1
|
Ferri G, Pennisi L, Malatesta F, Vergara A. First Detection of Hepatitis E Virus RNA in Ovine Raw Milk from Herds in Central Italy. Foods 2024; 13:3218. [PMID: 39456280 PMCID: PMC11507303 DOI: 10.3390/foods13203218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
HEV mainly enters animal and human hosts through the orofecal route, which presents a critical health concern alongside the associated environmental variable. Among products of animal origin, milk (both ovine and bovine) can harbor HEV RNA, which can potentially be transmitted to consumers. In this study, a total of 220 raw ovine milk samples were collected from Apennine breed subjects farmed (transhumance method) in three different Italian provinces, L'Aquila, Pescara, and Teramo, located in the Abruzzo region (Central Italy). All the specimens were screened using one-step real-time RT-qPCR and nested RT-PCR assays. Among them, 5/220 or 2.27% harbored HEV RNA fragments belonging to the ORF1 and ORF2 codifying regions of the genotype 3c. The average viral amount discovered was 102 GE/mL. These subjects represented 2/57 or 3.51% of the Pescara herd, and 3/105 or 2.86% of the Teramo herd. Although HEV RNA was discovered in sheep fecal samples, the original data obtained in the present study represent the first HEV RNA detection in ovine raw milk from Italy.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (A.V.)
| | - Luca Pennisi
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (A.V.)
| | | | - Alberto Vergara
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (A.V.)
| |
Collapse
|
2
|
Castagna F, Liguori G, Lombardi R, Bava R, Costagliola A, Giordano A, Quintiliani M, Giacomini D, Albergo F, Gigliotti A, Lupia C, Ceniti C, Tilocca B, Palma E, Roncada P, Britti D. Hepatitis E and Potential Public Health Implications from a One-Health Perspective: Special Focus on the European Wild Boar ( Sus scrofa). Pathogens 2024; 13:840. [PMID: 39452712 PMCID: PMC11510200 DOI: 10.3390/pathogens13100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The hepatitis E virus (HEV) has become increasingly important in recent years in terms of risk for public health, as the main causative agent of acute viral hepatitis. It is a foodborne disease transmitted to humans through the consumption of contaminated water or contaminated food. Human-to-human transmission is sporadic and is linked to transfusions or transplants. The main reservoirs of the hepatitis E virus are domestic pigs and wild boars, although, compared to pigs, wild boars represent a lesser source of risk since their population is smaller and the consumption of derived products is more limited. These peculiarities often make the role of the wild boar reservoir in the spread of the disease underestimated. As a public health problem that involves several animal species and humans, the management of the disease requires an interdisciplinary approach, and the concept of "One Health" must be addressed. In this direction, the present review intends to analyze viral hepatitis E, with a particular focus on wild boar. For this purpose, literature data have been collected from different scientific search engines: PubMed, MEDLINE, and Google scholar, and several keywords such as "HEV epidemiology", "Extrahepatic manifestations of Hepatitis E", and "HEV infection control measures", among others, have been used. In the first part, the manuscript provides general information on the disease, such as epidemiology, transmission methods, clinical manifestations and implications on public health. In the second part, it addresses in more detail the role of wild boar as a reservoir and the implications related to the virus epidemiology. The document will be useful to all those who intend to analyze this infectious disease from a "One-Health" perspective.
