1
|
Cheng Y, Liu R, Wang RR, Yu K, Shen J, Pang J, Zhang T, Shi H, Sun L, Shyh‐Chang N. The metabaging cycle promotes non-metabolic chronic diseases of ageing. Cell Prolif 2024; 57:e13712. [PMID: 38988247 PMCID: PMC11471437 DOI: 10.1111/cpr.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Yeqian Cheng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Ruirui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ruiqi Rachel Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Kang Yu
- Department of Clinical Nutrition, Department of Health MedicinePeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Peking Union Medical College HospitalBeijingChina
| | - Ji Shen
- Department of Geriatrics, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Jing Pang
- The Key Laboratory of GeriatricsBeijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health CommissionBeijingChina
| | - Tiemei Zhang
- The Key Laboratory of GeriatricsBeijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health CommissionBeijingChina
| | - Hong Shi
- Department of Geriatrics, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Liang Sun
- The Key Laboratory of GeriatricsBeijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health CommissionBeijingChina
- The NHC Key laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Ng Shyh‐Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
2
|
Daria S, Kumar D, Gautam N, Alamoudi JA, Dow LF, Trippier PC, Alnouti Y. In vitro ADME, mouse pharmacokinetics of LD14b, and bioanalysis of a novel aβ 17β-HSD10 modulator for the treatment of Alzheimer's disease. Xenobiotica 2024; 54:711-722. [PMID: 39282717 DOI: 10.1080/00498254.2024.2402033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 11/01/2024]
Abstract
LD14b is an amyloid-β (Aβ) 17β-hydroxysteroid dehydrogenase type 10 (Aβ-17β-HSD10) protein-protein interaction modulator that shows promising in vitro and ex vivo activity to rescue Aβ-induced mitochondrial dysfunction, Aβ-induced toxicity, and Aβ-mediated inhibition of estradiol synthesis.The current study investigated in vitro human S9 fractions metabolic stability, apparent permeability, human and mouse plasma protein binding, in vivo pharmacokinetics, and tissue distribution in Balb/cJ mice. A fast (8-min), sensitive, reliable, and reproducible LC-MS/MS method was developed and validated over the dynamic range of 1-1000 ng/mL for the quantification of LD14b in different biological matrices (plasma, liver, kidney, brain, lungs, heart).LD14b was metabolically stable in human liver S9 fractions with 70% remaining after 90 minutes of incubation, showed intermediate apparent permeability of 3.55 × 10-06 cm/s and 6.16 × 10-06 cm/s for apical-to-basolateral (A-to-B) and basolateral-to-apical (B-to-A), respectively across the Caco-2 monolayer, and was medium/highly bound to human plasma proteins (84.1%), mouse plasma proteins (85.7%), and mouse brain homogenate (95.4%).LD14b showed an in vivo predicted % absorption of 52% in Balb/cJ mice and was well-distributed to the peripheral tissues (liver, kidney, lungs, and heart) including the brain.
Collapse
Affiliation(s)
- Sohel Daria
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Devendra Kumar
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Sanabria-Castro A, Alape-Girón A, Flores-Díaz M, Echeverri-McCandless A, Parajeles-Vindas A. Oxidative stress involvement in the molecular pathogenesis and progression of multiple sclerosis: a literature review. Rev Neurosci 2024; 35:355-371. [PMID: 38163257 DOI: 10.1515/revneuro-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune debilitating disease of the central nervous system caused by a mosaic of interactions between genetic predisposition and environmental factors. The pathological hallmarks of MS are chronic inflammation, demyelination, and neurodegeneration. Oxidative stress, a state of imbalance between the production of reactive species and antioxidant defense mechanisms, is considered one of the key contributors in the pathophysiology of MS. This review is a comprehensive overview of the cellular and molecular mechanisms by which oxidant species contribute to the initiation and progression of MS including mitochondrial dysfunction, disruption of various signaling pathways, and autoimmune response activation. The detrimental effects of oxidative stress on neurons, oligodendrocytes, and astrocytes, as well as the role of oxidants in promoting and perpetuating inflammation, demyelination, and axonal damage, are discussed. Finally, this review also points out the therapeutic potential of various synthetic antioxidants that must be evaluated in clinical trials in patients with MS.
Collapse
Affiliation(s)
- Alfredo Sanabria-Castro
- Unidad de Investigación, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, 10103, Costa Rica
- Departamento de Farmacología, Toxicología y Farmacodependencia, Facultad de Farmacia, Universidad de Costa Rica, San Pedro de Montes de Oca, 11501, Costa Rica
| | - Alberto Alape-Girón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, Dulce Nombre Vázquez de Coronado, 11103, Costa Rica
| | - Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, Dulce Nombre Vázquez de Coronado, 11103, Costa Rica
| | - Ann Echeverri-McCandless
- Unidad de Investigación, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, 10103, Costa Rica
| | - Alexander Parajeles-Vindas
- Servicio de Neurología, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, 10103, Costa Rica
- Servicio de Neurología, Hospital Clínica Bíblica, San José, 10104, Costa Rica
| |
Collapse
|
4
|
Yang Z, Marcoci C, Öztürk HK, Giama E, Yenicelik AG, Slanař O, Linington C, Desai R, Smith KJ. Tissue Hypoxia and Associated Innate Immune Factors in Experimental Autoimmune Optic Neuritis. Int J Mol Sci 2024; 25:3077. [PMID: 38474322 DOI: 10.3390/ijms25053077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Visual loss in acute optic neuritis is typically attributed to axonal conduction block due to inflammatory demyelination, but the mechanisms remain unclear. Recent research has highlighted tissue hypoxia as an important cause of neurological deficits and tissue damage in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) and, here, we examine whether the optic nerves are hypoxic in experimental optic neuritis induced in Dark Agouti rats. At both the first and second peaks of disease expression, inflamed optic nerves labelled significantly for tissue hypoxia (namely, positive for hypoxia inducible factor-1α (HIF1α) and intravenously administered pimonidazole). Acutely inflamed nerves were also labelled significantly for innate markers of oxidative and nitrative stress and damage, including superoxide, nitric oxide and 3-nitrotyrosine. The density and diameter of capillaries were also increased. We conclude that in acute optic neuritis, the optic nerves are hypoxic and come under oxidative and nitrative stress and damage. Tissue hypoxia can cause mitochondrial failure and thus explains visual loss due to axonal conduction block. Tissue hypoxia can also induce a damaging oxidative and nitrative environment. The findings indicate that treatment to prevent tissue hypoxia in acute optic neuritis may help to restore vision and protect from damaging reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Cristina Marcoci
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Hatice Kübra Öztürk
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
| | - Eleni Giama
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Ayse Gertrude Yenicelik
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
| | - Christopher Linington
- School of Infection and Immunity, The Sir Graeme Davies Building, Glasgow G12 8TA, UK
| | - Roshni Desai
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| |
Collapse
|
5
|
Volpe KE, Samuels DC, Elson JL, Steyn JS, Gebretsadik T, Ellis RJ, Heaton RK, Kallianpur AR, Letendre S, Hulgan T. Mitochondrial DNA mutation pathogenicity score and neurocognitive performance in persons with HIV. Mitochondrion 2024; 74:101820. [PMID: 37989461 PMCID: PMC10872545 DOI: 10.1016/j.mito.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) genetic variation is associated with neurocognitive (NC) impairment (NCI) in people with HIV (PWH). Other approaches use sequence conservation and protein structure to predict the impact of mtDNA variants on protein function. We examined predicted mtDNA variant pathogenicity in the CHARTER study using MutPred scores, hypothesizing that persons with higher scores (greater predicted pathogenicity) have more NCI. METHODS CHARTER included NC testing in PWH from 2003 to 2007. MutPred scores were assigned to CHARTER participants with mtDNA sequence; any score > 0.5 was considered potentially deleterious. Outcomes at cohort entry were NCI, defined by global and seven NC domain deficit scores, and by mean global and domain NC performance T-scores. Univariate and multivariable regression analyses assessed associations between having a deleterious variant and NCI. Additional models included estimated peripheral blood cell mtDNA copy number. RESULTS Data were available for 744 PWH (357 African ancestry; 317 European; 70 Hispanic). In the overall cohort, PWH having any potentially deleterious variant were less likely to have motor impairment (16 vs. 25 %, p = 0.001). In multivariable analysis, having a deleterious variant remained associated with lower likelihood of motor impairment (adjusted odds ratio 0.59 [95 % CI 0.41-0.88]; p = 0.009), and better motor performance by T-score (β 1.71 [0.31-3.10], p = 0.02). Associations persisted after adjustment for estimated mtDNA quantity. CONCLUSIONS In these PWH, having a potentially deleterious mtDNA variant was associated with less motor impairment. These unexpected findings suggest that potentially deleterious mtDNA variations may confer protection against impaired motor function by as yet unknown mechanisms.
Collapse
Affiliation(s)
- Karen E Volpe
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - David C Samuels
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joanna L Elson
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Jannetta S Steyn
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | | | | | | | | | | | - Todd Hulgan
- Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Ludwig R, Malla B, Höhrhan M, Infante-Duarte C, Anderhalten L. Investigating the Mitoprotective Effects of S1P Receptor Modulators Ex Vivo Using a Novel Semi-Automated Live Imaging Set-Up. Int J Mol Sci 2023; 25:261. [PMID: 38203434 PMCID: PMC10778583 DOI: 10.3390/ijms25010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
In multiple sclerosis (MS), mitochondrial alterations appear to contribute to disease progression. The sphingosine-1-phosphate receptor modulator siponimod is approved for treating secondary progressive MS. Its preceding compound fingolimod was shown to prevent oxidative stress-induced alterations in mitochondrial morphology. Here, we assessed the effects of siponimod, compared to fingolimod, on neuronal mitochondria in oxidatively stressed hippocampal slices. We have also advanced the model of chronic organotypic hippocampal slices for live imaging, enabling semi-automated monitoring of mitochondrial alterations. The slices were prepared from B6.Cg-Tg(Thy1-CFP/COX8A)S2Lich/J mice that display fluorescent neuronal mitochondria. They were treated with hydrogen peroxide (oxidative stress paradigm) ± 1 nM siponimod or fingolimod for 24 h. Afterwards, mitochondrial dynamics were investigated. Under oxidative stress, the fraction of motile mitochondria decreased and mitochondria were shorter, smaller, and covered smaller distances. Siponimod partly prevented oxidatively induced alterations in mitochondrial morphology; for fingolimod, a similar trend was observed. Siponimod reduced the decrease in mitochondrial track displacement, while both compounds significantly increased track speed and preserved motility. The novel established imaging and analysis tools are suitable for assessing the dynamics of neuronal mitochondria ex vivo. Using these approaches, we showed that siponimod at 1 nM partially prevented oxidatively induced mitochondrial alterations in chronic brain slices.
