1
|
Bertlin JAC, Pauzaite T, Liang Q, Wit N, Williamson JC, Sia JJ, Matheson NJ, Ortmann BM, Mitchell TJ, Speak AO, Zhang Q, Nathan JA. VHL synthetic lethality screens uncover CBF-β as a negative regulator of STING. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610968. [PMID: 39282259 PMCID: PMC11398426 DOI: 10.1101/2024.09.03.610968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) represents the most common form of kidney cancer and is typified by biallelic inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene. Here, we undertake genome-wide CRISPR/Cas9 screening to reveal synthetic lethal interactors of VHL, and uncover that loss of Core Binding Factor β (CBF-β) causes cell death in VHL-null ccRCC cell lines and impairs tumour establishment and growth in vivo. This synthetic relationship is independent of the elevated activity of hypoxia inducible factors (HIFs) in VHL-null cells, but does involve the RUNX transcription factors that are known binding partners of CBF-β. Mechanistically, CBF-β loss leads to upregulation of type I interferon signalling, and we uncover a direct inhibitory role for CBF-β at the STING locus controlling Interferon Stimulated Gene expression. Targeting CBF-β in kidney cancer both selectively induces tumour cell lethality and promotes activation of type I interferon signalling.
Collapse
Affiliation(s)
- James A C Bertlin
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Qian Liang
- Simmons Comprehensive Cancer Center, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - James C Williamson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Jia Jhing Sia
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Brian M Ortmann
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Thomas J Mitchell
- Early Cancer Institute and Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anneliese O Speak
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Qing Zhang
- Simmons Comprehensive Cancer Center, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| |
Collapse
|
2
|
Rathore U, Haas P, Easwar Kumar V, Hiatt J, Haas KM, Bouhaddou M, Swaney DL, Stevenson E, Zuliani-Alvarez L, McGregor MJ, Turner-Groth A, Ochieng' Olwal C, Bediako Y, Braberg H, Soucheray M, Ott M, Eckhardt M, Hultquist JF, Marson A, Kaake RM, Krogan NJ. CRISPR-Cas9 screen of E3 ubiquitin ligases identifies TRAF2 and UHRF1 as regulators of HIV latency in primary human T cells. mBio 2024; 15:e0222223. [PMID: 38411080 PMCID: PMC11005436 DOI: 10.1128/mbio.02222-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
During HIV infection of CD4+ T cells, ubiquitin pathways are essential to viral replication and host innate immune response; however, the role of specific E3 ubiquitin ligases is not well understood. Proteomics analyses identified 116 single-subunit E3 ubiquitin ligases expressed in activated primary human CD4+ T cells. Using a CRISPR-based arrayed spreading infectivity assay, we systematically knocked out 116 E3s from activated primary CD4+ T cells and infected them with NL4-3 GFP reporter HIV-1. We found 10 E3s significantly positively or negatively affected HIV infection in activated primary CD4+ T cells, including UHRF1 (pro-viral) and TRAF2 (anti-viral). Furthermore, deletion of either TRAF2 or UHRF1 in three JLat models of latency spontaneously increased HIV transcription. To verify this effect, we developed a CRISPR-compatible resting primary human CD4+ T cell model of latency. Using this system, we found that deletion of TRAF2 or UHRF1 initiated latency reactivation and increased virus production from primary human resting CD4+ T cells, suggesting these two E3s represent promising targets for future HIV latency reversal strategies. IMPORTANCE HIV, the virus that causes AIDS, heavily relies on the machinery of human cells to infect and replicate. Our study focuses on the host cell's ubiquitination system which is crucial for numerous cellular processes. Many pathogens, including HIV, exploit this system to enhance their own replication and survival. E3 proteins are part of the ubiquitination pathway that are useful drug targets for host-directed therapies. We interrogated the 116 E3s found in human immune cells known as CD4+ T cells, since these are the target cells infected by HIV. Using CRISPR, a gene-editing tool, we individually removed each of these enzymes and observed the impact on HIV infection in human CD4+ T cells isolated from healthy donors. We discovered that 10 of the E3 enzymes had a significant effect on HIV infection. Two of them, TRAF2 and UHRF1, modulated HIV activity within the cells and triggered an increased release of HIV from previously dormant or "latent" cells in a new primary T cell assay. This finding could guide strategies to perturb hidden HIV reservoirs, a major hurdle to curing HIV. Our study offers insights into HIV-host interactions, identifies new factors that influence HIV infection in immune cells, and introduces a novel methodology for studying HIV infection and latency in human immune cells.
Collapse
Affiliation(s)
- Ujjwal Rathore
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Paige Haas
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Vigneshwari Easwar Kumar
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Joseph Hiatt
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Medical Scientist Training Program, University of California, San Francisco, California, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA
| | - Kelsey M. Haas
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Mehdi Bouhaddou
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Danielle L. Swaney
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Erica Stevenson
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Lorena Zuliani-Alvarez
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Michael J. McGregor
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | | | - Charles Ochieng' Olwal
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Hannes Braberg
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Margaret Soucheray
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California, USA
| | - Manon Eckhardt
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexander Marson
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
- Diabetes Center, University of California, San Francisco, California, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Robyn M. Kaake
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Nevan J. Krogan
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| |
Collapse
|
3
|
Gai Y, Duan S, Wang S, Liu K, Yu X, Yang C, Li G, Zhou Y, Yu B, Wu J, Wang C, Yu X. Design of Vif-Derived Peptide Inhibitors with Anti-HIV-1 Activity by Interrupting Vif-CBFβ Interaction. Viruses 2024; 16:490. [PMID: 38675833 PMCID: PMC11053914 DOI: 10.3390/v16040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
One of the major functions of the accessory protein Vif of human immunodeficiency virus type 1 (HIV-1) is to induce the degradation of APOBEC3 (A3) family proteins by recruiting a Cullin5-ElonginB/C-CBFβ E3 ubiquitin ligase complex to facilitate viral replication. Therefore, the interactions between Vif and the E3 complex proteins are promising targets for the development of novel anti-HIV-1 drugs. Here, peptides are designed for the Vif-CBFβ interaction based on the sequences of Vif mutants with higher affinity for CBFβ screened by a yeast surface display platform. We identified two peptides, VMP-63 and VMP-108, that could reduce the infectivity of HIV-1 produced from A3G-positive cells with IC50 values of 49.4 μM and 55.1 μM, respectively. They protected intracellular A3G from Vif-mediated degradation in HEK293T cells, consequently increasing A3G encapsulation into the progeny virions. The peptides could rapidly enter cells after addition to HEK293T cells and competitively inhibit the binding of Vif to CBFβ. Homology modeling analysis demonstrated the binding advantages of VMP-63 and VMP-108 with CBFβ over their corresponding wild-type peptides. However, only VMP-108 effectively restricted long-term HIV-1 replication and protected A3 functions in non-permissive T lymphocytes. Our findings suggest that competitive Vif-derived peptides targeting the Vif-CBFβ interaction are promising for the development of novel therapeutic strategies for acquired immune deficiency syndrome.
Collapse
Affiliation(s)
- Yanxin Gai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Sizhu Duan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Shiqi Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Xin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Chumeng Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Guoqing Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
4
|
Kamba K, Wan L, Unzai S, Morishita R, Takaori-Kondo A, Nagata T, Katahira M. Direct inhibition of human APOBEC3 deaminases by HIV-1 Vif independent of the proteolysis pathway. Biophys J 2024; 123:294-306. [PMID: 38115583 PMCID: PMC10870137 DOI: 10.1016/j.bpj.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
HIV-1 Vif is known to counteract the antiviral activity of human apolipoprotein B mRNA-editing catalytic polypeptide-like (A3), a cytidine deaminase, in various ways. However, the precise mechanism behind this interaction has remained elusive. Within infected cells, Vif forms a complex called VβBCC, comprising CBFβ and the components of E3 ubiquitin ligase, Elongin B, Elongin C, and Cullin5. Together with the ubiquitin-conjugating enzyme, VβBCC induces ubiquitination-mediated proteasomal degradation of A3. However, Vif exhibits additional counteractive effects. In this study, we elucidate that VβBCC inhibits deamination by A3G, A3F, and A3B independently of proteasomal degradation. Surprisingly, we discovered that this inhibition for A3G is directly attributed to the interaction between VβBCC and the C-terminal domain of A3G. Previously, it was believed that Vif did not interact with the C-terminal domain. Our findings suggest that inhibiting the interaction between VβBCC and the C-terminal domain, as well as the N-terminal domain known to be targeted for ubiquitination, of A3G may be needed to prevent counteraction by Vif.
Collapse
Affiliation(s)
- Keisuke Kamba
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | - Li Wan
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan; Graduate School of Energy Science, Kyoto University, Uji, Kyoto, Japan
| | - Satoru Unzai
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd., Matsuyama, Ehime, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan; Graduate School of Energy Science, Kyoto University, Uji, Kyoto, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan; Graduate School of Energy Science, Kyoto University, Uji, Kyoto, Japan.
| |
Collapse
|
5
|
Ji N, Huang W, Dang H, Xiao H, Shi Y, Guo J, Chen K, Wang J, Zou J. CBFβ is induced by spring viremia of carp virus and promotes virus replication in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104751. [PMID: 37268261 DOI: 10.1016/j.dci.2023.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
The core binding factor subunit beta (CBFβ) is a transcription factor that forms a complex with virial proteins to promote viral infection. In this study, we identified a CBFβ homolog from zebrafish (zfCBFβ) and characterized the biological activity. The deduced zfCBFβ protein was highly similar to orthologs from other species. The zfcbfβ gene was constitutively expressed in tissues and was induced in immune tissues after infection with spring viremia carp virus (SVCV) and stimulation with poly(I:C). Interestingly, zfcbfβ is not induced by type I interferons. Overexpression of zfcbfβ induced tnfα expression but inhibited isg15 expression. Also, overexpression of zfcbfβ significantly increased SVCV titer in the EPC cells. Co-immunoprecipitation assay revealed that zfCBFβ interacts with SVCV phosphoprotein (SVCVP) and host p53, resulting in the increased stability of zfCBFβ. Our results provide evidence that CBFβ is targeted by virus to suppress host antiviral response.