Collapse
Affiliation(s)
- Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
- Mediterranean Ethnobotanical Conservatory, 88054 Catanzaro, Italy;
| | - Giovanna Liguori
- Local Health Authority, ASL, 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Renato Lombardi
- Local Health Authority, ASL, 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Anna Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, 80100 Naples, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, 1900 N 12th Street, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnology, University of Siena, 10100 Siena, Italy
| | | | | | - Francesco Albergo
- Department of Management, Finance and Technology, University LUM Giuseppe Degennaro, 70100 Casamassima, Italy;
| | - Andrea Gigliotti
- Interregional Park of Sasso Simone and Simoncello, 61021 Carpegna, Italy;
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, 88054 Catanzaro, Italy;
| | - Carlotta Ceniti
- ASL Napoli 3 SUD, Department of Prevention, 80053 Castellammare di Stabia, Italy;
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| |
Collapse
|
3
|
Molini U, Franzo G, de Villiers L, van Zyl L, de Villiers M, Khaiseb S, Busch F, Knauf S, Dietze K, Eiden M. Serological survey on Hepatitis E virus in Namibian dogs, cats, horses, and donkeys. Front Vet Sci 2024; 11:1422001. [PMID: 39091395 PMCID: PMC11292797 DOI: 10.3389/fvets.2024.1422001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
The present study investigated the seropositivity rate of Hepatitis E virus (HEV) in domestic and working animals in Namibia, which included dogs, cats, horses, and donkeys. HEV poses a growing threat as a significant cause of human hepatitis globally and has several genotypes of varying zoonotic potential. As epidemiological data on the seroprevalence of HEV in Namibia is scarce, a serosurvey was conducted on archived serum samples of 374 dogs, 238 cats, 98 horses, and 60 donkeys collected between 2018 and 2022 from different regions, to assess the potential of these animals as sources of HEV infection. The findings revealed that 10.43% (n = 39/374) canine and 5.88% (n = 14/238) feline samples tested positive for HEV antibodies, whereas no seropositivity was detected in horses and donkeys. The study further examined the risk factors associated with HEV seropositivity, including animal sex, age, and geographical region, and noted a higher prevalence in dogs living in areas with intensive pig farming. Although there is no direct evidence indicating that these animals served as major reservoirs for HEV transmission to humans, the study underscores the importance of preventive measures to minimize contact exposure with pets considering the potential zoonotic risk, especially for susceptible risk groups. Further research is needed to explore the zoonotic potential of domestic animals and the epidemiological links between animal and human HEV transmissions in Namibia.
Collapse
Affiliation(s)
- Umberto Molini
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
- Central Veterinary Laboratory (CVL), Windhoek, Namibia
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Lourens de Villiers
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Leandra van Zyl
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Mari de Villiers
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | | | - Frank Busch
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Institute for Animal Health, Greifswald – Insel Riems, Germany
- One Health/International Animal Health, Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Klaas Dietze
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Martin Eiden
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
4
|
Xiang Z, He XL, Zhu CW, Yang JJ, Huang L, Jiang C, Wu J. Animal models of hepatitis E infection: Advances and challenges. Hepatobiliary Pancreat Dis Int 2024; 23:171-180. [PMID: 37852916 DOI: 10.1016/j.hbpd.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis worldwide. Although most of HEV infections are asymptomatic, some patients will develop the symptoms, especially pregnant women, the elderly, and patients with preexisting liver diseases, who often experience anorexia, nausea, vomiting, malaise, abdominal pain, and jaundice. HEV infection may become chronic in immunosuppressed individuals. In addition, HEV infection can also cause several extrahepatic manifestations. HEV exists in a wide range of hosts in nature and can be transmitted across species. Hence, animals susceptible to HEV can be used as models. The establishment of animal models is of great significance for studying HEV transmission, clinical symptoms, extrahepatic manifestations, and therapeutic strategies, which will help us understand the pathogenesis, prevention, and treatment of hepatitis E. This review summarized the animal models of HEV, including pigs, monkeys, rabbits, mice, rats, and other animals. For each animal species, we provided a concise summary of the HEV genotypes that they can be infected with, the cross-species transmission pathways, as well as their role in studying extrahepatic manifestations, prevention, and treatment of HEV infection. The advantages and disadvantages of these animal models were also emphasized. This review offers new perspectives to enhance the current understanding of the research landscape surrounding HEV animal models.
Collapse
Affiliation(s)
- Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Xiang-Lin He
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Chuan-Wu Zhu
- Department of Infectious Diseases, The Fifth People's Hospital of Suzhou, Suzhou 215007, China
| | - Jia-Jia Yang
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
5
|
Buchanan FJT, Chen S, Harris M, Herod MR. The hepatitis E virus ORF1 hypervariable region confers partial cyclophilin dependency. J Gen Virol 2023; 104:001919. [PMID: 37942835 PMCID: PMC10768694 DOI: 10.1099/jgv.0.001919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging pathogen responsible for more than 20 million cases of acute hepatitis globally per annum. Healthy individuals typically have a self-limiting infection, but mortality rates in some populations such as pregnant women can reach 30 %. A detailed understanding of the virus lifecycle is lacking, mainly due to limitations in experimental systems. In this regard, the cyclophilins are an important family of proteins that have peptidyl-prolyl isomerase activity and play roles in the replication of a number of positive-sense RNA viruses, including hepatotropic viruses such as hepatitis C virus (HCV). Cyclophilins A and B (CypA/B) are the two most abundant Cyps in hepatocytes and are therefore potential targets for pan-viral therapeutics. Here, we investigated the importance of CypA and CypB for HEV genome replication using sub-genomic replicons. Using a combination of pharmacological inhibition by cyclosporine A (CsA), and silencing by small hairpin RNA we find that CypA and CypB are not essential for HEV replication. However, we find that silencing of CypB reduces replication of some HEV isolates in some cells. Furthermore, sensitivity to Cyp silencing appears to be partly conferred by the sequence within the hypervariable region of the viral polyprotein. These data suggest HEV is atypical in its requirements for cyclophilin for viral genome replication and that this phenomenon could be genotype- and sequence-specific.
