1
|
Yang D, Li P, Dang Y, Zhu S, Shi H, Wu T, Zhang Z, Chen C, Zong Y. Identifying the importance of PCK1 in maintaining ileal epithelial barrier integrity in Crohn's disease. Gene 2024; 931:148872. [PMID: 39159791 DOI: 10.1016/j.gene.2024.148872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Crohn's disease (CD) is marked by disruption of intestinal epithelial barrier, with unclear underlying molecular mechanisms. This study aimed to investigate key genes regulating the intestinal barrier in CD patients. METHODS Differential gene expression analysis and gene set enrichment analysis were conducted to identify potential key genes involved in CD within the GEO database. Single-cell RNA sequencing from ileum samples in GSE134809 of 59,831 inflamed and uninflamed cells from 11 CD patients and microarray data from ileal tissues in GSE69762 (3 controls and 4 CD patients) and GSE75214 (11 controls and 51 CD patients) with GSE179285 (49 uninflamed and 33 inflamed from CD patients) as the validation set. Protein-protein interaction and logistic regression analyses identified key downregulated genes in CD. A key gene was then investigated through immunohistochemistry of ileal tissues from 5 CD patients and in the Caco-2 cell line with RNA interference and treatment with IFN-γ and TNF-α to stimulate inflammation. RESULTS Single-cell RNA-seq identified 33 genes and microarray identified 167 genes with significant downregulation in inflamed CD samples. PCK1 was identified and validated as one of the most promising candidate genes. Reduced PCK1 expression was evident in inflamed ileal tissues. In vitro, knockdown of PCK1 resulted in decreased cell viability, increased apoptosis, and reduced nectin-2 production, while combination of IFN-γ and TNF-α significantly reduced PCK1. CONCLUSIONS PCK1 is downregulated in inflamed ileal tissues of CD patients and may be a key factor in maintaining epithelial integrity during inflammation in Crohn's disease.
Collapse
Affiliation(s)
- Deyi Yang
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Pengchong Li
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yan Dang
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shengtao Zhu
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Haiyun Shi
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ting Wu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zinan Zhang
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Chuyan Chen
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ye Zong
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
2
|
Bhardwaj M, Mazumder PM. The gut-liver axis: emerging mechanisms and therapeutic approaches for nonalcoholic fatty liver disease and type 2 diabetes mellitus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8421-8443. [PMID: 38861011 DOI: 10.1007/s00210-024-03204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), more appropriately known as metabolic (dysfunction) associated fatty liver disease (MAFLD), a prevalent condition in type 2 diabetes mellitus (T2DM) patients, is a complex condition involving hepatic lipid accumulation, inflammation, and liver fibrosis. The gut-liver axis is closely linked to metabolic dysfunction, insulin resistance, inflammation, and oxidative stress that are leading to the cooccurrence of MAFLD and T2DM cardiovascular diseases (CVDs). The purpose of this review is to raise awareness about the role of the gut-liver axis in the progression of MAFLD, T2DM and CVDs with a critical analysis of available treatment options for T2DM and MAFLD and their impact on cardiovascular health. This study analysed over 100 articles on this topic, using online searches and predefined keywords, to understand and summarise published research. Numerous studies have shown a strong correlation between gut dysfunction, particularly the gut microbiota and its metabolites, and the occurrence and progression of MAFLD and type 2 diabetes mellitus (T2DM). Herein, this article also examines the impact of the gut-liver axis on MAFLD, T2DM, and related complications, focusing on the role of gut microbiota dysbiosis in insulin resistance, T2DM and obesity-related cardiovascular complications. The study suggests potential treatment targets for MAFLD linked to T2DM, focusing on cardiovascular outcomes and the molecular mechanism of the gut-liver axis, as gut microbiota dysbiosis contributes to obesity-related metabolic abnormalities.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India.
| |
Collapse
|
3
|
Lu Y, Zhu J, Zhang Y, Li W, Xiong Y, Fan Y, Wu Y, Zhao J, Shang C, Liang H, Zhang W. Lactylation-Driven IGF2BP3-Mediated Serine Metabolism Reprogramming and RNA m6A-Modification Promotes Lenvatinib Resistance in HCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2401399. [PMID: 39450426 DOI: 10.1002/advs.202401399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Acquired resistance remains a bottleneck for molecular-targeted therapy in advanced hepatocellular carcinoma (HCC). Metabolic adaptation and epigenetic remodeling are recognized as hallmarks of cancer that may contribute to acquired resistance. In various lenvatinib-resistant models, increased glycolysis leads to lactate accumulation and lysine lactylation of IGF2BP3. This lactylation is crucial for capturing PCK2 and NRF2 mRNAs, thereby enhancing their expression. This process reprograms serine metabolism and strengthens the antioxidant defense system. Additionally, altered serine metabolism increases the availability of methylated substrates, such as S-adenosylmethionine (SAM), for N6-methyladenosine (m6A) methylation of PCK2 and NRF2 mRNAs. The lactylated IGF2BP3-PCK2-SAM-m6A loop maintains elevated PCK2 and NRF2 levels, enhancing the antioxidant system and promoting lenvatinib resistance in HCC. Treatment with liposomes carrying siRNAs targeting IGF2BP3 or the glycolysis inhibitor 2-DG restored lenvatinib sensitivity in vivo. These findings highlight the connection between metabolic reprogramming and epigenetic regulation and suggest that targeting metabolic pathways may offer new strategies to overcome lenvatinib resistance in HCC.
Collapse
Affiliation(s)
- Yuanxiang Lu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Department of Breast Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Jinghan Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Yuxin Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Wentao Li
- Department of Breast Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yixiao Xiong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yunhui Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Yang Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, China
| | - Changzhen Shang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Yanjiang West Road, Guangzhou, 510120, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, China
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, China
| |
Collapse
|
4
|
Hicks E, Layosa MA, Andolino C, Truffer C, Song Y, Heden TD, Donkin SS, Teegarden D. Gluconeogenesis and glycogenolysis required in metastatic breast cancer cells. Front Oncol 2024; 14:1476459. [PMID: 39479019 PMCID: PMC11521782 DOI: 10.3389/fonc.2024.1476459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Metabolic adaptability, including glucose metabolism, enables cells to survive multiple stressful environments. Glycogen may serve as a critical storage depot to provide a source of glucose during times of metabolic demand during the metastatic cascade; therefore, understanding glycogen metabolism is critical. Our goal was to determine mechanisms driving glycogen accumulation and its role in metastatic (MCF10CA1a) compared to nonmetastatic (MCF10A-ras) human breast cancer cells. Methodology 13C6-glucose flux analysis in combination with inhibitors of the gluconeogenic pathway via phosphoenolpyruvate carboxykinase (PCK), the anaplerotic enzyme pyruvate carboxylase (PC), and the rate-limiting enzyme of the pentose phosphate pathway (PPP) glucose 6-phosphate dehydrogenase (G6PD). To determine the requirement of glycogenolysis for migration or survival in extracellular matrix (ECM) detached conditions, siRNA inhibition of glycogenolysis (liver glycogen phosphorylase, PYGL) or glycophagy (lysosomal enzyme α-acid glucosidase, GAA) enzymes was utilized. Results Metastatic MCF10CA1a cells had 20-fold greater glycogen levels compared to non-metastatic MCF10A-ras cells. Most glucose incorporated into glycogen of the MCF10CA1a cells was in the five 13C-containing glucose (M+5) instead of the expected M+6 glycogen-derived glucose moiety, which occurs through direct glucose conversion to glycogen. Furthermore, 13C6-glucose in glycogen was quickly reduced (~50%) following removal of 13C-glucose. Incorporation of 13C6-glucose into the M+5 glucose in the glycogen stores was reduced by inhibition of PCK, with additional contributions from flux through the PPP. Further, inhibition of PC reduced total glycogen content. However, PCK inhibition increased total unlabeled glucose accumulation into glycogen, suggesting an alternative pathway to glycogen accumulation. Inhibition of the rate-limiting steps in glycogenolysis (PYGL) or glycophagy (GAA) demonstrated that both enzymes are necessary to support MCF10CA1a, but not MCF10A-ras, cell migration. GAA inhibition, but not PYGL, reduced viability of MCF10CA1a cells, but not MCF10A-ras, in ECM detached conditions. Conclusion Our results indicate that increased glycogen accumulation is primarily mediated through the gluconeogenesis pathway and that glycogen utilization is required for both migration and ECM detached survival of metastatic MCF10CA1a cells. These results suggest that glycogen metabolism may play an important role in the progression of breast cancer metastasis.
Collapse
Affiliation(s)
- Emily Hicks
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Marjorie Anne Layosa
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Chaylen Andolino
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Caitlin Truffer
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Yazhen Song
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Timothy D. Heden
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Shawn S. Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Dorothy Teegarden
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
5
|
Li Y, Sun X, Huang Z. USP7 facilitates deubiquitination of LRRC42 in colorectal cancer to accelerate tumorigenesis and augment Wnt/β-catenin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1872:119859. [PMID: 39393471 DOI: 10.1016/j.bbamcr.2024.119859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Colorectal cancer is a prevalent malignancy with an increasing incidence worldwide. Leucine-rich repeat-containing protein 42 (LRRC42) is known to be dysregulated in tumor tissues, yet its role in colorectal cancer remains largely unexplored. Herein, the function of LRRC42 in colorectal cancer was investigated using clinical samples, cellular experiments, animal models, and multiple omics techniques. The results demonstrated that LRRC42 was highly expressed in colorectal cancer tissues and was associated with poor clinical outcomes. Silencing LRRC42 suppressed cell proliferation, induced G0/G1 phase arrest, and promoted apoptosis by reducing Bcl2 expression while elevating the expression of Bax, cleaved PARP and cleaved caspase 3. Conversely, LRRC42 overexpression exhibited the opposite effects. Consistent findings were observed in vivo. Additionally, ubiquitin specific peptidase 7 was identified as a potential LRRC42-interacting protein through immunoprecipitation-mass spectrometry, with ubiquitin specific peptidase 7 stabilizing LRRC42 expression by promoting its deubiquitination. Notably, LRRC42 overexpression partially reversed the effects of ubiquitin specific peptidase 7 silencing on tumor cell proliferation and apoptosis. mRNA sequencing analysis revealed that differentially expressed genes in LRRC42 overexpressing cells were linked to Wnt signaling pathway, suggesting that LRRC42 overexpression may activate this pathway. Furthermore, LRRC42 was proved to elevate the levels of ki67, cyclin D1 and WNT3, while reducing the level of p-β-catenin. These findings suggest that LRRC42 perhaps serve as a potential oncogenic factor in colorectal cancer, regulated by ubiquitin specific peptidase 7 and capable of activating Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yunze Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xin Sun
- Department of Digestive Diseases 2, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Zhe Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
6
|
Cui X, Huang X, Chen X, Li H, Wu Y, Yang Z, Liu Z, Feng R, Xu J, Wei C, Ding Z, Cheng H. Influence of Starvation on Biochemical, Physiological, Morphological, and Transcriptional Responses Associated with Glucose and Lipid Metabolism in the Liver of Javelin Goby ( Synechogobius hasta). Animals (Basel) 2024; 14:2734. [PMID: 39335323 PMCID: PMC11429288 DOI: 10.3390/ani14182734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, the influence of fasting on hepatic glucose and lipid metabolism was explored by examining biochemical, antioxidative, and morphological indicators and transcriptional expression in the liver of javelin goby (Synechogobius hasta) after 0, 3, 7, or 14 days of starvation. Marked reductions in hepatic glycogen and triglycerides occurred from the seventh day of starvation until the end of the trial (p < 0.05). However, no alterations in hepatic cholesterol or protein were detected throughout the entire experiment (p > 0.05). During fasting, the activities of pyruvate kinase, lactate dehydrogenase, and glycogen phosphorylase a all rose firstly and then fell (p < 0.05). The activities of hepatic fatty acid synthase and acetyl-CoA carboxylase were minimized to their lowest levels at the end of food deprivation (p < 0.05), while lipase was elevated after 7-14 days of fasting (p < 0.05). Catalase, glutathione, and the total antioxidative capacity were increased and maintained their higher values in the later stage of fasting (p < 0.05), whereas malondialdehyde was not significantly changed (p > 0.05). Hepatic vein congestion, remarkable cytoplasmic vacuoles, and irregular cell shape were present in S. hasta which endured 3-7 days of fasting and were less pronounced when food shortage was prolonged. In terms of genes associated with glucose and lipid metabolism, the hepatic phosphofructokinase gene was constantly up-regulated during fasting (p < 0.05). However, the mRNA levels of glycogen synthase and glucose-6-phosphatase were obviously lower when the food scarcity extended to 7 days or more (p < 0.05). Fatty acid synthase, stearoyl-CoA desaturase 1, and peroxisome proliferator-activated receptor γ were substantially down-regulated in S. hasta livers after 7-14 days of food deprivation (p < 0.05). However, genes involved in lipolysis and fatty acid transport were transcriptionally enhanced to varying extents and peaked at the end of fasting (p < 0.05). Overall, starvation lasting 7 days or more could concurrently mobilize hepatic carbohydrates and fat as energy resources and diminished their hepatic accumulation by suppressing biosynthesis and enhancing catabolism and transport, ultimately metabolically and structurally perturbing the liver in S. hasta. This work presents preliminary data on the dynamic characteristics of hepatic glucose and lipid metabolism in S. hasta in response to starvation, which may shed light on the sophisticated mechanisms of energetic homeostasis in fish facing nutrient unavailability and may benefit the utilization/conservation of S. hasta.