Collapse
Affiliation(s)
- Ning Ji
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hehe Xiao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanjie Shi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiahong Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
| |
Collapse
|
6
|
Mehmood A, Song S, Du X, Yan H, Wang X, Guo L, Li B. mRNA expression profile reveals differentially expressed genes in splenocytes of experimental autoimmune encephalomyelitis model. Int J Exp Pathol 2023; 104:247-257. [PMID: 37427716 PMCID: PMC10500171 DOI: 10.1111/iep.12488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 07/11/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a mouse model that can be used to investigate aetiology, pathogenesis, and treatment approaches for multiple sclerosis (MS). A novel integrated bioinformatics approach was used to understand the involvement of differentially expressed genes (DEGs) in the spleen of EAE mice through data mining of existing microarray and RNA-seq datasets. We screened differentially expressed mRNAs using mRNA expression profile data of EAE spleens taken from Gene Expression Omnibus (GEO). Functional and pathway enrichment analyses of DEGs were performed by Database for Annotation, Visualization, and Integrated Discovery (DAVID). Subsequently, the DEGs-encoded protein-protein interaction (PPI) network was constructed. The 784 DEGs in GSE99300 A.SW PP-EAE mice spleen mRNA profiles, 859 DEGs in GSE151701 EAE mice spleen mRNA profiles, and 646 DEGs in GSE99300 SJL/J PP-EAE mice spleen mRNA profiles were explored. Functional enrichment of 55 common DEGs among 3 sub-datasets revealed several immune-related terms, such as neutrophil extravasation, leucocyte migration, antimicrobial humoral immune response mediated by an antimicrobial peptide, toll-like receptor 4 bindings, IL-17 signalling pathway, and TGF-beta signalling pathway. In the screening of 10 hub genes, including MPO, ELANE, CTSG, LTF, LCN2, SELP, CAMP, S100A9, ITGA2B, and PRTN3, and in choosing and validating the 5 DEGs, including ANK1, MBOAT2, SLC25A21, SLC43A1, and SOX6, the results showed that SLC43A1 and SOX6 were significantly decreased in EAE mice spleen. Thus this study offers a list of genes expressed in the spleen that might play a key role in the pathogenesis of EAE.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Shuang Song
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Xiaochen Du
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Hongjing Yan
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Xuan Wang
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Li Guo
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Bin Li
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| |
Collapse
|
7
|
Bao Q, Zhou J. Various strategies for developing APOBEC3G protectors to circumvent human immunodeficiency virus type 1. Eur J Med Chem 2023; 250:115188. [PMID: 36773550 DOI: 10.1016/j.ejmech.2023.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Host restriction factor APOBEC3G (A3G) efficiently restricts Vif-deficient HIV-1 by being packaged with progeny virions and causing the G to A mutation during HIV-1 viral DNA synthesis as the progeny virus infects new cells. HIV-1 expresses Vif protein to resist the activity of A3G by mediating A3G degradation. This process requires the self-association of Vif in concert with A3G proteins, protein chaperones, and factors of the ubiquitination machinery, which are potential targets to discover novel anti-HIV drugs. This review will describe compounds that have been reported so far to inhibit viral replication of HIV-1 by protecting A3G from Vif-mediated degradation.
Collapse
Affiliation(s)
- Qiqi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
8
|
Dutta B, Osato M. The RUNX Family, a Novel Multifaceted Guardian of the Genome. Cells 2023; 12:255. [PMID: 36672189 PMCID: PMC9856552 DOI: 10.3390/cells12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The DNA repair machinery exists to protect cells from daily genetic insults by orchestrating multiple intrinsic and extrinsic factors. One such factor recently identified is the Runt-related transcription factor (RUNX) family, a group of proteins that act as a master transcriptional regulator for multiple biological functions such as embryonic development, stem cell behaviors, and oncogenesis. A significant number of studies in the past decades have delineated the involvement of RUNX proteins in DNA repair. Alterations in RUNX genes cause organ failure and predisposition to cancers, as seen in patients carrying mutations in the other well-established DNA repair genes. Herein, we review the currently existing findings and provide new insights into transcriptional and non-transcriptional multifaceted regulation of DNA repair by RUNX family proteins.
Collapse
Affiliation(s)
- Bibek Dutta
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Motomi Osato
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
9
|
Dominant Negative Mutants of Human Immunodeficiency Virus Type 1 Viral Infectivity Factor (Vif) Disrupt Core-Binding Factor Beta-Vif Interaction. J Virol 2022; 96:e0055522. [PMID: 35950859 PMCID: PMC9472641 DOI: 10.1128/jvi.00555-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B mRNA-editing catalytic polypeptide-like 3 family members (APOBEC3s) are host restriction factors that inhibit viral replication. Viral infectivity factor (Vif), a human immunodeficiency virus type 1 (HIV-1) accessory protein, mediates the degradation of APOBEC3s by forming the Vif-E3 complex, in which core-binding factor beta (CBFβ) is an essential molecular chaperone. Here, we screened nonfunctional Vif mutants with high affinity for CBFβ to inhibit HIV-1 in a dominant negative manner. We applied the yeast surface display technology to express Vif random mutant libraries, and mutants showing high CBFβ affinity were screened using flow cytometry. Most of the screened Vif mutants containing random mutations of different frequencies were able to rescue APOBEC3G (A3G). In the subsequent screening, three of the mutants restricted HIV-1, recovered G-to-A hypermutation, and rescued APOBEC3s. Among them, Vif-6M showed a cross-protection effect toward APOBEC3C, APOBEC3F, and African green monkey A3G. Stable expression of Vif-6M in T lymphocytes inhibited the viral replication in newly HIV-1-infected cells and the chronically infected cell line H9/HXB2. Furthermore, the expression of Vif-6M provided a survival advantage to T lymphocytes infected with HIV-1. These results suggest that dominant negative Vif mutants acting on the Vif-CBFβ target potently restrict HIV-1. IMPORTANCE Antiviral therapy cannot eliminate HIV and exhibits disadvantages such as drug resistance and toxicity. Therefore, novel strategies for inhibiting viral replication in patients with HIV are urgently needed. APOBEC3s in host cells are able to inhibit viral replication but are antagonized by HIV-1 Vif-mediated degradation. Therefore, we screened nonfunctional Vif mutants with high affinity for CBFβ to compete with the wild-type Vif (wtVif) as a potential strategy to assist with HIV-1 treatment. Most screened mutants rescued the expression of A3G in the presence of wtVif, especially Vif-6M, which could protect various APOBEC3s and improve the incorporation of A3G into HIV-1 particles. Transduction of Vif-6M into T lymphocytes inhibited the replication of the newly infected virus and the chronically infected virus. These data suggest that Vif mutants targeting the Vif-CBFβ interaction may be promising in the development of a new AIDS therapeutic strategy.
Collapse
|
10
|
Myint W, Schiffer CA, Matsuo H. HIV-1 VIF and human APOBEC3G interaction directly observed through molecular specific labeling using a new dual promotor vector. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 339:107230. [PMID: 35550909 PMCID: PMC9149140 DOI: 10.1016/j.jmr.2022.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 06/03/2023]
Abstract
Over the last few decades, protein NMR isotope labeling methods using E. coli based expression have revolutionized the information accessible from biomolecular NMR experiments. Selective labeling of a protein of interest in a multi-protein complex can significantly reduce the number of cross-peaks and allow for study of large protein complexes. However, limitations still remain since some proteins are not stable independently and cannot be separately labeled in either NMR active isotope enriched or unenriched media and reconstituted into a multimeric complex. To overcome this limitation, the LEGO NMR method was previously developed using protein expression plasmids containing T7 or araBAD promoters to separately express proteins in the same E. coli after changing between labeled and unlabeled media. Building on this, we developed a method to label the Human Immunodeficiency Virus type 1 viral infectivity factor (HIV-1 Vif), a monomerically unstable protein, in complex with CBFβ, it's host binding partner. We designed a dual promoter plasmid containing both T7 and araBAD promoters to independently control the expression of HIV-1 Vif in NMR active isotope enriched media and CBFβ in unenriched media. Using this method, we assigned the backbone resonance and directly observed the binding of HIV-1 Vif with APOBEC3G, a host restriction factor to HIV-1.
Collapse
Affiliation(s)
- Wazo Myint
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Hiroshi Matsuo
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
11
|
Xu S, Yuan H. A three-methylation-driven genes based deep learning model for tuberculosis diagnosis in people with and without human immunodeficiency virus co-infection. Microbiol Immunol 2022; 66:317-323. [PMID: 35510555 DOI: 10.1111/1348-0421.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022]
Abstract
Improved diagnostic tests for tuberculosis (TB) among people living with human immunodeficiency virus (HIV) are urgently required. We hypothesized that methylation-driven genes of host blood could be used to diagnosis patients co-infected with HIV/TB. In this study, we identified three methylation-driven genes (MDGs) between patients with HIV mono-infection and with HIV/TB co-infection using R package MethylMix. Then, we developed a deep learning model using three MDGs screened which distinguished HIV/TB co-infection from HIV mono-infection with a sensitivity of 95.2% and a specificity of 88.3%. On the two independent datasets, the sensitivity was 80% to 92.8%, respectively; the specificity was 72.7% to 87.5%, respectively. Besides, our deep learning model also accurately classified TB from healthy controls (75.0-100% sensitivity, 91.3-98.1% specificity) and other respiratory disorders (ORDs) (72.7-75.0% sensitivity, 70.9-72.7% specificity). This study will contribute to improve molecular diagnosis for HIV/TB co-infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shaohua Xu
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, People's Republic of China
| | - Huicheng Yuan
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, People's Republic of China
| |
Collapse
|
12
|
Johnson JR, Crosby DC, Hultquist JF, Kurland AP, Adhikary P, Li D, Marlett J, Swann J, Hüttenhain R, Verschueren E, Johnson TL, Newton BW, Shales M, Simon VA, Beltrao P, Frankel AD, Marson A, Cox JS, Fregoso OI, Young JAT, Krogan NJ. Global post-translational modification profiling of HIV-1-infected cells reveals mechanisms of host cellular pathway remodeling. Cell Rep 2022; 39:110690. [PMID: 35417684 PMCID: PMC9429972 DOI: 10.1016/j.celrep.2022.110690] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 01/03/2023] Open
Abstract
Viruses must effectively remodel host cellular pathways to replicate and evade immune defenses, and they must do so with limited genomic coding capacity. Targeting post-translational modification (PTM) pathways provides a mechanism by which viruses can broadly and rapidly transform a hostile host environment into a hospitable one. We use mass spectrometry-based proteomics to quantify changes in protein abundance and two PTM types-phosphorylation and ubiquitination-in response to HIV-1 infection with viruses harboring targeted deletions of a subset of HIV-1 genes. PTM analysis reveals a requirement for Aurora kinase activity in HIV-1 infection and identified putative substrates of a phosphatase that is degraded during infection. Finally, we demonstrate that the HIV-1 Vpr protein inhibits histone H1 ubiquitination, leading to defects in DNA repair.