Collapse
Affiliation(s)
- Frazer J. T. Buchanan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Shucheng Chen
- Department of Paediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Morgan R. Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
6
|
Augustyniak A, Pomorska-Mól M. An Update in Knowledge of Pigs as the Source of Zoonotic Pathogens. Animals (Basel) 2023; 13:3281. [PMID: 37894005 PMCID: PMC10603695 DOI: 10.3390/ani13203281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The available data indicate that the human world population will constantly grow in the subsequent decades. This constant increase in the number of people on the Earth will lead to growth in food demand, especially in food of high nutritional value. Therefore, it is expected that the world livestock population will also increase. Such a phenomenon enhances the risk of transmitting pathogens to humans. As pig production is one of the most significant branches of the world's livestock production, zoonoses of porcine origins seem to be of particular importance. Therefore, in this review, we aim to introduce the latest data concerning, among other things, epidemiology and available preventive measures to control the most significant porcine zoonoses of viral, bacterial, and parasitic origin.
Collapse
Affiliation(s)
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| |
Collapse
|
7
|
Nabi F, Shi D, Wu Q, Baloch DM. Editorial: Treatment of animal diseases with veterinary phytotherapy. Front Vet Sci 2023; 10:1171987. [PMID: 37089408 PMCID: PMC10117879 DOI: 10.3389/fvets.2023.1171987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Affiliation(s)
- Fazul Nabi
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- *Correspondence: Fazul Nabi
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guanzghou, China
| | - Qingxia Wu
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Dost Muhammad Baloch
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| |
Collapse
|
8
|
Risalde MA, Frias M, Caballero-Gómez J, Lopez-Lopez P, Fast C, Jiménez-Ruiz S, Agulló-Ros I, Eiden M, Jiménez-Martín D, García-Bocanegra I, Rivero A, Carlos Gómez Villamandos J, Rivero-Juarez A. Presence of hepatitis E virus in testis of naturally infected wild boars. Transbound Emerg Dis 2022; 69:3317-3324. [PMID: 35986711 PMCID: PMC10087141 DOI: 10.1111/tbed.14682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
The hepatitis E virus (HEV) is the main cause of viral acute hepatitis in the world, affecting more than 20 million people annually. During the acute phase of infection, HEV can be detected in various body fluids, which has a significant impact in terms of transmission, diagnosis or extrahepatic manifestations. Several studies have isolated HEV in the genitourinary tract of humans and animals, which could have important clinical and epidemiological implications. So, our main objective was to evaluate the presence of HEV in testis of naturally infected wild boars (Sus scrofa). For it, blood, liver, hepatic lymph node and testicle samples were collected from 191 male wild boars. The presence of HEV was evaluated in serum by PCR, as well as in tissues by PCR and immunohistochemistry. Four animals (2.09%; 95%CI: 0.82-5.26) showed detectable HEV RNA in serum, being confirmed the presence of HEV-3f genotype in three of them by phylogenetic analysis. HEV was also detected in liver and/or hepatic lymph nodes of the four animals by RT-PCR, as well as by immunohistochemistry analysis. Only one of these wild boars also showed detectable viral load in testis, observing HEV-specific labelling in a small number of fibroblasts and some Sertoli cells. Our results confirm the presence of HEV genotype 3 in naturally infected wild boar testis, although no associated tissue damage was evidenced. This study does not allow us to discard semen as a possible source of HEV transmission in suids. Future experimental studies are necessary to evaluate the impact of HEV genotype 3 on fertility and the possibility of transmission through sexual contact in this specie.