Collapse
Affiliation(s)
- Rebecca Ludwig
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Bimala Malla
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Maria Höhrhan
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Institute for Medical Immunology, 13353 Berlin, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Lina Anderhalten
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
7
|
Spaas J, Van der Stede T, de Jager S, van de Waterweg Berends A, Tiane A, Baelde H, Baba SP, Eckhardt M, Wolfs E, Vanmierlo T, Hellings N, Eijnde BO, Derave W. Carnosine synthase deficiency aggravates neuroinflammation in multiple sclerosis. Prog Neurobiol 2023; 231:102532. [PMID: 37774767 DOI: 10.1016/j.pneurobio.2023.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Multiple sclerosis (MS) pathology features autoimmune-driven neuroinflammation, demyelination, and failed remyelination. Carnosine is a histidine-containing dipeptide (HCD) with pluripotent homeostatic properties that is able to improve outcomes in an animal MS model (EAE) when supplied exogenously. To uncover if endogenous carnosine is involved in, and protects against, MS-related neuroinflammation, demyelination or remyelination failure, we here studied the HCD-synthesizing enzyme carnosine synthase (CARNS1) in human MS lesions and two preclinical mouse MS models (EAE, cuprizone). We demonstrate that due to its presence in oligodendrocytes, CARNS1 expression is diminished in demyelinated MS lesions and mouse models mimicking demyelination/inflammation, but returns upon remyelination. Carns1-KO mice that are devoid of endogenous HCDs display exaggerated neuroinflammation and clinical symptoms during EAE, which could be partially rescued by exogenous carnosine treatment. Worsening of the disease appears to be driven by a central, not peripheral immune-modulatory, mechanism possibly linked to impaired clearance of the reactive carbonyl acrolein in Carns1-KO mice. In contrast, CARNS1 is not required for normal oligodendrocyte precursor cell differentiation and (re)myelin to occur, and neither endogenous nor exogenous HCDs protect against cuprizone-induced demyelination. In conclusion, the loss of CARNS1 from demyelinated MS lesions can aggravate disease progression through weakening the endogenous protection against neuroinflammation.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Thibaux Van der Stede
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Sarah de Jager
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Annet van de Waterweg Berends
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Belgium
| | - Assia Tiane
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Hans Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Esther Wolfs
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Niels Hellings
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Zierfuss B, Wang Z, Jackson AN, Moezzi D, Yong VW. Iron in multiple sclerosis - Neuropathology, immunology, and real-world considerations. Mult Scler Relat Disord 2023; 78:104934. [PMID: 37579645 DOI: 10.1016/j.msard.2023.104934] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Iron is an essential element involved in a multitude of bodily processes. It is tightly regulated, as elevated deposition in tissues is associated with diseases such as multiple sclerosis (MS). Iron accumulation in the central nervous system (CNS) of MS patients is linked to neurotoxicity through mechanisms including oxidative stress, glutamate excitotoxicity, misfolding of proteins, and ferroptosis. In the past decade, the combination of MRI and histopathology has enhanced our understanding of iron deposition in MS pathophysiology, including in the pro-inflammatory and neurotoxicity of iron-laden rims of chronic active lesions. In this regard, iron accumulation may not only have an impact on different CNS-resident cells but may also promote the innate and adaptive immune dysfunctions in MS. Although there are discordant results, most studies indicate lower levels of iron but higher amounts of the iron storage molecule ferritin in the circulation of people with MS. Considering the importance of iron, there is a need for evidence-guided recommendation for dietary intake in people living with MS. Potential novel therapeutic approaches include the regulation of iron levels using next generation iron chelators, as well as therapies to interfere with toxic consequences of iron overload including antioxidants in MS.
Collapse
Affiliation(s)
- Bettina Zierfuss
- The Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal H2X 0A9, Québec, Canada
| | - Zitong Wang
- Department of Psychiatry, College of Health Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - Alexandra N Jackson
- School of Rehabilitation Therapy, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Dorsa Moezzi
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
9
|
Pizarro-Galleguillos BM, Kunert L, Brüggemann N, Prasuhn J. Neuroinflammation and Mitochondrial Dysfunction in Parkinson's Disease: Connecting Neuroimaging with Pathophysiology. Antioxidants (Basel) 2023; 12:1411. [PMID: 37507950 PMCID: PMC10375976 DOI: 10.3390/antiox12071411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
There is a pressing need for disease-modifying therapies in patients suffering from neurodegenerative diseases, including Parkinson's disease (PD). However, these disorders face unique challenges in clinical trial designs to assess the neuroprotective properties of potential drug candidates. One of these challenges relates to the often unknown individual disease mechanisms that would, however, be relevant for targeted treatment strategies. Neuroinflammation and mitochondrial dysfunction are two proposed pathophysiological hallmarks and are considered to be highly interconnected in PD. Innovative neuroimaging methods can potentially help to gain deeper insights into one's predominant disease mechanisms, can facilitate patient stratification in clinical trials, and could potentially map treatment responses. This review aims to highlight the role of neuroinflammation and mitochondrial dysfunction in patients with PD (PwPD). We will specifically introduce different neuroimaging modalities, their respective technical hurdles and challenges, and their implementation into clinical practice. We will gather preliminary evidence for their potential use in PD research and discuss opportunities for future clinical trials.
Collapse
Affiliation(s)
- Benjamin Matís Pizarro-Galleguillos
- Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Jannik Prasuhn
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Ravenhill SM, Evans AH, Crewther SG. Escalating Bi-Directional Feedback Loops between Proinflammatory Microglia and Mitochondria in Ageing and Post-Diagnosis of Parkinson's Disease. Antioxidants (Basel) 2023; 12:antiox12051117. [PMID: 37237983 DOI: 10.3390/antiox12051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive age-related neurodegenerative disease affecting up to 3% of the global population over 65 years of age. Currently, the underlying physiological aetiology of PD is unknown. However, the diagnosed disorder shares many common non-motor symptoms associated with ageing-related neurodegenerative disease progression, such as neuroinflammation, microglial activation, neuronal mitochondrial impairment, and chronic autonomic nervous system dysfunction. Clinical PD has been linked to many interrelated biological and molecular processes, such as escalating proinflammatory immune responses, mitochondrial impairment, lower adenosine triphosphate (ATP) availability, increasing release of neurotoxic reactive oxygen species (ROS), impaired blood brain barrier integrity, chronic activation of microglia, and damage to dopaminergic neurons consistently associated with motor and cognitive decline. Prodromal PD has also been associated with orthostatic hypotension and many other age-related impairments, such as sleep disruption, impaired gut microbiome, and constipation. Thus, this review aimed to present evidence linking mitochondrial dysfunction, including elevated oxidative stress, ROS, and impaired cellular energy production, with the overactivation and escalation of a microglial-mediated proinflammatory immune response as naturally occurring and damaging interlinked bidirectional and self-perpetuating cycles that share common pathological processes in ageing and PD. We propose that both chronic inflammation, microglial activation, and neuronal mitochondrial impairment should be considered as concurrently influencing each other along a continuum rather than as separate and isolated linear metabolic events that affect specific aspects of neural processing and brain function.
Collapse
Affiliation(s)
| | - Andrew Howard Evans
- Department of Medicine, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Epworth Hospital, Richmond 3121, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne 3050, Australia
| | | |
Collapse
|
11
|
Sullivan M, Fernandez-Aranda F, Camacho-Barcia L, Harkin A, Macrì S, Mora-Maltas B, Jiménez-Murcia S, O'Leary A, Ottomana AM, Presta M, Slattery D, Scholtz S, Glennon JC. Insulin and Disorders of Behavioural Flexibility. Neurosci Biobehav Rev 2023; 150:105169. [PMID: 37059405 DOI: 10.1016/j.neubiorev.2023.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Behavioural inflexibility is a symptom of neuropsychiatric and neurodegenerative disorders such as Obsessive-Compulsive Disorder, Autism Spectrum Disorder and Alzheimer's Disease, encompassing the maintenance of a behaviour even when no longer appropriate. Recent evidence suggests that insulin signalling has roles apart from its regulation of peripheral metabolism and mediates behaviourally-relevant central nervous system (CNS) functions including behavioural flexibility. Indeed, insulin resistance is reported to generate anxious, perseverative phenotypes in animal models, with the Type 2 diabetes medication metformin proving to be beneficial for disorders including Alzheimer's Disease. Structural and functional neuroimaging studies of Type 2 diabetes patients have highlighted aberrant connectivity in regions governing salience detection, attention, inhibition and memory. As currently available therapeutic strategies feature high rates of resistance, there is an urgent need to better understand the complex aetiology of behaviour and develop improved therapeutics. In this review, we explore the circuitry underlying behavioural flexibility, changes in Type 2 diabetes, the role of insulin in CNS outcomes and mechanisms of insulin involvement across disorders of behavioural inflexibility.
Collapse
Affiliation(s)
- Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Bernat Mora-Maltas
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aet O'Leary
- University Hospital Frankfurt, Frankfurt, Germany
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Jeffrey C Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Modifiable risk factors of dementia linked to excitation-inhibition imbalance. Ageing Res Rev 2023; 83:101804. [PMID: 36410620 DOI: 10.1016/j.arr.2022.101804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Recent evidence identifies 12 potentially modifiable risk factors for dementia to which 40% of dementia cases are attributed. While the recognition of these risk factors has paved the way for the development of new prevention measures, the link between these risk factors and the underlying pathophysiology of dementia is yet not well understood. A growing number of recent clinical and preclinical studies support a role of Excitation-Inhibition (E-I) imbalance in the pathophysiology of dementia. In this review, we aim to propose a conceptual model on the links between the modifiable risk factors and the E-I imbalance in dementia. This model, which aims to address the current gap in the literature, is based on 12 mediating common mechanisms: the hypothalamic-pituitary-adrenal (HPA) axis dysfunction, neuroinflammation, oxidative stress, mitochondrial dysfunction, cerebral hypo-perfusion, blood-brain barrier (BBB) dysfunction, beta-amyloid deposition, elevated homocysteine level, impaired neurogenesis, tau tangles, GABAergic dysfunction, and glutamatergic dysfunction. We believe this model serves as a framework for future studies in this field and facilitates future research on dementia prevention, discovery of new biomarkers, and developing new interventions.
Collapse
|
13
|
Dolrahman N, Mukkhaphrom W, Sutirek J, Thong-Asa W. Benefits of p-coumaric acid in mice with rotenone-induced neurodegeneration. Metab Brain Dis 2023; 38:373-382. [PMID: 36308586 DOI: 10.1007/s11011-022-01113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 02/03/2023]
Abstract
The paper examines the use of natural antioxidant and anti-inflammation substances as therapeutic candidates for brain disease. Para-coumaric acid (pCA), a phenolic compound with a variety of medicinal properties, was used against deterioration caused by various diseases. Recently, pCA has gained attention for use against cardiovascular disease but less so for neurodegenerative disease (i.e., Parkinson's disease). Therefore, the present study intended to investigate the effect of pCA against rotenone-induced Parkinson's disease-like pathology in mice. Thirty male institute of cancer research (ICR) mice were randomly divided into three experimental groups: Sham-veh, Rot-veh, and Rot-pCA100. Rotenone (Rot) 2.5 mg/kg was subcutaneously injected every 48 h in the rotenone groups. Alternately, a 100 mg/kg pCA dose was given every 48 h via intragastric gavage to the Rot-pCA100 group for 6 weeks. Motor ability was assessed at the second, fourth, and sixth week before brain collection for biochemical and histological analyses. Results indicated significant motor deficits appeared from the second to sixth week after rotenone injection. Brain analysis detected a significant effect of rotenone in the increase of malondialdehyde and tumor necrosis factor-alpha (TNF-α). This result was observed in accordance with a reduction of tyrosine hydroxylase (TH) and an increase of neuronal degeneration in the substantia nigra par compacta (SNc) and striatum. However, pCA was able to reverse all of the deterioration (i.e., reduced malondialdehyde and TNF-α) rotenone had caused, and it protected against TH and neuronal loss in the SNc and striatum. Therefore, the present study has depicted the neuroprotective effect of pCA against rotenone-induced Parkinson's disease-like pathology in mice. Benefits of pCA include anti-lipid peroxidation and anti-inflammatory effects, inhibition of neurodegeneration, and a nurturing effect on the TH level in the SNc and striatum, leading to mitigation of motor deficits.
