumoniae K21 (ST1399-KL43-O1/O2v1) carries a novel chromosomally integrated plasmid-like structure and hypervirulence-associated genes and represents a serious threat to countries in the area.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Hend O Mohamed
- Department of Biological Control Research, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
10
|
Gong G, Chen Q, Luo J, Wang Y, Li X, Zhang F, Zhang Z, Cheng J, Xiong X, Hu R, Zhou Y. Characteristics of a ceftadine/avibatam resistance KPC-33-producing Klebsiella Pneumoniae strain with capsular serotype K19 belonging to ST15. J Glob Antimicrob Resist 2023; 35:159-162. [PMID: 37751846 DOI: 10.1016/j.jgar.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
OBJECTIVES The aim of this study was to characterize the blaKPC-33 in a ST15-K19 ceftazidime-avibactam (CAZ-AVI)-resistant Klebsiella pneumoniae strain after the antibiotic CAZ-AVI was approved for use in Wuxi No. 2 People's Hospital, China. METHODS Antimicrobial susceptibility testing was performed by the microdilution broth method. Whole genome sequencing (WGS) was performed using PacBio II and MiSeq sequencers. High-quality reads were assembled using the SOAPdenovo and GapCloser v1.12, and genome annotation was performed using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP). Genomic characteristics were analysed by using bioinformatics methods. RESULTS K. pneumoniae strain KPHRJ showed resistance to CAZ-AVI. WGS analysis showed that strain KPHRJ had one 5 536 506 bp chromosome (57.25% G+C content) and one plasmid (133 451 bp, G+C 54.29%). KPHRJ was classified as ST15 and K19 serotype. Resistome analysis showed that KPHRJ carries seven antimicrobial resistance genes (ARGs). WGS analysis and conjugation experiments demonstrated that the blaKPC-33 gene was carried by plasmid pKPHRJ, flanked by two copies of IS26 mobile elements (IS26-ISKpn27-blaKPC-33-ISKpn6-korC-TnAs1-tetR-tetA-Tn3-IS26). Besides these acquired resistance genes, mutations in porin protein-coding genes, such as OmpK36 and OmpK37, which may reduce susceptibility to the CAZ-AVI, were also identified from the genome. CONCLUSION Here, we present the WGS of a CAZ-AVI resistant K. pneumoniae isolate, strain KPHRJ, with capsular serotype K19 and belonging to ST15. CAZ-AVI resistance is likely conferred by a KPC-2 variant, blaKPC-33 and mutations in porin-coding genes. We speculate that the approval of the CAZ-AVI in hospital could contribute to the emergence of these genomic features by providing a selective pressure leading to the emergence of CAZ-AVI resistant bacteria.
Collapse
Affiliation(s)
- Guozhong Gong
- Department of Clinical Laboratory, Suining First People's Hospital, Suining, China
| | - Qiao Chen
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, China
| | - Jinjing Luo
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, China
| | - Ying Wang
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, China
| | - Xingming Li
- The First People's Hospital of Neijiang, Neijiang, China
| | - Feiyang Zhang
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, China
| | - Zhikun Zhang
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, China
| | - Jialiang Cheng
- Department of Clinical Laboratory, Suining First People's Hospital, Suining, China
| | - Xia Xiong
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, China
| | - Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China.
| | - Yingshun Zhou
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, China.
| |
Collapse
|
11
|
M Shafik S, Abbas HA, Yousef N, Saleh MM. Crippling of Klebsiella pneumoniae virulence by metformin, N-acetylcysteine and secnidazole. BMC Microbiol 2023; 23:229. [PMID: 37608306 PMCID: PMC10464179 DOI: 10.1186/s12866-023-02969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
INTRODUCTION The emergence of multidrug-resistant Klebsiella pneumoniae in hospitals represents a serious threat to public health. Infections caused by Klebsiella pneumoniae are widespread in healthcare institutions, mainly pneumonia, bloodstream infections, and infections affecting neonates in intensive care units; so, it is necessary to combat this pathogen with new strategies. Targeting virulence factors necessary to induce host damage and disease is a new paradigm for antimicrobial therapy with several potential benefits that could lead to decreased resistance. BACKGROUND The influence of metformin, N-acetylcysteine, and secnidazole on Klebsiella pneumoniae virulence factors production was tested. The production of Klebsiella pneumoniae virulence factors such as biofilm formation, urease, proteases, hemolysins, and tolerance to oxidative stress was evaluated phenotypically using sub-inhibitory concentration (1/8 MIC) of metformin, N-acetylcysteine, and secnidazole. For more confirmation, qRT-PCR was used to assess the relative expression level of rmpA, wcaG, fimH-1, mrkD, ureA, and khe genes regulating virulence factors production. RESULTS Metformin, N-acetylcysteine, and secnidazole were all found to have a powerful inhibitory effect on the production of virulence factors phenotypically. Our results showed a significant reduction in the expression level of rmpA, wcaG, fimH-1, mrkD, ureA, and khe genes. Furthermore, the tested drugs were investigated in vivo to inform their ability to protect mice against Klebsiella pneumoniae pathogenesis. CONCLUSIONS Metformin, N-acetylcysteine, and secnidazole inhibited the virulence of Klebsiella pneumoniae. Besides combating resistant Klebsiella pneumoniae, the tested drugs could also serve as an adjuvant to traditional antibiotics.
Collapse
Affiliation(s)
- Shokri M Shafik
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig City, Egypt
| | - Hisham A Abbas
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig City, Egypt
| | - Nehal Yousef
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig City, Egypt
| | - Moustafa M Saleh
- Microbiology and Immunology Department, Faculty of Pharmacy, Port Said University, Port Said City, Egypt.
| |
Collapse
|
12
|
Slimene K, Salabi AE, Dziri O, Mathlouthi N, Diene SM, Mohamed EA, Amhalhal JMA, Aboalgasem MO, Alrjael JF, Rolain JM, Chouchani C. Epidemiology, Phenotypic and Genotypic Characterization of Carbapenem-Resistant Gram-Negative Bacteria from a Libyan Hospital. Microb Drug Resist 2023. [PMID: 37145891 DOI: 10.1089/mdr.2022.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Antimicrobial resistance, particularly resistance to carbapenems, has become one of the major threats to public health. Seventy-two isolates were collected from patients and hospital environment of Ibn Sina Hospital, Sirte, Libya. Antibiotic susceptibility tests, using the disc diffusion method and E-Test strips, were performed to select carbapenem-resistant strains. The colistin (CT) resistance was also tested by determining the minimum inhibitory concentration (MIC). RT-PCR was conducted to identify the presence of carbapenemase encoding genes and plasmid-mediated mcr CT resistance genes. Standard PCR was performed for positive RT-PCR and the chromosome-mediated CT resistance genes (mgrB, pmrA, pmrB, phoP, phoQ). Gram-negative bacteria showed a low susceptibility to carbapenems. Molecular investigations indicated that the metallo-β-lactamase New Delhi metallo-beta-lactamases-1 was the most prevalent (n = 13), followed by Verona integron-encoded metallo-beta-lactamase (VIM) enzyme (VIM-2 [n = 6], VIM-1 [n = 1], and VIM-4 [n = 1]) that mainly detected among Pseudomonas spp. The oxacillinase enzyme OXA-23 was detected among six Acinetobacter baumannii, and OXA-48 was detected among one Citrobacter freundii and three Klebsiella pneumoniae, in which one coharbored the Klebsiella pneumoniae carbapenemase enzyme and showed resistance to CT (MIC = 64 μg/mL) by modification in pmrB genes. In this study, we report for the first time the emergence of Pseudomonas aeruginosa carrying the blaNDM-1 gene and belonging to sequence type773 in Libya. Our study reported also for the first time CT resistance by mutation in the pmrB gene among Enterobacteriaceae isolates in Libya.
Collapse
Affiliation(s)
- Khouloud Slimene
- Faculté de Médecine et de Pharmacie, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille Cedex 05, France
- IHU Méditerranée Infection, Marseille Cedex 05, France
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie
- Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
- Unité de Service en Commun Pour la Recherche « Plateforme Génomique » Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
| | - Allaaeddin El Salabi
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya
| | - Olfa Dziri
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie
- Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
- Unité de Service en Commun Pour la Recherche « Plateforme Génomique » Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
| | - Najla Mathlouthi
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie
- Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
- Unité de Service en Commun Pour la Recherche « Plateforme Génomique » Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
| | - Seydina M Diene
- Faculté de Médecine et de Pharmacie, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille Cedex 05, France
- IHU Méditerranée Infection, Marseille Cedex 05, France
| | | | - Jadalla M A Amhalhal
- Department of Anesthesia and Surgical Intensive Care, Faculty of Medicine, Sirte University, Sirte, Libya
- ICU Department, Ibn Sina Hospital, Sirte, Libya
| | - Mohammed O Aboalgasem
- Department of Internal Medicine, Faculty of Medicine, University of Sirte, Sirte, Libya
- Infection Prevention and Patient Safety Office, Ibn Sina Hospital, Sirte, Libya
| | - Jomaa F Alrjael
- ICU Department, Ibn Sina Hospital, Sirte, Libya
- Department of Anesthesia, Ibn Sina Hospital, Sirte, Libya
| | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille Cedex 05, France
- IHU Méditerranée Infection, Marseille Cedex 05, France
| | - Chedly Chouchani
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie
- Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
- Unité de Service en Commun Pour la Recherche « Plateforme Génomique » Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
| |
Collapse
|
13
|
Dan B, Dai H, Zhou D, Tong H, Zhu M. Relationship Between Drug Resistance Characteristics and Biofilm Formation in Klebsiella Pneumoniae Strains. Infect Drug Resist 2023; 16:985-998. [PMID: 36824066 PMCID: PMC9942501 DOI: 10.2147/idr.s396609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Objective To conduct epidemiological analysis of Klebsiella pneumoniae (K. pneumoniae) with hypervirulence, and to investigate its drug resistance phenotype, Extended-spectrum β-lactamase (ESBLs) gene, virulence factor, capsular serotype and biofilm formation, so as to provide theoretical basis for further understanding of the drug resistance mechanism of K. pneumoniae with hypervirulence. Methods K. Pneumoniae were isolated from clinical samples collected from inpatients. All strains were identified by VITEK2 Compact using fully automatic microbial analyzer, the minimal inhibitory concentration (MIC) of antibiotics was determined by microbroth dilution test. The double disk diffusion method was used to detect the production of ESBLs, modified carbapenem inactivation method (mCIM) was used to detect the production of carbapenemase, and hypermucoviscosity phenotype was detected by wire drawing test. PCR was used to detect ESBLs gene, virulence factor and capsular serotype. Crystal violet staining was used to detect the ability of biofilm formation. Results The ESBLs genes detected in this study included strains blaTEM 35 (36.5%), blaSHV 51 (53.1%), and blaCTX-M 49 (51.0%). Most strains carried multiple ESBLs genes, but not all of them produce ESBLs. K1 and K2 accounted for 14.6% and 11.5% respectively. Most (91.7%) strains carried the fimH gene, and the other virulence genes were ybtS (53.1%), entB (46.9%), rmpA (41.7%), aerobactin (32.3%), allS (15.6%), kfu (15.6%). Of all the Klebsiella pneumoniae strains, 33 (34.4%) exhibited ESBLs phenotype, 16 (16.7%) were carbapenemase-producing, and 20 (20.8%) with ESBLs phenotype tested were resistant to all four drugs. The correlation between ESBLs-producing strains and biofilm formation was significantly increased compared to strains without ESBLs phenotype (P=0.035). Conclusion Compared to hypervirulent Klebsiella pneumoniae (hvKP), classical Klebsiella pneumoniae (cKP) has a tendency to acquire antibiotic resistance. Our study showed that genes encoding rmpA, K1 or K2, and kfu were highly associated with hvKP.