Collapse
Affiliation(s)
- María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, Córdoba, Spain.,Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain
| | - Mario Frias
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain
| | - Javier Caballero-Gómez
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain.,Departamento de Sanidad Animal, Grupo GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad animal, Córdoba, Spain
| | - Pedro Lopez-Lopez
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel, Riems, Germany
| | - Saúl Jiménez-Ruiz
- Departamento de Sanidad Animal, Grupo GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad animal, Córdoba, Spain.,Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Universidad de Castilla-la Mancha (UCLM), Ciudad Real, Spain
| | - Irene Agulló-Ros
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, Córdoba, Spain
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel, Riems, Germany
| | - Débora Jiménez-Martín
- Departamento de Sanidad Animal, Grupo GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad animal, Córdoba, Spain
| | - Ignacio García-Bocanegra
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain.,Departamento de Sanidad Animal, Grupo GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad animal, Córdoba, Spain
| | - Antonio Rivero
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, Córdoba, Spain.,Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| | - José Carlos Gómez Villamandos
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain
| | - Antonio Rivero-Juarez
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain
| |
Collapse
|
9
|
Lanrewaju AA, Enitan-Folami AM, Sabiu S, Edokpayi JN, Swalaha FM. Global public health implications of human exposure to viral contaminated water. Front Microbiol 2022; 13:981896. [PMID: 36110296 PMCID: PMC9468673 DOI: 10.3389/fmicb.2022.981896] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 01/08/2023] Open
Abstract
Enteric viruses are common waterborne pathogens found in environmental water bodies contaminated with either raw or partially treated sewage discharge. Examples of these viruses include adenovirus, rotavirus, noroviruses, and other caliciviruses and enteroviruses like coxsackievirus and polioviruses. They have been linked with gastroenteritis, while some enteric viruses have also been implicated in more severe infections such as encephalitis, meningitis, hepatitis (hepatitis A and E viruses), cancer (polyomavirus), and myocarditis (enteroviruses). Therefore, this review presents information on the occurrence of enteric viruses of public health importance, diseases associated with human exposure to enteric viruses, assessment of their presence in contaminated water, and their removal in water and wastewater sources. In order to prevent illnesses associated with human exposure to viral contaminated water, we suggest the regular viral monitoring of treated wastewater before discharging it into the environment. Furthermore, we highlight the need for more research to focus on the development of more holistic disinfection methods that will inactivate waterborne viruses in municipal wastewater discharges, as this is highly needed to curtail the public health effects of human exposure to contaminated water. Moreover, such a method must be devoid of disinfection by-products that have mutagenic and carcinogenic potential.
Collapse
Affiliation(s)
| | | | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Joshua Nosa Edokpayi
- Water and Environmental Management Research Group, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
10
|
The first evidence of zoonotic hepatitis E virus (HEV) exposure in domestic cats in Türkiye. Comp Immunol Microbiol Infect Dis 2022; 86:101820. [DOI: 10.1016/j.cimid.2022.101820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
|
11
|
Bauer S, Zhang F, Linhardt RJ. Implications of Glycosaminoglycans on Viral Zoonotic Diseases. Diseases 2021; 9:85. [PMID: 34842642 PMCID: PMC8628766 DOI: 10.3390/diseases9040085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Zoonotic diseases are infectious diseases that pass from animals to humans. These include diseases caused by viruses, bacteria, fungi, and parasites and can be transmitted through close contact or through an intermediate insect vector. Many of the world's most problematic zoonotic diseases are viral diseases originating from animal spillovers. The Spanish influenza pandemic, Ebola outbreaks in Africa, and the current SARS-CoV-2 pandemic are thought to have started with humans interacting closely with infected animals. As the human population grows and encroaches on more and more natural habitats, these incidents will only increase in frequency. Because of this trend, new treatments and prevention strategies are being explored. Glycosaminoglycans (GAGs) are complex linear polysaccharides that are ubiquitously present on the surfaces of most human and animal cells. In many infectious diseases, the interactions between GAGs and zoonotic pathogens correspond to the first contact that results in the infection of host cells. In recent years, researchers have made progress in understanding the extraordinary roles of GAGs in the pathogenesis of zoonotic diseases, suggesting potential therapeutic avenues for using GAGs in the treatment of these diseases. This review examines the role of GAGs in the progression, prevention, and treatment of different zoonotic diseases caused by viruses.