Collapse
Affiliation(s)
- Xiangyu Cui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyang Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Honghui Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yanru Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zikui Yang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
| | - Rui Feng
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chaoqing Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
7
|
Zhang L, Chen Y, Pan Q, Fang S, Zhang Z, Wang J, Yang Y, Yang D, Sun X. Silencing of PCK1 mitigates the proliferation and migration of vascular smooth muscle cells and vascular intimal hyperplasia by suppressing STAT3/DRP1-mediated mitochondrial fission. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39262325 DOI: 10.3724/abbs.2024154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
The pathological proliferation and migration of vascular smooth muscle cells (VSMCs) are key processes during vascular neointimal hyperplasia (NIH) and restenosis. Phosphoenolpyruvate carboxy kinase 1 (PCK1) is closely related to a variety of malignant proliferative diseases. However, the role of PCK1 in VSMCs has rarely been investigated. This study aims to examine the role of PCK1 in the proliferation and migration of VSMCs and vascular NIH after injury. In vivo, extensive NIH and increased expression of PCK1 within the neointima are observed in injured arteries. Interestingly, the administration of adeno-associated virus-9 (AAV-9) carrying Pck1 short hairpin RNA (sh Pck1) significantly attenuates NIH and stenosis of the vascular lumen. In vitro, Pck1 small interfering RNA (si Pck1)-induced PCK1 silencing inhibits VSMC proliferation and migration. Additionally, silencing of PCK1 leads to reduced expression of dynamin-related protein 1 (DRP1) and attenuated mitochondrial fission. Lentivirus-mediated DRP1 overexpression markedly reverses the inhibitory effects of PCK1 silencing on VSMC proliferation, migration, and mitochondrial fission. Finally, PCK1 inhibition attenuates the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Activation of STAT3 abolishes the suppressive effects of PCK1 silencing on DRP1 expression, mitochondrial fission, proliferation, and migration in VSMCs. In conclusion, PCK1 inhibition attenuates the mitochondrial fission, proliferation, and migration of VSMCs by inhibiting the STAT3/DRP1 axis, thereby suppressing vascular NIH and restenosis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiology, the General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yingmei Chen
- Department of Cardiology, the General Hospital of Western Theater Command, Chengdu 610083, China
| | - Quanrong Pan
- Department of General Practice, the General Hospital of Western Theater Command, Chengdu 610083, China
| | - Shizheng Fang
- Department of Critical Care Medicine, the General Hospital of Western Theater Command, Chengdu 610083, China
| | - Zhongjian Zhang
- Department of Cardiology, the General Hospital of Western Theater Command, Chengdu 610083, China
| | - Jia Wang
- Department of Cardiology, the General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yongjian Yang
- Department of Cardiology, the General Hospital of Western Theater Command, Chengdu 610083, China
| | - Dachun Yang
- Department of Cardiology, the General Hospital of Western Theater Command, Chengdu 610083, China
| | - Xiongshan Sun
- Department of Cardiology, the General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
8
|
Chang CW, Chin YH, Liu MS, Shen YC, Yan SJ. High sugar diet promotes tumor progression paradoxically through aberrant upregulation of pepck1. Cell Mol Life Sci 2024; 81:396. [PMID: 39261338 PMCID: PMC11390995 DOI: 10.1007/s00018-024-05438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
High dietary sugar (HDS), a contemporary dietary concern due to excessive intake of added sugars and carbohydrates, escalates the risk of metabolic disorders and concomitant cancers. However, the molecular mechanisms underlying HDS-induced cancer progression are not completely understood. We found that phosphoenolpyruvate carboxykinase 1 (PEPCK1), a pivotal enzyme in gluconeogenesis, is paradoxically upregulated in tumors by HDS, but not by normal dietary sugar (NDS), during tumor progression. Targeted knockdown of pepck1, but not pepck2, specifically in tumor tissue in Drosophila in vivo, not only attenuates HDS-induced tumor growth but also significantly improves the survival of Ras/Src tumor-bearing animals fed HDS. Interestingly, HP1a-mediated heterochromatin interacts directly with the pepck1 gene and downregulates pepck1 gene expression in wild-type Drosophila. Mechanistically, we demonstrated that, under HDS conditions, pepck1 knockdown reduces both wingless and TOR signaling, decreases evasion of apoptosis, reduces genome instability, and suppresses glucose uptake and trehalose levels in tumor cells in vivo. Moreover, rational pharmacological inhibition of PEPCK1, using hydrazinium sulfate, greatly improves the survival of tumor-bearing animals with pepck1 knockdown under HDS. This study is the first to show that elevated levels of dietary sugar induce aberrant upregulation of PEPCK1, which promotes tumor progression through altered cell signaling, evasion of apoptosis, genome instability, and reprogramming of carbohydrate metabolism. These findings contribute to our understanding of the complex relationship between diet and cancer at the molecular, cellular, and organismal levels and reveal PEPCK1 as a potential target for the prevention and treatment of cancers associated with metabolic disorders.
Collapse
Affiliation(s)
- Che-Wei Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Yu-Hshun Chin
- Department of Physiology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Meng-Syuan Liu
- Department of Physiology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Yu-Chia Shen
- Department of Physiology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Shian-Jang Yan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan.
- Department of Physiology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan.
| |
Collapse
|
9
|
Han L, Bian X, Ma X, Ren T, Li Y, Huang L, Tang Z, Gao L, Chang S, Sun X. Integration of Transcriptomics and Metabolomics Reveals the Antitumor Mechanism of Protopanaxadiol Triphenylphosphate Derivative in Non-Small-Cell Lung Cancer. Molecules 2024; 29:4275. [PMID: 39275122 PMCID: PMC11396780 DOI: 10.3390/molecules29174275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
The objective of this study was to enhance the membrane permeability and anticancer effectiveness of (20S)-protopanaxadiol (PPD) by introducing triphenylphosphonium into the OH group at the C-3 site. This study shows that the anti-proliferation activity of CTPPPPD, with an IC50 value of 1.65 ± 0.10 μmol/L, was 33-times better than that of PPD (with an IC50 value of 54.56 ± 4.56 μmol/L) and superior to that of cisplatin (with an IC50 value of 1.82 ± 0.25 μmol/L) against A549 cells. Biological examinations suggested that CTPPPPD treatment reduced the growth rate of A549 cells, increased the permeability of cell membranes, and changed the structure of chromosomal DNA in a concentration-dependent manner. Annexin V/PI assay and flow cytometry were employed to detect the effect of CTPPPPD on the apoptosis of A549 cells. The results showed that CTPPPPD could induce the apoptosis of A549 cells, and the apoptosis rate of A549 cells treated with 0, 1.0, 2.0, and 4.0 μM of CTPPPPD for 24 h was 0%, 4.9%, 12.7%, and 31.0%, respectively. The integration of transcriptomics and metabolomics provided a systematic and detailed perspective on the induced antitumor mechanisms. A combined analysis of DEGs and DAMs suggested that they were primarily involved in the central carbon metabolism pathway in cancer, as well as the metabolism of aminoacyl-tRNA biosynthesis, alanine, aspartate, and glutamate. Central carbon metabolism in cancer-related genes, i.e., SLC16A3, FGFR3, LDHA, PGAM1, and SLC2A1, significantly reduced after treatment with CTPPPPD. In particular, the dominant mechanism responsible for total antitumor activity may be attributed to perturbations in the PI3K-AKT, MAPK, and P53 pathways. The findings derived from transcriptomics and metabolomics were empirically confirmed through q-PCR and molecular docking. Further analyses revealed that CTPPPPD could be a promising lead for the development of protopanaxadiol for non-small-cell lung cancer (NSCLC) drugs.
Collapse
Affiliation(s)
- Liu Han
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Xingbo Bian
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Xiangyu Ma
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Ting Ren
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Yawei Li
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Lijing Huang
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Zebo Tang
- School of Basic Medicine, Jilin Medical University, Jilin 132013, China
| | - Liancong Gao
- Clinical Medical School, Jilin Medical University, Jilin 132013, China
| | - Sheng Chang
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Xin Sun
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
10
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
11
|
Xue S, Cai Y, Liu J, Ji K, Yi P, Long H, Zhang X, Li P, Song Y. Dysregulation of phosphoenolpyruvate carboxykinase in cancers: A comprehensive analysis. Cell Signal 2024; 120:111198. [PMID: 38697449 DOI: 10.1016/j.cellsig.2024.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Phosphoenolpyruvate carboxykinase (PEPCK) plays a crucial role in gluconeogenesis, glycolysis, and the tricarboxylic acid cycle by converting oxaloacetate into phosphoenolpyruvate. Two distinct isoforms of PEPCK, specifically cytosolic PCK1 and mitochondrial PCK2, have been identified. Nevertheless, the comprehensive understanding of their dysregulation in pan-cancer and their potential mechanism contributing to signaling transduction pathways remains elusive. METHODS We conducted comprehensive analyses of PEPCK gene expression across 33 diverse cancer types using data from The Cancer Genome Atlas (TCGA). Multiple public databases such as HPA, TIMER 2.0, GEPIA2, cBioPortal, UALCAN, CancerSEA, and String were used to investigate protein levels, prognostic significance, clinical associations, genetic mutations, immune cell infiltration, single-cell sequencing, and functional enrichment analysis in patients with pan-cancer. PEPCK expression was analyzed about different clinical and genetic factors of patients using data from TCGA, GEO, and CGGA databases. Furthermore, the role of PCK2 in Glioma was examined using both in vitro and in vivo experiments. RESULTS The analysis we conducted revealed that the expression of PEPCK is involved in both clinical outcomes and immune cell infiltration. Initially, we verified the high expression of PCK2 in GBM cells and its role in metabolic reprogramming and proliferation in GBM. CONCLUSION Our study showed a correlation between PEPCK (PCK1 and PCK2) expression with clinical prognosis, gene mutation, and immune infiltrates. These findings identified two possible predictive biomarkers across different cancer types, as well as a comprehensive analysis of PCK2 expression in various tumors, with a focus on GBM.
Collapse
Affiliation(s)
- Shuaishuai Xue
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yonghua Cai
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Liu
- Department of Neurosurgery, The 2(nd) affiliated hospital Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Ke Ji
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peiyao Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xian Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Peng Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
12
|
Liu R, Liu Y, Zhang W, Zhang G, Zhang Z, Huang L, Tang N, Wang K. PCK1 attenuates tumor stemness via activating the Hippo signaling pathway in hepatocellular carcinoma. Genes Dis 2024; 11:101114. [PMID: 38560500 PMCID: PMC10978540 DOI: 10.1016/j.gendis.2023.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/19/2023] [Accepted: 08/04/2023] [Indexed: 04/04/2024] Open
Abstract
Liver cancer stem cells were found to rely on glycolysis as the preferred metabolic program. Phosphoenolpyruvate carboxylase 1 (PCK1), a gluconeogenic metabolic enzyme, is down-regulated in hepatocellular carcinoma and is closely related to poor prognosis. The oncogenesis and progression of tumors are closely related to cancer stem cells. It is not completely clear whether the PCK1 deficiency increases the stemness of hepatoma cells and promotes the oncogenesis of hepatocellular carcinoma. Herein, the results showed that PCK1 inhibited the self-renewal property of hepatoma cells, reduced the mRNA level of cancer stem cell markers, and inhibited tumorigenesis. Moreover, PCK1 increased the sensitivity of hepatocellular carcinoma cells to sorafenib. Furthermore, we found that PCK1 activated the Hippo pathway by enhancing the phosphorylation of YAP and inhibiting its nuclear translocation. Verteporfin reduced the stemness of hepatoma cells and promoted the pro-apoptotic effect of sorafenib. Thus, combined treatment with verteporfin and sorafenib may be a potential anti-tumor strategy in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wenlu Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Guiji Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, China
| | - Zhirong Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Li C, Zhang ED, Ye Y, Xiao Z, Huang H, Zeng Z. Association of mitochondrial phosphoenolpyruvate carboxykinase with prognosis and immune regulation in hepatocellular carcinoma. Sci Rep 2024; 14:14051. [PMID: 38890507 PMCID: PMC11189538 DOI: 10.1038/s41598-024-64907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Mitochondrial phosphoenolpyruvate carboxykinase (PCK2), a mitochondrial isoenzyme, supports the growth of cancer cells under glucose deficiency conditions in vitro. This study investigated the role and potential mechanism of PCK2 in the occurrence and development of Hepatocellular carcinoma (HCC). The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and other databases distinguish the expression of PCK2 and verified by qRT-PCR and Western blotting. Kaplan-Meier was conducted to assess PCK2 survival in HCC. The potential biological function of PCK2 was verified by enrichment analysis and gene set enrichment analysis (GSEA). The correlation between PCK2 expression and immune invasion and checkpoint was found by utilizing Tumor Immune Estimation Resource (TIMER). Lastly, the effects of PCK2 on the proliferation and metastasis of hepatocellular carcinoma cells were evaluated by cell tests, and the expressions of Epithelial mesenchymal transformation (EMT) and apoptosis related proteins were detected. PCK2 is down-regulated in HCC, indicating a poor prognosis. PCK2 gene mutation accounted for 1.3% of HCC. Functional enrichment analysis indicated the potential of PCK2 as a metabolism-related therapeutic target. Subsequently, we identified several signaling pathways related to the biological function of PCK2. The involvement of PCK2 in immune regulation was verified and key immune checkpoints were predicted. Ultimately, after PCK2 knockdown, cell proliferation and migration were significantly increased, and N-cadherin and vimentin expression were increased. PCK2 has been implicated in immune regulation, proliferation, and metastasis of hepatocellular carcinoma, and is emerging as a novel predictive biomarker and metabolic-related clinical target.