Collapse
Affiliation(s)
- Binzhi Dan
- Department of Clinical Laboratory, the Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui, People’s Republic of China
| | - Heping Dai
- Department of Clinical Laboratory, the Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui, People’s Republic of China
| | - Dangui Zhou
- Department of Clinical Laboratory, the Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui, People’s Republic of China
| | - Hongfang Tong
- Department of Clinical Laboratory, the Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui, People’s Republic of China
| | - Mei Zhu
- Department of Clinical Laboratory, the Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui, People’s Republic of China,Correspondence: Mei Zhu, Tel +86 551 8232 4254, Email
| |
Collapse
|
14
|
Mukherjee S, Bhadury P, Mitra S, Naha S, Saha B, Dutta S, Basu S. Hypervirulent Klebsiella pneumoniae Causing Neonatal Bloodstream Infections: Emergence of NDM-1-Producing Hypervirulent ST11-K2 and ST15-K54 Strains Possessing pLVPK-Associated Markers. Microbiol Spectr 2023; 11:e0412122. [PMID: 36752639 PMCID: PMC10101084 DOI: 10.1128/spectrum.04121-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/06/2023] [Indexed: 02/09/2023] Open
Abstract
Klebsiella pneumoniae is a major cause of neonatal sepsis. Hypervirulent Klebsiella pneumoniae (hvKP) that cause invasive infections and/or carbapenem-resistant hvKP (CR-hvKP) limit therapeutic options. Such strains causing neonatal sepsis have rarely been studied. Characterization of neonatal septicemic hvKP/CR-hvKP strains in terms of resistance and virulence was carried out. Antibiotic susceptibility, molecular characterization, evaluation of clonality, in vitro virulence, and transmissibility of carbapenemase genes were evaluated. Whole-genome sequencing (WGS) and mouse lethality assays were performed on strains harboring pLVPK-associated markers. About one-fourth (26%, 28/107) of the studied strains, leading to mortality in 39% (11/28) of the infected neonates, were categorized as hvKP. hvKP-K2 was the prevalent pathotype (64.2%, 18/28), but K54 and K57 were also identified. Most strains were clonally diverse belonging to 12 sequence types, of which ST14 was most common. Majority of hvKPs possessed virulence determinants, strong biofilm-forming, and high serum resistance ability. Nine hvKPs were carbapenem-resistant, harboring blaNDM-1/blaNDM-5 on conjugative plasmids of different replicon types. Two NDM-1-producing high-risk clones, ST11 and ST15, had pLVPK-associated markers (rmpA, rmpA2, iroBCDEN, iucABCDiutA, and peg-344), of which one co-transferred the markers along with blaNDM-1. The 2 strains revealed high inter-genomic resemblance with the other hvKP reference genomes, and were lethal in mouse model. To the best of our knowledge, this study is the first to report on the NDM-1-producing hvKP ST11-K2 and ST15-K54 strains causing fatal neonatal sepsis. The presence of pLVPK-associated markers and blaNDM-1 in high-risk clones, and the co-transmission of these genes via conjugation calls for surveillance of these strains. IMPORTANCE Klebsiella pneumoniae is a leading cause of sepsis in newborns and adults. Among the 2 major pathotypes of K. pneumoniae, classical (cKP) and hypervirulent (hvKP), hvKP causes community-acquired severe fatal invasive infections in even healthy individuals, as it possesses several virulence factors. The lack of comprehensive studies on neonatal septicemic hvKPs prompted this work. Nearly 26% diverse hvKP strains were recovered possessing several resistance and virulence determinants. The majority of them exhibited strong biofilm-forming and high serum resistance ability. Nine of these strains were also carbapenem (last-resort antibiotic)-resistant, of which 2 high-risk clones (ST11-K2 and ST15-K54) harbored markers (pLVPK) noted for their virulence, and were lethal in the mouse model. Genome-level characterization of the high-risk clones showed resemblance with the other hvKP reference genomes. The presence of transmissible carbapenem-resistant gene, blaNDM, along with pLVPK-markers calls for vigilance, as most clinical microbiology laboratories do not test for them.
Collapse
Affiliation(s)
- Subhankar Mukherjee
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Punyasloke Bhadury
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, India
| | - Shravani Mitra
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Sharmi Naha
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Bijan Saha
- Department of Neonatology, Institute of Post-Graduate Medical Education & Research and SSKM Hospital, Kolkata, West Bengal, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Sulagna Basu
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| |
Collapse
|
15
|
Cao H, Liang S, Zhang C, Liu B, Fei Y. Molecular Profiling of a Multi-Strain Hypervirulent Klebsiella pneumoniae Infection Within a Single Patient. Infect Drug Resist 2023; 16:1367-1380. [PMID: 36937147 PMCID: PMC10017834 DOI: 10.2147/idr.s404202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Background The rising prevalence of infections caused by carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-hvKP) has outpaced our understanding of their evolutionary diversity. By straining the antimicrobial options and constant horizontal gene transfer of various pathogenic elements, CR-hvKP poses a global health threat. Methods Six KP isolates (KP1~KP6) from urine, sputum and groin infection secretion of a single patient were characterized phenotypically and genotypically. The antimicrobial susceptibility, carbapenemase production, hypermucoviscosity, serum resistance, virulence factors, MLST and serotypes were profiled. Genomic variations were identified by whole-genome sequencing and the phylogenetic differentiation was analyzed by Enterobacterial repetitive intergenic consensus (ERIC)-PCR. Results All KP strains were multi-drug resistant. Four of them (KP1, KP3, KP5 and KP6) belonged to ST11-K64, with high genetic closeness (relatedness coefficient above 0.96), sharing most resistance and virulence genes. Compared with KP1, the later isolates KP3, KP5 and KP6 acquired bla KPC-1 and lost bla SHV-182 genes. KP2 and KP4 had the same clonal origin of ST35-K16 (relatedness coefficient 0.98), containing almost identical genes for resistance and virulence. They were non-mucoid and carried bla NDM-5 gene. Conclusion A co-infection with two types of CR-hvKP affiliated with different clades within a single patient amplified the treatment difficulties. In addition to source control and epidemiological surveillance, investigation of the in-host interactions between CR-hvKP variants may provide valuable treatment solutions.
Collapse
Affiliation(s)
- Huijun Cao
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Shiwei Liang
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Chenchen Zhang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Bao Liu
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Ying Fei
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
- Correspondence: Ying Fei, Email
| |
Collapse
|
16
|
Wang Q, Chen M, Ou Q, Zheng L, Chen X, Mao G, Fang J, Jin D, Tang X. Carbapenem-resistant hypermucoviscous Klebsiella pneumoniae clinical isolates from a tertiary hospital in China: Antimicrobial susceptibility, resistance phenotype, epidemiological characteristics, microbial virulence, and risk factors. Front Cell Infect Microbiol 2022; 12:1083009. [PMID: 36619764 PMCID: PMC9811262 DOI: 10.3389/fcimb.2022.1083009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hypervirulent and multidrug-resistant Klebsiella pneumoniae poses a significant threat to public health. We aimed to determine the common carbapenemase genotypes and the carriage patterns, main antibiotic resistance mechanisms, and in vitro susceptibility of clinical isolates of carbapenem-resistant K. pneumoniae (CRKP) to ceftazidime/avibactam (CZA) for the reasonable selection of antimicrobial agents and determine whether hypermucoviscous (HMV) phenotype and virulence-associated genes are key factors for CRKP colonization and persistence. Antibiotics susceptibility of clinical CRKP isolates and carbapenemase types were detected. CRKP isolates were identified as hypermucoviscous K. pneumoniae (HMKP) using the string test, and detection of virulence gene was performed using capsular serotyping. The bla KPC-2, bla NDM, bla IMP, and/or bla OXA-48-like were detected in 96.4% (402/417) of the isolates, and the bla KPC-2 (64.7%, 260/402) was significantly higher (P<0.05) than those of bla NDM (25.1%), bla OXA-48-like (10.4%), and bla IMP (4.2%). Carriage of a single carbapenemase gene was observed in 96.3% of the isolates, making it the dominant antibiotic resistance genotype carriage pattern (P < 0.05). Approximately 3.7% of the isolates carried two or more carbapenemase genotypes, with bla KPC-2 + bla NDM and bla NDM + bla IMP being the dominant multiple antibiotic resistance genotype. In addition, 43 CRKP isolates were identified as HMKP, with a prevalence of 10.3% and 2.7% among CRKP and all K. pneumoniae isolates, respectively. Most clinical CRKP isolates were isolated from elderly patients, and carbapenemase production was the main mechanism of drug resistance. Tigecycline and polymyxin B exhibited exceptional antimicrobial activity against CRKP isolates in vitro. Furthermore, bla KPC-2, bla NDM, and bla OXA-48-like were the main carbapenemase genes carried by the CRKP isolates. CZA demonstrated excellent antimicrobial activity against isolates carrying the single bla KPC-2 or bla OXA-48-like genotype. Capsular serotype K2 was the main capsular serotype of the carbapenem-resistant HMKP isolates. Survival rates of Galleria mellonella injected with K. pneumoniae 1-7 were 20.0, 16.7, 6.7, 23.3, 16.7, 3.3, and 13.3, respectively. Therefore, worldwide surveillance of these novel CRKP isolates and carbapenem-resistant HMKP isolates as well as the implementation of stricter control measures are needed to prevent further dissemination in hospital settings.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mengyuan Chen
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qian Ou
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Zheng
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xuejing Chen
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guofeng Mao
- Department of Clinical Laboratory, Shaoxing People’s Hospital, Shaoxing, China
| | - Jiaqi Fang
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China,*Correspondence: Xiaofang Tang, ; Dazhi Jin, ; Jiaqi Fang,
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China,Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China,*Correspondence: Xiaofang Tang, ; Dazhi Jin, ; Jiaqi Fang,
| | - Xiaofang Tang
- Department of Cadre Health Care, Zhejiang Hospital, Hangzhou, China,*Correspondence: Xiaofang Tang, ; Dazhi Jin, ; Jiaqi Fang,
| |
Collapse
|
17
|
First Report of Potentially Pathogenic Klebsiella pneumoniae from Serotype K2 in Mollusk Tegillarca granosa and Genetic Diversity of Klebsiella pneumoniae in 14 Species of Edible Aquatic Animals. Foods 2022; 11:foods11244058. [PMID: 36553800 PMCID: PMC9778296 DOI: 10.3390/foods11244058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Klebsiella pneumoniae can cause serious pneumonitis in humans. The bacterium is also the common causative agent of hospital-acquired multidrug-resistant (MDR) infections. Here we for the first time reported the genetic diversity of K. pneumoniae strains in 14 species of edible aquatic animals sampled in the summer of 2018 and 2019 in Shanghai, China. Virulence-related genes were present in the K. pneumoniae strains (n = 94), including the entB (98.9%), mrkD (85.1%), fimH (50.0%), and ybtA (14.9%) strains. Resistance to sulfamethoxazole-trimethoprim was the most prevalent (52.1%), followed by chloramphenicol (31.9%), and tetracycline (27.7%), among the strains, wherein 34.0% had MDR phenotypes. Meanwhile, most strains were tolerant to heavy metals Cu2+ (96.8%), Cr3+ (96.8%), Zn2+ (91.5%), Pb2+ (89.4%), and Hg2+ (81.9%). Remarkably, a higher abundance of the bacterium was found in bottom-dwelling aquatic animals, among which mollusk Tegillarca granosa contained K. pneumoniae 8-2-5-4 isolate from serotype K2 (ST-2026). Genome features of the potentially pathogenic isolate were characterized. The enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR)−based genome fingerprinting classified the 94 K. pneumoniae strains into 76 ERIC genotypes with 63 singletons, demonstrating considerable genetic diversity in the strains. The findings of this study fill the gap in the risk assessment of K. pneumoniae in edible aquatic animals.