Collapse
Affiliation(s)
- Sarah Bauer
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Departments of Biological Science, Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
12
|
Jiao H, Shuai X, Luo Y, Zhou Z, Zhao Y, Li B, Gu G, Li W, Li M, Zeng H, Guo X, Xiao Y, Song Z, Gan L, Huang Q. Deep Insight Into Long Non-coding RNA and mRNA Transcriptome Profiling in HepG2 Cells Expressing Genotype IV Swine Hepatitis E Virus ORF3. Front Vet Sci 2021; 8:625609. [PMID: 33996960 PMCID: PMC8116512 DOI: 10.3389/fvets.2021.625609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Swine hepatitis E (swine HE) is a new type of zoonotic infectious disease caused by the swine hepatitis E virus (swine HEV). Open reading frame 3 (ORF3) is an important virulent protein of swine HEV, but its function still is mainly unclear. In this study, we generated adenoviruses ADV4-ORF3 and ADV4 negative control (ADV4-NC), which successfully mediated overexpression of enhanced green fluorescent protein (EGFP)-ORF3 and EGFP, respectively, in HepG2 cells. High-throughput sequencing was used to screen for differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs). The cis-target genes of lncRNAs were predicted, functional enrichment (Gene Ontology [GO] and Kyoto Encyclopedia of Genes and Genomes [KEGG]) was performed, and 12 lncRNAs with statistically significant different expressions (p ≤ 0.05 and q ≤ 1) were selected for further quantitative real-time reverse transcription (qRT-PCR) validation. In HepG2 cells, we identified 62 significantly differentially expressed genes (DEGs) (6,564 transcripts) and 319 lncRNAs (124 known lncRNAs and 195 novel lncRNAs) that were affected by ORF3, which were involved in systemic lupus erythematosus, Staphylococcus aureus infection, signaling pathways pluripotency regulation of stem cells, the peroxisome proliferator-activated receptor (PPAR) signaling pathway, and platinum drug resistance pathways. Cis-target gene prediction identified 45 lncRNAs corresponding to candidate mRNAs, among which eight were validated by qRT-PCR: LINC02476 (two transcripts), RAP2C-AS1, AC016526, AL139099, and ZNF337-AS1 (3 transcripts). Our results revealed that the lncRNA profile in host cells affected by ORF3, swine HEV ORF3, might affect the pentose and glucuronate interconversions and mediate the formation of obstructive jaundice by influencing bile secretion, which will help to determine the function of ORF3 and the infection mechanism and treatment of swine HE.
Collapse
Affiliation(s)
- Hanwei Jiao
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| | - Xuehong Shuai
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| | - Yichen Luo
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| | - Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Zhao
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Institute of Animal Husbandry and Veterinary Medicine of Guizhou Academy of Agricultural Science, Guiyang, China
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Wenjie Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mengjuan Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Hui Zeng
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoyi Guo
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Xiao
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhenhui Song
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| | - Ling Gan
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| | - Qingzhou Huang
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Modiyinji AF, Bigna JJ, Kenmoe S, Simo FBN, Amougou MA, Ndangang MS, Nola M, Njouom R. Epidemiology of hepatitis E virus infection in animals in Africa: a systematic review and meta-analysis. BMC Vet Res 2021; 17:50. [PMID: 33494758 PMCID: PMC7831161 DOI: 10.1186/s12917-021-02749-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is a major cause of acute hepatitis in humans worldwide and have high burden in the resource-limited countries. Better knowledge of the epidemiology of hepatitis in animals in Africa can help to understand the epidemiology among humans. The objective of this study was to summarize the prevalence of HEV infection and distribution of HEV genotypes among animals in Africa. METHODS In this systematic review and meta-analysis, we comprehensively searched PubMed, EMBASE, African Journals Online, and Africa Index Medicus from January 1st, 2000 to March 22th, 2020 without any language restriction. We considered cross-sectional studies of HEV infection in animals in Africa. Study selection, data extraction, and methodological quality of included studies were done independently by two investigators. Prevalence data were pooled using the random-effects meta-analysis. This review was registered in PROSPERO, CRD42018087684. RESULTS Twenty-five studies (13 species and 6983 animals) were included. The prevalence (antibodies or ribonucleic acid [RNA]) of HEV infection in animals varied widely depending on biological markers of HEV infection measured: 23.4% (95% confidence interval; 12.0-37.2) for anti-HEV immunoglobulins G, 13.1% (3.1-28.3) for anti-HEV immunoglobulins M, and 1.8% (0.2-4.3) for RNA; with substantial heterogeneity. In subgroup analysis, the immunoglobulins G seroprevalence was higher among pigs 37.8% (13.9-65.4). The following HEV genotypes were reported in animals: Rat-HEV genotype 1 (rats and horses), HEV-3 (pigs), HEV-7 (dromedaries), and Bat hepeviruses (bats). CONCLUSIONS We found a high prevalence of HEV infection in animals in Africa and HEV genotypes close to that of humans. Some animals in Africa could be the reservoir of HEV, highlighting the need of molecular epidemiological studies for investigating zoonotic transmission.