Collapse
Affiliation(s)
- Nurinee Dolrahman
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Jatuchak, Bangkok, 10900, Thailand
| | - Waritsara Mukkhaphrom
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Jatuchak, Bangkok, 10900, Thailand
| | - Jeanjira Sutirek
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Jatuchak, Bangkok, 10900, Thailand
| | - Wachiryah Thong-Asa
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Jatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
14
|
Kwon M, Robins L, McGlynn ML, Collins C, Pekas EJ, Park SY, Slivka D. No Mitochondrial Related Transcriptional Changes in Human Skeletal Muscle after Local Heat Application. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17051. [PMID: 36554930 PMCID: PMC9779680 DOI: 10.3390/ijerph192417051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The purpose of the study is to determine the impact of local heating on skeletal muscle transcriptional response related to mitochondrial biogenesis and mitophagy. Twelve healthy subjects (height, 176.0 ± 11.9 cm; weight, 83.6 ± 18.3 kg; and body composition, 19.0 ± 7.7% body fat) rested in a semi-reclined position for 4 h with a heated thermal wrap (HOT) around one thigh and a wrap without temperature regulation (CON) around the other (randomized). Skin temperature, blood flow, intramuscular temperature, and a skeletal muscle biopsy from the vastus lateralis were obtained after the 4 h intervention. Skin temperature via infrared thermometer and thermal camera was higher after HOT (37.3 ± 0.7 and 36.7 ± 1.0 °C, respectively) than CON (34.8 ± 0.7, 35.2 ± 0.8 °C, respectively, p < 0.001). Intramuscular temperature was higher in HOT (36.3 ± 0.4 °C) than CON (35.2 ± 0.8 °C, p < 0.001). Femoral artery blood flow was higher in HOT (304.5 ± 12.5 mL‧min-1) than CON (272.3 ± 14.3 mL‧min-1, p = 0.003). Mean femoral shear rate was higher in HOT (455.8 ± 25.1 s-1) than CON (405.2 ± 15.8 s-1, p = 0.019). However, there were no differences in any of the investigated genes related to mitochondrial biogenesis (PGC-1α, NRF1, GAPBA, ERRα, TFAM, VEGF) or mitophagy (PINK-1, PARK-2, BNIP-3, BNIP-3L) in response to heat (p > 0.05). These data indicate that heat application alone does not impact the transcriptional response related to mitochondrial homeostasis, suggesting that other factors, in combination with skeletal muscle temperature, are involved with previous observations of altered exercise induced gene expression with heat.
Collapse
Affiliation(s)
- Monica Kwon
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Larry Robins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Mark L. McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Christopher Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Elizabeth J. Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Dustin Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
15
|
Bai D, Li X, Wang S, Zhang T, Wei Y, Wang Q, Dong W, Song J, Gao P, Li Y, Wang S, Dai L. Advances in extraction methods, chemical constituents, pharmacological activities, molecular targets and toxicology of volatile oil from Acorus calamus var. angustatus Besser. Front Pharmacol 2022; 13:1004529. [PMID: 36545308 PMCID: PMC9761896 DOI: 10.3389/fphar.2022.1004529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Abstract
Acorus calamus var. angustatus Besser (ATT) is a traditional herb with a long medicinal history. The volatile oil of ATT (VOA) does possess many pharmacological activities. It can restore the vitality of the brain, nervous system and myocardial cells. It is used to treat various central system, cardiovascular and cerebrovascular diseases. It also showed antibacterial and antioxidant activity. Many studies have explored the benefits of VOA scientifically. This paper reviews the extraction methods, chemical components, pharmacological activities and toxicology of VOA. The molecular mechanism of VOA was elucidated. This paper will serve as a comprehensive resource for further carrying the VOA on improving its medicinal value and clinical use.
Collapse
Affiliation(s)
- Daoming Bai
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyu Li
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengguang Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumin Wei
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingquan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weichao Dong
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Song
- Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd, Dezhou, China
| | - Peng Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| |
Collapse
|
16
|
Relationship between Brain Metabolic Disorders and Cognitive Impairment: LDL Receptor Defect. Int J Mol Sci 2022; 23:ijms23158384. [PMID: 35955522 PMCID: PMC9369234 DOI: 10.3390/ijms23158384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023] Open
Abstract
The low-density-lipoprotein receptor (LDLr) removes low-density lipoprotein (LDL), an endovascular transporter that carries cholesterol from the bloodstream to peripheral tissues. The maintenance of cholesterol content in the brain, which is important to protect brain function, is affected by LDLr. LDLr co-localizes with the insulin receptor and complements the internalization of LDL. In LDLr deficiency, LDL blood levels and insulin resistance increase, leading to abnormal cholesterol control and cognitive deficits in atherosclerosis. Defects in brain cholesterol metabolism lead to neuroinflammation and blood–brain-barrier (BBB) degradation. Moreover, interactions between endoplasmic reticulum stress (ER stress) and mitochondria are induced by ox-LDL accumulation, apolipoprotein E (ApoE) regulates the levels of amyloid beta (Aβ) in the brain, and hypoxia is induced by apoptosis induced by the LDLr defect. This review summarizes the association between neurodegenerative brain disease and typical cognitive deficits.
Collapse
|
17
|
O'Reilly N, Collins C, McGlynn ML, Slivka D. Effect of local heat application during exercise on gene expression related to mitochondrial homeostasis. Appl Physiol Nutr Metab 2021; 46:1545-1551. [PMID: 34399057 PMCID: PMC9014790 DOI: 10.1139/apnm-2021-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine the impact of local muscle heating during endurance exercise on human skeletal muscle mitochondrial-related gene expression. Twelve subjects (25 ± 6 yr, 177 ± 8 cm, 78 ± 16 kg, and peak aerobic capacity 45 ± 8 mL·kg-1·min-1) cycled with one leg heated (HOT) and the other serving as a control (CON). Skin and intramuscular temperatures were taken before temperature intervention (Pre), after 30 minutes (Pre30), after exercise (Post) and four hours after exercise (4Post). Muscle biopsies were taken from each leg at Pre and 4Post. Intramuscular temperature increased within HOT (34.4 ± 0.7 °C to 36.1 ± 0.5 °C, p < 0.001) and was higher than CON at Pre30 (34.0 ± 0.7 °C, p < 0.001). However, temperatures at POST were similar (HOT 38.4 ± 0.7 °C, CON 38.3 ± 0.5 °C, p = 0.661). Skin temperature was higher than CON at Post30 (30.3 ± 1.0 °C, p < 0.001) and Post (HOT 34.6 ± 0.9 °C, CON 32.3 ± 1.6 °C, p < 0.001). PGC-1α, VEGF and NRF2 mRNA increased with exercise (p < 0.05) but was not altered with heating (p > 0.05). TFAM increased after exercise with heat application (HOT, p = 0.019) but not with exercise alone (CON, p = 0.422). There was no difference in NRF1, ESRRα, or any of the mitophagy related genes in response to exercise or temperature (p > 0.05). In conclusion, TFAM is enhanced by local heat application during endurance exercise, whereas other genes related to mitochondrial homeostasis are unaffected. Novelty: The main finding of this study is that localized heating increased TFAM mRNA expression. The normal exercise-induced increased PGC-1α gene expression was unaltered by local muscle heating.
Collapse
Affiliation(s)
- Nattie O'Reilly
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Christopher Collins
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Mark L McGlynn
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Dustin Slivka
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
| |
Collapse
|
18
|
Casaril AM, Dantzer R, Bas-Orth C. Neuronal Mitochondrial Dysfunction and Bioenergetic Failure in Inflammation-Associated Depression. Front Neurosci 2021; 15:725547. [PMID: 34790089 PMCID: PMC8592286 DOI: 10.3389/fnins.2021.725547] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/12/2021] [Indexed: 01/28/2023] Open
Abstract
Depression is a leading cause of disability and affects more than 4% of the population worldwide. Even though its pathophysiology remains elusive, it is now well accepted that peripheral inflammation might increase the risk of depressive episodes in a subgroup of patients. However, there is still insufficient knowledge about the mechanisms by which inflammation induces alterations in brain function. In neurodegenerative and neuroinflammatory diseases, extensive studies have reported that inflammation negatively impacts mitochondrial health, contributing to excitotoxicity, oxidative stress, energy deficits, and eventually neuronal death. In addition, damaged mitochondria can release a wide range of damage-associated molecular patterns that are potent activators of the inflammatory response, creating a feed-forward cycle between oxidative stress, mitochondrial impairment, inflammation, and neuronal dysfunction. Surprisingly, the possible involvement of this vicious cycle in the pathophysiology of inflammation-associated depression remains understudied. In this mini-review we summarize the research supporting the association between neuroinflammation, mitochondrial dysfunction, and bioenergetic failure in inflammation-associated depression to highlight the relevance of further studies addressing this crosstalk.