Collapse
Affiliation(s)
| | | | - Youzhi Ye
- Kunming Medical University, Kunming, China
| | | | - Hanfei Huang
- The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.
| | - Zhong Zeng
- The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.
| |
Collapse
|
14
|
de Zeeuw P, Treps L, García-Caballero M, Harjes U, Kalucka J, De Legher C, Brepoels K, Peeters K, Vinckier S, Souffreau J, Bouché A, Taverna F, Dehairs J, Talebi A, Ghesquière B, Swinnen J, Schoonjans L, Eelen G, Dewerchin M, Carmeliet P. The gluconeogenesis enzyme PCK2 has a non-enzymatic role in proteostasis in endothelial cells. Commun Biol 2024; 7:618. [PMID: 38783087 PMCID: PMC11116505 DOI: 10.1038/s42003-024-06186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Endothelial cells (ECs) are highly glycolytic, but whether they generate glycolytic intermediates via gluconeogenesis (GNG) in glucose-deprived conditions remains unknown. Here, we report that glucose-deprived ECs upregulate the GNG enzyme PCK2 and rely on a PCK2-dependent truncated GNG, whereby lactate and glutamine are used for the synthesis of lower glycolytic intermediates that enter the serine and glycerophospholipid biosynthesis pathways, which can play key roles in redox homeostasis and phospholipid synthesis, respectively. Unexpectedly, however, even in normal glucose conditions, and independent of its enzymatic activity, PCK2 silencing perturbs proteostasis, beyond its traditional GNG role. Indeed, PCK2-silenced ECs have an impaired unfolded protein response, leading to accumulation of misfolded proteins, which due to defective proteasomes and impaired autophagy, results in the accumulation of protein aggregates in lysosomes and EC demise. Ultimately, loss of PCK2 in ECs impaired vessel sprouting. This study identifies a role for PCK2 in proteostasis beyond GNG.
Collapse
Affiliation(s)
- Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
- Droia Ventures, Zaventem, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
- CNRS, Nantes, France
| | - Melissa García-Caballero
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
- Dept. Molecular Biology and Biochemistry, Fac. Science, University of Malaga, Malaga, Spain
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
- Aarhus Institute of Advanced Studies (AIAS), Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
| | - Carla De Legher
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Katleen Brepoels
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Kristel Peeters
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Joris Souffreau
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Ann Bouché
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Federico Taverna
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
- Novartis Ireland, Dublin, Ireland
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
| | - Bart Ghesquière
- Metabolomics Core Facility, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Metabolomics Core Facility, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Johan Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium.
- Metaptys NV/Droia Labs, Leuven, Belgium.
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
15
|
Urrutia AA, Mesa-Ciller C, Guajardo-Grence A, Alkan HF, Soro-Arnáiz I, Vandekeere A, Ferreira Campos AM, Igelmann S, Fernández-Arroyo L, Rinaldi G, Lorendeau D, De Bock K, Fendt SM, Aragonés J. HIF1α-dependent uncoupling of glycolysis suppresses tumor cell proliferation. Cell Rep 2024; 43:114103. [PMID: 38607920 PMCID: PMC11063627 DOI: 10.1016/j.celrep.2024.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/20/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Hypoxia-inducible factor-1α (HIF1α) attenuates mitochondrial activity while promoting glycolysis. However, lower glycolysis is compromised in human clear cell renal cell carcinomas, in which HIF1α acts as a tumor suppressor by inhibiting cell-autonomous proliferation. Here, we find that, unexpectedly, HIF1α suppresses lower glycolysis after the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) step, leading to reduced lactate secretion in different tumor cell types when cells encounter a limited pyruvate supply such as that typically found in the tumor microenvironment in vivo. This is because HIF1α-dependent attenuation of mitochondrial oxygen consumption increases the NADH/NAD+ ratio that suppresses the activity of the NADH-sensitive GAPDH glycolytic enzyme. This is manifested when pyruvate supply is limited, since pyruvate acts as an electron acceptor that prevents the increment of the NADH/NAD+ ratio. Furthermore, this anti-glycolytic function provides a molecular basis to explain how HIF1α can suppress tumor cell proliferation by increasing the NADH/NAD+ ratio.
Collapse
Affiliation(s)
- Andrés A Urrutia
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IIS IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Claudia Mesa-Ciller
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IIS IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Andrea Guajardo-Grence
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IIS IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - H Furkan Alkan
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Inés Soro-Arnáiz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Ana Margarida Ferreira Campos
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Sebastian Igelmann
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Lucía Fernández-Arroyo
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IIS IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Gianmarco Rinaldi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Doriane Lorendeau
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Julián Aragonés
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IIS IP), Autonomous University of Madrid, 28009 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
16
|
Heberle A, Cappuccio E, Andric A, Kuen T, Simonini A, Weiss AKH. Mitochondrial enzyme FAHD1 reduces ROS in osteosarcoma. Sci Rep 2024; 14:9231. [PMID: 38649439 PMCID: PMC11035622 DOI: 10.1038/s41598-024-60012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
This study investigated the impact of overexpressing the mitochondrial enzyme Fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) in human osteosarcoma epithelial cells (U2OS) in vitro. While the downregulation or knockdown of FAHD1 has been extensively researched in various cell types, this study aimed to pioneer the exploration of how increased catalytic activity of human FAHD1 isoform 1 (hFAHD1.1) affects human cell metabolism. Our hypothesis posited that elevation in FAHD1 activity would lead to depletion of mitochondrial oxaloacetate levels. This depletion could potentially result in a decrease in the flux of the tricarboxylic acid (TCA) cycle, thereby accompanied by reduced ROS production. In addition to hFAHD1.1 overexpression, stable U2OS cell lines were established overexpressing a catalytically enhanced variant (T192S) and a loss-of-function variant (K123A) of hFAHD1. It is noteworthy that homologs of the T192S variant are present in animals exhibiting increased resistance to oxidative stress and cancer. Our findings demonstrate that heightened activity of the mitochondrial enzyme FAHD1 decreases cellular ROS levels in U2OS cells. However, these results also prompt a series of intriguing questions regarding the potential role of FAHD1 in mitochondrial metabolism and cellular development.
Collapse
Affiliation(s)
- Anne Heberle
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Elia Cappuccio
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Andreas Andric
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Tatjana Kuen
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Anna Simonini
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Alexander K H Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
17
|
Haitzmann T, Schindlmaier K, Frech T, Mondal A, Bubalo V, Konrad B, Bluemel G, Stiegler P, Lackner S, Hrzenjak A, Eichmann T, Köfeler HC, Leithner K. Serine synthesis and catabolism in starved lung cancer and primary bronchial epithelial cells. Cancer Metab 2024; 12:9. [PMID: 38515202 PMCID: PMC10956291 DOI: 10.1186/s40170-024-00337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Serine and glycine give rise to important building blocks in proliferating cells. Both amino acids are either synthesized de novo or taken up from the extracellular space. In lung cancer, serine synthesis gene expression is variable, yet, expression of the initial enzyme, phosphoglycerate dehydrogenase (PHGDH), was found to be associated with poor prognosis. While the contribution of de novo synthesis to serine pools has been shown to be enhanced by serine starvation, the impact of glucose deprivation, a commonly found condition in solid cancers is poorly understood. Here, we utilized a stable isotopic tracing approach to assess serine and glycine de novo synthesis and uptake in different lung cancer cell lines and normal bronchial epithelial cells in variable serine, glycine, and glucose conditions. Under low glucose supplementation (0.2 mM, 3-5% of normal plasma levels), serine de novo synthesis was maintained or even activated. As previously reported, also gluconeogenesis supplied carbons from glutamine to serine and glycine under these conditions. Unexpectedly, low glucose treatment consistently enhanced serine to glycine conversion, along with an up-regulation of the mitochondrial one-carbon metabolism enzymes, serine hydroxymethyltransferase (SHMT2) and methylenetetrahydrofolate dehydrogenase (MTHFD2). The relative contribution of de novo synthesis greatly increased in low serine/glycine conditions. In bronchial epithelial cells, adaptations occurred in a similar fashion as in cancer cells, but serine synthesis and serine to glycine conversion, as assessed by label enrichments and gene expression levels, were generally lower than in (PHGDH positive) cancer cells. In summary, we found a variable contribution of glucose or non-glucose carbon sources to serine and glycine and a high adaptability of the downstream one-carbon metabolism pathway to variable glucose supply.
Collapse
Affiliation(s)
- Theresa Haitzmann
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Katharina Schindlmaier
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Tobias Frech
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Ayusi Mondal
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Department of Experimental Oncology, European Institute of Oncology, 20139, Milan, Italy
| | - Visnja Bubalo
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Barbara Konrad
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Gabriele Bluemel
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, 5020, Salzburg, Austria
| | - Philipp Stiegler
- Division of General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036, Graz, Austria
| | - Stefanie Lackner
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010, Graz, Austria
| | - Thomas Eichmann
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Harald C Köfeler
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
18
|
Wang F, Yu B, Yu Q, Wang G, Li B, Guo G, Wang H, Shen H, Li S, Ma C, Jia X, Wang G, Cong B. NOP58 induction potentiates chemoresistance of colorectal cancer cells through aerobic glycolysis as evidenced by proteomics analysis. Front Pharmacol 2023; 14:1295422. [PMID: 38149051 PMCID: PMC10750250 DOI: 10.3389/fphar.2023.1295422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction: The majority of individuals diagnosed with advanced colorectal cancer (CRC) will ultimately acquire resistance to 5-FU treatment. An increasing amount of evidence indicates that aerobic glycolysis performs a significant function in the progression and resistance of CRC. Nevertheless, the fundamental mechanisms remain to be fully understood. Methods: Proteomic analysis of 5-FU resistant CRC cells was implemented to identify and determine potential difference expression protein. Results: These proteins may exhibit resistance mechanisms that are potentially linked to the process of aerobic glycolysis. Herein, we found that nucleolar protein 58 (NOP58) has been overexpressed within two 5-FU resistant CRC cells, 116-5FuR and Lovo-5FuR. Meanwhile, the glycolysis rate of drug-resistant cancer cells has increased. NOP58 knockdown decreased glycolysis and enhanced the sensitivity of 116-5FuR and Lovo-5FuR cells to 5FU. Conclusion: The proteomic analysis of chemoresistance identifies a new target involved in the cellular adaption to 5-FU and therefore highlights a possible new therapeutic strategy to overcome this resistance.