Collapse
|
18
|
Jiang X, Zhao L, Shen Z, Zhu J. Emergence of a Hypermucoviscous Klebsiella pneumoniae Strain Coproducing K. pneumoniae Carbapenemase-2 and New Delhi Metallo-β-Lactamase-5 Carbapenemases in Shanghai, China. Microb Drug Resist 2022; 28:980-987. [PMID: 36173748 DOI: 10.1089/mdr.2021.0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Recently, the emergence of carbapenem-resistant hypermucoviscous Klebsiella pneumoniae has aroused increasing attention in China. We investigated the characteristics of a Klebsiella pneumoniae carbapenemase-2 (KPC-2) and New Delhi metallo-β-lactamase-5 (NDM-5) coproducing hypermucoviscous K. pneumoniae strain, named RJ-8061, which was isolated from the urine of an 86-year-old female patient with pneumonia. Methods: The RJ-8061 strain was investigated by string test, antimicrobial susceptibility testing, polymerase chain reaction for carbapenemase genes detection, capsular genotyping, multilocus sequence typing, whole-genome sequencing, and phylogenetics. A serum killing assay and a Galleria mellonella infection model were used to evaluate the virulence of RJ-8061 in vitro and in vivo. Results: RJ-8061 belonged to the sequence type 11 K64 serotype and showed high-level resistance to almost all frequently used antibiotics, only remaining susceptible to amikacin, colistin, and tigecycline. The complete genome size of RJ-8061 was 6,106,028 bp, including a 5,394,921 bp chromosome and seven circular plasmids. Plasmid pRJ-8061-hybrid is a 294,249 bp hybrid plasmid that co-harbored resistance genes [blaTEM-1B, mph(A), aac(3)-IId] and virulence genes (iucABCDiutA, rmpA2), whereas rmpA2 is a truncated version. In addition, blaKPC-2 and blaNDM-5 were located on plasmids 171,321 bp pRJ-8061-KPC-2 (IncFII/IncR) and 46,161 bp pRJ-8061-NDM-5 (IncX3), respectively. K-mer-based phylogenetic analysis grouped RJ-8061 into a carbapenem-resistant Klebsiella pneumoniae cluster. The G. mellonella infection model revealed that RJ-8061 showed relatively low virulence, with a 50% lethal dose of 106 cfu. Conclusions: To the best of our knowledge, this is the first report of a hypermucoviscous K. pneumoniae coproducing KPC-2 and NDM-5 carbapenemases.
Collapse
Affiliation(s)
- Xuemei Jiang
- Department of Laboratory Medicine, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Lina Zhao
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Shen
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junying Zhu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Identification of the BolA Protein Reveals a Novel Virulence Factor in K. pneumoniae That Contributes to Survival in Host. Microbiol Spectr 2022; 10:e0037822. [PMID: 36121239 PMCID: PMC9603091 DOI: 10.1128/spectrum.00378-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BolA has been characterized as an important transcriptional regulator, which is induced in the stationary phase of growth and is often associated with bacterial virulence. This study was initiated to elucidate the role of the BolA in the virulence of K. pneumoniae. Using a mouse infection model, we revealed bolA mutant strain yielded significantly decreased bacterial loads in the liver, spleen, lung, and kidney, and failed to form liver abscesses. Gene deletion demonstrated that the bolA was required for siderophore production, biofilm formation, and adhesion to human colon cancer epithelial cells HCT116. Quantitative reverse transcriptase PCR (RT-qPCR) indicated that BolA could impact the expression of pulK, pulF, pulE, clpV, vgrG, entE, relA, and spoT genes on a genome-wide scale, which are related to type II secretion system (T2SS), type VI secretion system (T6SS), guanosine tetraphosphate (ppGpp), and siderophore synthesis and contribute to fitness in the host. Furthermore, the metabolome analysis showed that the deletion of the bolA gene led to decreased pools of five metabolites: biotin, spermine, cadaverine, guanosine, and flavin adenine dinucleotide, all of which are involved in pathways related to virulence and stress resistance. Taken together, we provided evidence that BolA was a significant virulence factor in the ability of K. pneumoniae to survive, and this was an important step in progress to an understanding of the pathways underlying bacterial virulence. IMPORTANCE BolA has been characterized as an important transcriptional regulator, which is induced in the stationary phase of growth and affects different pathways directly associated with bacterial virulence. Here, we unraveled the role of BolA in several phenotypes associated with the process of cell morphology, siderophore production, biofilm formation, cell adhesion, tissue colonization, and liver abscess. We also uncovered the importance of BolA for the success of K. pneumoniae infection and provided new clues to the pathogenesis strategies of this organism. This work constitutes a relevant step toward an understanding of the role of BolA protein as a master regulator and virulence factor. Therefore, this study is of great importance for understanding the pathways underlying K. pneumoniae virulence and may contribute to public health care applications.
Collapse
|
20
|
Liang S, Cao H, Ying F, Zhang C. Report of a Fatal Purulent Pericarditis Case Caused by ST11-K64 Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae. Infect Drug Resist 2022; 15:4749-4757. [PMID: 36034175 PMCID: PMC9416326 DOI: 10.2147/idr.s379654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
The report describes a 44-year-old female patient who died of the rare acute purulent pericarditis caused by Klebsiella pneumoniae (KP). The genomic analysis revealed an extensively drug-resistant ST11-K64 KP strain from five isolates (blood cultures, urine, ascites, pericardial effusion, and sputum). Several high virulence (hv) and carbapenem-resistant (CR) genes were identified in the pericardial effuse isolate. The isolates showed low resistance to healthy human serum. This study highlights the potential lethality of CR-hvKP infections in patients suffering from underlying comorbidities such as diabetes mellitus and chronic ailments.
Collapse
Affiliation(s)
- Shiwei Liang
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China.,School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, People's Republic of China
| | - Huijun Cao
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Fei Ying
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Chenchen Zhang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, People's Republic of China
| |
Collapse
|
21
|
de Sousa ATHI, Costa MTDS, Cândido SL, Makino H, Morgado TO, Pavelegini LAD, Colodel EM, Nakazato L, Dutra V. Determination of multidrug-resistant populations and molecular characterization of complex Klebsiella spp. in wild animals by multilocus sequence typing. Vet World 2022; 15:1691-1698. [PMID: 36185529 PMCID: PMC9394135 DOI: 10.14202/vetworld.2022.1691-1698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background and Aim: One of the most significant public health concerns is multidrug-resistant (MDR) microorganisms. Klebsiella spp. have been at the forefront of causing different types of infections such as bacteremia, urinary tract infections, pneumonia, enteritis, and sepsis in humans as well as animals. This study aimed to determine the genomic similarity between Klebsiella spp. isolated from wild animal samples and those described in the Institut Pasteur genomic database to verify the spread of resistant clones regionally in the state of Mato Grosso, and to compare the epidemiological data in different regions of Brazil and the world. Materials and Methods: Isolates from various sites of injury in wild animals were identified by sequencing the 16S rRNA gene. Antimicrobial susceptibility testing was performed using the disk diffusion method to verify the resistance profile, and then, multilocus sequence typing was performed to verify the population structure and compare the isolates from other regions of Brazil and the world. Results: Twenty-three sequence types (STs) were observed; of these, 11 were new STs, as new alleles were detected. There was no predominant ST among the isolates. All isolates were MDR, with high rates of resistance to sulfonamides, ampicillin, amoxicillin, and nitrofurantoin and low resistance to meropenem, imipenem, and amikacin. Conclusion: Improving our understanding of the population structure of Klebsiella spp. in wild animals may help determine the source of infection during outbreaks in humans or animals, as the One Health concept emphasizes the interlinks between humans, animals, and environmental health.
Collapse
Affiliation(s)
| | - Marco Túlio dos Santos Costa
- Microbiology Laboratory of the Veterinary Hospital, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Stefhano Luis Cândido
- Microbiology Laboratory of the Veterinary Hospital, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Herica Makino
- Microbiology Laboratory of the Veterinary Hospital, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Thais Oliveira Morgado
- Center for Medicine and Research of Wild Animals, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | - Edson Moleta Colodel
- Pathology Laboratory of the Veterinary Hospital, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Luciano Nakazato
- Microbiology Laboratory of the Veterinary Hospital, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Valéria Dutra
- Microbiology Laboratory of the Veterinary Hospital, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| |
Collapse
|
22
|
Bai J, Zhang F, Liang S, Chen Q, Wang W, Wang Y, Martín-Rodríguez AJ, Sjöling Å, Hu R, Zhou Y. Isolation and Characterization of vB_kpnM_17-11, a Novel Phage Efficient Against Carbapenem-Resistant Klebsiella pneumoniae. Front Cell Infect Microbiol 2022; 12:897531. [PMID: 35865823 PMCID: PMC9294173 DOI: 10.3389/fcimb.2022.897531] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Phages and phage-encoded proteins exhibit promising prospects in the treatment of Carbapenem-Resistant Klebsiella pneumoniae (CRKP) infections. In this study, a novel Klebsiella pneumoniae phage vB_kpnM_17-11 was isolated and identified by using a CRKP host. vB_kpnM_17-11 has an icosahedral head and a retractable tail. The latent and exponential phases were 30 and 60 minutes, respectively; the burst size was 31.7 PFU/cell and the optimal MOI was 0.001. vB_kpnM_17-11 remained stable in a wide range of pH (4-8) and temperature (4-40°C). The genome of vB_kpnM_17-11 is 165,894 bp, double-stranded DNA (dsDNA), containing 275 Open Reading Frames (ORFs). It belongs to the family of Myoviridae, order Caudovirales, and has a close evolutionary relationship with Klebsiella phage PKO111. Sequence analysis showed that the 4530 bp orf022 of vB_kpnM_17-11 encodes a putative depolymerase. In vitro testing demonstrated that vB_kpnM_17-11 can decrease the number of K. pneumoniae by 105-fold. In a mouse model of infection, phage administration improved survival and reduced the number of K. pneumoniae in the abdominal cavity by 104-fold. In conclusion, vB_kpnM_17-11 showed excellent in vitro and in vivo performance against K. pneumoniae infection and constitutes a promising candidate for the development of phage therapy against CRKP.