Collapse
Affiliation(s)
- Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA.
| | - David C Crosby
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Andrew P Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prithy Adhikary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Donna Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - John Marlett
- Viral Vector Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Justine Swann
- Viral Vector Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Erik Verschueren
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Tasha L Johnson
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Viviana A Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CD10 1SD, UK
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94720, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Jeffery S Cox
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Oliver I Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - John A T Young
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Wang G, Yuan J, Luo J, Ocansey DKW, Zhang X, Qian H, Xu W, Mao F. Emerging role of protein modification in inflammatory bowel disease. J Zhejiang Univ Sci B 2022; 23:173-188. [PMID: 35261214 PMCID: PMC8913920 DOI: 10.1631/jzus.b2100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022]
Abstract
The onset of inflammatory bowel disease (IBD) involves many factors, including environmental parameters, microorganisms, and the immune system. Although research on IBD continues to expand, the specific pathogenesis mechanism is still unclear. Protein modification refers to chemical modification after protein biosynthesis, also known as post-translational modification (PTM), which causes changes in the properties and functions of proteins. Since proteins can be modified in different ways, such as acetylation, methylation, and phosphorylation, the functions of proteins in different modified states will also be different. Transitions between different states of protein or changes in modification sites can regulate protein properties and functions. Such modifications like neddylation, sumoylation, glycosylation, and acetylation can activate or inhibit various signaling pathways (e.g., nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK), and protein kinase B (AKT)) by changing the intestinal flora, regulating immune cells, modulating the release of cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), and ultimately leading to the maintenance of the stability of the intestinal epithelial barrier. In this review, we focus on the current understanding of PTM and describe its regulatory role in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Gaoying Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Clinical Laboratory, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Jintao Yuan
- Clinical Laboratory, the People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, China
| | - Ji Luo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast 02630, Ghana
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
14
|
Hu Y, Pan Q, Zhou K, Ling Y, Wang H, Li Y. RUNX1 inhibits the antiviral immune response against influenza A virus through attenuating type I interferon signaling. Virol J 2022; 19:39. [PMID: 35248104 PMCID: PMC8897766 DOI: 10.1186/s12985-022-01764-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Influenza A viruses (IAVs) are zoonotic, segmented negative-stranded RNA viruses. The rapid mutation of IAVs results in host immune response escape and antiviral drug and vaccine resistance. RUNX1 is a transcription factor that not only plays essential roles in hematopoiesis, but also functions as a regulator in inflammation. However, its role in the innate immunity to IAV infection has not been well studied. Methods To investigate the effects of RUNX1 on IAV infection and explore the mechanisms that RUNX1 uses during IAV infection. We infected the human alveolar epithelial cell line (A549) with influenza virus A/Puerto Rico/8/34 (H1N1) (PR8) and examined RUNX1 expression by Western blot and qRT-PCR. We also knocked down or overexpressed RUNX1 in A549 cells, then evaluated viral replication by Western blot, qRT-PCR, and viral titration. Results We found RUNX1 expression is induced by IAV H1N1 PR8 infection, but not by poly(I:C) treatment, in the human alveolar epithelial cell line A549. Knockdown of RUNX1 significantly inhibited IAV infection. Conversely, overexpression of RUNX1 efficiently promoted production of progeny viruses. Additionally, RUNX1 knockdown increased IFN-β and ISGs production while RUNX1 overexpression compromised IFN-β and ISGs production upon PR8 infection in A549 cells. We further showed that RUNX1 may attenuate the interferon signaling transduction by hampering the expression of IRF3 and STAT1 during IAV infection. Conclusions Taken together, we found RUNX1 attenuates type I interferon signaling to facilitate IAV infection in A549 cells.
Collapse
|
15
|
Martins LJ, Szaniawski MA, Williams ESCP, Coiras M, Hanley TM, Planelles V. HIV-1 Accessory Proteins Impart a Modest Interferon Response and Upregulate Cell Cycle-Related Genes in Macrophages. Pathogens 2022; 11:pathogens11020163. [PMID: 35215107 PMCID: PMC8878269 DOI: 10.3390/pathogens11020163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 01/23/2022] [Indexed: 12/10/2022] Open
Abstract
HIV-1 infection of myeloid cells is associated with the induction of an IFN response. How HIV-1 manipulates and subverts the IFN response is of key interest for the design of therapeutics to improve immune function and mitigate immune dysregulation in people living with HIV. HIV-1 accessory genes function to improve viral fitness by altering host pathways in ways that enable transmission to occur without interference from the immune response. We previously described changes in transcriptomes from HIV-1 infected and from IFN-stimulated macrophages and noted that transcription of IFN-regulated genes and genes related to cell cycle processes were upregulated during HIV-1 infection. In the present study, we sought to define the roles of individual viral accessory genes in upregulation of IFN-regulated and cell cycle-related genes using RNA sequencing. We observed that Vif induces a set of genes involved in mitotic processes and that these genes are potently downregulated upon stimulation with type-I and -II IFNs. Vpr also upregulated cell cycle-related genes and was largely responsible for inducing an attenuated IFN response. We note that the induced IFN response most closely resembled a type-III IFN response. Vpu and Nef-regulated smaller sets of genes whose transcriptomic signatures upon infection related to cytokine and chemokine processes. This work provides more insight regarding processes that are manipulated by HIV-1 accessory proteins at the transcriptional level.
Collapse
Affiliation(s)
- Laura J. Martins
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (L.J.M.); (E.S.C.P.W.)
| | - Matthew A. Szaniawski
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA;
| | - Elizabeth S. C. P. Williams
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (L.J.M.); (E.S.C.P.W.)
| | - Mayte Coiras
- AIDS Immunopathology Unit, National Center of Microbiology (CNM) Instituto de Salud Carlos III (ISDIII), 28222 Madrid, Spain;
| | - Timothy M. Hanley
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (L.J.M.); (E.S.C.P.W.)
- Division of Hematopathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Correspondence: (T.M.H.); (V.P.)
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (L.J.M.); (E.S.C.P.W.)
- Correspondence: (T.M.H.); (V.P.)
| |
Collapse
|
16
|
A Conserved uORF Regulates APOBEC3G Translation and Is Targeted by HIV-1 Vif Protein to Repress the Antiviral Factor. Biomedicines 2021; 10:biomedicines10010013. [PMID: 35052693 PMCID: PMC8773096 DOI: 10.3390/biomedicines10010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 Vif protein is essential for viral fitness and pathogenicity. Vif decreases expression of cellular restriction factors APOBEC3G (A3G), A3F, A3D and A3H, which inhibit HIV-1 replication by inducing hypermutation during reverse transcription. Vif counteracts A3G at several levels (transcription, translation, and protein degradation) that altogether reduce the levels of A3G in cells and prevent its incorporation into viral particles. How Vif affects A3G translation remains unclear. Here, we uncovered the importance of a short conserved uORF (upstream ORF) located within two critical stem-loop structures of the 5′ untranslated region (5′-UTR) of A3G mRNA for this process. A3G translation occurs through a combination of leaky scanning and translation re-initiation and the presence of an intact uORF decreases the extent of global A3G translation under normal conditions. Interestingly, the uORF is also absolutely required for Vif-mediated translation inhibition and redirection of A3G mRNA into stress granules. Overall, we discovered that A3G translation is regulated by a small uORF conserved in the human population and that Vif uses this specific feature to repress its translation.
Collapse
|
17
|
Kaake RM, Echeverria I, Kim SJ, Von Dollen J, Chesarino NM, Feng Y, Yu C, Ta H, Chelico L, Huang L, Gross J, Sali A, Krogan NJ. Characterization of an A3G-Vif HIV-1-CRL5-CBFβ Structure Using a Cross-linking Mass Spectrometry Pipeline for Integrative Modeling of Host-Pathogen Complexes. Mol Cell Proteomics 2021; 20:100132. [PMID: 34389466 PMCID: PMC8459920 DOI: 10.1016/j.mcpro.2021.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 10/24/2022] Open
Abstract
Structural analysis of host-pathogen protein complexes remains challenging, largely due to their structural heterogeneity. Here, we describe a pipeline for the structural characterization of these complexes using integrative structure modeling based on chemical cross-links and residue-protein contacts inferred from mutagenesis studies. We used this approach on the HIV-1 Vif protein bound to restriction factor APOBEC3G (A3G), the Cullin-5 E3 ring ligase (CRL5), and the cellular transcription factor Core Binding Factor Beta (CBFβ) to determine the structure of the (A3G-Vif-CRL5-CBFβ) complex. Using the MS-cleavable DSSO cross-linker to obtain a set of 132 cross-links within this reconstituted complex along with the atomic structures of the subunits and mutagenesis data, we computed an integrative structure model of the heptameric A3G-Vif-CRL5-CBFβ complex. The structure, which was validated using a series of tests, reveals that A3G is bound to Vif mostly through its N-terminal domain. Moreover, the model ensemble quantifies the dynamic heterogeneity of the A3G C-terminal domain and Cul5 positions. Finally, the model was used to rationalize previous structural, mutagenesis and functional data not used for modeling, including information related to the A3G-bound and unbound structures as well as mapping functional mutations to the A3G-Vif interface. The experimental and computational approach described here is generally applicable to other challenging host-pathogen protein complexes.
Collapse
Affiliation(s)
- Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - John Von Dollen
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas M Chesarino
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yuqing Feng
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - Hai Ta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Linda Chelico
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - John Gross
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA.
| |
Collapse
|
18
|
APOBEC3F Constitutes a Barrier to Successful Cross-Species Transmission of Simian Immunodeficiency Virus SIVsmm to Humans. J Virol 2021; 95:e0080821. [PMID: 34132575 DOI: 10.1128/jvi.00808-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Simian immunodeficiency virus infecting sooty mangabeys (SIVsmm) has been transmitted to humans on at least nine occasions, giving rise to human immunodeficiency virus type 2 (HIV-2) groups A to I. SIVsmm isolates replicate in human T cells and seem capable of overcoming major human restriction factors without adaptation. However, only groups A and B are responsible for the HIV-2 epidemic in sub-Saharan Africa, and it is largely unclear whether adaptive changes were associated with spread in humans. To address this, we examined the sensitivity of infectious molecular clones (IMCs) of five HIV-2 strains and representatives of five different SIVsmm lineages to various APOBEC3 proteins. We confirmed that SIVsmm strains replicate in human T cells, albeit with more variable replication fitness and frequently lower efficiency than HIV-2 IMCs. Efficient viral propagation was generally dependent on intact vif genes, highlighting the need for counteraction of APOBEC3 proteins. On average, SIVsmm was more susceptible to inhibition by human APOBEC3D, -F, -G, and -H than HIV-2. For example, human APOBEC3F reduced infectious virus yield of SIVsmm by ∼80% but achieved only ∼40% reduction in the case of HIV-2. Functional and mutational analyses of human- and monkey-derived alleles revealed that an R128T polymorphism in APOBEC3F contributes to species-specific counteraction by HIV-2 and SIVsmm Vifs. In addition, a T84S substitution in SIVsmm Vif increased its ability to counteract human APOBEC3F. Altogether, our results confirm that SIVsmm Vif proteins show intrinsic activity against human APOBEC3 proteins but also demonstrate that epidemic HIV-2 strains evolved an increased ability to counteract this class of restriction factors during human adaptation. IMPORTANCE Viral zoonoses pose a significant threat to human health, and it is important to understand determining factors. SIVs infecting great apes gave rise to HIV-1. In contrast, SIVs infecting African monkey species have not been detected in humans, with one notable exception. SIVsmm from sooty mangabeys has crossed the species barrier to humans on at least nine independent occasions and seems capable of overcoming many innate defense mechanisms without adaptation. Here, we confirmed that SIVsmm Vif proteins show significant activity against human APOBEC3 proteins. Our analyses also revealed, however, that different lineages of SIVsmm are significantly more susceptible to inhibition by various human APOBEC3 proteins than HIV-2 strains. Mutational analyses suggest that an R128T substitution in APOBEC3F and a T84S change in Vif contribute to species-specific counteraction by HIV-2 and SIVsmm. Altogether, our results support that epidemic HIV-2 strains acquired increased activity against human APOBEC3 proteins to clear this restrictive barrier.