Collapse
Affiliation(s)
- Feifei Wang
- Hebei Key Laboratory of Forensic Medicine, Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Collaborative Hebei Medical University, Shijiazhuang, Hebei, China
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bin Yu
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Quanyong Yu
- China Pharmaceutical University, Nanjing, China
| | - Guanglin Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Baokun Li
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ganlin Guo
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Handong Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hui Shen
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shujin Li
- Hebei Key Laboratory of Forensic Medicine, Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Collaborative Hebei Medical University, Shijiazhuang, Hebei, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Collaborative Hebei Medical University, Shijiazhuang, Hebei, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xianxian Jia
- Hebei Key Laboratory of Forensic Medicine, Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Collaborative Hebei Medical University, Shijiazhuang, Hebei, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Pathogen Biology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Collaborative Hebei Medical University, Shijiazhuang, Hebei, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
19
|
Elmetwalli A, Kamosh NH, El Safty R, Youssef AI, Salama MM, Abd El-Razek KM, El-Sewedy T. Novel phloretin-based combinations targeting glucose metabolism in hepatocellular carcinoma through GLUT2/PEPCK axis of action: in silico molecular modelling and in vivo studies. Med Oncol 2023; 41:12. [PMID: 38078989 DOI: 10.1007/s12032-023-02236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is commonly associated with disturbances in glucose metabolism and enhanced glycolysis. However, a controversial role for gluconeogenesis was reported to be tumor-promoting and tumor-suppressive. We investigated novel anti-HCC treatments through either the simultaneous inhibition of glycolysis and gluconeogenesis by "phloretin" and "sodium meta-arsenite", respectively (Combination 1); or the concurrent inhibition of glycolysis and induction of gluconeogenesis by phloretin and dexamethasone, respectively, (combination 2). A total of 110 Swiss albino mice were divided into eleven groups, HCC was induced by N, N-dimethyl-4-aminoazobenzene. We have measured the expression of the glucose transporter 2 (GLUT2), Phosphoenolpyruvate carboxykinases (PEPCK), Caspase-3, Beclin 1, Cyclin D1, and cytokeratin 18 genes; blood glucose and ATP levels; alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Furthermore, in silico molecular docking was performed to investigate the potential drug-receptor interactions. Histologically, the phloretin-based combinations resulted in a significant regression of malignant tissue compared to various treatments. GLUT2 and PEPCK mRNA analysis indicated successful off/on modulation of glycolysis and gluconeogenesis. Docking confirmed the potent binding between phloretin, sodium meta-arsenite, and dexamethasone with GLUT2, PEPCK, and Retinoid X Receptor Alpha, respectively. Molecularly, Combination 2 resulted in the highest reduction in cyclin D1, cytokeratin 18, and Beclin 1 expression contemporaneously with the upregulation in Caspase-3 levels. Biochemically, both combinations caused a significant reduction in ATP levels, ALT, and AST activity compared to the other groups. In conclusion, we propose two novel phloretin-based combinations that can be used in treating HCC through the regulation of glucose metabolism and ATP production.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | | | | | - Amany I Youssef
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohammed M Salama
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Khaled M Abd El-Razek
- Experimental Animal Unit, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
20
|
Oliveres H, Cascante M, Maurel J. Metabolic interventions to enhance immunotherapy and targeted therapy efficacy in advanced colorectal cancer. Curr Opin Chem Biol 2023; 77:102401. [PMID: 37806262 DOI: 10.1016/j.cbpa.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Current standard-of-care for metastatic colorectal cancer patients includes chemotherapy and anti-angiogenic or anti-epidermal growth factor receptor for microsatellite stable tumors and pembrolizumab for microsatellite instable tumors. However, despite the available therapies, the prognosis remains poor. In recent years, new drugs combined with immune checkpoint inhibitors have been tested in microsatellite stable metastatic colorectal cancer patients, but the benefit was modest. Here, we review the metabolic interactions between the immune microenvironment and cancer cells. More specifically, we highlight potential correlatives of tumor immune and metabolic features with transcriptomic classifications such as the Consensus Molecular Subtype. Finally, we discuss the unmet need of immune-metabolic signatures and the value of a new signature (IMMETCOLS) for guiding new strategies in metastatic colorectal cancer. We conclude that the field is ready to propose customized strategies for modifying metabolism and improving immunotherapy and targeted therapy efficacy.
Collapse
Affiliation(s)
- Helena Oliveres
- Medical Oncology Department, Hospital Clinic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, IDIBAPS, Barcelona, Spain
| | - Marta Cascante
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona, Spain.
| | - Joan Maurel
- Medical Oncology Department, Hospital Clinic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, IDIBAPS, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
21
|
Jayathirtha M, Jayaweera T, Whitham D, Sullivan I, Petre BA, Darie CC, Neagu AN. Two-Dimensional-PAGE Coupled with nLC-MS/MS-Based Identification of Differentially Expressed Proteins and Tumorigenic Pathways in MCF7 Breast Cancer Cells Transfected for JTB Protein Silencing. Molecules 2023; 28:7501. [PMID: 38005222 PMCID: PMC10673289 DOI: 10.3390/molecules28227501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The identification of new cancer-associated genes/proteins, the characterization of their expression variation, the interactomics-based assessment of differentially expressed genes/proteins (DEGs/DEPs), and understanding the tumorigenic pathways and biological processes involved in BC genesis and progression are necessary and possible by the rapid and recent advances in bioinformatics and molecular profiling strategies. Taking into account the opinion of other authors, as well as based on our own team's in vitro studies, we suggest that the human jumping translocation breakpoint (hJTB) protein might be considered as a tumor biomarker for BC and should be studied as a target for BC therapy. In this study, we identify DEPs, carcinogenic pathways, and biological processes associated with JTB silencing, using 2D-PAGE coupled with nano-liquid chromatography tandem mass spectrometry (nLC-MS/MS) proteomics applied to a MCF7 breast cancer cell line, for complementing and completing our previous results based on SDS-PAGE, as well as in-solution proteomics of MCF7 cells transfected for JTB downregulation. The functions of significant DEPs are analyzed using GSEA and KEGG analyses. Almost all DEPs exert pro-tumorigenic effects in the JTBlow condition, sustaining the tumor suppressive function of JTB. Thus, the identified DEPs are involved in several signaling and metabolic pathways that play pro-tumorigenic roles: EMT, ERK/MAPK, PI3K/AKT, Wnt/β-catenin, mTOR, C-MYC, NF-κB, IFN-γ and IFN-α responses, UPR, and glycolysis/gluconeogenesis. These pathways sustain cancer cell growth, adhesion, survival, proliferation, invasion, metastasis, resistance to apoptosis, tight junctions and cytoskeleton reorganization, the maintenance of stemness, metabolic reprogramming, survival in a hostile environment, and sustain a poor clinical outcome. In conclusion, JTB silencing might increase the neoplastic phenotype and behavior of the MCF7 BC cell line. The data is available via ProteomeXchange with the identifier PXD046265.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Isabelle Sullivan
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Brîndușa Alina Petre
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
- Center for Fundamental Research and Experimental Development in Translation Medicine–TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd. No. 22, 700505 Iasi, Romania
| |
Collapse
|
22
|
Thakur A, Hu X, Zhao E, Lu C, Liu Y, Rustagi Y, Zhang K. Editorial: The role of one-carbon metabolism in cancer progression, therapy, and resistance. Front Oncol 2023; 13:1286790. [PMID: 37810982 PMCID: PMC10552637 DOI: 10.3389/fonc.2023.1286790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
- Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Xin Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yanqing Liu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Yashika Rustagi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, United States
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| |
Collapse
|
23
|
Abate E, Mehdi M, Addisu S, Degef M, Tebeje S, Kelemu T. Emerging roles of cytosolic phosphoenolpyruvate kinase 1 (PCK1) in cancer. Biochem Biophys Rep 2023; 35:101528. [PMID: 37637941 PMCID: PMC10457690 DOI: 10.1016/j.bbrep.2023.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Although it was traditionally believed that gluconeogenesis enzymes were absent from cancers that did not originate in gluconeogenic organs, numerous investigations have shown that they are functionally expressed in a variety of tumors as mediators of shortened forms of Gluconeogenesis. One of the isomers of PEPCK, the first-rate limiting enzyme in gluconeogenesis, is PCK 1, which catalyzes the conversion of oxaloacetate (OAA) and GTP into PEP, CO2, and GDP. It is also known as PEPCK-C or PCK1, and it is cytosolic. Despite being paradoxical, it has been demonstrated that, in addition to its enzymatic role in normal metabolism, this enzyme also plays a role in tumors that arise in gluconeogenic and non-gluconeogenic organs. According to newly available research, it has metabolic and non-metabolic roles in tumor progression and development. Thus, this review will give insight into PCK1 relationship, function, and mechanism in or with different types of cancer using contemporary findings.
Collapse
Affiliation(s)
- Ebsitu Abate
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mohammed Mehdi
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sisay Addisu
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Maria Degef
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Tebeje
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
24
|
McLeod MJ, Holyoak T. Biochemical, structural, and kinetic characterization of PP i -dependent phosphoenolpyruvate carboxykinase from Propionibacterium freudenreichii. Proteins 2023; 91:1261-1275. [PMID: 37226637 DOI: 10.1002/prot.26513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Phosphoenolpyruvate carboxykinases (PEPCK) are a well-studied family of enzymes responsible for the regulation of TCA cycle flux, where they catalyze the interconversion of oxaloacetic acid (OAA) and phosphoenolpyruvate (PEP) using a phosphoryl donor/acceptor. These enzymes have typically been divided into two nucleotide-dependent classes, those that use ATP and those that use GTP. In the 1960's and early 1970's, a group of papers detailed biochemical properties of an enzyme named phosphoenolpyruvate carboxytransphosphorylase (later identified as a third PEPCK) from Propionibacterium freudenreichii (PPi -PfPEPCK), which instead of using a nucleotide, utilized PPi to catalyze the same interconversion of OAA and PEP. The presented work expands upon the initial biochemical experiments for PPi -PfPEPCK and interprets these data considering both the current understanding of nucleotide-dependent PEPCKs and is supplemented with a new crystal structure of PPi -PfPEPCK in complex with malate at a putative allosteric site. Most interesting, the data are consistent with PPi -PfPEPCK being a Fe2+ activated enzyme in contrast with the Mn2+ activated nucleotide-dependent enzymes which in part results in some unique kinetic properties for the enzyme when compared to the more widely distributed GTP- and ATP-dependent enzymes.
Collapse
Affiliation(s)
- Matthew J McLeod
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Physics, Cornell University, Ithaca, New York, USA
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
25
|
Shu J, Wang C, Tao Y, Wang S, Cheng F, Zhang Y, Shi K, Xia K, Wang R, Wang J, Yu C, Chen J, Huang X, Xu H, Zhou X, Wu H, Liang C, Chen Q, Yan S, Li F. Thermosensitive hydrogel-based GPR124 delivery strategy for rebuilding blood-spinal cord barrier. Bioeng Transl Med 2023; 8:e10561. [PMID: 37693060 PMCID: PMC10486335 DOI: 10.1002/btm2.10561] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Spinal cord injury (SCI) causes blood-spinal cord barrier (BSCB) disruption, leading to secondary damage, such as hemorrhagic infiltration, inflammatory response, and neuronal cell death. It is of great significance to rebuild the BSCB at the early stage of SCI to alleviate the secondary injury for better prognosis. Yet, current research involved in the reconstruction of BSCB is insufficient. Accordingly, we provide a thermosensitive hydrogel-based G protein-coupled receptor 124 (GPR124) delivery strategy for rebuilding BSCB. Herein, we firstly found that the expression of GPR124 decreased post-SCI and demonstrated that treatment with recombinant GPR124 could partially alleviate the disruption of BSCB post-SCI by restoring tight junctions (TJs) and promoting migration and tube formation of endothelial cells. Interestingly, GPR124 could also boost the energy metabolism of endothelial cells. However, the absence of physicochemical stability restricted the wide usage of GPR124. Hence, we fabricated a thermosensitive heparin-poloxamer (HP) hydrogel that demonstrated sustained GPR124 production and maintained the bioactivity of GPR124 (HP@124) for rebuilding the BSCB and eventually enhancing functional motor recovery post-SCI. HP@124 hydrogel can encapsulate GPR124 at the lesion site by injection, providing prolonged release, preserving wounded tissues, and filling injured tissue cavities. Consequently, it induces synergistically efficient integrated regulation by blocking BSCB rupture, decreasing fibrotic scar formation, minimizing inflammatory response, boosting remyelination, and regenerating axons. Mechanistically, giving GPR124 activates energy metabolism via elevating the expression of phosphoenolpyruvate carboxykinase 2 (PCK2), and eventually restores the poor state of endothelial cells. This research demonstrated that early intervention by combining GPR124 with bioactive multifunctional hydrogel may have tremendous promise for restoring locomotor recovery in patients with central nervous system disorders, in addition to a translational approach for the medical therapy of SCI.