Collapse
Affiliation(s)
- Jiawei Bai
- Department of Pathogen Biology, School of Basic Medicine, Public Center Experimental Technology of Pathogen Biology, Southwest Medical University, Luzhou, China
| | - Feiyang Zhang
- Department of Pathogen Biology, School of Basic Medicine, Public Center Experimental Technology of Pathogen Biology, Southwest Medical University, Luzhou, China
| | - Shuang Liang
- Department of Pathogen Biology, School of Basic Medicine, Public Center Experimental Technology of Pathogen Biology, Southwest Medical University, Luzhou, China
| | - Qiao Chen
- Department of Pathogen Biology, School of Basic Medicine, Public Center Experimental Technology of Pathogen Biology, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Department of Pathogen Biology, School of Basic Medicine, Public Center Experimental Technology of Pathogen Biology, Southwest Medical University, Luzhou, China
| | - Ying Wang
- Department of Pathogen Biology, School of Basic Medicine, Public Center Experimental Technology of Pathogen Biology, Southwest Medical University, Luzhou, China
| | | | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Renjing Hu
- Department of Laboratory Medicine, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Renjing Hu, ; Yingshun Zhou,
| | - Yingshun Zhou
- Department of Pathogen Biology, School of Basic Medicine, Public Center Experimental Technology of Pathogen Biology, Southwest Medical University, Luzhou, China
- *Correspondence: Renjing Hu, ; Yingshun Zhou,
| |
Collapse
|
23
|
Bello Gonzalez TD, Kant A, Dijkstra Q, Marcato F, van Reenen K, Veldman KT, Brouwer MSM. Changes in Fecal Carriage of Extended-Spectrum β-Lactamase Producing Enterobacterales in Dutch Veal Calves by Clonal Spread of Klebsiella pneumoniae. Front Microbiol 2022; 13:866674. [PMID: 35814663 PMCID: PMC9260047 DOI: 10.3389/fmicb.2022.866674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/31/2022] [Indexed: 01/14/2023] Open
Abstract
This study aimed to characterize the changes in fecal carriage of Extended-Spectrum β-Lactamase (ESBL) producing Enterobacterales (ESBL-PE) in a single Dutch veal calves. During the rearing period at the Dutch veal farm, a decrease in fecal carriage of cefotaxime-resistant Escherichia coli isolates was observed after 2 weeks at the veal farm, while an increase of cefotaxime-resistant Klebsiella pneumoniae isolates was demonstrated. E. coli and K. pneumoniae were isolated from rectal swabs collected from 110 veal calves in week 2, 6, 10, 18, and 24 after their arrival at the farm. ESBL-PE isolates were selectively cultured and identified by MALDI-TOF. ESBL genes were characterized by RT-PCR, PCRs, and amplicon sequencing. A total of 80 E. coli and 174 K. pneumoniae strains were isolated from 104 out of 110 veal calves. The prevalence of ESBL-E. coli decreased from week 2 (61%) to week 6 (7%), while an unexpected increase in ESBL-K. pneumoniae colonization was detected in week 6 (80%). The predominant ESBL genes detected in E. coli isolates were blaCTX-M-15 and the non-ESBL gene blaTEM-1a, while in K. pneumoniae blaCTX-M-14 gene was detected in all isolates. Four cefotaxime-resistant K. pneumoniae isolates were randomly selected and characterized in deep by transformation, PCR-based replicon typing, and whole-genome sequencing (WGS). The clonal relatedness of a subgroup of nine animals carrying K. pneumoniae ESBL genes was investigated by Multi Locus sequence typing (MLST). In four ESBL-K. pneumoniae isolates, blaCTX-M-14 was located on IncFIIK and IncFIINK plasmid replicons and the isolates were multi-drug resistant (MDR). MLST demonstrated a clonal spread of ESBL-K. pneumoniae ST107. To the best of our knowledge, this is the first study to report a change in fecal carriage of ESBL-PE over time in the same veal calf during the rearing period.
Collapse
Affiliation(s)
- Teresita d.J. Bello Gonzalez
- Department of Bacteriology, Host-Pathogen Interaction, and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
- *Correspondence: Teresita d.J. Bello Gonzalez,
| | - Arie Kant
- Department of Bacteriology, Host-Pathogen Interaction, and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Quillan Dijkstra
- Department of Bacteriology, Host-Pathogen Interaction, and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Francesca Marcato
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Kees van Reenen
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Kees T. Veldman
- Department of Bacteriology, Host-Pathogen Interaction, and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Michael S. M. Brouwer
- Department of Bacteriology, Host-Pathogen Interaction, and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
| |
Collapse
|
24
|
Lv J, Zhu J, Wang T, Xie X, Wang T, Zhu Z, Chen L, Zhong F, Du H. The Role of the Two-Component QseBC Signaling System in Biofilm Formation and Virulence of Hypervirulent Klebsiella pneumoniae ATCC43816. Front Microbiol 2022; 13:817494. [PMID: 35464966 PMCID: PMC9019566 DOI: 10.3389/fmicb.2022.817494] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) is an evolving infectious pathogen associated with high mortality. The convergence of hypervirulence and multidrug resistance further challenges the clinical treatment options for K. pneumoniae infections. The QseBC two-component system (TCS) is a component of quorum-sensing regulatory cascade and functions as a global regulator of biofilm growth, bacterial motility, and virulence in Escherichia coli. However, the functional mechanisms of QseBC in hvKP have not been reported, and we aim to examine the role of QseBC in regulating virulence in hvKP strain ATCC43816. The CRISPR-Cas9 system was used to construct qseB, qseC, and qseBC knockout in ATCC43816. No significant alterations in the growth and antibiotic susceptibility were detected between wild-type and mutants. The deletion of qseC led to an increase of biofilm formation, resistance to serum killing, and high mortality in the G. mellonella model. RNAseq differential gene expression analysis exhibited that gene-associated biofilm formation (glgC, glgP, glgA, gcvA, bcsA, ydaM, paaF, ptsG), bacterial type VI secretion system (virB4, virB6, virB10, vgrG, hcp), and biosynthesis of siderophore (entC, entD, entE) were significantly upregulated in comparison with the wild-type control. In addition, qseB, ygiW (encode OB-family protein), and AraC family transcriptional regulator IT767_23090 genes showed highest expressions in the absence of QseC, which might be related to increased virulence. The study provided new insights into the functional importance of QseBC in regulating the virulence of hvKP.
Collapse
Affiliation(s)
- Jingnan Lv
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting Wang
- Department of Clinical Laboratory, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhichen Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, United States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Fengyun Zhong
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Huang W, Zhang J, Zeng L, Yang C, Yin L, Wang J, Li J, Li X, Hu K, Zhang X, Liu B. Carbapenemase Production and Epidemiological Characteristics of Carbapenem-Resistant Klebsiella pneumoniae in Western Chongqing, China. Front Cell Infect Microbiol 2022; 11:775740. [PMID: 35071036 PMCID: PMC8769044 DOI: 10.3389/fcimb.2021.775740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022] Open
Abstract
Background This study aimed to determine the molecular characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates in a hospital in western Chongqing, southwestern China. Methods A total of 127 unique CRKP isolates were collected from the Yongchuan Hospital of Chongqing Medical University, identified using a VITEK-2 compact system, and subjected to microbroth dilution to determine the minimal inhibitory concentration. Enterobacteriaceae intergenic repeat consensus polymerase chain reaction and multilocus sequence typing were used to analyze the homology among the isolates. Genetic information, including resistance and virulence genes, was assessed using polymerase chain reaction. The genomic features of the CRKP carrying gene blaKPC-2 were detected using whole-genome sequencing. Results ST11 was the dominant sequence type in the homology comparison. The resistance rate to ceftazidime-avibactam in children was much higher than that in adults as was the detection rate of the resistance gene blaNDM (p < 0.0001). Virulence genes such as mrkD (97.6%), uge (96.9%), kpn (96.9%), and fim-H (84.3%) had high detection rates. IncF (57.5%) was the major replicon plasmid detected, and sequencing showed that the CRKP063 genome contained two plasmids. The plasmid carrying blaKPC-2, which mediates carbapenem resistance, was located on the 359,625 base pair plasmid IncFII, together with virulence factors, plasmid replication protein (rep B), stabilizing protein (par A), and type IV secretion system (T4SS) proteins that mediate plasmid conjugation transfer. Conclusion Our study aids in understanding the prevalence of CRKP in this hospital and the significant differences between children and adults, thus providing new ideas for clinical empirical use of antibiotics.