Collapse
Affiliation(s)
- Angela Maria Casaril
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.,Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Carlos Bas-Orth
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
19
|
Spaas J, Franssen WMA, Keytsman C, Blancquaert L, Vanmierlo T, Bogie J, Broux B, Hellings N, van Horssen J, Posa DK, Hoetker D, Baba SP, Derave W, Eijnde BO. Carnosine quenches the reactive carbonyl acrolein in the central nervous system and attenuates autoimmune neuroinflammation. J Neuroinflammation 2021; 18:255. [PMID: 34740381 PMCID: PMC8571880 DOI: 10.1186/s12974-021-02306-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic autoimmune disease driven by sustained inflammation in the central nervous system. One of the pathological hallmarks of MS is extensive free radical production. However, the subsequent generation, potential pathological role, and detoxification of different lipid peroxidation-derived reactive carbonyl species during neuroinflammation are unclear, as are the therapeutic benefits of carbonyl quenchers. Here, we investigated the reactive carbonyl acrolein and (the therapeutic effect of) acrolein quenching by carnosine during neuroinflammation. Methods The abundance and localization of acrolein was investigated in inflammatory lesions of MS patients and experimental autoimmune encephalomyelitis (EAE) mice. In addition, we analysed carnosine levels and acrolein quenching by endogenous and exogenous carnosine in EAE. Finally, the therapeutic effect of exogenous carnosine was assessed in vivo (EAE) and in vitro (primary mouse microglia, macrophages, astrocytes). Results Acrolein was substantially increased in inflammatory lesions of MS patients and EAE mice. Levels of the dipeptide carnosine (β-alanyl-l-histidine), an endogenous carbonyl quencher particularly reactive towards acrolein, and the carnosine-acrolein adduct (carnosine-propanal) were ~ twofold lower within EAE spinal cord tissue. Oral carnosine treatment augmented spinal cord carnosine levels (up to > tenfold), increased carnosine-acrolein quenching, reduced acrolein-protein adduct formation, suppressed inflammatory activity, and alleviated clinical disease severity in EAE. In vivo and in vitro studies indicate that pro-inflammatory microglia/macrophages generate acrolein, which can be efficiently quenched by increasing carnosine availability, resulting in suppressed inflammatory activity. Other properties of carnosine (antioxidant, nitric oxide scavenging) may also contribute to the therapeutic effects. Conclusions Our results identify carbonyl (particularly acrolein) quenching by carnosine as a therapeutic strategy to counter inflammation and macromolecular damage in MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02306-9.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium. .,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium. .,Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Wouter M A Franssen
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Charly Keytsman
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Laura Blancquaert
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tim Vanmierlo
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Division of Translational Neuroscience, Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jeroen Bogie
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bieke Broux
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Niels Hellings
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jack van Horssen
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - Dheeraj Kumar Posa
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - David Hoetker
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|
20
|
Kim J, Lee HJ, Park SK, Park JH, Jeong HR, Lee S, Lee H, Seol E, Hoe HS. Donepezil Regulates LPS and Aβ-Stimulated Neuroinflammation through MAPK/NLRP3 Inflammasome/STAT3 Signaling. Int J Mol Sci 2021; 22:10637. [PMID: 34638977 PMCID: PMC8508964 DOI: 10.3390/ijms221910637] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The acetylcholinesterase inhibitors donepezil and rivastigmine have been used as therapeutic drugs for Alzheimer's disease (AD), but their effects on LPS- and Aβ-induced neuroinflammatory responses and the underlying molecular pathways have not been studied in detail in vitro and in vivo. In the present study, we found that 10 or 50 μM donepezil significantly decreased the LPS-induced increases in the mRNA levels of a number of proinflammatory cytokines in BV2 microglial cells, whereas 50 μM rivastigmine significantly diminished only LPS-stimulated IL-6 mRNA levels. In subsequent experiments in primary astrocytes, donepezil suppressed only LPS-stimulated iNOS mRNA levels. To identify the molecular mechanisms by which donepezil regulates LPS-induced neuroinflammation, we examined whether donepezil alters LPS-stimulated proinflammatory responses by modulating LPS-induced downstream signaling and the NLRP3 inflammasome. Importantly, we found that donepezil suppressed LPS-induced AKT/MAPK signaling, the NLRP3 inflammasome, and transcription factor NF-kB/STAT3 phosphorylation to reduce neuroinflammatory responses. In LPS-treated wild-type mice, a model of neuroinflammatory disease, donepezil significantly attenuated LPS-induced microglial activation, microglial density/morphology, and proinflammatory cytokine COX-2 and IL-6 levels. In a mouse model of AD (5xFAD mice), donepezil significantly reduced Aβ-induced microglial and astrocytic activation, density, and morphology. Taken together, our findings indicate that donepezil significantly downregulates LPS- and Aβ-evoked neuroinflammatory responses in vitro and in vivo and may be a therapeutic agent for neuroinflammation-associated diseases such as AD.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Hyun-ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Seon Kyeong Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Ha-Ram Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Soojung Lee
- G2GBIO, Inc., Science Park #411, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (S.L.); (H.L.); (E.S.)
| | - Heeyong Lee
- G2GBIO, Inc., Science Park #411, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (S.L.); (H.L.); (E.S.)
| | - Eunyoung Seol
- G2GBIO, Inc., Science Park #411, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (S.L.); (H.L.); (E.S.)
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
- Department of Brain and Cognitive Science, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Korea
| |
Collapse
|
21
|
Arora S, Dharavath RN, Bansal Y, Bishnoi M, Kondepudi KK, Chopra K. Neurobehavioral alterations in a mouse model of chronic partial sleep deprivation. Metab Brain Dis 2021; 36:1315-1330. [PMID: 33740181 DOI: 10.1007/s11011-021-00693-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 02/12/2021] [Indexed: 12/23/2022]
Abstract
The night shift paradigm induces a state of chronic partial sleep deprivation (CPSD) and enhances the vulnerability to neuronal dysfunction. However, the specific neuronal impact of CPSD has not been thoroughly explored to date. In the current study, the night shift condition was mimicked in female Swiss albino mice. The classical sleep deprivation model, i.e., Modified Multiple Platform (MMP) method, was used for 8 h/day from Monday to Friday with Saturday and Sunday as a weekend off for nine weeks. Following nine weeks of night shift schedule, their neurobehavioral profile and physiological parameters were assessed along with the activity of the mitochondrial complexes, oxidative stress, serotonin levels, and inflammatory markers in the brain. Mice showed an overall hyperactive behavioral profile including hyperlocomotion, aggression, and stereotyped behavior accompanied by decreased activity of mitochondrial enzymes and serotonin levels, increased oxidative stress and inflammatory markers in whole brain homogenates. Collectively, the study points towards the occurrence of a hyperactive behavioral profile akin to mania and psychosis as a potential consequence of CPSD.
Collapse
Affiliation(s)
- Shiyana Arora
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, 160014, Chandigarh, India
| | - Ravinder Naik Dharavath
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, 160014, Chandigarh, India
| | - Yashika Bansal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, 160014, Chandigarh, India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology Laboratory, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Food and Nutritional Biotechnology Laboratory, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, 140306, India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, 160014, Chandigarh, India.
| |
Collapse
|
22
|
Current Trends in Neurodegeneration: Cross Talks between Oxidative Stress, Cell Death, and Inflammation. Int J Mol Sci 2021; 22:ijms22147432. [PMID: 34299052 PMCID: PMC8306752 DOI: 10.3390/ijms22147432] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The human body is highly complex and comprises a variety of living cells and extracellular material, which forms tissues, organs, and organ systems. Human cells tend to turn over readily to maintain homeostasis in tissues. However, postmitotic nerve cells exceptionally have an ability to regenerate and be sustained for the entire life of an individual, to safeguard the physiological functioning of the central nervous system. For efficient functioning of the CNS, neuronal death is essential, but extreme loss of neurons diminishes the functioning of the nervous system and leads to the onset of neurodegenerative diseases. Neurodegenerative diseases range from acute to chronic severe life-altering conditions like Parkinson's disease and Alzheimer's disease. Millions of individuals worldwide are suffering from neurodegenerative disorders with little or negligible treatment available, thereby leading to a decline in their quality of life. Neuropathological studies have identified a series of factors that explain the etiology of neuronal degradation and its progression in neurodegenerative disease. The onset of neurological diseases depends on a combination of factors that causes a disruption of neurons, such as environmental, biological, physiological, and genetic factors. The current review highlights some of the major pathological factors responsible for neuronal degradation, such as oxidative stress, cell death, and neuroinflammation. All these factors have been described in detail to enhance the understanding of their mechanisms and target them for disease management.
Collapse
|
23
|
5-Hydroxytryptamine Modulates Maturation and Mitochondria Function of Human Oligodendrocyte Progenitor M03-13 Cells. Int J Mol Sci 2021; 22:ijms22052621. [PMID: 33807720 PMCID: PMC7962057 DOI: 10.3390/ijms22052621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/07/2023] Open
Abstract
Inside the adult CNS, oligodendrocyte progenitor cells (OPCS) are able to proliferate, migrate and differentiate into mature oligodendrocytes (OLs) which are responsible for the production of myelin sheet and energy supply for neurons. Moreover, in demyelinating diseases, OPCs are recruited to the lesion areas where they undergo differentiation and myelin synthesis. Serotonin (5-hydroxytryptamine, 5-HT) is involved in OLs’ development and myelination, but so far the molecular mechanisms involved or the effects of 5-HT on mitochondria function have not yet been well documented. Our data show that 5-HT inhibits migration and proliferation committing cells toward differentiation in an immortalized human oligodendrocyte precursor cell line, M03-13. Migration blockage is mediated by reactive oxygen species (ROS) generation since antioxidants, such as Vit C and Cu-Zn superoxide dismutase, prevent the inhibitory effects of 5-HT on cell migration. 5-HT inhibits OPC migration and proliferation and increases OL phenotypic markers myelin basic protein (MBP) and Olig-2 via protein kinase C (PKC) activation since the inhibitor of PKC, bis-indolyl-maleimide (BIM), counteracts 5-HT effects. NOX inhibitors as well, reverse the effects of 5-HT, indicating that 5-HT influences the maturation process of OPCs by NOX-dependent ROS production. Finally, 5-HT increases mitochondria function and antioxidant activity. The identification of the molecular mechanisms underlying the effects of 5-HT on maturation and energy metabolism of OPCs could pave the way for the development of new treatments for autoimmune demyelinating diseases such as Multiple Sclerosis where oligodendrocytes are the primary target of immune attack.
Collapse
|
24
|
Bergaglio T, Luchicchi A, Schenk GJ. Engine Failure in Axo-Myelinic Signaling: A Potential Key Player in the Pathogenesis of Multiple Sclerosis. Front Cell Neurosci 2021; 15:610295. [PMID: 33642995 PMCID: PMC7902503 DOI: 10.3389/fncel.2021.610295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple Sclerosis (MS) is a complex and chronic disease of the central nervous system (CNS), characterized by both degenerative and inflammatory processes leading to axonal damage, demyelination, and neuronal loss. In the last decade, the traditional outside-in standpoint on MS pathogenesis, which identifies a primary autoimmune inflammatory etiology, has been challenged by a complementary inside-out theory. By focusing on the degenerative processes of MS, the axo-myelinic system may reveal new insights into the disease triggering mechanisms. Oxidative stress (OS) has been widely described as one of the means driving tissue injury in neurodegenerative disorders, including MS. Axonal mitochondria constitute the main energy source for electrically active axons and neurons and are largely vulnerable to oxidative injury. Consequently, axonal mitochondrial dysfunction might impair efficient axo-glial communication, which could, in turn, affect axonal integrity and the maintenance of axonal, neuronal, and synaptic signaling. In this review article, we argue that OS-derived mitochondrial impairment may underline the dysfunctional relationship between axons and their supportive glia cells, specifically oligodendrocytes and that this mechanism is implicated in the development of a primary cytodegeneration and a secondary pro-inflammatory response (inside-out), which in turn, together with a variably primed host's immune system, may lead to the onset of MS and its different subtypes.
Collapse
Affiliation(s)
| | | | - Geert J. Schenk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam MS Center, Amsterdam, Netherlands
| |
Collapse
|
25
|
Kapoor T, Mehan S. Neuroprotective Methodologies in the Treatment of Multiple Sclerosis Current Status of Clinical and Pre-clinical Findings. Curr Drug Discov Technol 2021; 18:31-46. [PMID: 32031075 DOI: 10.2174/1570163817666200207100903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/02/2019] [Accepted: 11/26/2019] [Indexed: 11/22/2022]
Abstract
Multiple sclerosis is an idiopathic and autoimmune associated motor neuron disorder that affects myelinated neurons in specific brain regions of young people, especially females. MS is characterized by oligodendrocytes destruction further responsible for demyelination, neuroinflammation, mitochondrial abnormalities, oxidative stress and neurotransmitter deficits associated with motor and cognitive dysfunctions, vertigo and muscle weakness. The limited intervention of pharmacologically active compounds like interferon-β, mitoxantrone, fingolimod and monoclonal antibodies used clinically are majorly associated with adverse drug reactions. Pre-clinically, gliotoxin ethidium bromide mimics the behavioral and neurochemical alterations in multiple sclerosis- like in experimental animals associated with the down-regulation of adenyl cyclase/cAMP/CREB, which is further responsible for a variety of neuropathogenic factors. Despite the considerable investigation of neuroprotection in curing multiple sclerosis, some complications still remain. The available medications only provide symptomatic relief but do not stop the disease progression. In this way, the development of unused beneficial methods tends to be ignored. The limitations of the current steady treatment may be because of their activity at one of the many neurotransmitters included or their failure to up direct signaling flag bearers detailed to have a vital part in neuronal sensitivity, biosynthesis of neurotransmitters and its discharge, development, and separation of the neuron, synaptic versatility and cognitive working. Therefore, the current review strictly focused on the exploration of various clinical and pre-clinical features available for multiple sclerosis to understand the pathogenic mechanisms and to introduce pharmacological interventions associated with the upregulation of intracellular adenyl cyclase/cAMP/CREB activation to ameliorate multiple sclerosis-like features.