Collapse
Affiliation(s)
- Jiawei Shu
- International Institutes of MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwuZhejiangPeople's Republic of China
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Chenggui Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Yiqing Tao
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Shaoke Wang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Feng Cheng
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Yuang Zhang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Kesi Shi
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Kaishun Xia
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Ronghao Wang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Jingkai Wang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Chao Yu
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Jiangjie Chen
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Xianpeng Huang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Haibin Xu
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Xiaopeng Zhou
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Haobo Wu
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Chengzhen Liang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Qixin Chen
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Shigui Yan
- International Institutes of MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwuZhejiangPeople's Republic of China
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Fangcai Li
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| |
Collapse
|
26
|
Sun M, Yu Y, Li S, Liu Y, Zhang X, Li F. Integrated application of transcriptomics and metabolomics provides insights into acute hepatopancreatic necrosis disease resistance of Pacific white shrimp Litopenaeus vannamei. mSystems 2023; 8:e0006723. [PMID: 37358285 PMCID: PMC10469596 DOI: 10.1128/msystems.00067-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/04/2023] [Indexed: 06/27/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) has caused a huge economic loss to shrimp aquaculture. Vibrio parahaemolyticus (VpAHPND) is regarded as a major causative agent of AHPND in the Pacific white shrimp Litopenaeus vannamei. However, knowledge about how shrimp resist to AHPND is very limited. In order to learn the molecular mechanisms underlying AHPND resistance of shrimp, comparison between disease-resistant family and susceptible family of L. vannamei were performed at transcriptional and metabolic levels. Integrated analysis of transcriptomics and metabolomics on hepatopancreas of shrimp, the target tissue of VpAHPND, showed that significant differences existed between resistant family and susceptible family of shrimp. The susceptible family showed higher level of glycolysis, serine-glycine metabolism, purine and pyrimidine metabolism, but lower level of betaine-homocysteine metabolism in the hepatopancreas in comparison with the resistant family without VpAHPND infection. Curiously, VpAHPND infection induced up-regulation of glycolysis, serine-glycine metabolism, purine metabolism, pyrimidine metabolism, and pentose phosphate pathway, and down-regulation of betaine-homocysteine metabolism in resistant family. In addition, arachidonic acid metabolism and some immune pathways, like NF-κB and cAMP pathways, were up-regulated in the resistant family after VpAHPND infection. In contrast, amino acid catabolism boosted via PEPCK-mediated TCA cycle flux was activated in the susceptible family after VpAHPND infection. These differences in transcriptome and metabolome between resistant family and susceptible family might contribute to the resistance of shrimp to bacteria. IMPORTANCE Vibrio parahaemolyticus (VpAHPND) is a major aquatic pathogen causing acute hepatopancreatic necrosis disease (AHPND) and leads to a huge economic loss to shrimp aquaculture. Despite the recent development of controlling culture environment, disease resistant broodstock breeding is still a sustainable approach for aquatic disease control. Metabolic changes occurred during VpAHPND infection, but knowledge about the metabolism in resistance to AHPND is very limited. Integrated analysis of transcriptome and metabolome revealed the basal metabolic differences exhibited between disease-resistant and susceptible shrimp. Amino acid catabolism might contribute to the pathogenesis of VpAHPND and arachidonic acid metabolism might be responsible for the resistance phenotype. This study will help to enlighten the metabolic and molecular mechanisms underlying shrimp resistance to AHPND. Also, the key genes and metabolites of amino acid and arachidonic acid pathway identified in this study will be applied for disease resistance improvement in the shrimp culture industry.
Collapse
Affiliation(s)
- Mingzhe Sun
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yang Yu
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shihao Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuan Liu
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaojun Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
27
|
Weh E, Goswami M, Chaudhury S, Fernando R, Miller N, Hager H, Sheskey S, Sharma V, Wubben TJ, Besirli CG. Metabolic Alterations Caused by Simultaneous Loss of HK2 and PKM2 Leads to Photoreceptor Dysfunction and Degeneration. Cells 2023; 12:2043. [PMID: 37626853 PMCID: PMC10453858 DOI: 10.3390/cells12162043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
HK2 and PKM2 are two main regulators of aerobic glycolysis. Photoreceptors (PRs) use aerobic glycolysis to produce the biomass necessary for the daily renewal of their outer segments. Previous work has shown that HK2 and PKM2 are important for the normal function and long-term survival of PRs but are dispensable for PR maturation, and their individual loss has opposing effects on PR survival during acute nutrient deprivation. We generated double conditional (dcKO) mice lacking HK2 and PKM2 expression in rod PRs. Western blotting, immunofluorescence, optical coherence tomography, and electroretinography were used to characterize the phenotype of dcKO animals. Targeted and stable isotope tracing metabolomics, qRT-PCR, and retinal oxygen consumption were performed. We show that dcKO animals displayed early shortening of PR inner/outer segments, followed by loss of PRs with aging, much more rapidly than either knockout alone without functional loss as measured by ERG. Significant alterations to central glucose metabolism were observed without any apparent changes to mitochondrial function, prior to PR degeneration. Finally, PR survival following experimental retinal detachment was unchanged in dcKO animals as compared to wild-type animals. These data suggest that HK2 and PKM2 have differing roles in promoting PR neuroprotection and identifying them has important implications for developing therapeutic options for combating PR loss during retinal disease.
Collapse
Affiliation(s)
- Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.G.); (S.C.); (R.F.); (N.M.); (H.H.); (S.S.); (V.S.); (T.J.W.)
| | | | | | | | | | | | | | | | | | - Cagri G. Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.G.); (S.C.); (R.F.); (N.M.); (H.H.); (S.S.); (V.S.); (T.J.W.)
| |
Collapse
|
28
|
Cheung AHK, Wong KY, Liu X, Ji F, Hui CHL, Zhang Y, Kwan JSH, Chen B, Dong Y, Lung RWM, Yu J, Lo KW, Wong CC, Kang W, To KF. MLK4 promotes glucose metabolism in lung adenocarcinoma through CREB-mediated activation of phosphoenolpyruvate carboxykinase and is regulated by KLF5. Oncogenesis 2023; 12:35. [PMID: 37407566 DOI: 10.1038/s41389-023-00478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/15/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
MLK4, a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, has been implicated in cancer progression. However, its role in lung adenocarcinoma has not been characterized. Here, we showed that MLK4 was overexpressed in a significant subset of lung adenocarcinoma, associated with a worse prognosis, and exerted an oncogenic function in vitro and in vivo. Bioinformatics analyses of clinical datasets identified phosphoenolpyruvate carboxykinase 1 (PCK1) as a novel target of MLK4. We validated that MLK4 regulated PCK1 expression at transcriptional level, by phosphorylating the transcription factor CREB, which in turn mediated PCK1 expression. We further demonstrated that PCK1 is an oncogenic factor in lung adenocarcinoma. Given the importance of PCK1 in the regulation of cellular metabolism, we next deciphered the metabolic effects of MLK4. Metabolic and mass spectrometry analyses showed that MLK4 knockdown led to significant reduction of glycolysis and decreased levels of glycolytic pathway metabolites including phosphoenolpyruvate and lactate. Finally, the promoter analysis of MLK4 unravelled a binding site of transcription factor KLF5, which in turn, positively regulated MLK4 expression in lung adenocarcinoma. In summary, we have revealed a KLF5-MLK4-PCK1 signalling pathway involved in lung tumorigenesis and established an unusual link between MAP3K signalling and cancer metabolism.
Collapse
Affiliation(s)
- Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kit-Yee Wong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaoli Liu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fenfen Ji
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chris Ho-Lam Hui
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yihan Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Johnny Sheung-Him Kwan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yujuan Dong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond Wai-Ming Lung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
29
|
Chang L, Chen H, Yang B, Chen H, Chen W. Redistributing Carbon Flux by Impairing Saccharide Synthesis to Enhance Lipid Yield in Oleaginous Fungus Mortierella alpina. ACS Synth Biol 2023; 12:1750-1760. [PMID: 37166287 DOI: 10.1021/acssynbio.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Increasing carbon flux toward target metabolites is important in improving microbial productivity and economic value. To improve the efficiency of lipid production in Mortierella alpina, we knocked down genes for trehalose-6-phosphate synthetase (Matps) and phosphoenolpyruvate carboxykinase (Mapepck) in the major pathways for saccharide synthesis. The knockdown of Matps reduced trehalose content by an average of 31.87%, while the knockdown of Mapepck reduced the total saccharide content by 28.6%, and both recombinant strains showed more than 20% increased lipid yield. Trehalose plays a vital role in stress resistance, but a higher polyunsaturated fatty acid-rich lipid content was found to partly compensate for the loss of trehalose after Matps knockdown. As compared with Matps knockdown, the knockdown of Mapepck gave better lipid production by bringing forward the time to maximum lipid yield by three days in a scale-up test. The arachidonic acid yield after the Mapepck knockdown reached 1.23 g/L, which was 39.9% higher than that of the original strain. The present research provided an efficient strategy for redistributing carbon flux among different metabolites and therefore promoted microbial lipid yield in a shorter fermentation period.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hanqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Centre for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
30
|
Yu Y, Li J, Ren K. Phosphoenolpyruvate carboxykinases as emerging targets in cancer therapy. Front Cell Dev Biol 2023; 11:1196226. [PMID: 37250903 PMCID: PMC10217351 DOI: 10.3389/fcell.2023.1196226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Metabolic reprogramming is commonly accompanied by alterations in the expression of metabolic enzymes. These metabolic enzymes not only catalyze the intracellular metabolic reaction, but also participate in a series of molecular events to regulate tumor initiation and development. Thus, these enzymes may act as promising therapeutic targets for tumor management. Phosphoenolpyruvate carboxykinases (PCKs) are the key enzymes involved in gluconeogenesis, which mediates the conversion of oxaloacetate into phosphoenolpyruvate. Two isoforms of PCK, namely cytosolic PCK1 and mitochondrial PCK2, has been found. PCK not only participates in the metabolic adaptation, but also regulates immune response and signaling pathways for tumor progression. In this review, we discussed the regulatory mechanisms of PCKs expression including transcription and post-translational modification. We also summarized the function of PCKs in tumor progression in different cellular contexts and explores its role in developing promising therapeutic opportunities.
Collapse
Affiliation(s)
- Yong Yu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingying Li
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kaiming Ren
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
31
|
Zhang X, Tao G, Jiang J, Qu T, Zhao S, Xu P, Zhao Y, Xing X, Qin S. PCK1 activates oncogenic autophagy via down-regulation Serine phosphorylation of UBAP2L and antagonizes colorectal cancer growth. Cancer Cell Int 2023; 23:68. [PMID: 37062825 PMCID: PMC10105959 DOI: 10.1186/s12935-023-02894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
Phosphoenolpyruvate carboxykinase 1 (PCK1) is the rate-limiting enzyme in gluconeogenesis. PCK1 is considered an anti-oncogene in several human cancers. In this study, we aimed to determine the functions of PCK1 in colorectal cancer (CRC). PCK1 expression in CRC tissues was tested by western blot and immunohistochemistry analyses and associations of PCK1 level with clinicopathological characteristics and disease survival evaluated. Further, we studied the effect of PCK1 on CRC cell proliferation and the underlying mechanisms. Our results show that PCK1 is expressed at significantly lower levels in CRC than in control tissues. High PCK1 expression was correlated with smaller tumor diameter and less bowel wall invasion (T stage). Overexpression and knockdown experiments demonstrated that PCK1 inhibits CRC cell growth both in vitro and in vivo. Mechanistically, PCK1 antagonizes CRC growth via inactivating UBAP2L phosphorylation at serine 454 and enhancing autophagy. Overall, our findings reveal a novel molecular mechanism involving PCK1 and autophagy, and highlight PCK1 as a promising candidate therapeutic target in CRC.
Collapse
Affiliation(s)
- Xiangyan Zhang
- Department of Pathophysiology, Basic Medicine College, Qingdao University, Qingdao, 266071, China.
- The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, People's Republic of China.
- Shandong First Medical University and Shandong Academy of Medical Sciences, Taishan Institute for Hydrogen Biomedicine, Tai'an, 271000, People's Republic of China.
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
| | - Geru Tao
- The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, People's Republic of China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Taishan Institute for Hydrogen Biomedicine, Tai'an, 271000, People's Republic of China
| | - Jie Jiang
- The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, People's Republic of China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Taishan Institute for Hydrogen Biomedicine, Tai'an, 271000, People's Republic of China
| | - Tingting Qu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Shuchao Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Ping Xu
- Laixi People's Hospital, Qingdao, 266000, People's Republic of China
| | - Ya'nan Zhao
- The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, People's Republic of China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Taishan Institute for Hydrogen Biomedicine, Tai'an, 271000, People's Republic of China
| | - Xiaoming Xing
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
| | - Shucun Qin
- Department of Pathophysiology, Basic Medicine College, Qingdao University, Qingdao, 266071, China.
- The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, People's Republic of China.