Collapse
Affiliation(s)
- Abdou Fatawou Modiyinji
- Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon.,Department of Biology and Animal Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Joel Bigna
- Department of Epidemiology and Public Health, Centre Pasteur of Cameroon, Yaoundé, Cameroon.,School of Public Health, Faculty of Medicine, University of Paris Sud, Le Kremlin-Bicêtre, France
| | - Sebastien Kenmoe
- Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | - Fredy Brice N Simo
- Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon.,Department of Epidemiology and Public Health, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | - Marie A Amougou
- Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon.,Department of Epidemiology and Public Health, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | - Marie S Ndangang
- Department of Medical Information and Informatics, Rouen University Hospital, Rouen, France
| | - Moise Nola
- Department of Biology and Animal Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Richard Njouom
- Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon.
| |
Collapse
|
14
|
Chen Y, Gong QL, Wang Q, Wang W, Wei XY, Jiang J, Ni HB. Prevalence of hepatitis E virus among swine in China from 2010 to 2019: A systematic review and meta-analysis. Microb Pathog 2020; 150:104687. [PMID: 33301857 DOI: 10.1016/j.micpath.2020.104687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen that has spread worldwide. The HEV reservoir associated with livestock hepatitis E poses a huge threat to public health. Awareness of the prevalence and spatial distribution of livestock hepatitis E is valuable to prevent and control diseases caused by HEV, especially human hepatitis E infection. Currently, swine, including pigs (Sus scrofa), are recognized as the major reservoir of HEV. Therefore, we conducted a systematic review and meta-analysis to evaluate the pooled prevalence of HEV among swine in China. A total of 71 published papers on HEV infection in swine in China (including data from 49,523 animals) from January 1, 2010 to December 31, 2019 met the standard after searching five databases including the Technology Periodical Database, the Wan Fang Database, the China National Knowledge Infrastructure, PubMed, and ScienceDirect. A random effects model was used to calculate the pooled prevalence of HEV in swine. The results showed that the seroprevalence was 48.0% (95% confidence interval (CI) 39.6-56.9) and the prevalence of HEV RNA was 14.4% (95% CI 10.7-18.5). The estimated overall prevalence was 34.1% (95% CI 27.2-41.4). Central China (68.0%, 95% CI 42.2-89.1) had a significantly higher prevalence than other regions. In the publication year subgroup, the prevalence in 2016 or later (27.2%, 95% CI 19.3-36.0) was significantly lower than that in 2011 or earlier (49.0%, 95% CI 36.2-61.8). The prevalence of IgG (42.9%, 95% CI 31.7-54.6) was significantly higher than that of IgM (4.9%, 95% CI 1.6-9.7). Suckling piglets (15.6%, 95% CI 6.6-27.1) had a lower prevalence compared with that in other age groups. In all sample types, body fluids showed the highest prevalence (50.5%, 95% CI 41.7-59.3). Moreover, the pooled prevalence of HEV in boars was higher than that in sows (35.4% > 17.3%). The analysis suggested that HEV infection is common among swine in China. Further strengthening HEV testing in boars, controlling environmental pollution, and reducing the mixed feeding of different stages could contribute to reducing HEV infection in pigs in China and the risk of porcine HEV infection in humans.
Collapse
Affiliation(s)
- Yu Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, PR China
| | - Qing-Long Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China
| | - Qi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, PR China
| | - Xin-Yu Wei
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, PR China
| | - Jing Jiang
- College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin Province, 130600, PR China.
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China.
| |
Collapse
|
15
|
Ankcorn MJ, Tedder RS, Cairns J, Sandmann FG. Cost-Effectiveness Analysis of Screening for Persistent Hepatitis E Virus Infection in Solid Organ Transplant Patients in the United Kingdom: A Model-Based Economic Evaluation. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2020; 23:309-318. [PMID: 32197726 DOI: 10.1016/j.jval.2019.09.2751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/08/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Despite potentially severe and fatal outcomes, recent studies of solid organ transplant (SOT) recipients in Europe suggest that hepatitis E virus (HEV) infection is underdiagnosed, with a prevalence of active infection of up to 4.4%. OBJECTIVES To determine the cost-effectiveness of introducing routine screening for HEV infection in SOT recipients in the UK. METHODS A Markov cohort model was developed to evaluate the cost-utility of 4 HEV screening options over the lifetime of 1000 SOT recipients. The current baseline of nonsystematic testing was compared with annual screening of all patients by polymerase chain reaction (PCR; strategy A) or HEV-antigen (HEV-Ag) detection (strategy B) and selective screening of patients who have a raised alanine aminotransferase (ALT) value by PCR (strategy C) or HEV-Ag (strategy D). The primary outcome was the incremental cost per quality-adjusted life-year (QALY). We adopted the National Health Service (NHS) perspective and discounted future costs and benefits at 3.5%. RESULTS At a willingness-to-pay of £20 000/QALY gained, systematic screening of SOT patients by any method (strategy A-D) had a high probability (77.9%) of being cost-effective. Among screening strategies, strategy D is optimal and expected to be cost-saving to the NHS; if only PCR testing strategies are considered, then strategy C becomes cost-effective (£660/QALY). These findings were robust against a wide range of sensitivity and scenario analyses. CONCLUSIONS Our model showed that routine screening for HEV in SOT patients is very likely to be cost-effective in the UK, particularly in patients presenting with an abnormal alanine aminotransferase.