Collapse
|
19
|
Chintala K, Mohareer K, Banerjee S. Dodging the Host Interferon-Stimulated Gene Mediated Innate Immunity by HIV-1: A Brief Update on Intrinsic Mechanisms and Counter-Mechanisms. Front Immunol 2021; 12:716927. [PMID: 34394123 PMCID: PMC8358655 DOI: 10.3389/fimmu.2021.716927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Host restriction factors affect different phases of a viral life cycle, contributing to innate immunity as the first line of defense against viruses, including HIV-1. These restriction factors are constitutively expressed, but triggered upon infection by interferons. Both pre-integration and post-integration events of the HIV-1 life cycle appear to play distinct roles in the induction of interferon-stimulated genes (ISGs), many of which encode antiviral restriction factors. However, HIV-1 counteracts the mechanisms mediated by these restriction factors through its encoded components. Here, we review the recent findings of pathways that lead to the induction of ISGs, and the mechanisms employed by the restriction factors such as IFITMs, APOBEC3s, MX2, and ISG15 in preventing HIV-1 replication. We also reflect on the current understanding of the counter-mechanisms employed by HIV-1 to evade innate immune responses and overcome host restriction factors. Overall, this mini-review provides recent insights into the HIV-1-host cross talk bridging the understanding between intracellular immunity and research avenues in the field of therapeutic interventions against HIV-1.
Collapse
|
20
|
Lin A, Elbezanti WO, Schirling A, Ahmed A, Van Duyne R, Cocklin S, Klase Z. Alprazolam Prompts HIV-1 Transcriptional Reactivation and Enhances CTL Response Through RUNX1 Inhibition and STAT5 Activation. Front Neurol 2021; 12:663793. [PMID: 34367046 PMCID: PMC8339301 DOI: 10.3389/fneur.2021.663793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
The HIV-1 pandemic is a significant challenge to the field of medicine. Despite advancements in antiretroviral (ART) development, 38 million people worldwide still live with this disease without a cure. A significant barrier to the eradication of HIV-1 lies in the persistently latent pool that establishes early in the infection. The “shock and kill” strategy relies on the discovery of a latency-reversing agent (LRA) that can robustly reactivate the latent pool and not limit immune clearance. We have found that a benzodiazepine (BDZ), that is commonly prescribed for panic and anxiety disorder, to be an ideal candidate for latency reversal. The BDZ Alprazolam functions as an inhibitor of the transcription factor RUNX1, which negatively regulates HIV-1 transcription. In addition to the displacement of RUNX1 from the HIV-1 5′LTR, Alprazolam potentiates the activation of STAT5 and its recruitment to the viral promoter. The activation of STAT5 in cytotoxic T cells may enable immune activation which is independent of the IL-2 receptor. These findings have significance for the potential use of Alprazolam in a curative strategy and to addressing the neuroinflammation associated with neuroHIV-1.
Collapse
Affiliation(s)
- Angel Lin
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States.,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Weam Othman Elbezanti
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexis Schirling
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States.,HIV-1 Dynamics and Replication Program, National Cancer Institute, Frederick, MD, United States
| | - Adel Ahmed
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rachel Van Duyne
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Zachary Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
21
|
Cristinelli S, Angelino P, Janowczyk A, Delorenzi M, Ciuffi A. HIV Modifies the m6A and m5C Epitranscriptomic Landscape of the Host Cell. FRONTIERS IN VIROLOGY 2021. [DOI: 10.3389/fviro.2021.714475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The study of RNA modifications, today known as epitranscriptomics, is of growing interest. The N6-methyladenosine (m6A) and 5-methylcytosine (m5C) RNA modifications are abundantly present on mRNA molecules, and impact RNA interactions with other proteins or molecules, thereby affecting cellular processes, such as RNA splicing, export, stability, and translation. Recently m6A and m5C marks were found to be present on human immunodeficiency (HIV) transcripts as well and affect viral replication. Therefore, the discovery of RNA methylation provides a new layer of regulation of HIV expression and replication, and thus offers novel array of opportunities to inhibit replication. However, no study has been performed to date to investigate the impact of HIV replication on the transcript methylation level in the infected cell. We used a productive HIV infection model, consisting of the CD4+ SupT1 T cell line infected with a VSV-G pseudotyped HIVeGFP-based vector, to explore the temporal landscape of m6A and m5C epitranscriptomic marks upon HIV infection, and to compare it to mock-treated cells. Cells were collected at 12, 24, and 36 h post-infection for mRNA extraction and FACS analysis. M6A RNA modifications were investigated by methylated RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-Seq). M5C RNA modifications were investigated using a bisulfite conversion approach followed by high-throughput sequencing (BS-Seq). Our data suggest that HIV infection impacted the methylation landscape of HIV-infected cells, inducing mostly increased methylation of cellular transcripts upon infection. Indeed, differential methylation (DM) analysis identified 59 m6A hypermethylated and only 2 hypomethylated transcripts and 14 m5C hypermethylated transcripts and 7 hypomethylated ones. All data and analyses are also freely accessible on an interactive web resource (http://sib-pc17.unil.ch/HIVmain.html). Furthermore, both m6A and m5C methylations were detected on viral transcripts and viral particle RNA genomes, as previously described, but additional patterns were identified. This work used differential epitranscriptomic analysis to identify novel players involved in HIV life cycle, thereby providing innovative opportunities for HIV regulation.
Collapse
|
22
|
Gaba A, Flath B, Chelico L. Examination of the APOBEC3 Barrier to Cross Species Transmission of Primate Lentiviruses. Viruses 2021; 13:1084. [PMID: 34200141 PMCID: PMC8228377 DOI: 10.3390/v13061084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The transmission of viruses from animal hosts into humans have led to the emergence of several diseases. Usually these cross-species transmissions are blocked by host restriction factors, which are proteins that can block virus replication at a specific step. In the natural virus host, the restriction factor activity is usually suppressed by a viral antagonist protein, but this is not the case for restriction factors from an unnatural host. However, due to ongoing viral evolution, sometimes the viral antagonist can evolve to suppress restriction factors in a new host, enabling cross-species transmission. Here we examine the classical case of this paradigm by reviewing research on APOBEC3 restriction factors and how they can suppress human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). APOBEC3 enzymes are single-stranded DNA cytidine deaminases that can induce mutagenesis of proviral DNA by catalyzing the conversion of cytidine to promutagenic uridine on single-stranded viral (-)DNA if they escape the HIV/SIV antagonist protein, Vif. APOBEC3 degradation is induced by Vif through the proteasome pathway. SIV has been transmitted between Old World Monkeys and to hominids. Here we examine the adaptations that enabled such events and the ongoing impact of the APOBEC3-Vif interface on HIV in humans.
Collapse
Affiliation(s)
- Amit Gaba
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| | - Ben Flath
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| |
Collapse
|
23
|
Hu Y, Knecht KM, Shen Q, Xiong Y. Multifaceted HIV-1 Vif interactions with human E3 ubiquitin ligase and APOBEC3s. FEBS J 2021; 288:3407-3417. [PMID: 32893454 PMCID: PMC8172064 DOI: 10.1111/febs.15550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
APOBEC3 (A3) proteins are a family of host antiviral restriction factors that potently inhibit various retroviral infections, including human immunodeficiency virus (HIV)-1. To overcome this restriction, HIV-1 virion infectivity factor (Vif) recruits the cellular cofactor CBFβ to assist in targeting A3 proteins to a host E3 ligase complex for polyubiquitination and subsequent proteasomal degradation. Intervention of the Vif-A3 interactions could be a promising therapeutic strategy to facilitate A3-mediated suppression of HIV-1 in patients. In this structural snapshot, we review the structural features of the recently determined structure of human A3F in complex with HIV-1 Vif and its cofactor CBFβ, discuss insights into the molecular principles of Vif-A3 interplay during the arms race between the virus and host, and highlight the therapeutic implications.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kirsten M. Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Qi Shen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
24
|
Moron-Lopez S, Urrea V, Dalmau J, Lopez M, Puertas MC, Ouchi D, Gómez A, Passaes C, Mothe B, Brander C, Saez-Cirion A, Clotet B, Esteller M, Berdasco M, Martinez-Picado J. The Genome-wide Methylation Profile of CD4+ T Cells From Individuals With Human Immunodeficiency Virus (HIV) Identifies Distinct Patterns Associated With Disease Progression. Clin Infect Dis 2021; 72:e256-e264. [PMID: 32712664 PMCID: PMC8096268 DOI: 10.1093/cid/ciaa1047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human genetic variation-mostly in the human leukocyte antigen (HLA) and C-C chemokine receptor type 5 (CCR5) regions-explains 25% of the variability in progression of human immunodeficiency virus (HIV) infection. However, it is also known that viral infections can modify cellular DNA methylation patterns. Therefore, changes in the methylation of cytosine-guanine (CpG) islands might modulate progression of HIV infection. METHODS In total, 85 samples were analyzed: 21 elite controllers (EC), 21 subjects with HIV before combination antiretroviral therapy (cART) (viremic, 93 325 human immunodeficiency virus type 1 [HIV-1] RNA copies/mL) and under suppressive cART (cART, median of 17 months, <50 HIV-1 RNA copies/mL), and 22 HIV-negative donors (HIVneg). We analyzed the methylation pattern of 485 577 CpG in DNA from peripheral CD4+ T lymphocytes. We selected the most differentially methylated gene (TNF) and analyzed its specific methylation, messenger RNA (mRNA) expression, and plasma protein levels in 5 individuals before and after initiation of cART. RESULTS We observed 129 methylated CpG sites (associated with 43 gene promoters) for which statistically significant differences were recorded in viremic versus HIVneg, 162 CpG sites (55 gene promoters) in viremic versus cART, 441 CpG sites (163 gene promoters) in viremic versus EC, but none in EC versus HIVneg. The TNF promoter region was hypermethylated in viremic versus HIVneg, cART, and EC. Moreover, we observed greater plasma levels of TNF in viremic individuals than in EC, cART, and HIVneg. CONCLUSIONS Our study shows that genome methylation patterns vary depending on HIV infection status and progression profile and that these variations might have an impact on controlling HIV infection in the absence of cART.
Collapse
Affiliation(s)
| | - Victor Urrea
- AIDS Research Institute IrsiCaixa, Badalona, Spain
| | | | - Miguel Lopez
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain.,Epigenetic Therapies Group, Experimental and Clinical Hematology Program, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | - Dan Ouchi
- AIDS Research Institute IrsiCaixa, Badalona, Spain
| | - Antonio Gómez
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistence, Paris, France
| | - Beatriz Mothe
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,Fundació Lluita Contra la Sida, University Hospital "Germans Trias i Pujol," Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Christian Brander
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistence, Paris, France
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,Fundació Lluita Contra la Sida, University Hospital "Germans Trias i Pujol," Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Manel Esteller
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.,Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Badalona, Spain
| | - Maria Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain.,Epigenetic Therapies Group, Experimental and Clinical Hematology Program, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
25
|
Degradation-Independent Inhibition of APOBEC3G by the HIV-1 Vif Protein. Viruses 2021; 13:v13040617. [PMID: 33916704 PMCID: PMC8066197 DOI: 10.3390/v13040617] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin–proteasome system plays an important role in the cell under normal physiological conditions but also during viral infections. Indeed, many auxiliary proteins from the (HIV-1) divert this system to its own advantage, notably to induce the degradation of cellular restriction factors. For instance, the HIV-1 viral infectivity factor (Vif) has been shown to specifically counteract several cellular deaminases belonging to the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC3 or A3) family (A3A to A3H) by recruiting an E3-ubiquitin ligase complex and inducing their polyubiquitination and degradation through the proteasome. Although this pathway has been extensively characterized so far, Vif has also been shown to impede A3s through degradation-independent processes, but research on this matter remains limited. In this review, we describe our current knowledge regarding the degradation-independent inhibition of A3s, and A3G in particular, by the HIV-1 Vif protein, the molecular mechanisms involved, and highlight important properties of this small viral protein.