- Shandong First Medical University and Shandong Academy of Medical Sciences, Taishan Institute for Hydrogen Biomedicine, Tai'an, 271000, People's Republic of China.
| |
Collapse
|
32
|
Zhao Z, Gu S, Liu D, Liu D, Chen B, Li J, Tian C. The putative methyltransferase LaeA regulates mycelium growth and cellulase production in Myceliophthora thermophila. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:58. [PMID: 37013645 PMCID: PMC10071736 DOI: 10.1186/s13068-023-02313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Filamentous fungi with the ability to use complex carbon sources has been developed as platforms for biochemicals production. Myceliophthora thermophila has been developed as the cell factory to produce lignocellulolytic enzymes and plant biomass-based biofuels and biochemicals in biorefinery. However, low fungal growth rate and cellulose utilization efficiency are significant barriers to the satisfactory yield and productivity of target products, which needs our further exploration and improvement. RESULTS In this study, we comprehensively explored the roles of the putative methyltransferase LaeA in regulating mycelium growth, sugar consumption, and cellulases expression. Deletion of laeA in thermophile fungus Myceliophthora thermophila enhanced mycelium growth and glucose consumption significantly. Further exploration of LaeA regulatory network indicated that multiple growth regulatory factors (GRF) Cre-1, Grf-1, Grf-2, and Grf-3, which act as negative repressors of carbon metabolism, were regulated by LaeA in this fungus. We also determined that phosphoenolpyruvate carboxykinase (PCK) is the core node of the metabolic network related to fungal vegetative growth, of which enhancement partially contributed to the elevated sugar consumption and fungal growth of mutant ΔlaeA. Noteworthily, LaeA participated in regulating the expression of cellulase genes and their transcription regulator. ΔlaeA exhibited 30.6% and 5.5% increases in the peak values of extracellular protein and endo-glucanase activity, respectively, as compared to the WT strain. Furthermore, the global histone methylation assays indicated that LaeA is associated with modulating H3K9 methylation levels. The normal function of LaeA on regulating fungal physiology is dependent on methyltransferase activity. CONCLUSIONS The research presented in this study clarified the function and elucidated the regulatory network of LaeA in the regulation of fungal growth and cellulase production, which will significantly deepen our understanding about the regulation mechanism of LaeA in filamentous fungi and provides the new strategy for improvement the fermentation properties of industrial fungal strain by metabolic engineering.
Collapse
Affiliation(s)
- Zhen Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuying Gu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Defei Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Dandan Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Bingchen Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jingen Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Chaoguang Tian
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
33
|
Zhang H, Si P, Kong Q, Ma J. Transcriptome reveals the toxicity and genetic response of zebrafish to naphthenic acids and benzo[a]pyrene at ambient concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114700. [PMID: 36863161 DOI: 10.1016/j.ecoenv.2023.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/14/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Naphthenic acids (NAs) are typical contaminants in heavily crude oil. Benzo[a]pyrene (B[a]P) is also a component of crude oil, but their combined effects have not been systematically explored. In this study, zebrafish (Danio rerio) were used as the test organisms, and behavioral indicators and enzyme activities were used as toxicity indicators. Combined with the effects of environmental concentrations, the toxic effects of low concentrations of commercially available NAs (0.5 mg/LNA) and benzo[a]pyrene (0.8 μg/LBaP) at single and compound exposures (0.5 mg/LNA and 0.8 μg/LBaP) were assayed in zebrafish, and transcriptome sequencing technology was used to explore the molecular mechanism of the two compounds affecting zebrafish from the molecular biology level. Sensitive molecular markers that could indicate the presence of contaminants were screened. The results showed that (1) zebrafish in the NA and BaP exposure groups exhibited increased locomotor behavior, and the mixed exposure group exhibited inhibition of locomotor behavior. Oxidative stress biomarkers showed increased activity under single exposure and decreased activity under the mixed exposure. (2) NA stress led to changes in the activity of transporters and the intensity of energy metabolism; BaP directly stimulates the pathway of actin production. When the two compounds are combined, the excitability of neurons in the central nervous system is decreased, and the actin-related genes are down-regulated. (3) After BaP and Mix treatments, genes were enriched in the cytokine-receptor interaction and actin signal pathway, while NA increased the toxic effect on the mixed treatment group. In general, the interaction between NA and BaP has a synergistic effect on the transcription of zebrafish nerve and motor behavior-related genes, resulting in increased toxicity under combined exposure. The changes in expression of various zebrafish genes are manifested in the changes in the normal movement behavior of zebrafish and the intensification of oxidative stress in the apparent behavior and physiological indicators. CAPSULE ABSTRACT: We investigated the toxicity and genetic alterations caused by NA, B[a]P, and their mixtures in zebrafish in an aquatic environment using transcriptome sequencing technology and comprehensive behavioral analysis. These changes involved energy metabolism, the generation of muscle cells, and the nervous system.
Collapse
Affiliation(s)
- Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Panpan Si
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China
| | - Jinyue Ma
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China
| |
Collapse
|
34
|
Puente-Cobacho B, Varela-López A, Quiles JL, Vera-Ramirez L. Involvement of redox signalling in tumour cell dormancy and metastasis. Cancer Metastasis Rev 2023; 42:49-85. [PMID: 36701089 PMCID: PMC10014738 DOI: 10.1007/s10555-022-10077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023]
Abstract
Decades of research on oncogene-driven carcinogenesis and gene-expression regulatory networks only started to unveil the complexity of tumour cellular and molecular biology. This knowledge has been successfully implemented in the clinical practice to treat primary tumours. In contrast, much less progress has been made in the development of new therapies against metastasis, which are the main cause of cancer-related deaths. More recently, the role of epigenetic and microenviromental factors has been shown to play a key role in tumour progression. Free radicals are known to communicate the intracellular and extracellular compartments, acting as second messengers and exerting a decisive modulatory effect on tumour cell signalling. Depending on the cellular and molecular context, as well as the intracellular concentration of free radicals and the activation status of the antioxidant system of the cell, the signalling equilibrium can be tilted either towards tumour cell survival and progression or cell death. In this regard, recent advances in tumour cell biology and metastasis indicate that redox signalling is at the base of many cell-intrinsic and microenvironmental mechanisms that control disseminated tumour cell fate and metastasis. In this manuscript, we will review the current knowledge about redox signalling along the different phases of the metastatic cascade, including tumour cell dormancy, making emphasis on metabolism and the establishment of supportive microenvironmental connections, from a redox perspective.
Collapse
Affiliation(s)
- Beatriz Puente-Cobacho
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Laura Vera-Ramirez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain. .,Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.
| |
Collapse
|
35
|
Zhao J, Sun Y, Yuan C, Li T, Liang Y, Zou H, Zhang J, Ren L. Quercetin ameliorates hepatic fat accumulation in high-fat diet-induced obese mice via PPARs. Food Funct 2023; 14:1674-1684. [PMID: 36691903 DOI: 10.1039/d2fo03013f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As a natural pigment in food, quercetin possesses multiple biological activities and plays a crucial role in regulating metabolic syndrome. Herein, we aim to explore the potential mechanism of quercetin to ameliorate hepatic fat accumulation. In vivo experiments showed that quercetin significantly relieved inflammation response by decreasing the serum TNF-α and IL-6 levels and also improved high-fat diet-induced hepatic steatosis without other organ injuries. Quercetin can effectively reduce lipid aggregation and down-regulate the protein expression of PCK1 in HepG2 cells induced by oleic acid and palmitic acid, indicating that inhibiting gluconeogenesis leads to hepatic fat accumulation reduction. Furthermore, molecular docking results suggested that quercetin can bind to both PPARα and PPARγ, with an even more potent binding affinity than indeglitazar, a pan-agonist of PPARs. In conclusion, quercetin may regulate gluconeogenesis to ameliorate hepatic fat accumulation via targeting PPARα/γ.
Collapse
Affiliation(s)
- Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuiping Yuan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
36
|
Phua YL, D’Annibale OM, Karunanidhi A, Mohsen AW, Kirmse B, Dobrowolski SF, Vockley J. A multiomics approach to understanding pathology of Combined D,L-2- Hydroxyglutaric Aciduria and phenylbutyrate as potential treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526527. [PMID: 36778323 PMCID: PMC9915603 DOI: 10.1101/2023.02.02.526527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Combined D, L-2-Hydroxyglutaric Aciduria (D,L-2HGA) is a rare genetic disorder caused by recessive mutations in the SLC25A1 gene that encodes the mitochondrial citrate carrier protein (CIC). SLC25A1 deficiency leads to a secondary increase in mitochondrial 2-ketoglutarate that, in turn, is reduced to neurotoxic 2-hydroxyglutarate. Clinical symptoms of Combined D,L-2HGA include neonatal encephalopathy, respiratory insufficiency and often with death in infancy. No current therapies exist, although replenishing cytosolic stores by citrate supplementation to replenish cytosolic stores has been proposed. In this study, we demonstrated that patient derived fibroblasts exhibited impaired cellular bioenergetics that were worsened with citrate supplementation. We hypothesized treating patient cells with phenylbutyrate, an FDA approved pharmaceutical drug, would reduce mitochondrial 2-ketoglutarate, leading to improved cellular bioenergetics including oxygen consumption and fatty acid oxidation. Metabolomic and RNA-seq analyses demonstrated a significant decrease in intracellular 2-ketoglutarate, 2-hydroxyglutarate, and in levels of mRNA coding for citrate synthase and isocitrate dehydrogenase. Consistent with the known action of phenylbutyrate, detected levels of phenylacetylglutamine was consistent with the drug acting as 2-ketoglutarate sink in patient cells. Our pre-clinical studies suggest citrate supplementation is unlikely to be an effective treatment of the disorder. However, cellular bioenergetics suggests phenylbutyrate may have interventional utility for this rare disease.
Collapse
Affiliation(s)
- Yu Leng Phua
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, Clinical Biochemical Genetics Laboratory, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Olivia M D’Annibale
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Anuradha Karunanidhi
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Al-Walid Mohsen
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Brian Kirmse
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Steven F Dobrowolski
- Department of Pathology, Clinical Biochemical Genetics Laboratory, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jerry Vockley
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Gao M, Chen M, Chen Q, Zhu S, Wang H, Yang W, Wang X, Wang Q, Gu L. Integration of parallel metabolomics and transcriptomics reveals metabolic patterns in porcine oocytes during maturation. Front Endocrinol (Lausanne) 2023; 14:1131256. [PMID: 36817597 PMCID: PMC9929430 DOI: 10.3389/fendo.2023.1131256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Well-controlled metabolism is the prerequisite for optimal oocyte development. To date, numerous studies have focused mainly on the utilization of exogenous substrates by oocytes, whereas the underlying mechanism of intrinsic regulation during meiotic maturation is less characterized. Herein, we performed an integrated analysis of parallel metabolomics and transcriptomics by isolating porcine oocytes at three time points, cooperatively depicting the global picture of the metabolic patterns during maturation. In particular, we identified the novel metabolic features during porcine oocyte meiosis, such as the fall in bile acids, the active one-carbon metabolism and a progressive decline in nucleotide metabolism. Collectively, the current study not only provides a comprehensive multiple omics data resource, but also may facilitate the discovery of molecular biomarkers that could be used to predict and improve oocyte quality.
Collapse
Affiliation(s)
- Ming Gao
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Minjian Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuzhen Chen
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Hengjie Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Weizheng Yang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Ling Gu, ; Qiang Wang, ; Xi Wang,
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Ling Gu, ; Qiang Wang, ; Xi Wang,
| | - Ling Gu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Ling Gu, ; Qiang Wang, ; Xi Wang,
| |
Collapse
|
38
|
Onyango AN. Excessive gluconeogenesis causes the hepatic insulin resistance paradox and its sequelae. Heliyon 2022; 8:e12294. [PMID: 36582692 PMCID: PMC9792795 DOI: 10.1016/j.heliyon.2022.e12294] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background Hepatic insulin signaling suppresses gluconeogenesis but promotes de novo lipid synthesis. Paradoxically, hepatic insulin resistance (HIR) enhances both gluconeogenesis and de novo lipid synthesis. Elucidation of the etiology of this paradox, which participates in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, the metabolic syndrome and hepatocellular carcinoma, has not been fully achieved. Scope of review This article briefly outlines the previously proposed hypotheses on the etiology of the HIR paradox. It then discusses literature consistent with an alternative hypothesis that excessive gluconeogenesis, the direct effect of HIR, is responsible for the aberrant lipogenesis. The mechanisms involved therein are explained, involving de novo synthesis of fructose and uric acid, promotion of glutamine anaplerosis, and induction of glucagon resistance. Thus, gluconeogenesis via lipogenesis promotes hepatic steatosis, a component of NAFLD, and dyslipidemia. Gluconeogenesis-centred mechanisms for the progression of NAFLD from simple steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis are suggested. That NAFLD often precedes and predicts type 2 diabetes is explained by the ability of lipogenesis to cushion against blood glucose dysregulation in the earlier stages of NAFLD. Major conclusions HIR-induced excessive gluconeogenesis is a major cause of the HIR paradox and its sequelae. Such involvement of gluconeogenesis in lipid synthesis rationalizes the fact that several types of antidiabetic drugs ameliorate NAFLD. Thus, dietary, lifestyle and pharmacological targeting of HIR and hepatic gluconeogenesis may be a most viable approach for the prevention and management of the HIR-associated network of diseases.