Collapse
Affiliation(s)
- Michael J Ankcorn
- Blood Borne Virus Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, England, UK; Transfusion Microbiology, National Health Service Blood and Transplant, London, England, UK.
| | - Richard S Tedder
- Blood Borne Virus Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, England, UK; Transfusion Microbiology, National Health Service Blood and Transplant, London, England, UK; Department of Medicine, Imperial College London, London, England, UK
| | - John Cairns
- London School of Hygiene and Tropical Medicine, London, England, UK
| | - Frank G Sandmann
- London School of Hygiene and Tropical Medicine, London, England, UK; Statistics, Modelling and Economics Department, National Infection Service, Public Health England, Colindale, London, England, UK
| |
Collapse
|
16
|
Lyoo KS, Yang SJ, Na W, Song D. Detection of antibodies against hepatitis E virus in pet veterinarians and pet dogs in South Korea. Ir Vet J 2019; 72:8. [PMID: 31367342 PMCID: PMC6647305 DOI: 10.1186/s13620-019-0146-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/18/2019] [Indexed: 01/19/2023] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen commonly considered an important foodborne virus. Pet dogs are important reservoirs of zoonotic agents. In the present study, the seroprevalence of HEV in pet dogs and pet veterinarians were found to be 28.2 and 5.0%, respectively. It remains unclear whether pet veterinarians are at higher risk of HEV transmission. However, pet animals and individuals who have contact with infected animals must be continually monitored for public health concerns.
Collapse
Affiliation(s)
- Kwang-Soo Lyoo
- 1Korea Zoonosis Research Institute, Chonbuk National University, Iksan, South Korea
| | - Soo-Jin Yang
- 2School of Bioresources and Bioscience, Chung-Ang University, Anseong, South Korea
| | - Woonsung Na
- 3College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Daesub Song
- 4College of Pharmacy, Korea University, Sejong, South Korea
| |
Collapse
|
17
|
Zhang XL, Li WF, Yuan S, Guo JY, Li ZL, Chi SH, Huang WJ, Li XW, Huang SJ, Shao JW. Meta-transcriptomic analysis reveals a new subtype of genotype 3 avian hepatitis E virus in chicken flocks with high mortality in Guangdong, China. BMC Vet Res 2019; 15:131. [PMID: 31060564 PMCID: PMC6503432 DOI: 10.1186/s12917-019-1884-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis E virus (HEV) is one of most important zoonotic viruses, and it can infect a wide range of host species. Avian HEV has been identified as the aetiological agent of big liver and spleen disease or hepatitis-splenomegaly syndrome in chickens. HEV infection is common among chicken flocks in China, and there are currently no practical measures for preventing the spread of the disease. The predominant avian HEV genotype circulating in China have been identified as genotype 3 strains, although some novel genotypes have also been identified from chicken flocks in China. Results In this study, we used a meta-transcriptomics approach to identify a new subtype of genotype 3 avian HEV in broiler chickens at a poultry farm located in Shenzhen, Guangdong Province, China. The complete genome sequence of the avian HEV, designated CaHEV-GDSZ01, is 6655-nt long, including a 5′ UTR of 24 nt and a 3′ UTR of 125 nt (excluding the poly(A) tail), and contains three open reading frames (ORFs). Sequence analysis indicated that the complete ORF1 (4599 nt/1532 aa), ORF2 (1821 nt/606 aa) and ORF3 (264 nt/87 aa) of CaHEV-GDSZ01 share the highest nucleotide sequence identity (85.8, 86.7 and 95.8%, respectively) with the corresponding ORFs of genotype 3 avian HEV. Phylogenetic analyses further demonstrated that the avian HEV identified in this study is a new subtype of genotype 3 avian HEV. Conclusions Our results demonstrate that a new subtype of genotype 3 avian HEV is endemic in Guangdong, China, and could cause high mortality in infected chickens. This study also provides full genomic data for better understanding the evolutionary relationships of avian HEV circulating in China. Altogether, the results presented in this study suggest that more attention should be paid to avian HEV and its potential disease manifestation.