Collapse
|
26
|
Knecht KM, Hu Y, Rubene D, Cook M, Ziegler SJ, Jónsson SR, Xiong Y. Maedi-visna virus Vif protein uses motifs distinct from HIV-1 Vif to bind zinc and the cofactor required for A3 degradation. J Biol Chem 2021; 296:100045. [PMID: 33465707 PMCID: PMC7949081 DOI: 10.1074/jbc.ra120.015828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 11/06/2022] Open
Abstract
The mammalian apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3 or A3) family of cytidine deaminases restrict viral infections by mutating viral DNA and impeding reverse transcription. To overcome this antiviral activity, most lentiviruses express a viral accessory protein called the virion infectivity factor (Vif), which recruits A3 proteins to cullin-RING E3 ubiquitin ligases such as cullin-5 (Cul5) for ubiquitylation and subsequent proteasomal degradation. Although Vif proteins from primate lentiviruses such as HIV-1 utilize the transcription factor core-binding factor subunit beta as a noncanonical cofactor to stabilize the complex, the maedi-visna virus (MVV) Vif hijacks cyclophilin A (CypA) instead. Because core-binding factor subunit beta and CypA are both highly conserved among mammals, the requirement for two different cellular cofactors suggests that these two A3-targeting Vif proteins have different biochemical and structural properties. To investigate this topic, we used a combination of in vitro biochemical assays and in vivo A3 degradation assays to study motifs required for the MVV Vif to bind zinc ion, Cul5, and the cofactor CypA. Our results demonstrate that although some common motifs between the HIV-1 Vif and MVV Vif are involved in recruiting Cul5, different determinants in the MVV Vif are required for cofactor binding and stabilization of the E3 ligase complex, such as the zinc-binding motif and N- and C-terminal regions of the protein. Results from this study advance our understanding of the mechanism of MVV Vif recruitment of cellular factors and the evolution of lentiviral Vif proteins.
Collapse
Affiliation(s)
- Kirsten M Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Diana Rubene
- Institute for Experimental Pathology, University of Iceland, Keldur, Iceland
| | - Matthew Cook
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Samantha J Ziegler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Stefán R Jónsson
- Institute for Experimental Pathology, University of Iceland, Keldur, Iceland
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
27
|
The Role of APOBECs in Viral Replication. Microorganisms 2020; 8:microorganisms8121899. [PMID: 33266042 PMCID: PMC7760323 DOI: 10.3390/microorganisms8121899] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) proteins are a diverse and evolutionarily conserved family of cytidine deaminases that provide a variety of functions from tissue-specific gene expression and immunoglobulin diversity to control of viruses and retrotransposons. APOBEC family expansion has been documented among mammalian species, suggesting a powerful selection for their activity. Enzymes with a duplicated zinc-binding domain often have catalytically active and inactive domains, yet both have antiviral function. Although APOBEC antiviral function was discovered through hypermutation of HIV-1 genomes lacking an active Vif protein, much evidence indicates that APOBECs also inhibit virus replication through mechanisms other than mutagenesis. Multiple steps of the viral replication cycle may be affected, although nucleic acid replication is a primary target. Packaging of APOBECs into virions was first noted with HIV-1, yet is not a prerequisite for viral inhibition. APOBEC antagonism may occur in viral producer and recipient cells. Signatures of APOBEC activity include G-to-A and C-to-T mutations in a particular sequence context. The importance of APOBEC activity for viral inhibition is reflected in the identification of numerous viral factors, including HIV-1 Vif, which are dedicated to antagonism of these deaminases. Such viral antagonists often are only partially successful, leading to APOBEC selection for viral variants that enhance replication or avoid immune elimination.
Collapse
|
28
|
Saleemi MA, Ahmad B, Benchoula K, Vohra MS, Mea HJ, Chong PP, Palanisamy NK, Wong EH. Emergence and molecular mechanisms of SARS-CoV-2 and HIV to target host cells and potential therapeutics. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104583. [PMID: 33035643 PMCID: PMC7536551 DOI: 10.1016/j.meegid.2020.104583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
The emergence of a new coronavirus, in around late December 2019 which had first been reported in Wuhan, China has now developed into a massive threat to global public health. The World Health Organization (WHO) has named the disease caused by the virus as COVID-19 and the virus which is the culprit was renamed from the initial novel respiratory 2019 coronavirus to SARS-CoV-2. The person-to-person transmission of this virus is ongoing despite drastic public health mitigation measures such as social distancing and movement restrictions implemented in most countries. Understanding the source of such an infectious pathogen is crucial to develop a means of avoiding transmission and further to develop therapeutic drugs and vaccines. To identify the etiological source of a novel human pathogen is a dynamic process that needs comprehensive and extensive scientific validations, such as observed in the Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS), and human immunodeficiency virus (HIV) cases. In this context, this review is devoted to understanding the taxonomic characteristics of SARS-CoV-2 and HIV. Herein, we discuss the emergence and molecular mechanisms of both viral infections. Nevertheless, no vaccine or therapeutic drug is yet to be approved for the treatment of SARS-CoV-2, although it is highly likely that new effective medications that target the virus specifically will take years to establish. Therefore, this review reflects the latest repurpose of existing antiviral therapeutic drug choices available to combat SARS-CoV-2.
Collapse
Affiliation(s)
- Mansab Ali Saleemi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Hing Jian Mea
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Navindra Kumari Palanisamy
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
29
|
Duan S, Wang S, Song Y, Gao N, Meng L, Gai Y, Zhang Y, Wang S, Wang C, Yu B, Wu J, Yu X. A novel HIV-1 inhibitor that blocks viral replication and rescues APOBEC3s by interrupting vif/CBFβ interaction. J Biol Chem 2020; 295:14592-14605. [PMID: 32817167 PMCID: PMC7586213 DOI: 10.1074/jbc.ra120.013404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/18/2020] [Indexed: 11/06/2022] Open
Abstract
HIV remains a health challenge worldwide, partly because of the continued development of resistance to drugs. Therefore, it is urgent to find new HIV inhibitors and targets. Apolipoprotein B mRNA-editing catalytic polypeptide-like 3 family members (APOBEC3) are important host restriction factors that inhibit HIV-1 replication by their cytidine deaminase activity. HIV-1 viral infectivity factor (Vif) promotes proteasomal degradation of APOBEC3 proteins by recruiting the E3 ubiquitin ligase complex, in which core-binding factor β (CBFβ) is a necessary molecular chaperone. Interrupting the interaction between Vif and CBFβ can release APOBEC3 proteins to inhibit HIV-1 replication and may be useful for developing new drug targets for HIV-1. In this study, we identified a potent small molecule inhibitor CBFβ/Vif-3 (CV-3) of HIV-1 replication by employing structure-based virtual screening using the crystal structure of Vif and CBFβ (PDB: 4N9F) and validated CV-3's antiviral activity. We found that CV-3 specifically inhibited HIV-1 replication (IC50 = 8.16 µm; 50% cytotoxic concentration >100 µm) in nonpermissive lymphocytes. Furthermore, CV-3 treatment rescued APOBEC3 family members (human APOBEC3G (hA3G), hA3C, and hA3F) in the presence of Vif and enabled hA3G packaging into HIV-1 virions, which resulted in Gly-to-Ala hypermutations in viral genomes. Finally, we used FRET to demonstrate that CV-3 inhibited the interaction between Vif and CBFβ by simultaneously forming hydrogen bonds with residues Gln-67, Ile-102, and Arg-131 of CBFβ. These findings demonstrate that CV-3 can effectively inhibit HIV-1 by blocking the interaction between Vif and CBFβ and that this interaction can serve as a new target for developing HIV-1 inhibitors.
Collapse
Affiliation(s)
- Sizhu Duan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Shiqi Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yanan Song
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Nan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Lina Meng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yanxin Gai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Ying Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
30
|
Novel association of genetic variants in non-coding regulatory regions with HIV-1 infection. INFECTION GENETICS AND EVOLUTION 2020; 85:104514. [PMID: 32861908 DOI: 10.1016/j.meegid.2020.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/23/2020] [Accepted: 08/22/2020] [Indexed: 11/22/2022]
Abstract
Host genetic variability interplays with the environment and variegating viral factors to determine the outcome in HIV-1/AIDS. Several GWAS studies have reported that genetic heterogeneity of individuals leads to differential HIV susceptibility. Proxy SNPs that are in Linkage Disequilibrium to the GWAS SNPs could be important targets in HIV pathogenesis and need to be analyzed further for their potential regulatory role. Current study thus aimed to identify novel proxy SNPs that may play a critical role in HIV susceptibility and disease progression. 372 SNPs, associated with HIV-1/AIDS pathogenesis, were retrieved via GWAS catalogue. 1854 proxy SNPs, in Linkage Disequilibrium (r2 = 0.8) to the GWAS reported SNPs, were identified using the SNAP web tool. Regulatory functions of aforementioned 1854 polymorphic sites (GWAS SNPs and their proxy SNPs) were acquired from RegulomeDB. 178 of the proxy SNPs showed evidence of strong regulatory potential returning a score of ≤3. Among these regulatory SNPs, 22 had already been reported for their association with HIV/AIDS while 156 SNPs showed novel association. Three of these novel SNPs (g.rs6457282T>C, g.rs17064977C>T and g.rs3130350G>T) were validated using sequence specific PCR (SSP-PCR) on HIV-infected patients. For g.rs6457282T>C and rs17064977C>T, CT genotype was determined to be significantly associated with increased risk of HIV-1 infection (rs6457282T>C: OR = 9.5, 95% CI = 3.0792-29.3099, p = 0.0001; rs17064977C>T: OR = 8.1077, 95% CI = 3.1125-21.119, p = 0.0001). Moreover, the association of interacting protein partners of affected genes with HIV-1 elucidates the significance of corresponding SNPs in HIV disease outcome that further needs to be functionally deciphered.