Collapse
|
39
|
Li Z, Yue M, Liu X, Liu Y, Lv L, Zhang P, Zhou Y. The PCK2-glycolysis axis assists three-dimensional-stiffness maintaining stem cell osteogenesis. Bioact Mater 2022; 18:492-506. [PMID: 35415308 PMCID: PMC8971594 DOI: 10.1016/j.bioactmat.2022.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 01/02/2023] Open
Abstract
Understanding mechanisms underlying the heterogeneity of multipotent stem cells offers invaluable insights into biogenesis and tissue development. Extracellular matrix (ECM) stiffness has been acknowledged as a crucial factor regulating stem cell fate. However, how cells sense stiffness cues and adapt their metabolism activity is still unknown. Here we report the novel role of mitochondrial phosphoenolpyruvate carboxykinase (PCK2) in enhancing osteogenesis in 3D ECM via glycolysis. We experimentally mimicked the physical characteristics of 3D trabeculae network of normal and osteoporotic bone with different microstructure and stiffness, observing that PCK2 promotes osteogenesis in 3D ECM with tunable stiffness in vitro and in vivo. Mechanistically, PCK2 enhances the rate-limiting metabolic enzyme pallet isoform phosphofructokinase (PFKP) in 3D ECM, and further activates AKT/extracellular signal-regulated kinase 1/2 (ERK1/2) cascades, which directly regulates osteogenic differentiation of MSCs. Collectively, our findings implicate an intricate crosstalk between cell mechanics and metabolism, and provide new perspectives for strategies of osteoporosis. As the key rate-limiting enzyme of gluconeogenesis, PCK2 manipulates osteogenesis in stiff and soft ECM in vitro and in vivo. PCK2 regulates osteogenic capacity of BMMSCs in 3D ECM with different stiffness, via modulating glycolysis and regulating PFKP-AKT/ERK signaling pathways.
Collapse
Affiliation(s)
- Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Corresponding author. Vice Professor of Department of Prosthodontics, School and Hospital of Stomatology of Peking University, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Corresponding author. President of School and Hospital of Stomatology of Peking University, Professor of Department of Prosthodontics, Vice-Director for National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Vice-Director for the National Clinical Research Center of Oral Diseases (PKU), 22 Zhongguancun South Avenue, Haidian District, Beijing, 10081, PR China.
| |
Collapse
|
40
|
Katz LS, Argmann C, Lambertini L, Scott DK. T3 and glucose increase expression of phosphoenolpyruvate carboxykinase (PCK1) leading to increased β-cell proliferation. Mol Metab 2022; 66:101646. [PMID: 36455788 PMCID: PMC9731891 DOI: 10.1016/j.molmet.2022.101646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Thyroid hormone (T3) and high glucose concentrations are critical components of β-cell maturation and function. In the present study, we asked whether T3 and glucose signaling pathways coordinately regulate transcription of genes important for β-cell function and proliferation. METHODS RNA-seq analysis was performed on cadaveric human islets from five different donors in response to low and high glucose concentrations and in the presence or absence of T3. Gene expression was also studies in sorted human β-cells, mouse islets and Ins-1 cells by RT-qPCR. Silencing of the thyroid hormone receptors (THR) was conducted using lentiviruses. Proliferation was assessed by ki67 immunostaining in primary human/mouse islets. Chromatin immunoprecipitation and proximity ligation assay were preformed to validate interactions of ChREBP and THR. RESULTS We found glucose-mediated expression of carbohydrate response element binding protein alpha and beta (ChREBPα and ChREBPβ) mRNAs and their target genes are highly dependent on T3 concentrations in rodent and human β-cells. In β-cells, T3 and glucose coordinately regulate the expression of ChREBPβ and PCK1 (phosphoenolpyruvate carboxykinase-1) among other important genes for β-cell maturation. Additionally, we show the thyroid hormone receptor (THR) and ChREBP interact, and their relative response elements are located near to each other on mutually responsive genes. In FACS-sorted adult human β-cells, we found that high concentrations of glucose and T3 induced the expression of PCK1. Next, we show that overexpression of Pck1 together with dimethyl malate (DMM), a substrate precursor, significantly increased β-cell proliferation in human islets. Finally, using a Cre-Lox approach, we demonstrated that ChREBPβ contributes to Pck1-dependent β-cell proliferation in mouse β-cells. CONCLUSIONS We conclude that T3 and glucose act together to regulate ChREBPβ, leading to increased expression and activity of Pck1, and ultimately increased β-cell proliferation.
Collapse
Affiliation(s)
- Liora S Katz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Carmen Argmann
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luca Lambertini
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
41
|
Barwell S, Duman R, Wagner A, Holyoak T. Directional regulation of cytosolic PEPCK catalysis is mediated by competitive binding of anions. Biochem Biophys Res Commun 2022; 637:218-223. [DOI: 10.1016/j.bbrc.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
42
|
Ko DS, Kang J, Heo HJ, Kim EK, Kim K, Kang JM, Jung Y, Baek SE, Kim YH. Role of PCK2 in the proliferation of vascular smooth muscle cells in neointimal hyperplasia. Int J Biol Sci 2022; 18:5154-5167. [PMID: 35982907 PMCID: PMC9379418 DOI: 10.7150/ijbs.75577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation is a hallmark of neointimal hyperplasia (NIH) in atherosclerosis and restenosis post-balloon angioplasty and stent insertion. Although numerous cytotoxic and cytostatic therapeutics have been developed to reduce NIH, it is improbable that a multifactorial disease can be successfully treated by focusing on a preconceived hypothesis. We, therefore, aimed to identify key molecules involved in NIH via a hypothesis-free approach. We analyzed four datasets (GSE28829, GSE43292, GSE100927, and GSE120521), evaluated differentially expressed genes (DEGs) in wire-injured femoral arteries of mice, and determined their association with VSMC proliferation in vitro. Moreover, we performed RNA sequencing on platelet-derived growth factor (PDGF)-stimulated human VSMCs (hVSMCs) post-phosphoenolpyruvate carboxykinase 2 (PCK2) knockdown and investigated pathways associated with PCK2. Finally, we assessed NIH formation in Pck2 knockout (KO) mice by wire injury and identified PCK2 expression in human femoral artery atheroma. Among six DEGs, only PCK2 and RGS1 showed identical expression patterns between wire-injured femoral arteries of mice and gene expression datasets. PDGF-induced VSMC proliferation was attenuated when hVSMCs were transfected with PCK2 siRNA. RNA sequencing of PCK2 siRNA-treated hVSMCs revealed the involvement of the Akt-FoxO-PCK2 pathway in VSMC proliferation via Akt2, Akt3, FoxO1, and FoxO3. Additionally, NIH was attenuated in the wire-injured femoral artery of Pck2-KO mice and PCK2 was expressed in human femoral atheroma. PCK2 regulates VSMC proliferation in response to vascular injury via the Akt-FoxO-PCK2 pathway. Targeting PCK2, a downstream signaling mediator of VSMC proliferation, may be a novel therapeutic approach to modulate VSMC proliferation in atherosclerosis.
Collapse
Affiliation(s)
- Dai Sik Ko
- Division of Vascular Surgery, Department of General Surgery, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Junho Kang
- Medical Research Institute, Pusan National University, Busan, Republic of Korea
| | - Hye Jin Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Eun Kyoung Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Kihun Kim
- Department of Occupational and Environmental Medicine, Kosin University Gospel Hospital, Republic of Korea
| | - Jin Mo Kang
- Division of Vascular Surgery, Department of General Surgery, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - YunJae Jung
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.,Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, Republic of Korea
| | - Seung Eun Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.,Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
43
|
Hsu H, Chu P, Chang T, Huang K, Hung W, Jiang SS, Lin H, Tsai H. Mitochondrial phosphoenolpyruvate carboxykinase promotes tumor growth in estrogen receptor-positive breast cancer via regulation of the mTOR pathway. Cancer Med 2022; 12:1588-1601. [PMID: 35757841 PMCID: PMC9883444 DOI: 10.1002/cam4.4969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Tumor cells may aberrantly express metabolic enzymes to adapt to their environment for survival and growth. Targeting cancer-specific metabolic enzymes is a potential therapeutic strategy. Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the conversion of oxaloacetate to phosphoenolpyruvate and links the tricarboxylic acid cycle and glycolysis/gluconeogenesis. Mitochondrial PEPCK (PEPCK-M), encoded by PCK2, is an isozyme of PEPCK and is distributed in mitochondria. Overexpression of PCK2 has been identified in many human cancers and demonstrated to be important for the survival program initiated upon metabolic stress in cancer cells. We evaluated the expression status of PEPCK-M and investigated the function of PEPCK-M in breast cancer. METHODS We checked the expression status of PEPCK-M in breast cancer samples by immunohistochemical staining. We knocked down or overexpressed PCK2 in breast cancer cell lines to investigate the function of PEPCK-M in breast cancer. RESULTS PEPCK-M was highly expressed in estrogen receptor-positive (ER+ ) breast cancers. Decreased cell proliferation and G0 /G1 arrest were induced in ER+ breast cancer cell lines by knockdown of PCK2. PEPCK-M promoted the activation of mTORC1 downstream signaling molecules and the E2F1 pathways in ER+ breast cancer. In addition, glucose uptake, intracellular glutamine levels, and mTORC1 pathways activation by glucose and glutamine in ER+ breast cancer were attenuated by PCK2 knockdown. CONCLUSION PEPCK-M promotes proliferation and cell cycle progression in ER+ breast cancer via upregulation of the mTORC1 and E2F1 pathways. PCK2 also regulates nutrient status-dependent mTORC1 pathway activation in ER+ breast cancer. Further studies are warranted to understand whether PEPCK-M is a potential therapeutic target for ER+ breast cancer.
Collapse
Affiliation(s)
- Hui‐Ping Hsu
- Department of SurgeryNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Pei‐Yi Chu
- Department of PathologyShow Chwan Memorial HospitalChanghuaTaiwan,National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan,School of Medicine, College of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan,Department of Post‐Baccalaureate Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
| | - Tsung‐Ming Chang
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan,Department of Medical Laboratory ScienceCollege of Medical Science and Technology, I‐Shou UniversityKaohsiungTaiwan
| | - Kuo‐Wei Huang
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan
| | - Wen‐Chun Hung
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan
| | - Shih Sheng Jiang
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan
| | - Hui‐You Lin
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan
| | - Hui‐Jen Tsai
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan,Department of Oncology, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan,Department of Internal Medicine, Kaohsiung Medical University HospitalKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
44
|
Domingo-Vidal M, Whitaker-Menezes D, Mollaee M, Lin Z, Tuluc M, Philp N, Johnson JM, Zhan T, Curry J, Martinez-Outschoorn U. Monocarboxylate Transporter 4 in Cancer-Associated Fibroblasts Is a Driver of Aggressiveness in Aerodigestive Tract Cancers. Front Oncol 2022; 12:906494. [PMID: 35814364 PMCID: PMC9259095 DOI: 10.3389/fonc.2022.906494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The most common cancers of the aerodigestive tract (ADT) are non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC). The tumor stroma plays an important role in ADT cancer development and progression, and contributes to the metabolic heterogeneity of tumors. Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor stroma of ADT cancers and exert pro-tumorigenic functions. Metabolically, glycolytic CAFs support the energy needs of oxidative (OXPHOS) carcinoma cells. Upregulation of the monocarboxylate transporter 4 (MCT4) and downregulation of isocitrate dehydrogenase 3α (IDH3α) are markers of glycolysis in CAFs, and upregulation of the monocarboxylate transporter 1 (MCT1) and the translocase of the outer mitochondrial membrane 20 (TOMM20) are markers of OXPHOS in carcinoma cells. It is unknown if glycolytic metabolism in CAFs is a driver of ADT cancer aggressiveness. In this study, co-cultures in vitro and co-injections in mice of ADT carcinoma cells with fibroblasts were used as experimental models to study the effects of fibroblasts on metabolic compartmentalization, oxidative stress, carcinoma cell proliferation and apoptosis, and overall tumor growth. Glycolytic metabolism in fibroblasts was modulated using the HIF-1α inhibitor BAY 87-2243, the antioxidant N-acetyl cysteine, and genetic depletion of MCT4. We found that ADT human tumors express markers of metabolic compartmentalization and that co-culture models of ADT cancers recapitulate human metabolic compartmentalization, have high levels of oxidative stress, and promote carcinoma cell proliferation and survival. In these models, BAY 87-2243 rescues IDH3α expression and NAC reduces MCT4 expression in fibroblasts, and these treatments decrease ADT carcinoma cell proliferation and increase cell death. Genetic depletion of fibroblast MCT4 decreases proliferation and survival of ADT carcinoma cells in co-culture. Moreover, co-injection of ADT carcinoma cells with fibroblasts lacking MCT4 reduces tumor growth and decreases the expression of markers of metabolic compartmentalization in tumors. In conclusion, metabolic compartmentalization with high expression of MCT4 in CAFs drives aggressiveness in ADT cancers.