Collapse
Affiliation(s)
- Wan Huang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lingyi Zeng
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, China
| | - Chengru Yang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Lining Yin
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xinhui Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Kewang Hu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Huang L, Fu L, Hu X, Liang X, Gong G, Xie C, Zhang F, Wang Y, Zhou Y. Co-occurrence of Klebsiella variicola and Klebsiella pneumoniae Both Carrying bla KPC from a Respiratory Intensive Care Unit Patient. Infect Drug Resist 2021; 14:4503-4510. [PMID: 34744441 PMCID: PMC8565889 DOI: 10.2147/idr.s330977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Objective The aim of this study was to use whole-genome sequencing to characterize Klebsiella pneumoniae SKp2F and Klebsiella variicola SKv2E, both carrying blaKPC, co-isolated from the same sputum specimen. Methods Antimicrobial susceptibility testing was performed using microbroth dilution. Biofilm formation was determined by crystal violet staining and virulence was measured by a serum killing assay. Whole-genome sequencing of SKp2F and SKv2E was performed using an Illumina sequencer and the genetic characteristics were analyzed by computer. Results SKp2F and SKv2E were sensitive only to tigecycline and polymyxin among the tested antibiotics. The biofilm-forming ability of SKv2E is stronger than that of SKp2F. The grades of serum resistance of SKp2F and SKv2E are 4 and 3. MLST analysis of the 6,115,610 bp and 5,403,687 bp of SKv2E and SKp2F showed associations with ST1615 and ST631, respectively. SKv2E carried 13 resistance genes (blaKPC-2, blaTEM-1A, blaLEN17, aadA16, arr-3, qnrB4, oqxA/B, dfrA27, sul1, tetD, fosA, qacEΔ1) and SKp2F carried 23 (blaKPC-2, blaCTX-M-3, blaTEM-1B, blaCTX-M-65, blaSHV-27, aac(6ʹ)-IIa, rmtB, arr-3, aph(3ʹ)-Ia, aadA16, qnrS1, aac(6ʹ)-Ib-cr, qnrB91, oqxA/B, mph(A), tet(A), fosA, dfrA27, and two copies of qacEΔ1-sul1). Most of them were carried by various mobile genetic elements, such as IncFIB(K)/IncFII(K)/IncFII(Yp), IncFII(K) plasmid, Tn6338, and In469. Both SKv2E and SKp2F carried a large number of virulence factors, including type 1 and 3 fimbriae, capsule, aerobactin (iutA), ent siderophore (entABCDEFS, fepABCDGfes), and salmochelin (iroE/iroEN). SKv2E also carried type IV pili (pilW), fimbrial adherence (steB, stfD), and capsule biosynthesis gene (glf). Conclusion blaKPC-2-carrying K. variicola and K. pneumoniae, which carried multiple resistance genes, virulence factors, and highly similar mobile genetic elements, were identified from the same specimen, indicating that clinical samples may carry multiple bacteria. We should avoid misidentification, and bear in mind that resistance genes carrying mobile genetic elements can be transmitted or integrated between bacteria in the same host.
Collapse
Affiliation(s)
- Lianjiang Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, 361021, People's Republic of China
| | - Li Fu
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Xiaoyan Hu
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Xiaoliang Liang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, 361021, People's Republic of China
| | - Guozhong Gong
- Department of Clinical Laboratory, Suining First People's Hospital, Suining, 629000, People's Republic of China
| | - Chunhong Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, 361021, People's Republic of China
| | - Feiyang Zhang
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ying Wang
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yingshun Zhou
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, 646000, People's Republic of China
| |
Collapse
|
27
|
Ballén V, Gabasa Y, Ratia C, Ortega R, Tejero M, Soto S. Antibiotic Resistance and Virulence Profiles of Klebsiella pneumoniae Strains Isolated From Different Clinical Sources. Front Cell Infect Microbiol 2021; 11:738223. [PMID: 34540722 PMCID: PMC8440954 DOI: 10.3389/fcimb.2021.738223] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium capable of colonizing, invading, and causing infections in different anatomical sites of the human body. Its ability to evade the immune system, its increasing antimicrobial resistance and the emergence of hypervirulent pathotypes have become a major challenge in the medical field. In this study, 127 strains from different clinical sources (urine, respiratory tract or blood) were characterized for antimicrobial resistance, the presence of virulence factor genes, serum resistance, hypermucoviscosity and the ability to form biofilms. Specific characteristics of the uropathogenic strains were examined and compared with the other clinical groups. Differences were found between urine and the other groups of strains. Urine strains showed the highest antibiotic resistance (64.91%) compared to blood (63.64%) or respiratory strains (51.35%) as well as the highest extended-spectrum beta-lactamases (ESBL) production. These strains also showed statistically significant high resistance to fosfomycin (24.56%) compared to the other groups (p = 0.008). Regarding virulence, 84.21% of the urine strains presented the uge gene, showing a statistically significant difference (p = 0.03) compared to the other clinical sources, indicating a possible role of this gene in the development of urinary tract infection. In addition, 46% of biofilm-forming strains belonged to the urine sample group (p = 0.043). In conclusion, K. pneumoniae strains isolated from urine samples showed higher antimicrobial resistance, ESBL production, and biofilm-forming ability compared to those isolated from respiratory or blood samples. The rapid spread of clinical strains with these characteristics is of concern, and new therapeutic alternatives are essential to mitigate their harmful effects.
Collapse
Affiliation(s)
- Victoria Ballén
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Carlos Ratia
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Raquel Ortega
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Marc Tejero
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Sara Soto
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Sanikhani R, Moeinirad M, Shahcheraghi F, Lari A, Fereshteh S, Sepehr A, Salimi A, Badmasti F. Molecular epidemiology of hypervirulent Klebsiella pneumoniae: a systematic review and meta-analysis. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:257-265. [PMID: 34540163 PMCID: PMC8416590 DOI: 10.18502/ijm.v13i3.6384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Classical (CKp) and hypervirulent (hvKp) Klebsiella pneumoniae are two different circulating pathotypes. The aim of this study was to assess the prevalence, epidemiology and molecular relatedness of hvKps using a systemic review and meta-analysis. The data extracted from Medline, Embase, and Web of Science and finally 14 studies met the eligible criteria. To combine prevalence proportions of all studies, we performed the metaprop command embedded in the Meta package software. Totally, of 1814 K. pneumoniae isolates, 21.7% (394/1814) were hvKp. The molecular typing showed that all hvKp isolates were grouped into 50 different sequence types (STs) of them ST23, ST11, ST65 and ST86 were common. K1, K2 and K64 were dominant capsule serotypes that strongly related to ST23, ST65 and ST11, respectively. It seems that clonal group 23 (CG23) is associated with liver abscess and CG11 related to various clinical sources.
Collapse
Affiliation(s)
| | - Mohammad Moeinirad
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Arezou Lari
- Department of Systems Biomedicine, Pasteur Institute of Iran, Tehran, Iran
| | | | - Amin Sepehr
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Afsaneh Salimi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
29
|
Zeng L, Yang C, Zhang J, Hu K, Zou J, Li J, Wang J, Huang W, Yin L, Zhang X. An Outbreak of Carbapenem-Resistant Klebsiella pneumoniae in an Intensive Care Unit of a Major Teaching Hospital in Chongqing, China. Front Cell Infect Microbiol 2021; 11:656070. [PMID: 34150672 PMCID: PMC8208809 DOI: 10.3389/fcimb.2021.656070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background Due to the critical condition and poor immunity of patients, the intensive care unit (ICU) has always been the main hospital source of multidrug-resistant bacteria. In recent years, with the large-scale use of antibiotics, the detection rate and mortality of carbapenem-resistant Klebsiella pneumoniae (CRKP) have gradually increased. This study explores the molecular characteristics and prevalence of CRKP isolated from the ICU ward of a tertiary hospital in China. Methods A total of 51 non-duplicated CRKP samples isolated from the ICU were collected from July 2018-July 2020. The enzyme production of the strains was preliminarily screened by carbapenemase phenotypic test, and drug-resistant and virulence genes were detected by PCR. The transferability of plasmid was verified by conjugation test. The minimal inhibitory concentration (MIC) was determined by microbroth dilution method and genetic diversity was detected by multilocus sequence typing and pulsed-field gel electrophoresis. Results blaKPC-2 was the only carbapenemase detected. The major virulence genes were uge (100%), mrkD (94.1%), kpn (94.1%), and fim-H (72.5%), while wcag, ironB, alls and magA genes were not detected. One sequence type ST1373 strain, hypervirulent K. pneumoniae (hvKP), was detected. CRKP strains were highly resistant to quinolones, cephalosporins, aminoglycosides, and polymyxin, but susceptive to tigecycline and ceftazidime-avibactam. The success rate of conjugation was 12.2%, indicating the horizontal transfer of blaKPC-2 . Homology analysis showed that there was a clonal transmission of ST11 CRKP in the ICU of our hospital. Conclusion The present study showed the outbreak and dissemination in ICU were caused by ST11 CRKP, which were KPC-2 producers, and simultaneously, also carried some virulence genes. ST11 CRKP persisted in the ward for a long time and spread among different areas. Due to the widespread dispersal of the transferable blaKPC-2 plasmid, the hospital should promptly adopt effective surveillance and strict infection control strategies to prevent the further spread of CRKP. Ceftazidime-avibactam showed high effectiveness against CRKP and could be used for the treatment of ICU infections.
Collapse
Affiliation(s)
- Lingyi Zeng
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Chengru Yang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Kewang Hu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jingbo Zou
- Department of Microbiology, Yongchuan District Center for Disease Control and Prevention of Chongqing, Chongqing, China
| | - Jie Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wan Huang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lining Yin
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|
30
|
Cheng J, Zhou M, Nobrega DB, Cao Z, Yang J, Zhu C, Han B, Gao J. Virulence profiles of Klebsiella pneumoniae isolated from 2 large dairy farms in China. J Dairy Sci 2021; 104:9027-9036. [PMID: 33985773 DOI: 10.3168/jds.2020-20042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
We recently reported on the diversity of Klebsiella pneumoniae isolated from dairy herds in China. In our previous work, isolates from subclinical mastitis (SCM) had lower indices of diversity when compared with bacteria from other sources, possibly due to a contagious-like spread of udder adapted strains. Here we explored the virulence profile and capsular types of K. pneumoniae isolated from different sources on 2 dairy farms in China. Our overarching goal was to gain insights on the role of virulence genes toward the severity of mastitis caused by K. pneumoniae. A total of 1,484 samples were collected from clinical mastitis (CM; n = 355), SCM (n = 561), bulk tank milk (BTM; n = 130), and environmental and extramammary (EE) sites (n = 438). From those, 431 K. pneumoniae isolates were obtained, including 129, 77, 66, and 159 isolates from CM, SCM, BTM, and EE samples, respectively. Polymerase chain reactions were used to determine the capsular types and to detect potential virulence genes in all isolates. No significant farm effects were observed when comparing the distribution of most virulence genes in K. pneumoniae isolated from each source. K57 was the most prevalent capsular type in K. pneumoniae from all sources, but with increased detection rate in isolates from CM. entB, kfu, fimH1, mrkD, and β-d-lacZ were frequently detected in K. pneumoniae from all sources. β-d-lacZ, entB, and ituA were more prevalent in isolates from CM, whereas kfu, allS, and nif were more frequently detected in isolates from SCM. ybtS, aerobactin, and rpmA had increased prevalence in K. pneumoniae from BTM when compared with bacteria from other sources. No association was detected between virulence genes and the severity of CM. K57 and the nif gene had the highest discriminatory power to classify isolates from CM and SCM, respectively. Based on our findings, it is likely that K57 is the dominant capsular type in K. pneumoniae causing CM in large Chinese dairy herds. Likewise, we demonstrated that β-d-lacZ is disseminated in K. pneumoniae isolated from large Chinese dairy farms, irrespectively of the source of bacteria. Our results also suggest a low contribution of the virulence profile of K. pneumoniae toward CM severity. Finally, the role of nif in increasing the adaptability to the udder and promoting a contagious-like spread of K. pneumoniae warrants further investigation.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Diego B Nobrega
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Chunyan Zhu
- Agri-Products Quality and Safety Testing Center of Shanghai, No. 28, Ln 1528, Xinfu Zhonglu Rd, Huaxin Town, Qinpu District, Shanghai, China 201708
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China.