Collapse
|
31
|
Aouizerat BE, Byun E, Pullinger CR, Gay C, Lerdal A, Lee KA. Sleep disruption and duration are associated with variants in genes involved in energy homeostasis in adults with HIV/AIDS. Sleep Med 2020; 82:84-95. [PMID: 33906044 DOI: 10.1016/j.sleep.2020.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 07/21/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine whether selected genes and plasma markers involved in energy homeostasis are associated with sleep disruption or duration in adults with HIV/AIDS. METHODS A sample of 289 adults with HIV/AIDS wore a wrist actigraph for 72 h to estimate total sleep time (TST) and wake after sleep onset (WASO). Twenty-three single nucleotide polymorphisms (SNP) spanning 5 energy homeostasis genes (adiponectin [ADIPOQ], ghrelin [GHRL], leptin [LEP], peroxisome proliferator-activated receptor-alpha [PPARA], and -gamma [PPARG]) were genotyped using a custom array. Plasma markers of energy homeostasis (adiponectin, ghrelin, leptin) were measured by commercial multiplex assay. RESULTS After adjusting for demographic and clinical characteristics (race/ethnicity, gender, CD4 cell count, waist circumference, medications), both WASO and TST were associated with SNPs in ADIPOQ (rs182052), LEP (rs10244329, rs3828942), PPARA (rs135551, rs4253655), and PPARG (rs709151). Additional SNPs in ADIPOQ were associated with WASO (rs1501299, rs3821799, rs6773957) and TST (rs2241766). TST was also associated with SNPs in GHRL (rs26802), LEP (rs11760956), PPARA (rs135547, rs8138102, rs4253776), and PPARG (rs12490265, rs796313). Many covariate-adjusted associations involved a significant interaction with markers of HIV (viral load, years since diagnosis). Among plasma markers, higher adiponectin was associated with less WASO, higher ghrelin and glucose levels with shorter TST, and higher leptin with longer TST. CONCLUSIONS Replication of SNPs in all five genes and three plasma markers of energy homeostasis were associated with objective sleep measures. HIV disease influenced many of the associations. Findings strengthen evidence for associations between energy homeostasis genetics and poor sleep, and provide direction for pharmacological intervention research.
Collapse
Affiliation(s)
- Bradley E Aouizerat
- Bluestone Center for Clinical Research, New York University, NY, USA; Department of Oral and Maxillofacial Surgery, New York University, NY, USA.
| | - Eeeseung Byun
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA, USA; Department of Physiological Nursing, University of California at San Francisco, San Francisco, CA, USA
| | - Caryl Gay
- Department of Family Health Care Nursing, University of California at San Francisco, San Francisco, CA, USA; Department of Patient Safety and Research, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Anners Lerdal
- Department of Patient Safety and Research, Lovisenberg Diakonale Hospital, Oslo, Norway; Department of Interdisciplinary Health Sciences, Institute of Health and Society, Faculty of Medicine, University of Oslo, Norway
| | - Kathryn A Lee
- Department of Family Health Care Nursing, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
32
|
Pan Y, Shlyakhtenko LS, Lyubchenko YL. High-speed atomic force microscopy directly visualizes conformational dynamics of the HIV Vif protein in complex with three host proteins. J Biol Chem 2020; 295:11995-12001. [PMID: 32587092 PMCID: PMC7443491 DOI: 10.1074/jbc.ra120.014442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Indexed: 11/06/2022] Open
Abstract
Vif (viral infectivity factor) is a protein that is essential for the replication of the HIV-1 virus. The key function of Vif is to disrupt the antiviral activity of host APOBEC3 (apolipoprotein B mRNA-editing enzyme catalytic subunit 3) proteins, which mutate viral nucleic acids. Inside the cell, Vif binds to the host cell proteins Elongin-C, Elongin-B, and core-binding factor subunit β, forming a four-protein complex called VCBC. The structure of VCBC-Cullin5 has recently been solved by X-ray crystallography, and, using molecular dynamics simulations, the dynamics of VCBC have been characterized. Here, we applied time-lapse high-speed atomic force microscopy to visualize the conformational changes of the VCBC complex. We determined the three most favorable conformations of this complex, which we identified as the triangle, dumbbell, and globular structures. Moreover, we characterized the dynamics of each of these structures. Our data revealed the very dynamic behavior of all of them, with the triangle and dumbbell structures being the most dynamic. These findings provide insight into the structure and dynamics of the VCBC complex and may support efforts to improve HIV treatment, because Vif is essential for virus survival in the cell.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Luda S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
33
|
Delviks-Frankenberry KA, Desimmie BA, Pathak VK. Structural Insights into APOBEC3-Mediated Lentiviral Restriction. Viruses 2020; 12:E587. [PMID: 32471198 PMCID: PMC7354603 DOI: 10.3390/v12060587] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 01/18/2023] Open
Abstract
Mammals have developed clever adaptive and innate immune defense mechanisms to protect against invading bacterial and viral pathogens. Human innate immunity is continuously evolving to expand the repertoire of restriction factors and one such family of intrinsic restriction factors is the APOBEC3 (A3) family of cytidine deaminases. The coordinated expression of seven members of the A3 family of cytidine deaminases provides intrinsic immunity against numerous foreign infectious agents and protects the host from exogenous retroviruses and endogenous retroelements. Four members of the A3 proteins-A3G, A3F, A3H, and A3D-restrict HIV-1 in the absence of virion infectivity factor (Vif); their incorporation into progeny virions is a prerequisite for cytidine deaminase-dependent and -independent activities that inhibit viral replication in the host target cell. HIV-1 encodes Vif, an accessory protein that antagonizes A3 proteins by targeting them for polyubiquitination and subsequent proteasomal degradation in the virus producing cells. In this review, we summarize our current understanding of the role of human A3 proteins as barriers against HIV-1 infection, how Vif overcomes their antiviral activity, and highlight recent structural and functional insights into A3-mediated restriction of lentiviruses.
Collapse
Affiliation(s)
| | | | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; (K.A.D.-F.); (B.A.D.)
| |
Collapse
|
34
|
Abstract
As a part of the innate immune system, humans encode proteins that inhibit viruses such as HIV-1. These broadly acting antiviral proteins do not protect humans from viral infections because viruses encode proteins that antagonize the host antiviral proteins to evade the innate immune system. One such example of a host antiviral protein is APOBEC3C (A3C), which weakly inhibits HIV-1. Here, we show that we can improve the antiviral activity of A3C by duplicating the DNA sequence to create a synthetic tandem domain and, furthermore, that the proteins thus generated are relatively resistant to the viral antagonist Vif. Together, these data give insights about how nature has evolved a defense against viral pathogens such as HIV. Humans encode proteins, called restriction factors, that inhibit replication of viruses such as HIV-1. The members of one family of antiviral proteins, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; shortened here to A3), act by deaminating cytidines to uridines during the reverse transcription reaction of HIV-1. The A3 locus encodes seven genes, named A3A to A3H. These genes have either one or two cytidine deaminase domains, and several of these A3s potently restrict HIV-1. A3C, which has only a single cytidine deaminase domain, however, inhibits HIV-1 only very weakly. We tested novel double domain protein combinations by genetically linking two A3C genes to make a synthetic tandem domain protein. This protein created a “super restriction factor” that had more potent antiviral activity than the native A3C protein, which correlated with increased packaging into virions. Furthermore, disabling one of the active sites of the synthetic tandem domain protein resulted in an even greater increase in the antiviral activity—recapitulating a similar evolution seen in A3F and A3G (double domain A3s that use only a single catalytically active deaminase domain). These A3C tandem domain proteins do not have an increase in mutational activity but instead inhibit formation of reverse transcription products, which correlates with their ability to form large higher-order complexes in cells. Finally, the A3C-A3C super restriction factor largely escaped antagonism by the HIV-1 viral protein Vif.
Collapse
|
35
|
Binning JM, Chesarino NM, Emerman M, Gross JD. Structural Basis for a Species-Specific Determinant of an SIV Vif Protein toward Hominid APOBEC3G Antagonism. Cell Host Microbe 2020; 26:739-747.e4. [PMID: 31830442 DOI: 10.1016/j.chom.2019.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/05/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022]
Abstract
Primate lentiviruses encode a Vif protein that counteracts the host antiviral APOBEC3 (A3) family members. The adaptation of Vif to species-specific A3 determinants is a critical event that allowed the spillover of a lentivirus from monkey reservoirs to chimpanzees and subsequently to humans, which gave rise to HIV-1 and the acquired immune deficiency syndrome (AIDS) pandemic. How Vif-A3 protein interactions are remodeled during evolution is unclear. Here, we report a 2.94 Å crystal structure of the Vif substrate receptor complex from simian immunodeficiency virus isolated from red-capped mangabey (SIVrcm). The structure of the SIVrcm Vif complex illuminates the stage of lentiviral Vif evolution that is immediately prior to entering hominid primates. Structure-function studies reveal the adaptations that allowed SIVrcm Vif to antagonize hominid A3G. These studies show a partitioning between an evolutionarily dynamic specificity determinant and a conserved protein interacting surface on Vif that enables adaptation while maintaining protein interactions required for potent A3 antagonism.
Collapse
Affiliation(s)
- Jennifer M Binning
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicholas M Chesarino
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
36
|
Chesarino NM, Emerman M. Polymorphisms in Human APOBEC3H Differentially Regulate Ubiquitination and Antiviral Activity. Viruses 2020; 12:E378. [PMID: 32235597 PMCID: PMC7232234 DOI: 10.3390/v12040378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
The APOBEC3 family of cytidine deaminases are an important part of the host innate immune defense against endogenous retroelements and retroviruses like Human Immunodeficiency Virus (HIV). APOBEC3H (A3H) is the most polymorphic of the human APOBEC3 genes, with four major haplotypes circulating in the population. Haplotype II is the only antivirally-active variant of A3H, while the majority of the population possess independently destabilizing polymorphisms present in haplotype I (R105G) and haplotypes III and IV (N15del). In this paper, we show that instability introduced by either polymorphism is positively correlated with degradative ubiquitination, while haplotype II is protected from this modification. Inhibiting ubiquitination by mutating all of the A3H lysines increased the expression of haplotypes III and IV, but these stabilized forms of haplotype III and IV had a strict nuclear localization, and did not incorporate into virions, nor exhibit antiviral activity. Fusion chimeras with haplotype II allowed for stabilization, cytoplasmic retention, and packaging of the N15del-containing haplotype III, but the haplotype III component of these chimeras was unable to restrict HIV-1 on its own. Thus, the evolutionary loss of A3H activity in many humans involves functional deficiencies independent of protein stability.