Collapse
Affiliation(s)
- Xue-Lian Zhang
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China.,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Wen-Feng Li
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Jin-Yue Guo
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China.,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Zhi-Li Li
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China.,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Shi-Hong Chi
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Wen-Jing Huang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Xiao-Wen Li
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Shu-Jian Huang
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China. .,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.
| | - Jian-Wei Shao
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China. .,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China. .,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
18
|
Zhang H, Zhou Y, Liu J. Molecular features of hepatitis E virus from farmed rabbits in Shandong province, China. WORLD RABBIT SCIENCE 2018. [DOI: 10.4995/wrs.2018.10225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
<p>This study was undertaken to investigate the genetic variability of hepatitis E virus (HEV) from farmed rabbits in Shandong province, China. A total of 50 fresh faecal samples from 5 rabbit farms were collected and subjected to reverse transcription and nested polymerase chain reaction (RT-nPCR) for a fragment sequence of HEV capsid gene. The results demonstrated that HEV RNA was observed in 6 faecal samples (6/50, 12.0%). In addition, the result of phylogenetic analysis showed that the 6 HEV isolates were classified into HEV-3 genotype with other rabbit HEV isolates from other countries, and shared 85.2-87.2%, 81.5-83.1%, and 77.0-78.6% nucleotide similarities with rabbit HEV isolates from Korea, the United States and France, respectively. To sum up, the HEV isolated in this study from farmed rabbits belongs to the HEV-3 genotype, and the zoonotic ability and pathogenesis of the rabbit HEV merit further study due to the fact that HEV-3 genotype has the potential to trigger zoonotic infections.</p>
Collapse
|
19
|
He W, Wen Y, Xiong Y, Zhang M, Cheng M, Chen Q. The prevalence and genomic characteristics of hepatitis E virus in murine rodents and house shrews from several regions in China. BMC Vet Res 2018; 14:414. [PMID: 30577796 PMCID: PMC6303920 DOI: 10.1186/s12917-018-1746-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
Background Urban rodents and house shrews are closely correlated in terms of location with humans and can transmit many pathogens to them. Hepatitis E has been confirmed to be a zoonotic disease. However, the zoonotic potential of rat HEV is still unclear. The aim of this study was to determine the prevalence and genomic characteristics of hepatitis E virus (HEV) in rodents and house shrews. Results We collected a total of 788 animals from four provinces in China. From the 614 collected murine rodents, 20.19% of the liver tissue samples and 45.76% of the fecal samples were positive for HEV. From the 174 house shrews (Suncus murinus), 5.17% fecal samples and 0.57% liver tissue samples were positive for HEV. All of the HEV sequences obtained in this study belonged to Orthohepevirus C1. However, we observed a lower percentage of identity in the ORF3 region upon comparing the amino acid sequences between Rattus norvegicus and Rattus losea. HEV derived from house shrews shared a high percentage of identity with rat HEV. Notably, the first near full-length of the HEV genome from Rattus losea is described in our study, and we also report the first near full-length rat HEV genomes in Rattus norvegicus from China. Conclusion HEV is prevalent among the three common species of murine rodents (Rattus. norvegicus, Rattus. tanezumi, and Rattus. losea) in China. HEV sequences detected from house shrews were similar to rat HEV sequences. The high identity of HEV from murine rodents and house shrews suggested that HEV can spread among different animal species. Electronic supplementary material The online version of this article (10.1186/s12917-018-1746-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenqiao He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yuqi Wen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yiquan Xiong
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Minyi Zhang
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Mingji Cheng
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Abstract
Wild boar populations around the world have increased dramatically over past decades. Climate change, generating milder winters with less snow, may affect their spread into northern regions. Wild boars can serve as reservoirs for a number of bacteria, viruses, and parasites, which are transmissible to humans and domestic animals through direct interaction with wild boars, through contaminated food or indirectly through contaminated environment. Disease transmission between wild boars, domestic animals, and humans is an increasing threat to human and animal health, especially in areas with high wild boar densities. This article reviews important foodborne zoonoses, including bacterial diseases (brucellosis, salmonellosis, tuberculosis, and yersiniosis), parasitic diseases (toxoplasmosis and trichinellosis), and the viral hepatitis E. The focus is on the prevalence of these diseases and the causative microbes in wild boars. The role of wild boars in transmitting these pathogens to humans and livestock is also briefly discussed.
Collapse
Affiliation(s)
- Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki , Helsinki, Finland
| |
Collapse
|