Collapse
Affiliation(s)
- Tarun Kapoor
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
26
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
27
|
Bjørklund G, Tinkov AA, Hosnedlová B, Kizek R, Ajsuvakova OP, Chirumbolo S, Skalnaya MG, Peana M, Dadar M, El-Ansary A, Qasem H, Adams JB, Aaseth J, Skalny AV. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic Biol Med 2020; 160:149-162. [PMID: 32745763 DOI: 10.1016/j.freeradbiomed.2020.07.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022]
Abstract
The role of glutathione in autism spectrum disorder (ASD) is emerging as a major topic, due to its role in the maintenance of the intracellular redox balance. Several studies have implicated glutathione redox imbalance as a leading factor in ASD, and both ASD and many other neurodevelopmental disorders involve low levels of reduced glutathione (GSH), high levels of oxidized glutathione (GSSG), and abnormalities in the expressions of glutathione-related enzymes in the blood or brain. Glutathione metabolism, through its impact on redox environment or redox-independent mechanisms, interferes with multiple mechanisms involved in ASD pathogenesis. Glutathione-mediated regulation of glutamate receptors [e.g., N-methyl-d-aspartate (NMDA) receptor], as well as the role of glutamate as a substrate for glutathione synthesis, may be involved in the regulation of glutamate excitotoxicity. However, the interaction between glutathione and glutamate in the pathogenesis of brain diseases may vary from synergism to antagonism. Modulation of glutathione is also associated with regulation of redox-sensitive transcription factors nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) and downstream signaling (proinflammatory cytokines and inducible enzymes), thus providing a significant impact on neuroinflammation. Mitochondrial dysfunction, as well as neuronal apoptosis, may also provide a significant link between glutathione metabolism and ASD. Furthermore, it has been recently highlighted that glutathione can affect and modulate DNA methylation and epigenetics. Review analysis including research studies meeting the required criteria for analysis showed statistically significant differences between the plasma GSH and GSSG levels as well as GSH:GSSG ratio in autistic patients compared with healthy individuals (P = 0.0145, P = 0.0150 and P = 0.0202, respectively). Therefore, the existing data provide a strong background on the role of the glutathione system in ASD pathogenesis. Future research is necessary to investigate the role of glutathione redox signaling in ASD, which could potentially also lead to promising therapeutics.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo I Rana, Norway.
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Božena Hosnedlová
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
| | - Rene Kizek
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic; Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Olga P Ajsuvakova
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Margarita G Skalnaya
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Afaf El-Ansary
- Medicinal Chemistry Department, King Saud University, Riyadh, Saudi Arabia; Autism Research and Treatment Center, Riyadh, Saudi Arabia; CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Qasem
- Autism Research and Treatment Center, Riyadh, Saudi Arabia; CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia
| | - James B Adams
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
28
|
Sarparast M, Dattmore D, Alan J, Lee KSS. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegeneration. Nutrients 2020; 12:E3523. [PMID: 33207662 PMCID: PMC7696575 DOI: 10.3390/nu12113523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients' quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
| | - Devon Dattmore
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
29
|
Islas-Cortez M, Rios C, Rubio-Osornio M, Zamudio S, Orozco-Suarez S, Mendez-Armenta M, Nava-Ruiz C, Diaz-Ruiz A. Characterization of the antiapoptotic effect of copper sulfate on striatal and midbrain damage induced by MPP + in rats. Neurotoxicology 2020; 82:18-25. [PMID: 33127410 DOI: 10.1016/j.neuro.2020.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023]
Abstract
1-Methyl-4-phenylpyridinium ion (MPP+)-induced neurotoxicity produces cellular damage resembling that encountered in Parkinson's disease. The mechanisms of cellular death after MPP+ include the participation of oxidative stress in the loss of dopaminergic neurons. Among the mechanisms of defense against oxidative stress, several copper-dependent proteins have been implicated: Cu/Zn-SOD, ceruloplasmin, and metallothionein. Another important mechanism of damage, is MPP + interference with mitochondrial respiration. Both, oxidative stress and inhibition of mitochondrial respiration may trigger apoptosis in the neurons after MPP+. The aim of the present study was to characterize the time-course of apoptosis induced by MPP+ to determine if copper sulfate pretreatment is able to prevent the activation of caspases and decreased the neuronal apoptosis. MPP+ was microinjected into rat striatum using a stereotactic frame. The results showed increased activities of caspases 8, 9 and 3, between 72-120 hours after administration of MPP+, both in striatum and midbrain. After this study, we tested the effect of CuSO4 on MPP+ neurotoxicity, showing a diminution of the apoptotic damage induced by MPP+, decreased levels of enzymatic activity of caspases: 8 (-34 and -25 %), 9 (-25 and -42 %) and 3 (-40 and -29 %) in striatum and midbrain, respectively. Finally, we performed an immunohistochemical analysis, evidencing a decreased number of apoptotic cells in the groups pretreated with copper sulfate pretreatment compared to the control group. With these findings, it is concluded that pretreatment with copper sulfate may be a good alternative to prevent MPP+-induced apoptosis.
Collapse
Affiliation(s)
- Marcela Islas-Cortez
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico; Departamento de Fisiología, Laboratorio de Neurociencia Conductual, Instituto Politécnico Nacional, Unidad Zacatenco, Ciudad de México, Mexico
| | - Camilo Rios
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico; Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico
| | - Moisés Rubio-Osornio
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico
| | - Sergio Zamudio
- Departamento de Fisiología, Laboratorio de Neurociencia Conductual, Instituto Politécnico Nacional, Unidad Zacatenco, Ciudad de México, Mexico
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Ciudad de México, Mexico
| | - Marisela Mendez-Armenta
- Departamento de Neuropatología Experimental Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico
| | - Concepción Nava-Ruiz
- Departamento de Neuropatología Experimental Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico
| | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico.
| |
Collapse
|
30
|
Meister B, Collins C, McGlynn M, Slivka D. Effect of local cold application during exercise on gene expression related to mitochondrial homeostasis. Appl Physiol Nutr Metab 2020; 46:318-324. [PMID: 32961062 PMCID: PMC8958796 DOI: 10.1139/apnm-2020-0387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise training increases mitochondrial content in active skeletal muscle. Previous work suggests that mitochondrial-related genes respond favorably to exercise in cold environments. However, the impact of localized tissue cooling is unknown. The purpose of this study was to determine the impact of local muscle cooling during endurance exercise on human skeletal muscle mitochondrial-related gene expression. Twelve subjects (age, 28 ± 6 years) cycled at 65% peak power output. One leg was cooled (C) for 30 min before and during exercise with a thermal wrap while the other leg was wrapped but not cooled, room temperature (RT). Muscle biopsies were taken from each vastus lateralis before and 4 h after exercise for the analysis of gene expression. Muscle temperature was lower in the C (29.2 ± 0.7 °C) than the RT (34.1 ± 0.3 °C) condition after pre-cooling for 30 min before exercise (p < 0.001) and remained lower after exercise in the C (36.9 ± 0.5) than the RT (38.4 ± 0.2, p < 0.001) condition. PGC-1α and NRF1 mRNA expression were lower in the C (p = 0.012 and p = 0.045, respectively) than the RT condition at 4 h after exercise. There were no temperature-related differences in other genes (p > 0.05). These data suggest that local cooling has an inhibitory effect on exercise-induced PGC-1α and NRF1 expression in human skeletal muscle. Those considering using local cooling during exercise should consider other systemic cooling options. Novelty: Local cooling has an inhibitory effect on exercise-induced PGC-1α and NRF1 expression in human skeletal muscle. Local cooling may lead to a less robust exercise stimulus compared with standard conditions.
Collapse
Affiliation(s)
- Ben Meister
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.,School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Chris Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.,School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Mark McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.,School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Dustin Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.,School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| |
Collapse
|
31
|
Kermanshahi S, Ghanavati G, Abbasi-Mesrabadi M, Gholami M, Ulloa L, Motaghinejad M, Safari S. Novel Neuroprotective Potential of Crocin in Neurodegenerative Disorders: An Illustrated Mechanistic Review. Neurochem Res 2020; 45:2573-2585. [PMID: 32940861 DOI: 10.1007/s11064-020-03134-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Recent studies reported that crocin, a carotenoid chemical compound common in crocus and gardenia flowers, has protective effects in neurodegenerative disorders due to its anti-oxidative, anti-inflammatory, and anti-apoptotic properties in the nervous system. This article reviews the new experimental, clinical, and pharmacological studies on the neuroprotective properties of crocin and its potential mechanisms to modulate metabolic oxidative stress and inflammation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sareh Kermanshahi
- Razi Drug Research Center, Iran University of Medical Sciences, Hemmat highway, Beside the Milad Tower, P.O. Box: 14496-14525, Tehran, Iran
| | - Ghazal Ghanavati
- Razi Drug Research Center, Iran University of Medical Sciences, Hemmat highway, Beside the Milad Tower, P.O. Box: 14496-14525, Tehran, Iran
| | - Mobina Abbasi-Mesrabadi
- Razi Drug Research Center, Iran University of Medical Sciences, Hemmat highway, Beside the Milad Tower, P.O. Box: 14496-14525, Tehran, Iran
| | - Mina Gholami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, USA.
| | - Majid Motaghinejad
- Razi Drug Research Center, Iran University of Medical Sciences, Hemmat highway, Beside the Milad Tower, P.O. Box: 14496-14525, Tehran, Iran.
| | - Sepideh Safari
- Razi Drug Research Center, Iran University of Medical Sciences, Hemmat highway, Beside the Milad Tower, P.O. Box: 14496-14525, Tehran, Iran
| |
Collapse
|
32
|
Exercise- and Cold-Induced Human PGC-1α mRNA Isoform Specific Responses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165740. [PMID: 32784428 PMCID: PMC7460212 DOI: 10.3390/ijerph17165740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
Cold exposure in conjunction with aerobic exercise stimulates gene expression of PGC-1α, the master regulator of mitochondrial biogenesis. PGC-1α can be expressed as multiple isoforms due to alternative splicing mechanisms. Among these isoforms is NT-PGC-1α, which produces a truncated form of the PGC-1α protein, as well as isoforms derived from the first exon of the transcript, PGC-1α-a, PGC-1α-b, and PGC-1α-c. Relatively little is known about the individual responses of these isoforms to exercise and environmental temperature. Therefore, we determined the expression of PGC-1α isoforms following an acute bout of cycling in cold (C) and room temperature (RT) conditions. Nine male participants cycled for 1h at 65% Wmax at −2 °C and 20 °C. A muscle biopsy was taken from the vastus lateralis before and 3h post-exercise. RT-qPCR was used to analyze gene expression of PGC-1α isoforms. Gene expression of all PGC-1α isoforms increased due to the exercise intervention (p < 0.05). Exercise and cold exposure induced a greater increase in gene expression for total PGC-1α (p = 0.028) and its truncated isoform, NT-PGC-1α (p = 0.034), but there was no temperature-dependent response in the other PGC-1α isoforms measured. It appears that NT-PGC-1α may have a significant contribution to the reported alterations in the exercise- and temperature-induced PGC-1α response.