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
31
|
Multi-Drug Resistant Plasmids with ESBL/AmpC and mcr-5.1 in Paraguayan Poultry Farms: The Linkage of Antibiotic Resistance and Hatcheries. Microorganisms 2021; 9:microorganisms9040866. [PMID: 33920558 PMCID: PMC8072826 DOI: 10.3390/microorganisms9040866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Poultry represents a common source of bacteria with resistance to antibiotics including the critically important ones. Selective cultivation using colistin, cefotaxime and meropenem was performed for 66 chicken samples coming from 12 farms in Paraguay while two breeding companies supplied the farms. A total of 62 Escherichia coli and 22 Klebsiella pneumoniae isolates were obtained and representative isolates were subjected to whole-genome sequencing. Relatively high prevalence of phylogenetic group D and F was observed in E. coli isolates and several zoonotic sequence types (STs) including ST457 (14 isolates), ST38 (5), ST10 (2), ST117 (2) or ST93 (4) were detected. Isolates from three farms, which purchased chicken from a Paraguayan hatchery showed higher prevalence of mcr-5.1 and blaCTX-M-8 compared to the other nine farms, which purchased chickens from a Brazilian hatchery. Moreover, none of the K. pneumoniae isolates were linked to the Paraguayan hatchery. ESBL/AmpC and mcr-5-carrying multi-drug resistant (MDR) plasmids were characterized, and complete sequences were obtained for eight plasmids. The study shed light on Paraguayan poultry farms as a reservoir of antibiotic resistance commonly conferred via MDR plasmids and showed linkage between resistance and origin of the chickens at the hatcheries level.
Collapse
|
32
|
Toledano-Tableros JE, Gayosso-Vázquez C, Jarillo-Quijada MD, Fernández-Vázquez JL, Morfin-Otero R, Rodríguez-Noriega E, Giono-Cerezo S, Gutkind G, Di Conza J, Santos-Preciado JI, Alcántar-Curiel MD. Dissemination of bla NDM- 1 Gene Among Several Klebsiella pneumoniae Sequence Types in Mexico Associated With Horizontal Transfer Mediated by IncF-Like Plasmids. Front Microbiol 2021; 12:611274. [PMID: 33841344 PMCID: PMC8027308 DOI: 10.3389/fmicb.2021.611274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Nosocomial infections caused by multidrug-resistant (MDR) Klebsiella pneumoniae are a major health problem worldwide. The aim of this study was to describe NDM-1-producing K. pneumoniae strains causing bacteremia in a tertiary referral hospital in Mexico. MDR K. pneumoniae isolates were screened by polymerase chain reaction for the presence of resistance genes. In resistant isolates, plasmids were identified and conjugation assays were performed. Clonal diversity and the sequence types were determined by pulsed-field gel electrophoresis and multilocus sequence typing. A total of 80 K. pneumoniae isolates were collected from patients with bacteremia over a 1-year period. These isolates showed a level of resistance of 59% (47/80) to aztreonam, 56-60% (45-48/80) to cephalosporins, 54% (43/80) to colistin and 12.5% (10/80) to carbapenems. The carbapenem resistant isolates were bla NDM- 1 carriers and negative for bla KPC, bla NDM, bla IMP, bla VIM and bla OXA- 48 -like carbapenemases genes. Conjugative plasmids IncFIIA and IncF group with sizes of 82-195 kbp were carriers of bla NDM- 1, bla CTX-M- 15, bla TEM- 1, aac(6')-Ib and/or aac(3')-IIa. Clonal variability and nine different multilocus sequence types were detected (ST661, ST683, ST1395, ST2706, ST252, ST1198, ST690, ST1535, and ST3368) for the first time in the isolates carrying bla NDM- 1 in Mexico. This study demonstrates that bla NDM- 1 has remained within this hospital in recent years and suggests that it is currently the most prevalent carbapenemase among K. pneumoniae MDR strains causing bacteremia in Mexico. The horizontal transfer of bla NDM- 1 gene through IncF-like plasmids among different clones demonstrates the dissemination pathway of antimicrobial resistance and underscore the need for strong and urgent joint measures to control the spread of NDM-1 carbapenemase in the hospital.
Collapse
Affiliation(s)
- José Eduardo Toledano-Tableros
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencia Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Catalina Gayosso-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ma Dolores Jarillo-Quijada
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José Luis Fernández-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rayo Morfin-Otero
- Hospital Civil de Guadalajara “Fray Antonio Alcalde” e Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Eduardo Rodríguez-Noriega
- Hospital Civil de Guadalajara “Fray Antonio Alcalde” e Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Silvia Giono-Cerezo
- Departamento de Microbiología, Escuela Nacional de Ciencia Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriel Gutkind
- Laboratorio de Resistencia Bacteriana, Facultad de Farmacia y Bioquímica de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José Di Conza
- Laboratorio de Resistencia Bacteriana, Facultad de Farmacia y Bioquímica de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José Ignacio Santos-Preciado
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María Dolores Alcántar-Curiel
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
33
|
Tang Y, Liu H, Zhao J, Yi M, Yuan Y, Xia Y. Clinical and Microbiological Prognostic Factors of in-Hospital Mortality Caused by Hypervirulent Klebsiella pneumoniae Infections: A Retrospective Study in a Tertiary Hospital in Southwestern China. Infect Drug Resist 2020; 13:3739-3749. [PMID: 33116694 PMCID: PMC7586058 DOI: 10.2147/idr.s276642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/26/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Hypervirulent klebsiella pneumoniae (hvKP) is responsible for various invasive diseases and associated with high mortality. However, the clinical and microbiological factors of hvKP infection that influence prognosis have not been well studied. The purpose of this study was to evaluate the prognostic factors for in-hospital mortality of patients with hvKP infections, mainly focusing on clinical and microbiological characteristics. Methods A retrospective study was conducted in hvKP strains which positive for iucA and string test. According to the clinical outcomes during hospitalization, hvKP-infected patients were divided into non-survivor and survivor groups. The clinical characteristics, capsule types, multi-locus sequence types (MLST), virulence genes and antimicrobial susceptibility were compared between those of the two groups. Results A total of 135 patients were demonstrated to be with hvKP infections, with a prevalence rate of 22% among all the klebsiella pneumoniae infected cases. Sixteen of these patients died during hospitalization, with an in-hospital mortality rate of 11.9%. Univariate analysis confirmed that admission to the intensive care unit (ICU) (p=0.008), antimicrobial resistance of hvKP to ampicillin/sulbactam (p=0.028), cefepime (p=0.033), aztreonam (p=0.049) and harboring iroN gene (p=0.023) were associated with in-hospital mortality. On the contrary, the rmpA gene showed an inverse association with in-hospital mortality (p=0.017). Multivariate logistic regression analysis revealed that ICU admission (odds ratio [OR]=3.452, 95% confidence interval [CI]=1.052–11.329; P=0.041) and iroN carriage (OR=9.278, 95% CI=1.654–52.035; P=0.011) were independent prognostic factors for the in-hospital mortality of patients with hvKP infections. Conclusion Emerging hvKP infection may lead to relatively high in-hospital mortality. ICU admission and iroN carriage were independent prognostic factors for the in-hospital mortality of patients with hvKP infections.
Collapse
Affiliation(s)
- Yu Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jinxin Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Miao Yi
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yaling Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yun Xia
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
34
|
Furlan JPR, Savazzi EA, Stehling EG. Genomic insights into multidrug-resistant and hypervirulent Klebsiella pneumoniae co-harboring metal resistance genes in aquatic environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110782. [PMID: 32497817 DOI: 10.1016/j.ecoenv.2020.110782] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Klebsiella pneumoniae is one of the most important pathogens related to hospital-acquired infections. The incidence of infections by hypervirulent K. pneumoniae (hvKp), especially community-acquired infections, has been increasing in recent decades. The occurrence of multidrug-resistant (MDR) hvKp has been increasingly reported worldwide decreasing the treatment options, which is a concern. Aquatic environments have been considered a reservoir of MDR pathogens, which contribute to the spread of MDR pathogens. Therefore, this study aimed to characterize MDR-hvKp strains obtained from public aquatic environments using whole genome sequencing in Brazil. Resistome analysis showed ARGs to β-lactams, quinolones, tetracyclines, sulfonamides, and fosfomycin as well as several metal resistance genes. Virulome analysis showed several virulence genes. Besides, genomic islands, CRISPR and prophage-related sequences were also detected. MLST analysis revealed the presence of two novel sequences types (STs) belonging to different clonal complexes (CCs) [ST4415 (CC515) and ST4416 (CC2654)], and one already described [ST661 (CC661)]. The presence of MDR-hvKp lineages in water sources belonging to STs and CCs associated with humans and animals shows the ability of these pathogens to spread to different aquatic environments. This study reports for the first time two novel STs of MDR-hvKp as well as the presence of a rare ST661 closely related to outbreaks in aquatic environments, and contributes to surveillance studies and MDR-hvKp monitoring worldwide.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
35
|
Su S, Zhang J, Zhao Y, Yu L, Wang Y, Wang Y, Bao M, Fu Y, Li C, Zhang X. Outbreak of KPC-2 Carbapenem-resistant Klebsiella pneumoniae ST76 and Carbapenem-resistant K2 Hypervirulent Klebsiella pneumoniae ST375 strains in Northeast China: molecular and virulent characteristics. BMC Infect Dis 2020; 20:472. [PMID: 32616018 PMCID: PMC7331116 DOI: 10.1186/s12879-020-05143-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Carbapenem-resistant hypervirulent Klebsiella pneumoniae strains have recently come into existence worldwide; however, researchers in northeast China are not aware of their clinical features and molecular characteristics. METHODS Here, the molecular and virulent characteristics of 44 carbapenem-resistant K. pneumoniae (CRKP) isolates collected from January 2015 to December 2017 were studied. Multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were carried out to define the clonal relatedness among the isolates. PCR and capsular serotyping of the virulence-associated genes, as well as biofilm formation and serum complement-mediated killing assays, were employed to determine the virulent potential. The genomic features and associated mobile genetic elements of JmsCRE57 were detected by whole genome sequencing. RESULTS The only positive isolate was JmsCRE57, which belonged to the ST375 serotype K2 that expressed uge, mrkD, fimH, kpn, aerobactin and rmpA virulence-associated genes and showed strong biofilm formation and serum sensitivity. Sequencing results showed that the JmsCRE57 genome mainly consisted of a circular chromosome, three antimicrobial resistant plasmids and a virulent plasmid. The antimicrobial resistant plasmid expressing blaKPC-2, blaCTX-M-15, aph(3″)-Ib, aph(6)-Id, qnrB1, aac(3)-IIa, aac(6')-Ib-cr, blaOXA-1, blaTEM-1B, catB4, sul2, dfrA14 and blaSHV-99. The virulent plasmid belonged to the IncHI1B group, which is mainly composed of mucoid phenotype genes and siderophore-associated genes. The remaining CRKP strains that expressed uge, fimH, mrkD and kpn virulence-associated genes were not successfully typed. CONCLUSION Our results provide new insights on the epidemiology of carbapenem-resistant K2 hypervirulent K. pneumoniae ST375 and CRKP ST76 strains in northeast China, which may help control their future outbreaks.