Collapse
Affiliation(s)
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| |
Collapse
|
37
|
Inhibition of Vif-Mediated Degradation of APOBEC3G through Competitive Binding of Core-Binding Factor Beta. J Virol 2020; 94:JVI.01708-19. [PMID: 31941780 DOI: 10.1128/jvi.01708-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/27/2019] [Indexed: 12/31/2022] Open
Abstract
Vif counteracts the host restriction factor APOBEC3G (A3G) and other APOBEC3s by preventing the incorporation of A3G into progeny virions. We previously identified Vif mutants with a dominant-negative (D/N) phenotype that interfered with the function of wild-type Vif, inhibited the degradation of A3G, and reduced the infectivity of viral particles by increased packaging of A3G. However, the mechanism of interference remained unclear, in particular since all D/N Vif mutants were unable to bind Cul5 and some mutants additionally failed to bind A3G, ruling out competitive binding to A3G or the E3 ubiquitin ligase complex as the sole mechanism. The goal of the current study was to revisit the mechanism of D/N interference by Vif mutants and analyze the possible involvement of core binding factor beta (CBFβ) in this process. We found a clear correlation of D/N properties of Vif mutants with their ability to engage CBFβ. Only mutants that retained the ability to bind CBFβ exhibited the D/N phenotype. Competition studies revealed that D/N Vif mutants directly interfered with the association of CBFβ and wild-type Vif. Furthermore, overexpression of CBFβ counteracted the interference of D/N Vif mutants with A3G degradation by wild-type Vif. Finally, overexpression of Runx1 mimicked the effect of D/N Vif mutants and inhibited the degradation of A3G by wild-type Vif. Taken together, we identified CBFβ as the key player involved in D/N interference by Vif.IMPORTANCE Of all the accessory proteins encoded by HIV-1 and other primate lentiviruses, Vif has arguably the strongest potential as a target for antiviral therapy. This conclusion is based on the observation that replication of HIV-1 in vivo is critically dependent on Vif. Thus, inhibiting the function of Vif via small-molecule inhibitors or other approaches has significant therapeutic potential. We previously identified dominant-negative (D/N) Vif variants whose expression interferes with the function of virus-encoded wild-type Vif. We now show that D/N interference involves competitive binding of D/N Vif variants to the transcriptional cofactor core binding factor beta (CBFβ), which is expressed in cells in limiting quantities. Overexpression of CBFβ neutralized the D/N phenotype of Vif. In contrast, overexpression of Runx1, a cellular binding partner of CBFβ, phenocopied the D/N Vif phenotype by sequestering endogenous CBFβ. Thus, our results provide proof of principle that D/N Vif variants could have therapeutic potential.
Collapse
|
38
|
Azimi FC, Lee JE. Structural perspectives on HIV-1 Vif and APOBEC3 restriction factor interactions. Protein Sci 2020; 29:391-406. [PMID: 31518043 PMCID: PMC6954718 DOI: 10.1002/pro.3729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 11/06/2022]
Abstract
Human immunodeficiency virus (HIV) is a retroviral pathogen that targets human immune cells such as CD4+ T cells, macrophages, and dendritic cells. The human apolipoprotein B mRNA- editing catalytic polypeptide 3 (APOBEC3 or A3) cytidine deaminases are a key class of intrinsic restriction factors that inhibit replication of HIV. When HIV-1 enters the cell, the immune system responds by inducing the activation of the A3 family proteins, which convert cytosines to uracils in single-stranded DNA replication intermediates, neutralizing the virus. HIV counteracts this intrinsic immune response by encoding a protein termed viral infectivity factor (Vif). Vif targets A3 to an E3 ubiquitin ligase complex for poly-ubiquitination and proteasomal degradation. Vif is unique in that it can recognize and counteract multiple A3 restriction factor substrates. Structural biology studies have provided significant insights into the overall architectures and functions of Vif and A3 proteins; however, a structure of the Vif-A3 complex has remained elusive. In this review, we summarize and reanalyze experimental data from recent structural, biochemical, and functional studies to provide key perspectives on the residues involved in Vif-A3 protein-protein interactions.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Laboratory Medicine and Pathobiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
39
|
Liu Y, Tan X. Viral Manipulations of the Cullin-RING Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:99-110. [PMID: 31898224 DOI: 10.1007/978-981-15-1025-0_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cullin-RING ubiquitin ligases (CRLs) are efficient and diverse toolsets of the cells to regulate almost every biological process. However, these characteristics have also been usurped by many viruses to optimize for their replication. CRLs are often at the forefront of the arms races in the coevolution of viruses and hosts. Here we review the modes of actions and functional consequences of viral manipulations of host cell CRLs. We also discuss the therapeutic applications to target these viral manipulations for treating viral infections.
Collapse
Affiliation(s)
- Ying Liu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xu Tan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
40
|
Abstract
Cullin-RING ubiquitin ligases (CRLs) represent the largest superfamily of multi-subunit E3s conserved in all eukaryotes. Soon after the discovery of these important ubiquitin ligase machineries, structural studies have made tremendous contributions to our understanding of their functions. Identification of the key components of CRLs by early studies raised immediate questions as to how these multi-subunit complexes assemble to promote the polyubiquitination of substrates. Specifically, how do the CRL subunits interact with each other to form a versatile E3 platform? How do they recognize specific substrates? How are the CRL-substrate interactions regulated in response to upstream signals? How are the CRL E3s themselves activated and deactivated, and how are substrate receptor subunits of CRLs exchanged in the cell? Even though we might not yet have complete answers to these questions, extensive structural analyses of CRL complexes in the past two decades have begun to unveil the themes and variations of CRL biology. In this chapter we will discuss both classic and emerging structures that help elucidate the overall architecture of CRLs, their substrate recognition modes, and regulatory mechanism of CRLs by NEDD8 modification.
Collapse
|
41
|
Hu Y, Desimmie BA, Nguyen HC, Ziegler SJ, Cheng TC, Chen J, Wang J, Wang H, Zhang K, Pathak VK, Xiong Y. Structural basis of antagonism of human APOBEC3F by HIV-1 Vif. Nat Struct Mol Biol 2019; 26:1176-1183. [PMID: 31792451 PMCID: PMC6899190 DOI: 10.1038/s41594-019-0343-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/28/2019] [Indexed: 01/15/2023]
Abstract
HIV-1 Vif promotes degradation of the antiviral APOBEC3 (A3) proteins through the host ubiquitin-proteasome pathway to enable viral immune evasion. Disrupting Vif-A3 interactions to reinstate the A3-catalyzed suppression of HIV-1 replication is a potential approach for antiviral therapeutics. However, the molecular mechanisms by which Vif recognizes A3 proteins remain elusive. Here we report a cryo-EM structure of the Vif-targeted C-terminal domain of human A3F in complex with HIV-1 Vif and its cellular cofactor CBFβ, at 3.9 Å resolution. The structure shows that Vif and CBFβ form a platform to recruit A3F, revealing a direct A3F-recruiting role of CBFβ beyond Vif stabilization, and captures multiple independent A3F-Vif interfaces. Together with our biochemical and cellular studies, our structural findings establish the molecular determinants that are critical for Vif-mediated neutralization of A3F and provide a comprehensive framework of how HIV-1 Vif hijacks the host protein degradation machinery to counteract viral restriction by A3F.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Belete A Desimmie
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Henry C Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Samantha J Ziegler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Tat Cheung Cheng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,IGBMC, CNRS, Illkirch, France
| | - John Chen
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Jia Wang
- School of Life Sciences, Tsinghua University, Haidian District, Beijing, China
| | - Hongwei Wang
- School of Life Sciences, Tsinghua University, Haidian District, Beijing, China
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
42
|
Hüttenhain R, Xu J, Burton LA, Gordon DE, Hultquist JF, Johnson JR, Satkamp L, Hiatt J, Rhee DY, Baek K, Crosby DC, Frankel AD, Marson A, Harper JW, Alpi AF, Schulman BA, Gross JD, Krogan NJ. ARIH2 Is a Vif-Dependent Regulator of CUL5-Mediated APOBEC3G Degradation in HIV Infection. Cell Host Microbe 2019; 26:86-99.e7. [PMID: 31253590 DOI: 10.1016/j.chom.2019.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/24/2018] [Accepted: 04/26/2019] [Indexed: 12/29/2022]
Abstract
The Cullin-RING E3 ligase (CRL) family is commonly hijacked by pathogens to redirect the host ubiquitin proteasome machinery to specific targets. During HIV infection, CRL5 is hijacked by HIV Vif to target viral restriction factors of the APOBEC3 family for ubiquitination and degradation. Here, using a quantitative proteomics approach, we identify the E3 ligase ARIH2 as a regulator of CRL5-mediated APOBEC3 degradation. The CUL5Vif/CBFß complex recruits ARIH2 where it acts to transfer ubiquitin directly to the APOBEC3 targets. ARIH2 is essential for CRL5-dependent HIV infectivity in primary CD4+ T cells. Furthermore, we show that ARIH2 cooperates with CRL5 to prime other cellular substrates for polyubiquitination, suggesting this may represent a general mechanism beyond HIV infection and APOBEC3 degradation. Taken together, these data identify ARIH2 as a co-factor in the Vif-hijacked CRL5 complex that contributes to HIV infectivity and demonstrate the operation of the E1-E2-E3/E3-substrate ubiquitination mechanism in a viral infection context.
Collapse
Affiliation(s)
- Ruth Hüttenhain
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA.
| | - Jiewei Xu
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - Lily A Burton
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David E Gordon
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - Judd F Hultquist
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA; Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey R Johnson
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - Laura Satkamp
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - Joseph Hiatt
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Y Rhee
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kheewoong Baek
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - David C Crosby
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Arno F Alpi
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nevan J Krogan
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA.
| |
Collapse
|
43
|
Ball KA, Chan LM, Stanley DJ, Tierney E, Thapa S, Ta HM, Burton L, Binning JM, Jacobson MP, Gross JD. Conformational Dynamics of the HIV-Vif Protein Complex. Biophys J 2019; 116:1432-1445. [PMID: 30961890 PMCID: PMC6486493 DOI: 10.1016/j.bpj.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/29/2022] Open
Abstract
Human immunodeficiency virus-1 viral infectivity factor (Vif) is an intrinsically disordered protein responsible for the ubiquitination of the APOBEC3 (A3) antiviral proteins. Vif folds when it binds Cullin-RING E3 ligase 5 and the transcription cofactor CBF-β. A five-protein complex containing the substrate receptor (Vif, CBF-β, Elongin-B, Elongin-C (VCBC)) and Cullin5 (CUL5) has a published crystal structure, but dynamics of this VCBC-CUL5 complex have not been characterized. Here, we use molecular dynamics (MD) simulations and NMR to characterize the dynamics of the VCBC complex with and without CUL5 and an A3 protein bound. Our simulations show that the VCBC complex undergoes global dynamics involving twisting and clamshell opening of the complex, whereas VCBC-CUL5 maintains a more static conformation, similar to the crystal structure. This observation from MD is supported by methyl-transverse relaxation-optimized spectroscopy NMR data, which indicates that the VCBC complex without CUL5 is dynamic on the μs-ms timescale. Our NMR data also show that the VCBC complex is more conformationally restricted when bound to the antiviral APOBEC3F (one of the A3 proteins), consistent with our MD simulations. Vif contains a flexible linker region located at the hinge of the VCBC complex, which changes conformation in conjunction with the global dynamics of the complex. Like other substrate receptors, VCBC can exist alone or in complex with CUL5 and other proteins in cells. Accordingly, the VCBC complex could be a good target for therapeutics that would inhibit full assembly of the ubiquitination complex by stabilizing an alternate VCBC conformation.