Collapse
|
33
|
Wengler K, Ha J, Syritsyna O, Bangiyev L, Coyle PK, Duong TQ, Schweitzer ME, He X. Abnormal blood-brain barrier water exchange in chronic multiple sclerosis lesions: A preliminary study. Magn Reson Imaging 2020; 70:126-133. [DOI: 10.1016/j.mri.2020.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/17/2022]
|
34
|
Wang Q, Oyarzabal EA, Song S, Wilson B, Santos JH, Hong JS. Locus coeruleus neurons are most sensitive to chronic neuroinflammation-induced neurodegeneration. Brain Behav Immun 2020; 87:359-368. [PMID: 31923552 PMCID: PMC7316605 DOI: 10.1016/j.bbi.2020.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) develops over decades through spatiotemporal stages that ascend from the brainstem to the forebrain. The mechanism behind this caudo-rostral neurodegeneration remains largely undefined. In unraveling this phenomenon, we recently developed a lipopolysaccharide (LPS)-elicited chronic neuroinflammatory mouse model that displays sequential losses of neurons in brainstem, substantia nigra, hippocampus and cortex. In this study, we aimed to investigate the mechanisms of caudo-rostral neurodegeneration and focused our efforts on the earliest neurodegeneration of vulnerable noradrenergic locus coeruleus (NE-LC) neurons in the brainstem. We found that compared with neurons in other brain regions, NE-LC neurons in untreated mice displayed high levels of mitochondrial oxidative stress that was severely exacerbated in the presence of LPS-elicited chronic neuroinflammation. In agreement, NE-LC neurons in LPS-treated mice displayed early reduction of complex IV expression and mitochondrial swelling and loss of cristae. Mechanistically, the activation of the superoxide-generating enzyme NADPH oxidase (NOX2) on NE-LC neurons was essential for their heightened vulnerability during chronic neuroinflammation. LPS induced early and high expressions of NOX2 in NE-LC neurons. Genetic or pharmacological inactivation of NOX2 markedly reduced mitochondrial oxidative stress and dysfunction in LPS-treated mice. Furthermore, inhibition of NOX2 significantly ameliorated LPS-induced NE-LC neurodegeneration. More importantly, post-treatment with NOX2 inhibitor diphenyleneiodonium when NE-LC neurodegeneration had already begun, still showed high efficacy in protecting NE-LC neurons from degeneration in LPS-treated mice. This study strongly supports that chronic neuroinflammation and NOX2 expression among vulnerable neuronal populations contribute to caudo-rostral degeneration in PD.
Collapse
Affiliation(s)
- Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, Liaoning, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China.
| | - Esteban A. Oyarzabal
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Sheng Song
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Belinda Wilson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Janine H. Santos
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
35
|
Keller CW, Kotur MB, Mundt S, Dokalis N, Ligeon LA, Shah AM, Prinz M, Becher B, Münz C, Lünemann JD. CYBB/NOX2 in conventional DCs controls T cell encephalitogenicity during neuroinflammation. Autophagy 2020; 17:1244-1258. [PMID: 32401602 DOI: 10.1080/15548627.2020.1756678] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Whereas central nervous system (CNS) homeostasis is highly dependent on tissue surveillance by immune cells, dysregulated entry of leukocytes during autoimmune neuroinflammation causes severe immunopathology and neurological deficits. To invade the CNS parenchyma, encephalitogenic T helper (TH) cells must encounter their cognate antigen(s) presented by local major histocompatibility complex (MHC) class II-expressing antigen-presenting cells (APCs). The precise mechanisms by which CNS-associated APCs facilitate autoimmune T cell reactivation remain largely unknown. We previously showed that mice with conditional deletion of the gene encoding the essential autophagy protein ATG5 in dendritic cells (DCs) are resistant to EAE development. Here, we report that the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2, also known as CYBB/NOX2, in conventional DCs (cDCs) regulates endocytosed MOG (myelin oligodendrocyte protein) antigen processing and supports MOG-antigen presentation to CD4+ T cells through LC3-associated phagocytosis (LAP). Genetic ablation of Cybb in cDCs is sufficient to restrain encephalitogenic TH cell recruitment into the CNS and to ameliorate clinical disease development upon the adoptive transfer of MOG-specific CD4+ T cells. These data indicate that CYBB-regulated MOG-antigen processing and LAP in cDCs licenses encephalitogenic TH cells to initiate and sustain autoimmune neuroinflammation.Abbreviations: Ag: antigen; APC: antigen-presenting cell; AT: adoptive transfer; ATG/Atg: autophagy-related; BAMs: border-associated macrophages; BMDC: bone marrow-derived DC; CD: cluster of differentiation; CNS: central nervous system; CSF2/GM-CSF: colony stimulating factor 2 (granulocyte-macrophage); CYBB/NOX2/gp91phox: cytochrome b-245, beta polypeptide; DC: dendritic cell; EAE: experimental autoimmune encephalomyelitis; fl: floxed; FOXP3: forkhead box P3; GFP: green fluorescent protein; H2-Ab: histocompatibility 2, class II antigen A, beta 1; IFN: interferon; IL: interleukin; ITGAX/CD11c: integrin subunit alpha X; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFI: median fluorescence intensity; MG: microglia; MHCII: major histocompatibility complex class II; MOG: myelin oligodendrocyte glycoprotein; MS: multiple sclerosis; NADPH: nicotinamide adenine dinucleotide phosphate; ODC: oligodendroglial cell; OVA: ovalbumin; pDC: plasmacytoid DC; Ptd-L-Ser: phosphatidylserine; PTPRC: protein tyrosine phosphatase, receptor type, C; ROS: reactive oxygen species; SLE: systemic lupus erythematosus; TH cells: T helper cells; TLR: toll-like receptor; ZBTB46: zinc finger and BTB domain containing 46.
Collapse
Affiliation(s)
- Christian W Keller
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.,Laboratory of Neuroinflammation, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Monika B Kotur
- Laboratory of Neuroinflammation, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sarah Mundt
- Laboratory of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Nikolaos Dokalis
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Laure-Anne Ligeon
- Laboratory of Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg; Signalling Research Centres BIOSS and CIBSS, Center for Basics in NeuroModulation (Neuromodulbasics), University of Freiburg, Freiburg, Germany
| | - Burkhard Becher
- Laboratory of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christian Münz
- Laboratory of Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.,Laboratory of Neuroinflammation, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Atone J, Wagner K, Hashimoto K, Hammock BD. Cytochrome P450 derived epoxidized fatty acids as a therapeutic tool against neuroinflammatory diseases. Prostaglandins Other Lipid Mediat 2020; 147:106385. [PMID: 31698143 PMCID: PMC7067627 DOI: 10.1016/j.prostaglandins.2019.106385] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 12/23/2022]
Abstract
Cytochrome P450 (CYP) metabolism of arachidonic acid (ARA) produces epoxy fatty acids (EpFAs) such as epoxyeicosatrienoic acids (EETs) that are known to exert protective effects in inflammatory disorders. Endogenous EpFAs are further metabolized into corresponding diols by the soluble epoxide hydrolase (sEH). Through inhibition of sEH, many studies have demonstrated the cardioprotective and renoprotective effects of EpFAs; however, the role of sEH inhibition in modulating the pathogenesis of neuroinflammatory disorders is less well described. In this review, we discuss the current knowledge surrounding the effects of sEH inhibition and EpFA action in neuroinflammatory disorders such as Parkinson's Disease (PD), stroke, depression, epilepsy, and Alzheimer's Disease (AD), as well as the potential mechanisms that underlie the therapeutic effects of sEH inhibition.
Collapse
Affiliation(s)
- Jogen Atone
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Karen Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States.
| |
Collapse
|
37
|
Mocayar Marón FJ, Camargo AB, Manucha W. Allicin pharmacology: Common molecular mechanisms against neuroinflammation and cardiovascular diseases. Life Sci 2020; 249:117513. [PMID: 32145307 DOI: 10.1016/j.lfs.2020.117513] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022]
Abstract
According to investigations in phytomedicine and ethnopharmacology, the therapeutic properties of garlic (Allium sativum) have been described by ancestral cultures. Notwithstanding, it is of particular concern to elucidate the molecular mechanisms underlying this millenary empirical knowledge. Allicin (S-allyl prop-2-ene-1-sulfinothioate), a thioester of sulfenic acid, is one of the main bioactive compounds present in garlic, and it is responsible for the particular aroma of the spice. The pharmacological attributes of allicin integrate a broad spectrum of properties (e.g., anti-inflammatory, immunomodulatory, antibiotic, antifungal, antiparasitic, antioxidant, nephroprotective, neuroprotective, cardioprotective, and anti-tumoral activities, among others). The primary goal of the present article is to review and clarify the common molecular mechanisms by which allicin and its derivates molecules may perform its therapeutic effects on cardiovascular diseases and neuroinflammatory processes. The intricate interface connecting the cardiovascular and nervous systems suggests that the impairment of one organ could contribute to the dysfunction of the other. Allicin might target the cornerstone of the pathological processes underlying cardiovascular and neuroinflammatory disorders, like inflammation, renin-angiotensin-aldosterone system (RAAS) hyperactivation, oxidative stress, and mitochondrial dysfunction. Indeed, the current evidence suggests that allicin improves mitochondrial function by enhancing the expression of HSP70 and NRF2, decreasing RAAS activation, and promoting mitochondrial fusion processes. Finally, allicin represents an attractive therapeutic alternative targeting the complex interaction between cardiovascular and neuroinflammatory disorders.
Collapse
Affiliation(s)
- Feres José Mocayar Marón
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU-UNCuyo), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina
| | - Alejandra Beatriz Camargo
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Instituto de Biología Agrícola de Mendoza (IBAM), CONICET, Mendoza, Argentina
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU-UNCuyo), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
38
|
Transcriptional activation of antioxidant gene expression by Nrf2 protects against mitochondrial dysfunction and neuronal death associated with acute and chronic neurodegeneration. Exp Neurol 2020; 328:113247. [PMID: 32061629 DOI: 10.1016/j.expneurol.2020.113247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are both a primary source of reactive oxygen species (ROS) and a sensitive target of oxidative stress; damage to mitochondria can result in bioenergetic dysfunction and both necrotic and apoptotic cell death. These relationships between mitochondria and cell death are particularly strong in both acute and chronic neurodegenerative disorders. ROS levels are affected by both the production of superoxide and its toxic metabolites and by antioxidant defense mechanisms. Mitochondrial antioxidant activities include superoxide dismutase 2, glutathione peroxidase and reductase, and intramitochondrial glutathione. When intracellular conditions disrupt the homeostatic balance between ROS production and detoxification, a net increase in ROS and an oxidized shift in cellular redox state ensues. Cells respond to this imbalance by increasing the expression of genes that code for proteins that protect against oxidative stress and inhibit cytotoxic oxidation of proteins, DNA, and lipids. If, however, the genomic response to mitochondrial oxidative stress is insufficient to maintain homeostasis, mitochondrial bioenergetic dysfunction and release of pro-apoptotic mitochondrial proteins into the cytosol initiate a variety of cell death pathways, ultimately resulting in potentially lethal damage to vital organs, including the brain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a translational activating protein that enters the nucleus in response to oxidative stress, resulting in increased expression of numerous cytoprotective genes, including genes coding for mitochondrial and non-mitochondrial antioxidant proteins. Many experimental and some FDA-approved drugs promote this process. Since mitochondria are targets of ROS, it follows that protection against mitochondrial oxidative stress by the Nrf2 pathway of gene expression contributes to neuroprotection by these drugs. This document reviews the evidence that Nrf2 activation increases mitochondrial antioxidants, thereby protecting mitochondria from dysfunction and protecting neural cells from damage and death. New experimental results are provided demonstrating that post-ischemic administration of the Nrf2 activator sulforaphane protects against hippocampal neuronal death and neurologic injury in a clinically-relevant animal model of cardiac arrest and resuscitation.