Collapse
Affiliation(s)
- Shanshan Su
- Yongchuan hospital of Chongqing Medical University, Chongqing, China.,The First People's Hospital of Jingzhou City, Jingzhou, Hubei, China
| | - Jisheng Zhang
- Yongchuan hospital of Chongqing Medical University, Chongqing, China.,First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yongxin Zhao
- First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Lan Yu
- First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yong Wang
- First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yuchao Wang
- First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Mingjia Bao
- Center for Disease Control and Prevention, Jiamusi, Heilongjiang, China
| | - Yu Fu
- Center for Disease Control and Prevention, Jiamusi, Heilongjiang, China
| | - Chunjiang Li
- First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China.
| | - Xiaoli Zhang
- Yongchuan hospital of Chongqing Medical University, Chongqing, China. .,First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China.
| |
Collapse
|
36
|
Zou H, Berglund B, Xu H, Chi X, Zhao Q, Zhou Z, Xia H, Li X, Zheng B. Genetic characterization and virulence of a carbapenem-resistant Raoultella ornithinolytica isolated from well water carrying a novel megaplasmid containing bla NDM-1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114041. [PMID: 32006889 DOI: 10.1016/j.envpol.2020.114041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/31/2019] [Accepted: 01/21/2020] [Indexed: 05/16/2023]
Abstract
Infections caused by carbapenem-resistant Enterobacteriaceae are a growing concern worldwide. Raoultella ornithinolytica is a species in the Enterobacteriaceae family which can cause hospital-acquired infections and is sporadically reported as carbapenem-resistant from human and environmental sources. In this study, we firstly report on an NDM-1-producing R. ornithinolytica, Rao166, isolated from drinking water in an animal cultivation area in China. In addition to carbapenem-resistance, Rao166 was resistant to several other antibiotics including gentamicin, sulfamethoxazole-trimethoprim, tetracycline and fosfomycin. Rao166 carried a novel IncFIC-type megaplasmid, 382,325 bp in length (pRAO166a). A multidrug resistance region, 60,600 bp in length, was identified in the plasmid containing an aac(3)-IId-like gene, aac(6')-Ib-cr, blaDHA-1, blaTEM-1B, blaCTX-M-3, blaOXA-1, blaNDM-1, qnrB4, catB3, arr-3, sul1, and tet(D). Results from virulence assays implied that Rao166 has considerable pathogenic potential. Although pRAO166a was found to be non-transmissible, dissemination of the NDM-1 producing strain may occur from well water to humans or animals through cross-contamination during food preparation or directly via drinking water, and potentially lead to difficult-to-treat infections. Thus, contamination of well water by this carbapenem-resistant and presumptively virulent strain of R. ornithinolytica should be considered a potential public health risk.
Collapse
Affiliation(s)
- Huiyun Zou
- Department of Environment and Health, School of Public Health, Shandong University, Jinan, 250012, China
| | - Björn Berglund
- Department of Clinical and Experimental Medicine, Linköping University, 581 85, Linköping, Sweden; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohui Chi
- Department of Environment and Health, School of Public Health, Shandong University, Jinan, 250012, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qian Zhao
- Department of Environment and Health, School of Public Health, Shandong University, Jinan, 250012, China
| | - Ziyu Zhou
- Department of Environment and Health, School of Public Health, Shandong University, Jinan, 250012, China
| | - Huiyu Xia
- Department of Environment and Health, School of Public Health, Shandong University, Jinan, 250012, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Shandong University, Jinan, 250012, China.
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Tang L, Shen W, Zhang Z, Zhang J, Wang G, Xiang L, She J, Hu X, Zou G, Zhu B, Zhou Y. Whole-Genome Analysis of Two Copies of bla NDM-1 Gene Carrying Acinetobacter johnsonii Strain Acsw19 Isolated from Sichuan, China. Infect Drug Resist 2020; 13:855-865. [PMID: 32273730 PMCID: PMC7106997 DOI: 10.2147/idr.s236200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose To characterize the genetic feature of the carbapenems resistant Acinetobacter johnsonii strain Acsw19 isolated from municipal sludge. This strain was found to carry two copies of bla NDM-1, cmlB1-like gene, and bla OXA-211-like gene along with other 8 antimicrobial resistance genes, 3 plasmids, 15 genomic islands and 8 prophages. Methods A carbapenem-resistant Acinetobacter johnsonii strain Acsw19 isolated from municipal sludge was subjected to whole-genome sequencing (WGS) via the PacBio and Illumina MiSeq platforms. Thereafter, the characteristic was analyzed by a series of bioinformatics software. Results The results showed that the genome of Acsw19 was consisted of a 3,433,749 bp circular chromosome and 3 circular plasmids, pAcsw19-1 (11,161 bp), pAcsw19-2 (351,885 bp) and pAcsw19-3 (38,391bp), respectively. Resistome analysis showed that Acsw19 carried 12 antimicrobial resistance genes, including 6 [cmlB1-like, bla NDM-1, bla OXA-58, aph (3')-VIa, msr(E) and mph(E)] in the plasmid pAcsw19-2 and 6 (bla OXA-211-like, bla NDM-1, aph(3")-Ib, aph(6)-Id, sul2, and floR) in the chromosome genome. Specifically, the cmlB1-like gene shared 86.33%, 71.7% and 71.9% similarities with the cmlB1, cmlA4 and cmlA8 gene, and the bla OXA-211-like gene shared 94.4%, 95.39% and 96.36% similarities with bla OXA-211, bla OXA-643 and bla OXA-652, at the nucleotide level, respectively. Phylogenetic analysis showed that the bla OXA-211-like gene and cmlB1-like gene had the closest evolutionary relationship with bla OXA-643 and cmlB1, respectively. These results indicated that the bla OXA-211-like and cmlB1-like genes identified in the current study should be the novel variant resistance genes. Conclusion Carrying of two copies of bla NDM-1, cmlB1-like, bla OXA-211-like and along with other 8 antimicrobial resistance genes, 3 plasmids, 15 genomic islands and 8 prophages Acinetobacter johnsonii strain might increase the possibility of spreading of resistance genes.
Collapse
Affiliation(s)
- Lingtong Tang
- Department of Clinical Laboratory, The People's Hospital of Gao County, Sichuan 644000, People's Republic of China.,Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Wei Shen
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Department of Clinical Laboratory, The First People's Hospital of Yibin, Yibin 644000, Sichuan, People's Republic of China
| | - Zhikun Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Jingping Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Guangxi Wang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Li Xiang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Junping She
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xiaoyan Hu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Guoyuan Zou
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Science, Beijing, People's Republic of China
| | - Baoli Zhu
- Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
38
|
Hao Z, Duan J, Liu L, Shen X, Yu J, Guo Y, Wang L, Yu F. Prevalence of Community-Acquired, Hypervirulent Klebsiella pneumoniae Isolates in Wenzhou, China. Microb Drug Resist 2020; 26:21-27. [PMID: 31408411 DOI: 10.1089/mdr.2019.0096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Zhihao Hao
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Duan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaofei Shen
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingyi Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yinjuan Guo
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangxing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Hasani A, Soltani E, Ahangharzadeh Rezaee M, Hasani A, Gholizadeh P, Noie Oskouie A. Detection and characterization of NDM-1-producing Klebsiella pneumoniae in Iran: an incursion crisis. Infect Dis (Lond) 2019; 52:291-293. [PMID: 31876435 DOI: 10.1080/23744235.2019.1705997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Alka Hasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Sina Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elghar Soltani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangharzadeh Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Hasani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Noie Oskouie
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Liu D, Yang Y, Gu J, Tuo H, Li P, Xie X, Ma GX, Liu J, Zhang A. The Yersinia high-pathogenicity island (HPI) carried by a new integrative and conjugative element (ICE) in a multidrug-resistant and hypervirulent Klebsiella pneumoniae strain SCsl1. Vet Microbiol 2019; 239:108481. [PMID: 31767086 DOI: 10.1016/j.vetmic.2019.108481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 01/16/2023]
Abstract
Multidrug-resistant and hypervirulent Klebsiella pneumoniae (hvKP) poses a significant risk to public health. To better understand the molecular characteristics of multidrug-resistant and hypervirulent K. pneumoniae of animal origin, fifteen K. pneumoniae strains from the liver, blood of sick pigs and chicken feces were collected. All K. pneumoniae isolates were subjected to antimicrobial susceptibility testing, string test, multi-locus sequence typing and whole genome sequencing. Seven K. pneumoniae isolates were found carrying the mcr-1.1 gene. Among them, a multidrug-resistant and hypervirulent K. pneumoniae strain SCsl1 isolated from the liver of a diseased pig was found to harbor 16 resistance genes (e.g., mcr-1.1) and 16 virulence genes including aerobactin. Moreover, a novel integrative and conjugative element, named ICEKpSL1, was identified in SCsl1, which contains a full Yersinia high-pathogenicity island (HPI). This element could be excised from the chromosome to form a circular intermediate, indicating potential transmission of the Yersinia pathogenicity island. The emergence of multidrug-resistance and hypervirulence in K. pneumoniae from animals warrants further surveillance.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, PR China
| | - Yongqiang Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, PR China
| | - Ju Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, PR China
| | - Hongmei Tuo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, PR China
| | - Ping Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, PR China
| | - Xianjun Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, PR China
| | - Guang-Xu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jinxin Liu
- Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, CA, 95616, USA
| | - Anyun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, PR China.