Collapse
Affiliation(s)
- K Aurelia Ball
- Department of Chemistry, Skidmore College, Saratoga Springs, New York.
| | - Lieza M Chan
- Department of Chemistry, Skidmore College, Saratoga Springs, New York
| | - David J Stanley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Elise Tierney
- Department of Chemistry, Skidmore College, Saratoga Springs, New York
| | - Sampriti Thapa
- Department of Chemistry, Skidmore College, Saratoga Springs, New York
| | - Hai M Ta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Lily Burton
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Jennifer M Binning
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
44
|
Naamati A, Williamson JC, Greenwood EJ, Marelli S, Lehner PJ, Matheson NJ. Functional proteomic atlas of HIV infection in primary human CD4+ T cells. eLife 2019; 8:41431. [PMID: 30857592 PMCID: PMC6414203 DOI: 10.7554/elife.41431] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/10/2019] [Indexed: 12/19/2022] Open
Abstract
Viruses manipulate host cells to enhance their replication, and the identification of cellular factors targeted by viruses has led to key insights into both viral pathogenesis and cell biology. In this study, we develop an HIV reporter virus (HIV-AFMACS) displaying a streptavidin-binding affinity tag at the surface of infected cells, allowing facile one-step selection with streptavidin-conjugated magnetic beads. We use this system to obtain pure populations of HIV-infected primary human CD4+ T cells for detailed proteomic analysis, and quantitate approximately 9000 proteins across multiple donors on a dynamic background of T cell activation. Amongst 650 HIV-dependent changes (q < 0.05), we describe novel Vif-dependent targets FMR1 and DPH7, and 192 proteins not identified and/or regulated in T cell lines, such as ARID5A and PTPN22. We therefore provide a high-coverage functional proteomic atlas of HIV infection, and a mechanistic account of host factors subverted by the virus in its natural target cell.
Collapse
Affiliation(s)
- Adi Naamati
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - James C Williamson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Edward Jd Greenwood
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Sara Marelli
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
45
|
Zhang Y, Lu J, Ma J, Liu X. Insulin-induced gene 1 (INSIG1) inhibits HIV-1 production by degrading Gag via activity of the ubiquitin ligase TRC8. J Biol Chem 2018; 294:2046-2059. [PMID: 30563842 DOI: 10.1074/jbc.ra118.004630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/04/2018] [Indexed: 11/06/2022] Open
Abstract
Insulin-induced gene 1 (INSIG1) regulates sterol synthesis by mediating the activation of sterol regulatory element-binding protein (SREBP) and the degradation of the HMG-CoA reductase (HMGCR). INSIG1 is up-regulated during HIV-1 infection, but its role in HIV-1 infection is unknown. In this report, using pseudovirus production, protein overexpression, and gene knockouts, we found that INSIG1 inhibits HIV-1 production by accelerating the degradation of the HIV-1 Gag protein. Unlike the degradation of HMGCR via the E3 ubiquitin ligase autocrine motility factor receptor (AMFR), a process that depends on the proteasome, INSIG1 coordinated with another ligase, translocation in renal carcinoma chromosome 8 (TRC8), and promoted Gag degradation through the lysosome pathway. We conclude that INSIG1 functions as a sentinel responsive to HIV-1 production and inhibits HIV-1 replication by degrading Gag, a process occurring at intracellular membrane sites such as the endoplasmic reticulum and endosomes where both INSIG1 and Gag may be located.
Collapse
Affiliation(s)
- You Zhang
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jing Lu
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jing Ma
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinqi Liu
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
46
|
Abstract
Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.
Collapse
Affiliation(s)
- Dibya Ghimire
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | - Madhu Rai
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| |
Collapse
|
47
|
Binning JM, Smith AM, Hultquist JF, Craik CS, Caretta Cartozo N, Campbell MG, Burton L, La Greca F, McGregor MJ, Ta HM, Bartholomeeusen K, Peterlin BM, Krogan NJ, Sevillano N, Cheng Y, Gross JD. Fab-based inhibitors reveal ubiquitin independent functions for HIV Vif neutralization of APOBEC3 restriction factors. PLoS Pathog 2018; 14:e1006830. [PMID: 29304101 PMCID: PMC5773222 DOI: 10.1371/journal.ppat.1006830] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/18/2018] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
The lentiviral protein Viral Infectivity Factor (Vif) counteracts the antiviral effects of host APOBEC3 (A3) proteins and contributes to persistent HIV infection. Vif targets A3 restriction factors for ubiquitination and proteasomal degradation by recruiting them to a multi-protein ubiquitin E3 ligase complex. Here, we describe a degradation-independent mechanism of Vif-mediated antagonism that was revealed through detailed structure-function studies of antibody antigen-binding fragments (Fabs) to the Vif complex. Two Fabs were found to inhibit Vif-mediated A3 neutralization through distinct mechanisms: shielding A3 from ubiquitin transfer and blocking Vif E3 assembly. Combined biochemical, cell biological and structural studies reveal that disruption of Vif E3 assembly inhibited A3 ubiquitination but was not sufficient to restore its packaging into viral particles and antiviral activity. These observations establish that Vif can neutralize A3 family members in a degradation-independent manner. Additionally, this work highlights the potential of Fabs as functional probes, and illuminates how Vif uses a multi-pronged approach involving both degradation dependent and independent mechanisms to suppress A3 innate immunity.
Collapse
Affiliation(s)
- Jennifer M. Binning
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Amber M. Smith
- Keck Advanced Microscopy Laboratory and Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California, San Francisco, California, United States of America
| | - Judd F. Hultquist
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, California, United States of America
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Nathalie Caretta Cartozo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Melody G. Campbell
- Keck Advanced Microscopy Laboratory and Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California, San Francisco, California, United States of America
| | - Lily Burton
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Florencia La Greca
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Michael J. McGregor
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, California, United States of America
| | - Hai M. Ta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Koen Bartholomeeusen
- Department of Medicine, University of California, San Francisco, California, United States of America
- Department of Microbiology, University of California, San Francisco, California, United States of America
- Department of Immunology, University of California, San Francisco, California, United States of America
| | - B. Matija Peterlin
- Department of Medicine, University of California, San Francisco, California, United States of America
- Department of Microbiology, University of California, San Francisco, California, United States of America
- Department of Immunology, University of California, San Francisco, California, United States of America
| | - Nevan J. Krogan
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, California, United States of America
| | - Natalia Sevillano
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Yifan Cheng
- Keck Advanced Microscopy Laboratory and Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California, San Francisco, California, United States of America
| | - John D. Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| |
Collapse
|
48
|
Chen C, Ma X, Hu Q, Li X, Huang F, Zhang J, Pan T, Xia J, Liu C, Zhang H. Moloney leukemia virus 10 (MOV10) inhibits the degradation of APOBEC3G through interference with the Vif-mediated ubiquitin-proteasome pathway. Retrovirology 2017; 14:56. [PMID: 29258557 PMCID: PMC5735797 DOI: 10.1186/s12977-017-0382-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022] Open
Abstract
Background MOV10 protein has ATP-dependent 5′–3′ RNA helicase activity and belongs to the UPF1p superfamily. It can inhibit human immunodeficiency virus type 1 (HIV-1) replication at multiple stages and interact with apolipoprotein-B-mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G or A3G), a member of the cytidine deaminase family that exerts potent inhibitory effects against HIV-1 infection. However, HIV-1-encoded virion infectivity factor (Vif) protein specifically mediates the degradation of A3G via the ubiquitin–proteasome system (UPS). Results We demonstrate that MOV10 counteracts Vif-mediated degradation of A3G by inhibiting the assembly of the Vif-CBF-β-Cullin 5-ElonginB-ElonginC complex. Through interference with UPS, MOV10 enhances the level of A3G in HIV-1-infected cells and virions, and synergistically inhibits the replication and infectivity of HIV-1. In addition, the DEAG-box of MOV10 is required for inhibition of Vif-mediated A3G degradation as the DEAG-box mutant significantly loses this ability. Conclusions Our results demonstrate a novel mechanism involved in the anti-HIV-1 function of MOV10. Given that both MOV10 and A3G belong to the interferon antiviral system, their synergistic inhibition of HIV-1 suggests that these proteins may play complicated roles in antiviral functions.
Collapse
Affiliation(s)
- Cancan Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaocao Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qifei Hu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinghua Li
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Feng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Junsong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jinyu Xia
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
49
|
Faust TB, Binning JM, Gross JD, Frankel AD. Making Sense of Multifunctional Proteins: Human Immunodeficiency Virus Type 1 Accessory and Regulatory Proteins and Connections to Transcription. Annu Rev Virol 2017; 4:241-260. [PMID: 28961413 DOI: 10.1146/annurev-virology-101416-041654] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Viruses are completely dependent upon cellular machinery to support replication and have therefore developed strategies to co-opt cellular processes to optimize infection and counter host immune defenses. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode a relatively small number of genes. Viruses with limited genetic content often encode multifunctional proteins that function at multiple stages of the viral replication cycle. In this review, we discuss the functions of HIV-1 regulatory (Tat and Rev) and accessory (Vif, Vpr, Vpu, and Nef) proteins. Each of these proteins has a highly conserved primary activity; however, numerous additional activities have been attributed to these viral proteins. We explore the possibility that HIV-1 proteins leverage their multifunctional nature to alter host transcriptional networks to elicit a diverse set of cellular responses. Although these transcriptional effects appear to benefit the virus, it is not yet clear whether they are strongly selected for during viral evolution or are a ripple effect from the primary function. As our detailed knowledge of these viral proteins improves, we will undoubtedly uncover how the multifunctional nature of these HIV-1 regulatory and accessory proteins, and in particular their transcriptional functions, work to drive viral pathogenesis.
Collapse
Affiliation(s)
- Tyler B Faust
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158; ,
| | - Jennifer M Binning
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158; ,
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158; ,
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158; ,
| |
Collapse
|
50
|
Ai Y, Ma J, Wang X. Clues for two-step virion infectivity factor regulation by core binding factor beta. J Gen Virol 2017; 98:1113-1121. [PMID: 28516844 PMCID: PMC5656798 DOI: 10.1099/jgv.0.000749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Lentiviruses threaten human and animal health. Virion infectivity factor (Vif) is essential for the infectivity of most lentiviruses, except for the equine infectious anaemia virus (EIAV). Vif promotes viral infectivity by recruiting a Cullin-based E3 ligase to induce the degradation of a class of host restriction factors, named APOBEC3. Core binding factor beta (CBF-β) is necessary for several primate lentiviral Vif functions, including HIV-1 Vif. Although much progress has been made in understanding the contribution of CBF-β to Vif function, the precise mechanism has not yet been fully elucidated. In this study, we found that an interaction with CBF-β altered the oligomerization and subcellular distribution pattern and increased the stability of two primate lentiviral Vifs, HIV-1 Vif and Macaca simian immunodeficiency virus (SIVmac) Vif. Moreover, using a CBF-β loss-of-function mutant, we demonstrated that the interaction between CBF-β and Vif was not sufficient for Vif assistance; a region including F68 in CBF-β was also required for the stability and function of Vif. For the first time, this study separates the binding and regulating processes of CBF-β when it is promoting Vif function, which further extends our understanding of the biochemical regulation of Vif by CBF-β.
Collapse
Affiliation(s)
- Youwei Ai
- Present address: National Institute of Biological Sciences, Beijing, PR China.,College of Wildlife Resources, Northeast Forestry University, Hexing Road, Harbin 150040, PR China
| | - Jianzhang Ma
- College of Wildlife Resources, Northeast Forestry University, Hexing Road, Harbin 150040, PR China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| |
Collapse
|