Collapse
|
39
|
Carrera-Juliá S, Moreno ML, Barrios C, de la Rubia Ortí JE, Drehmer E. Antioxidant Alternatives in the Treatment of Amyotrophic Lateral Sclerosis: A Comprehensive Review. Front Physiol 2020; 11:63. [PMID: 32116773 PMCID: PMC7016185 DOI: 10.3389/fphys.2020.00063] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that produces a selective loss of the motor neurons of the spinal cord, brain stem and motor cortex. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain has been shown to be a factor that contributes to neurodegeneration and plays a potential role in the pathogenesis of ALS. The regions of the central nervous system affected have high levels of reactive oxygen species (ROS) and reduced antioxidant defenses. Scientific studies propose treatment with antioxidants to combat the characteristic OS and the regeneration of nicotinamide adenine dinucleotide (NAD+) levels by the use of precursors. This review examines the possible roles of nicotinamide riboside and pterostilbene as therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Sandra Carrera-Juliá
- Doctoral Degree’s School, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
- Department of Nutrition and Dietetics, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Mari Luz Moreno
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Carlos Barrios
- Institute for Research on Musculoskeletal Disorders, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | | | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| |
Collapse
|
40
|
Al-Azab M, Qaed E, Ouyang X, Elkhider A, Walana W, Li H, Li W, Tang Y, Adlat S, Wei J, Wang B, Li X. TL1A/TNFR2-mediated mitochondrial dysfunction of fibroblast-like synoviocytes increases inflammatory response in patients with rheumatoid arthritis via reactive oxygen species generation. FEBS J 2020; 287:3088-3104. [PMID: 31953914 DOI: 10.1111/febs.15181] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 09/26/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Rheumatoid arthritis (RA) is the major autoimmune destructive disease of joints with a complicated pathogenesis. The contribution of tumor necrosis factor-like ligand 1A (TL1A) in RA pathogenesis, especially on fibroblast-like synoviocytes (FLS), has been suggested clinically. The present study investigated the role of TL1A in mitochondrial dysfunction, induced oxidative stress in mitochondria, apoptosis resistance and the inflammatory response in FLS obtained from RA patients (RA-FLS). RA-FLS were incubated with TL1A and tumor necrosis factor receptor 2 (TNFR2) antagonist. Respiratory function, mitochondrial membrane potential and respiration associated genes of mitochondria were measured in both TL1A stimulated and non-stimulated RA-FLS. Additionally, the effects of TL1A on reactive oxygen species (ROS) production in mitochondria, apoptosis and the inflammatory response in RA-FLS were also assessed. The role of TL1A in association between ROS generation, especially mitochondrial type and the inflammatory response, was evaluated by measuring inflammation-related cytokines and signaling pathways using ROS inhibitors, diphenyleneiodonium chloride and Mito-TEMPO (Sigma-Aldrich, Miamisburg, OH, USA). We found that TL1A induced mitochondrial dysfunction by weakening mitochondrial respiration and membrane potential, which was blocked by a TNFR2 antagonist. Increased ROS synthesis in impaired mitochondria was observed with MitoSOX (Invitrogen, CA, USA) immunofluorescence staining in TL1A-stimulated RA-FLS but inhibited by a TNFR2 antagonist. TL1A influenced apoptosis resistance and inflammatory mediators via TNFR2. Inhibition of mitochondria-derived ROS compromised the production of inflammatory factors in TL1A-stimulated RA-FLS, suggesting that mitochondrial dysfunction mediated by the TL1A/TNFR2 axis might amplify the inflammatory response via regulation of mitochondria-derived ROS generation. Collectively, our results reveal that TL1A might be involved in making FLS more aggressive in RA pathogenesis via cell respiration interruption.
Collapse
Affiliation(s)
- Mahmoud Al-Azab
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.,Department of Immunology Guangzhou Institute Pediatrics, Guangzhou Women and Children Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Eskandar Qaed
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Liaoning, China
| | - Xunli Ouyang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Abdalkhalig Elkhider
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Williams Walana
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Han Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Weiping Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Salah Adlat
- Key Laboratory of Molecular Epigenetics of MOE, School of Life Science, Northeast Normal University, Changchun, China
| | - Jing Wei
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Bing Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| |
Collapse
|
41
|
Luo J, Padhi P, Jin H, Anantharam V, Zenitsky G, Wang Q, Willette AA, Kanthasamy A, Kanthasamy AG. Utilization of the CRISPR-Cas9 Gene Editing System to Dissect Neuroinflammatory and Neuropharmacological Mechanisms in Parkinson's Disease. J Neuroimmune Pharmacol 2019; 14:595-607. [PMID: 30879240 PMCID: PMC6746615 DOI: 10.1007/s11481-019-09844-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
Chronic and debilitating neurodegenerative diseases, such as Parkinson's disease (PD), impose an immense medical, emotional, and economic burden on patients and society. Due to a complex interaction between genetic and environmental risk factors, the etiology of PD remains elusive. However, the cumulative evidence emerging from clinical and experimental research over the last several decades has identified mitochondrial dysfunction, oxidative stress, neuroinflammation, and dysregulated protein degradation as the main drivers of PD neurodegeneration. The genome-editing system CRISPR (clustered regularly interspaced short palindromic repeats) has recently transformed the field of biotechnology and biomedical discovery and is poised to accelerate neurodegenerative disease research. It has been leveraged to generate PD animal models, such as Parkin, DJ-1, and PINK1 triple knockout miniature pigs. CRISPR has also allowed the deeper understanding of various PD gene interactions, as well as the identification of novel apoptotic pathways associated with neurodegenerative processes in PD. Furthermore, its application has been used to dissect neuroinflammatory pathways involved in PD pathogenesis, such as the PKCδ signaling pathway, as well as the roles of novel compensatory or protective pathways, such as Prokineticin-2 signaling. This review aims to highlight the historical milestones in the evolution of this technology and attempts to illustrate its transformative potential in unraveling disease mechanisms as well as in the development of innovative treatment strategies for PD. Graphical Abstract.
Collapse
Affiliation(s)
- Jie Luo
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Piyush Padhi
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Huajun Jin
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Vellareddy Anantharam
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Gary Zenitsky
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Qian Wang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, USA
| | - Auriel A Willette
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
42
|
Faissner S, Plemel JR, Gold R, Yong VW. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat Rev Drug Discov 2019; 18:905-922. [PMID: 31399729 DOI: 10.1038/s41573-019-0035-2] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that involves demyelination and axonal degeneration. Although substantial progress has been made in drug development for relapsing-remitting MS, treatment of the progressive forms of the disease, which are characterized clinically by the accumulation of disability in the absence of relapses, remains unsatisfactory. This unmet clinical need is related to the complexity of the pathophysiological mechanisms involved in MS progression. Chronic inflammation, which occurs behind a closed blood-brain barrier with activation of microglia and continued involvement of T cells and B cells, is a hallmark pathophysiological feature. Inflammation can enhance mitochondrial damage in neurons, which, consequently, develop an energy deficit, further reducing axonal health. The growth-inhibitory and inflammatory environment of lesions also impairs remyelination, a repair process that might protect axons from degeneration. Moreover, neurodegeneration is accelerated by the altered expression of ion channels on denuded axons. In this Review, we discuss the current understanding of these disease mechanisms and highlight emerging therapeutic strategies based on these insights, including those targeting the neuroinflammatory and degenerative aspects as well as remyelination-promoting approaches.
Collapse
Affiliation(s)
- Simon Faissner
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany. .,Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Jason R Plemel
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
43
|
Fürstenau CR, de Souza ICC, de Oliveira MR. Tanshinone I Induces Mitochondrial Protection by a Mechanism Involving the Nrf2/GSH Axis in the Human Neuroblastoma SH-SY5Y Cells Exposed to Methylglyoxal. Neurotox Res 2019; 36:491-502. [DOI: 10.1007/s12640-019-00091-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 12/30/2022]
|
44
|
Martín-Montañez E, Pavia J, Valverde N, Boraldi F, Lara E, Oliver B, Hurtado-Guerrero I, Fernandez O, Garcia-Fernandez M. The S1P mimetic fingolimod phosphate regulates mitochondrial oxidative stress in neuronal cells. Free Radic Biol Med 2019; 137:116-130. [PMID: 31035004 DOI: 10.1016/j.freeradbiomed.2019.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022]
Abstract
Fingolimod is one of the few oral drugs available for the treatment of multiple sclerosis (MS), a chronic, inflammatory, demyelinating and neurodegenerative disease. The mechanism of action proposed for this drug is based in the phosphorylation of the molecule to produce its active metabolite fingolimod phosphate (FP) which, in turns, through its interaction with S1P receptors, triggers the functional sequestration of T lymphocytes in lymphoid nodes. On the other hand, part if not most of the damage produced in MS and other neurological disorders seem to be mediated by reactive oxygen species (ROS), and mitochondria is one of the main sources of ROS. In the present work, we have evaluated the anti-oxidant profile of FP in a model of mitochondrial oxidative damage induced by menadione (Vitk3) on neuronal cultures. We provide evidence that incubation of neuronal cells with FP alleviates the Vitk3-induced toxicity, due to a decrease in mitochondrial ROS production. It also decreases regulated cell death triggered by imbalance in oxidative stress (restore values of advanced oxidation protein products and total thiol levels). Also restores mitochondrial function (cytochrome c oxidase activity, mitochondrial membrane potential and oxygen consumption rate) and morphology. Furthermore, increases the expression and activity of protective factors (increases Nrf2, HO1 and Trx2 expression and GST and NQO1 activity), being some of these effects modulated by its interaction with the S1P receptor. FP seems to increase mitochondrial stability and restore mitochondrial dynamics under conditions of oxidative stress, making this drug a potential candidate for the treatment of neurodegenerative diseases other than MS.