| |
Collapse
|
41
|
Liu X, Zhang J, Li Y, Shen Q, Jiang W, Zhao K, He Y, Dai P, Nie Z, Xu X, Zhou Y. Diversity and frequency of resistance and virulence genes in bla KPC and bla NDM co-producing Klebsiella pneumoniae strains from China. Infect Drug Resist 2019; 12:2819-2826. [PMID: 31571938 PMCID: PMC6750849 DOI: 10.2147/idr.s214960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
Background Emergence of blaKPC and blaNDM co-producing Klebsiella pneumoniae strains have led to the limited therapeutic options for clinical treatment. Understanding the diversity and frequency of resistance and virulence genes of these isolates is of great significance. Purpose The aim of this study is to research the diversity and frequency of resistance and virulence genes in the blaKPC and blaNDM co-producing Klebsiella pneumoniae strains. Methods and Results In this study, 117 K. pneumonia strains were isolated from China, and among of which, 24 were found to be blaKPC and blaNDM co-producing with significant resistance against almost all the commonly used antibiotics. Additionally, 4 strains were hypermucoviscous and 8 showed high serum resistance. Overall, blaSHV, blaCTX-M, tetA and sul1 resistance genes found in 100% of the isolates, followed by blaTEM (95.8%), oqxA/B (91.7%), qnrB (87.5%), aac(6’)Ib-cr (83.3%), blaDHA (79.2%), rmtB (66.7%), qnrS (54.2%), cat(54.2%), floR (50.0%), sul2 (45.8%) cmlA (20.8%)andblaCMY (8.33%), respectively. What’ more, seven blaCTX-M subtypes [blaCTX-M-14 (n=18), blaCTX-M-3(n=11), blaCTX-M-65 (n=4), blaCTX-M-15 (n=3), blaCTX-M-28 (n=2), blaCTX-M-55 (n=2), blaCTX-M-22 (n=1)] and six blaSHV subtypes [blaSHV-12(n=16), blaSHV-11 (n=4), blaSHV-2a(n=1), blaSHV-1(n=1), blaSHV-38(n=1) and blaSHV-28(n=1)] were detected. The frequency of virulence genes was as follows: 100% for entB, ybtS and irp, 95.8% for mrkD, 91.66% for fimH, 79.2% for iutA, 62.5% for iroBCDE, aerobactin and kfu, 66.7% for allS, 45.8% for wcaG, 37.5% for rmpA, 20.8% for pagO and 16.7% for magA. Conclusion From this study, we concluded that the blaKPC and blaNDM co-producing Klebsiella pneumoniae strains have a high diversity and frequency of resistance and virulence genes. This study may offer hospitals important information about the control of infections caused by blaKPC and blaNDM co-producing Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Jie Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yini Li
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Qiuni Shen
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Wenting Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan 610052, People's Republic of China
| | - Yancheng He
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Penggao Dai
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zhihao Nie
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xiyan Xu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Department of Histology and Embryology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
42
|
Application of mini-MLST and whole genome sequencing in low diversity hospital extended-spectrum beta-lactamase producing Klebsiella pneumoniae population. PLoS One 2019; 14:e0221187. [PMID: 31408497 PMCID: PMC6692064 DOI: 10.1371/journal.pone.0221187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Studying bacterial population diversity is important to understand healthcare associated infections’ epidemiology and has a significant impact on dealing with multidrug resistant bacterial outbreaks. We characterised the extended-spectrum beta-lactamase producing K. pneumoniae (ESBLp KPN) population in our hospital using mini-MLST. Then we used whole genome sequencing (WGS) to compare selected isolates belonging to the most prevalent melting types (MelTs) and the colonization/infection pair isolates collected from one patient to study the ESBLp KPN population’s genetic diversity. A total of 922 ESBLp KPN isolates collected between 7/2016 and 5/2018 were divided into 38 MelTs using mini-MLST with only 6 MelTs forming 82.8% of all isolates. For WGS, 14 isolates from the most prominent MelTs collected in the monitored period and 10 isolates belonging to the same MelTs collected in our hospital in 2014 were randomly selected. Resistome, virulome and ST were MelT specific and stable over time. A maximum of 23 SNV per core genome and 58 SNV per core and accessory genome were found. To determine the SNV relatedness cut-off values, 22 isolates representing colonization/infection pair samples obtained from 11 different patients were analysed by WGS with a maximum of 22 SNV in the core genome and 40 SNV in the core and accessory genome within pairs. The mini-MLST showed its potential for real-time epidemiology in clinical practice. However, for outbreak evaluation in a low diversity bacterial population, mini-MLST should be combined with more sensitive methods like WGS. Our findings showed there were only minimal differences within the core and accessory genome in the low diversity hospital population and gene based SNV analysis does not have enough discriminatory power to differentiate isolate relatedness. Thus, intergenic regions and mobile elements should be incorporated into the analysis scheme to increase discriminatory power.
Collapse
|
43
|
Liu Y, Zhang H, Zhang X, Jiang N, Zhang Z, Zhang J, Zhu B, Wang G, Zhao K, Zhou Y. Characterization of an NDM-19-producing Klebsiella pneumoniae strain harboring 2 resistance plasmids from China. Diagn Microbiol Infect Dis 2019; 93:355-361. [DOI: 10.1016/j.diagmicrobio.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
44
|
Ferreira RL, da Silva BCM, Rezende GS, Nakamura-Silva R, Pitondo-Silva A, Campanini EB, Brito MCA, da Silva EML, Freire CCDM, da Cunha AF, Pranchevicius MCDS. High Prevalence of Multidrug-Resistant Klebsiella pneumoniae Harboring Several Virulence and β-Lactamase Encoding Genes in a Brazilian Intensive Care Unit. Front Microbiol 2019; 9:3198. [PMID: 30723463 PMCID: PMC6349766 DOI: 10.3389/fmicb.2018.03198] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 12/10/2018] [Indexed: 01/24/2023] Open
Abstract
Klebsiella pneumoniae is an important opportunistic pathogen that commonly causes nosocomial infections and contributes to substantial morbidity and mortality. We sought to investigate the antibiotic resistance profile, pathogenic potential and the clonal relationships between K. pneumoniae (n = 25) isolated from patients and sources at a tertiary care hospital's intensive care units (ICUs) in the northern region of Brazil. Most of K. pneumoniae isolates (n = 21, 84%) were classified as multidrug resistant (MDR) with high-level resistance to β-lactams, aminoglycosides, quinolones, tigecycline, and colistin. All the 25 isolates presented extended-spectrum beta-lactamase-producing (ESBL), including carbapenemase producers, and carried the bla KPC (100%), bla TEM (100%), bla SHV variants (n = 24, 96%), bla OXA-1 group (n = 21, 84%) and bla CTX-M-1 group (n = 18, 72%) genes. The K2 serotype was found in 4% (n = 1) of the isolates, and the K1 was not detected. The virulence-associated genes found among the 25 isolates were mrkD (n = 24, 96%), fimH-1 (n = 22, 88%), entB (100%), iutA (n = 10, 40%), ybtS (n = 15, 60%). The genes related with efflux pumps and outer membrane porins found were AcrAB (100%), tolC (n = 24, 96%), mdtK (n = 22, 88%), OmpK35 (n = 15, 60%), and OmpK36 (n = 7, 28%). ERIC-PCR was employed to determine the clonal relationship between the different isolated strains. The obtained ERIC-PCR patterns revealed that the similarity between isolates was above 70%. To determine the sequence types (STs) a multilocus sequence typing (MLST) assay was used. The results indicated the presence of high-risk international clones among the isolates. In our study, the wide variety of MDR K. pneumoniae harboring β-lactams and virulence genes strongly suggest a necessity for the implementation of effective strategies to prevent and control the spread of antibiotic resistant infections.
Collapse
Affiliation(s)
- Roumayne L. Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
- Laboratório Central de Saúde Pública do Tocantins, Palmas, Brazil
| | - Brenda C. M. da Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Graziela S. Rezende
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | | | - Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | - Eulália M. L. da Silva
- Department of Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | | | - Anderson F. da Cunha
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | |
Collapse
|
45
|
Fu L, Wang S, Zhang Z, Yan X, Yang X, Zhang L, Li Y, Wang G, Zhao K, Zhou Y. Co-carrying of KPC-2, NDM-5, CTX-M-3 and CTX-M-65 in three plasmids with serotype O89: H10 Escherichia coli strain belonging to the ST2 clone in China. Microb Pathog 2018; 128:1-6. [PMID: 30576714 DOI: 10.1016/j.micpath.2018.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
Abstract
Carbapenem-resistant Enterobacteriaceae strains as a new serious threat for the public health have been increasingly reported worldwide. In this study, one multi-resistant Escherichia coli strain ZSH6 which co-carried blaKPC-2, blaNDM-5 and blaCTX-M, was isolated from human blood sample. By using plasmid conjugation experiments, ZSH6 was found to harbor three plasmids carrying the blaNDM-5 gene, the blaKPC-2 and blaCTX-M gene, respectively. Whole-genome sequencing of ZSH6 yielded 122 scaffolds of chromosomal DNA and three circular plasmids including pZSH6-blaKPC-2 (46,319 bp), pZSH6-blaNDM-5 (46,161bp) and pZSH6-blaCTX-M (184,723). The isolate was classified to Sequence Type 2 and to the O89: H10 serotype. The results of genome analyses revealed that ZSH6 carried three virulence factors (capU, gad and iss) and twenty resistance genes [blaKPC-2blaNDM-5, blaCTX-M-3, blaCTX-M-65, blaTEM-1, floR, tet(A), tet(B), dfrA17, aadA5, sul1, mdf(A), mph(A), erm(B), aph(3')-Ia, aph(3')-Ib, aph(4)-Ia, aph(6)-Id, aac(3)-Iva, aac(3)-IId]. Therefore, the co-existence of such a large number of resistance genes in multiple plasmids making ZSH6 highly resistant to almost all kinds of commonly used antibiotics, and brings a serious challenge for resistance control and clinical treatment of infections caused by this bacterium.
Collapse
Affiliation(s)
- Li Fu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China; Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shanmei Wang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China; The People's Hospital of Henan Province, Zhengzhou, 450000, Henan, China
| | - Zhikun Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiangjing Yan
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xingyou Yang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Luhua Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Li
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Guangxi Wang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, Sichuan, China.
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
46
|
Fu L, Tang L, Wang S, Liu Q, Liu Y, Zhang Z, Zhang L, Li Y, Chen W, Wang G, Zhou Y. Co-location of the bla KPC-2, bla CTX-M-65, rmtB and virulence relevant factors in an IncFII plasmid from a hypermucoviscous Klebsiella pneumoniae isolate. Microb Pathog 2018; 124:301-304. [PMID: 30165112 DOI: 10.1016/j.micpath.2018.08.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/24/2018] [Accepted: 08/25/2018] [Indexed: 01/05/2023]
Abstract
Hypervirulent variants of klebsiella pneumoniae (hvKP), which cause serious infections not only healthy individuals, but also the immunocompromised patients, have been increasingly reported recently. One conjugation of a hypermucoviscous strian SWU01 co-carried the resistance gene blaKPC-2 and virulence gene iroN by the PCR detection from three carbapenem-resistance hvKP. To know the genetic context of this plasmid. The whole genome of this strain was sequenced. We got a 162,552-bp plasmid (pSWU01) which co-carried the resistance gene blaKPC-2 and virulence gene iroN. It is composed of a typical IncFII-type backbone, five resistance genes including blaCTX-M-65, blaKPC-2, blaSHV-12, blaTEM-1 and rmtB, and several virulence relevant factors including iroN, traT and toxin-antitoxin systems. The plasmid pSWU01 co-carrying the multidrug resistance determinants and virulence relevant factors from the hypermucoviscous K. pneumoniae represents a novel therapeutic challenge.
Collapse
Affiliation(s)
- Li Fu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China; Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lingtong Tang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China; The First People's Hospital of Yibin, Yibin, 644000, Sichuan, China
| | - Shanmei Wang
- The People's Hospital of Henan Province, Zhengzhou, 450000, Henan, China
| | - Qingye Liu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China; Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yao Liu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhikun Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - LuHua Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yin Li
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbi Chen
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - GuangXi Wang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - YingShun Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|