Collapse
Affiliation(s)
- E Martín-Montañez
- Department of Pharmacology and Paediatrics, Faculty of Medicine, Malaga University, Malaga, Spain.
| | - J Pavia
- Department of Pharmacology and Paediatrics, Faculty of Medicine, Malaga University, Malaga, Spain.
| | - N Valverde
- Department of Human Physiology, Faculty of Medicine, Malaga University, Malaga, Spain
| | - F Boraldi
- Department of Life Sciences, University of Modena e Reggio Emilia, Modena, Italy
| | - E Lara
- Department of Human Physiology, Faculty of Medicine, Malaga University, Malaga, Spain
| | - B Oliver
- Neuroscience Unit, Biomedical Research Institute of Malaga (IBIMA), Malaga University Hospital, Malaga, Spain
| | - I Hurtado-Guerrero
- Neuroscience Unit, Biomedical Research Institute of Malaga (IBIMA), Malaga University Hospital, Malaga, Spain
| | - O Fernandez
- Department of Pharmacology and Paediatrics, Faculty of Medicine, Malaga University, Malaga, Spain.
| | - M Garcia-Fernandez
- Department of Human Physiology, Faculty of Medicine, Malaga University, Malaga, Spain.
| |
Collapse
|
45
|
Khodanovich MY, Pishchelko AO, Glazacheva VY, Pan ES, Krutenkova EP, Trusov VB, Yarnykh VL. Plant polyprenols reduce demyelination and recover impaired oligodendrogenesis and neurogenesis in the cuprizone murine model of multiple sclerosis. Phytother Res 2019; 33:1363-1373. [PMID: 30864249 PMCID: PMC6594192 DOI: 10.1002/ptr.6327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/11/2019] [Accepted: 02/09/2019] [Indexed: 11/07/2022]
Abstract
Recent studies showed hepatoprotective, neuroprotective, and immunomodulatory properties of polyprenols isolated from the green verdure of Picea abies (L.) Karst. This study aimed to investigate effects of polyprenols on oligodendrogenesis, neurogenesis, and myelin content in the cuprizone demyelination model. Demyelination was induced by 0.5% cuprizone in CD-1 mice during 10 weeks. Nine cuprizone-treated animals received daily injections of polyprenols intraperitoneally at a dose of 12-mg/kg body weight during Weeks 6-10. Nine control animals and other nine cuprizone-treated received sham oil injections. At Week 10, brain sections were stained for myelin basic protein, neuro-glial antigen-2, and doublecortin to evaluate demyelination, oligodendrogenesis, and neurogenesis. Cuprizone administration caused a decrease in myelin basic protein in the corpus callosum, cortex, hippocampus, and the caudate putamen compared with the controls. Oligodendrogenesis was increased, and neurogenesis in the subventricular zone and the dentate gyrus of the hippocampus was decreased in the cuprizone-treated group compared with the controls. Mice treated with cuprizone and polyprenols did not show significant demyelination and differences in oligodendrogenesis and neurogenesis as compared with the controls. Our results suggest that polyprenols can halt demyelination, restore impaired neurogenesis, and mitigate reactive overproduction of oligodendrocytes caused by cuprizone neurotoxicity.
Collapse
Affiliation(s)
| | | | | | - Edgar S. Pan
- Laboratory of NeurobiologyTomsk State UniversityTomskRussian Federation
| | | | - Vladimir B. Trusov
- Prenolica Limited (formerly Solagran Limited), Biotechnology CompanyMelbourneVictoriaAustralia
| | - Vasily L. Yarnykh
- Laboratory of NeurobiologyTomsk State UniversityTomskRussian Federation
- Department of RadiologyUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
46
|
Nasrolahi A, Safari F, Farhoudi M, Khosravi A, Farajdokht F, Bastaminejad S, Sandoghchian Shotorbani S, Mahmoudi J. Immune system and new avenues in Parkinson’s disease research and treatment. Rev Neurosci 2019; 30:709-727. [DOI: 10.1515/revneuro-2018-0105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder characterized by degeneration of dopaminergic neurons in the substantia nigra. However, although 200 years have now passed since the primary clinical description of PD by James Parkinson, the etiology and mechanisms of neuronal loss in this disease are still not fully understood. In addition to genetic and environmental factors, activation of immunologic responses seems to have a crucial role in PD pathology. Intraneuronal accumulation of α-synuclein (α-Syn), as the main pathological hallmark of PD, potentially mediates initiation of the autoimmune and inflammatory events through, possibly, auto-reactive T cells. While current therapeutic regimens are mainly used to symptomatically suppress PD signs, application of the disease-modifying therapies including immunomodulatory strategies may slow down the progressive neurodegeneration process of PD. The aim of this review is to summarize knowledge regarding previous studies on the relationships between autoimmune reactions and PD pathology as well as to discuss current opportunities for immunomodulatory therapy.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences , Tabriz 51666-14756 , Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Fatemeh Safari
- Departmant of Medical Biotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences , Tabriz 51666-14756 , Iran
| | - Afra Khosravi
- Department of Immunology, Faculty of Medicine , Ilam University of Medical Sciences , Ilam , Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences , Tabriz 51666-14756 , Iran
| | - Saiyad Bastaminejad
- Department of Biochemistry and Molecular Medicine, School of Medicine , Ilam University of Medical Sciences , Ilam , Iran
| | | | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences , P.O. 51666-14756, Tabriz , Iran , e-mail:
| |
Collapse
|
47
|
Cannabisin F from Hemp ( Cannabis sativa) Seed Suppresses Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglia as SIRT1 Modulator. Int J Mol Sci 2019; 20:ijms20030507. [PMID: 30691004 PMCID: PMC6387064 DOI: 10.3390/ijms20030507] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Hemp seed (Fructus cannabis) is rich in lignanamides, and initial biological screening tests showed their potential anti-inflammatory and anti-oxidative capacity. This study investigated the possible effects and underlying mechanism of cannabisin F, a hempseed lignanamide, against inflammatory response and oxidative stress in lipopolysaccharide (LPS)-stimulated BV2 microglia cells. Cannabisin F suppressed the production and the mRNA levels of pro-inflammatory mediators such as interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in a concentration-dependent manner in LPS-stimulated BV2 microglia cell. Furthermore, cannabisin F enhanced SIRT1 expression and blocked LPS-induced NF-κB (Nuclear factor kappa B) signaling pathway activation by inhibiting phosphorylation of IκBα (Inhibit proteins of nuclear factor kappaB) and NF-κB p65. And the SIRT1 inhibitor EX527 significantly inhibited the effect of cannabisin F on pro-inflammatory cytokines production, suggesting that the anti-inflammatory effects of cannabisin F are SIRT1-dependent. In addition, cannabisin F reduced the production of cellular reactive oxygen species (ROS) and promoted the expression of Nrf2 (Nuclear factor erythroid-2 related factor 2) and HO-1 (Heme Oxygenase-1), suggesting that the anti-oxidative effects of cannabisin F are related to Nrf2 signaling pathway. Collectively, these results suggest that the neuro-protection effect of cannabisin F against LPS-induced inflammatory response and oxidative stress in BV2 microglia cells involves the SIRT1/NF-κB and Nrf2 pathway.
Collapse
|
48
|
Khan A, Ali T, Rehman SU, Khan MS, Alam SI, Ikram M, Muhammad T, Saeed K, Badshah H, Kim MO. Neuroprotective Effect of Quercetin Against the Detrimental Effects of LPS in the Adult Mouse Brain. Front Pharmacol 2018; 9:1383. [PMID: 30618732 PMCID: PMC6297180 DOI: 10.3389/fphar.2018.01383] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic neuroinflammation is responsible for multiple neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Lipopolysaccharide (LPS) is an essential component of the gram-negative bacterial cell wall and acts as a potent stimulator of neuroinflammation that mediates neurodegeneration. Quercetin is a natural flavonoid that is abundantly found in fruits and vegetables and has been shown to possess multiple forms of desirable biological activity including anti-inflammatory and antioxidant properties. This study aimed to evaluate the neuroprotective effect of quercetin against the detrimental effects of LPS, such as neuroinflammation-mediated neurodegeneration and synaptic/memory dysfunction, in adult mice. LPS [0.25 mg/kg/day, intraperitoneally (I.P.) injections for 1 week]-induced glial activation causes the secretion of cytokines/chemokines and other inflammatory mediators, which further activate the mitochondrial apoptotic pathway and neuronal degeneration. Compared to LPS alone, quercetin (30 mg/kg/day, I.P.) for 2 weeks (1 week prior to the LPS and 1 week cotreated with LPS) significantly reduced activated gliosis and various inflammatory markers and prevented neuroinflammation in the cortex and hippocampus of adult mice. Furthermore, quercetin rescued the mitochondrial apoptotic pathway and neuronal degeneration by regulating Bax/Bcl2, and decreasing activated cytochrome c, caspase-3 activity and cleaving PARP-1 in the cortical and hippocampal regions of the mouse brain. The quercetin treatment significantly reversed the LPS-induced synaptic loss in the cortex and hippocampus of the adult mouse brain and improved the memory performance of the LPS-treated mice. In summary, our results demonstrate that natural flavonoids such as quercetin can be beneficial against LPS-induced neurotoxicity in adult mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
49
|
MRI visualization of neuroinflammation using VCAM-1 targeted paramagnetic micelles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2341-2350. [DOI: 10.1016/j.nano.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/05/2017] [Accepted: 10/13/2017] [Indexed: 01/29/2023]
|
50
|
Areti A, Komirishetty P, Kalvala AK, Nellaiappan K, Kumar A. Rosmarinic Acid Mitigates Mitochondrial Dysfunction and Spinal Glial Activation in Oxaliplatin-induced Peripheral Neuropathy. Mol Neurobiol 2018; 55:7463-7475. [PMID: 29427084 DOI: 10.1007/s12035-018-0920-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/21/2018] [Indexed: 01/14/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting complication which develops as a consequence of treatment with chemotherapeutic agents like oxaliplatin and is a mainstay of therapy for colorectal cancer. Ever since CIPN was identified, understanding its exact pathomechanisms remains a clinical challenge. The role of mitochondrial dysfunction and glial cell activation has surfaced in the etiology of CIPN. Rosmarinic acid (RA), a known mitoprotectant exerts neuroprotection against the oxidative stress and neuroinflammation in various disease conditions. Hence, in the present study, we investigated the effect using rosmarinic acid (25 and 50 mg/kg, po) in the experimental model of oxaliplatin-induced peripheral neuropathy (OIPN) in rats. Results showed that RA significantly (p < 0.001) prevented the functional deficits, reversed oxaliplatin-induced mechanical allodynia and cold hyperalgesia in rats. It reduced the oxidative stress, improved the mitochondrial function, and prevented the oxaliplatin-induced loss of ATP levels. RA significantly (p < 0.01) inhibited the spinal glial cell activation and suppressed the expression of inflammatory markers. RA treatment also resulted in the activation of adenosine monophosphate-activated protein kinase (AMPK) in the peripheral nerves and dorsal root ganglion (DRG) which also might have contributed to its neuroprotective actions. In vitro screening also revealed that RA did not compromise the anti-cancer activity of oxaliplatin in colon cancer cells (HT-29). Taken together, the above results demonstrate the therapeutic activity of RA against the oxaliplatin-induced mitochondrial dysfunction and neuroinflammation and thus, suggest its potential for the management of OIPN. Graphical Abstract Schematic representation of neuroprotective mechanisms of rosmarinic acid via AMPK activation in oxaliplatin-evoked peripheral neuropathy.
Collapse
Affiliation(s)
- Aparna Areti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Prashanth Komirishetty
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
- Division of Neurology and Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Anil Kumar Kalvala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Karthika Nellaiappan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|