Collapse
Affiliation(s)
- Marina Domingo-Vidal
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Diana Whitaker-Menezes
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mehri Mollaee
- Lewis Katz School of Medicine, Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Zhao Lin
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Madalina Tuluc
- Sidney Kimmel Cancer Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Philp
- Sidney Kimmel Cancer Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer M. Johnson
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joseph Curry
- Sidney Kimmel Cancer Center, Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ubaldo Martinez-Outschoorn
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Ubaldo Martinez-Outschoorn,
| |
Collapse
|
45
|
Ren M, Wang L, Gao ZX, Deng XY, Shen KJ, Li YL, Ding YT, Wei CY, Gu JY. Overcoming chemoresistance to b-raf inhibitor in melanoma via targeted inhibition of phosphoenolpyruvate carboxykinase1 using 3-mercaptopropionic acid. Bioengineered 2022; 13:13571-13586. [PMID: 36700470 PMCID: PMC9275918 DOI: 10.1080/21655979.2022.2080385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The resistance of melanoma to BRAF inhibitors remains a tough clinical challenge. In order to explore the underlying mechanism of drug resistance in melanoma, we established the resistant cell line to vemurafenib, and assessed the changes of drug-resistant cells on proliferation, apoptosis, oxidative stress and tumor stemness. Our results suggest that phosphoenolpyruvate carboxykinase1 (PCK1) is activated and inhibits the oxidative stress caused by vemurafenib in drug-resistant cells. Long term treatment of vemurafenib increases the expression of PCK1 which reduces the production of reactive oxygen species (ROS) by activating PI3K/Akt pathway. After the inhibition of PCK1 by 3-mercaptopropionic acid (3-MPA), the therapeutic sensitivity of vemurafenib is restored. In conclusion, this study disclosed that drug-resistant cells appeared to regulate their own proliferation, oxidative stress and tumor dryness by activating Akt/PCK1/ROS pathway, and shed new insights into acquiring drug resistance in melanoma.
Collapse
Affiliation(s)
- Ming Ren
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zi-Xu Gao
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin-Yi Deng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kang-Jie Shen
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan-Lin Li
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Teng Ding
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuan-Yuan Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,CONTACT Chuan-Yuan Wei
| | - Jian-Ying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Jian-Ying Gu Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai200032, China
| |
Collapse
|
46
|
Mechanism of glycometabolism regulation by bioactive compounds from the fruits of Lycium barbarum: A review. Food Res Int 2022; 159:111408. [DOI: 10.1016/j.foodres.2022.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/30/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
|
47
|
Xiong Q, Feng D, Wang Z, Ying Y, Xu C, Wei Q, Zeng S, Yang L. Fatty Acid Synthase Is the Key Regulator of Fatty Acid Metabolism and Is Related to Immunotherapy in Bladder Cancer. Front Immunol 2022; 13:836939. [PMID: 35392075 PMCID: PMC8982515 DOI: 10.3389/fimmu.2022.836939] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Fatty acid metabolism (FAM) genes are potentially useful for predicting prognosis and immunotherapy response in bladder cancer (BC). To examine this, we constructed a prognostic model and identified key FAM genes in BC. Using transcriptional expression profiles and clinical data of BC patients from public datasets and Changhai (CH) hospital, we built and validated a risk-score model based on 13 prognostic FAM genes. Differential gene expression identified fatty acid synthase (FASN) as central to fatty acid metabolism in BC. FASN was differentially expressed between normal and tumor tissue, and was related to survival. In the CH dataset, FASN independently predicted muscle-invasive BC. FASN differential expression was significantly related to immune-cell infiltration and patients with low FASN expression responded better to immune checkpoint inhibitor (ICI) treatment. SREBF1 was predicted as the most significant transcription factor for FASN. Competing endogenous RNA network analysis suggested that lncRNA AC107027.3 may upregulate FASN by competitively binding miR-27A-3p, thereby regulating the immunotherapy response in BC. Dasatinib and temsirolimus are potential FASN-targeting drugs. Our model efficiently predicted prognosis in BC. FASN is central to fatty acid metabolism, and a potential indicator and regulator of ICI treatment.
Collapse
Affiliation(s)
- Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China.,Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Ziwei Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yidie Ying
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Mehrgou A, Teimourian S. Update of gene expression/methylation and MiRNA profiling in colorectal cancer; application in diagnosis, prognosis, and targeted therapy. PLoS One 2022; 17:e0265527. [PMID: 35333898 PMCID: PMC8956198 DOI: 10.1371/journal.pone.0265527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/02/2022] [Indexed: 01/22/2023] Open
Abstract
Background
Colorectal cancer is one of the most deadliest malignancies worldwide. Due to the dearth of appropriate biomarkers, the diagnosis of this mortal disease is usually deferred, in its turn, culminating in the failure of prevention. By the same token, proper biomarkers are at play in determining the quality of prognosis. In other words, the survival rate is contingent upon the regulation of such biomarkers.
Materials and methods
The information regarding expression (GSE41258, and GSE31905), methylation (GSE101764), and miRNA (dbDEMC) were downloaded. MEXPRESS and GEPIA confirmed the validated differentially expressed/methylated genes using TCGA data. Taking advantage of the correlation plots and receiver-operating-characteristic (ROC) curves, expression and methylation profiles were compared. The interactions between validated differentially expressed genes and differentially expressed miRNA were recognized and visualized by miRTarBase and Cytoscape, respectively. Then, the protein-protein interaction (PPI) network and hub genes were established via STRING and Cytohubba plugin. Utilizing R packages (DOSE, Enrichplot, and clusterProfiler) and DAVID database, the Functional Enrichment analysis and the detection of KEGG pathways were performed. Ultimately, in order to recognize the prognostic value of found biomarkers, they were evaluated through drawing survival plots for CRC patients.
Results
In this research, we found an expression profile (with 13 novel genes), a methylation profile (with two novel genes), and a miRNA profile with diagnostic value. Concerning diagnosis, the expression profile was evaluated more powerful in comparison with the methylation profile. Furthermore, a prognosis-related expression profile was detected.
Conclusion
In addition to diagnostic- and prognostic-applicability, the discerned profiles can assist in targeted therapy and current therapeutic strategies.
Collapse
Affiliation(s)
- Amir Mehrgou
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
49
|
Zhu K, Deng C, Du P, Liu T, Piao J, Piao Y, Yang M, Chen L. G6PC indicated poor prognosis in cervical cancer and promoted cervical carcinogenesis in vitro and in vivo. Reprod Biol Endocrinol 2022; 20:50. [PMID: 35277194 PMCID: PMC8915493 DOI: 10.1186/s12958-022-00921-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/27/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The glucose-6-phosphatase catalytic subunit (G6PC) is a key enzyme that is involved in gluconeogenesis and glycogen decomposition during glycometabolism. Studies have shown that G6PC is abnormally expressed in various cancers and participates in the proliferation and metastasis of tumors. However, the role of G6PC in cervical cancer remains poorly established. METHODS To analyze the expression of G6PC in cervical cancer tissues in patients by immunohistochemistry. Effects of G6PC deregulation on cervical cancer phenotype were determined using MTT, colony formation, transwell, and wound-healing assays. And constructed a nude mouse xenograft tumor model and CAM assay in vivo. The effect of G6PC on glycolysis in cervical cancer was also evaluated. Effect of G6PC on PI3K/AKT/mTOR pathway was detected by Western blot assay. RESULTS In this study, G6PC expression was found to be upregulated in cervical cancer tissues, and this upregulated expression was associated with LN metastasis, clinical stage, recurrence, and disease-free survival and overall survival rates, indicating that G6PC could serve as a novel marker of early diagnosis in cervical cancer. G6PC promoted proliferation, invasion, epithelial mesenchymal transition (EMT) progression, and angiogenesis of cervical cancer cells. Mechanistically, G6PC activated PI3K/AKT/mTOR pathways. The PI3K/AKT pathway inhibitor, LY294002 could partially attenuate the effect. CONCLUSIONS G6PC plays a key role in the progression of cervical cancer, and overexpressed G6PC is closely related to patient LN metastasis, clinical stage, recurrence and shortened survival. G6PC promoted cervical cancer proliferation, invasion, migration, EMT progression, and angiogenesis, partially through activating the PI3K/AKT pathway. G6PC, as a metabolic gene, not only plays a role in metabolism, but also participates in the development of cervical cancer. Its complex metabolic and non metabolic effects may be a potential therapeutic target and worthy of further study.
Collapse
Affiliation(s)
- Kun Zhu
- Cancer Research Center, Yanbian University Medical College, Gong Yuan Road No.977, Yanji, 133002, China
| | - Chunling Deng
- Cancer Research Center, Yanbian University Medical College, Gong Yuan Road No.977, Yanji, 133002, China
| | - Pan Du
- Cancer Research Center, Yanbian University Medical College, Gong Yuan Road No.977, Yanji, 133002, China
| | - Taorui Liu
- Cancer Research Center, Yanbian University Medical College, Gong Yuan Road No.977, Yanji, 133002, China
| | - Junjie Piao
- Cancer Research Center, Yanbian University Medical College, Gong Yuan Road No.977, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Yingshi Piao
- Cancer Research Center, Yanbian University Medical College, Gong Yuan Road No.977, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Meng Yang
- Department of Physiology, Medicine College, Jingchu University of Technology, Jingmen, 448000, China.
| | - Liyan Chen
- Cancer Research Center, Yanbian University Medical College, Gong Yuan Road No.977, Yanji, 133002, China.
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China.
| |
Collapse
|
50
|
Vieira P, Nagy II, Rahikkala E, Väisänen ML, Latva K, Kaunisto K, Valmari P, Keski-Filppula R, Haanpää MK, Sidoroff V, Miettinen PJ, Arkkola T, Ojaniemi M, Nuutinen M, Uusimaa J, Myllynen P. Cytosolic phosphoenolpyruvate carboxykinase deficiency: Expanding the clinical phenotype and novel laboratory findings. J Inherit Metab Dis 2022; 45:223-234. [PMID: 34622459 DOI: 10.1002/jimd.12446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/11/2022]
Abstract
Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) deficiency due to the homozygous PCK1 variant has recently been associated with childhood-onset hypoglycemia with a recognizable pattern of abnormal urine organic acids. In this study, 21 children and 3 adult patients with genetically confirmed PEPCK-C deficiency were diagnosed during the years 2016 to 2019 and the available biochemical and clinical data were collected. All patients were ethnic Finns. Most patients (22 out of 24) had a previously published homozygous PCK1 variant c.925G>A. Two patients had a novel compound heterozygous PCK1 variant c.925G>A and c.716C>T. The laboratory results showed abnormal urine organic acid profile with increased tricarboxylic acid cycle intermediates and inadequate ketone body production during hypoglycemia. The hypoglycemic episodes manifested predominantly in the morning. Infections, fasting or poor food intake, heavy exercise, alcohol consumption, and breastfeeding were identified as triggering factors. Five patients presented with neonatal hypoglycemia. Hypoglycemic seizures occurred in half of the patients (12 out of 24). The first hypoglycemic episode often occurred at the age of 1-2 years, but it sometimes presented at a later age, and could re-occur during school age or adulthood. This study adds to the laboratory data on PEPCK-C deficiency, confirming the recognizable urine organic acid pattern and identifying deficient ketogenesis as a novel laboratory finding. The phenotype is expanded suggesting that the risk of hypoglycemia may continue into adulthood if predisposing factors are present.
Collapse
Affiliation(s)
- Päivi Vieira
- Clinic for Children and Adolescents, Oulu University Hospital, Oulu, Finland
- PEDEGO Research Unit and Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Irina I Nagy
- Department of Clinical Chemistry, Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Northern Finland Laboratory Centre NordLab, Oulu University Hospital, Oulu, Finland
| | - Elisa Rahikkala
- PEDEGO Research Unit and Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marja-Leena Väisänen
- Department of Clinical Chemistry, Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Northern Finland Laboratory Centre NordLab, Oulu University Hospital, Oulu, Finland
| | - Katariina Latva
- Department of Pediatrics, Päijät-Häme Central Hospital, Lahti, Finland
| | - Kari Kaunisto
- Clinic for Children and Adolescents, Oulu University Hospital, Oulu, Finland
- PEDEGO Research Unit and Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Pekka Valmari
- Department of Pediatrics, Lapland Central Hospital, Rovaniemi, Finland
| | - Riikka Keski-Filppula
- PEDEGO Research Unit and Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Maria K Haanpää
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Genetics, Turku University Hospital and University of Turku, Turku, Finland
| | - Virpi Sidoroff
- Department of Pediatrics, North Karelia Central Hospital, Joensuu, Finland
| | - Päivi J Miettinen
- New Children's Hospital, Helsinki University Hospital, Pediatric Research Center, Helsinki, Finland
| | - Tuula Arkkola
- Clinic for Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Marja Ojaniemi
- Clinic for Children and Adolescents, Oulu University Hospital, Oulu, Finland
- PEDEGO Research Unit and Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Matti Nuutinen
- Clinic for Children and Adolescents, Oulu University Hospital, Oulu, Finland
- PEDEGO Research Unit and Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Johanna Uusimaa
- Clinic for Children and Adolescents, Oulu University Hospital, Oulu, Finland
- PEDEGO Research Unit and Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Päivi Myllynen
- Department of Clinical Chemistry, Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Northern Finland Laboratory Centre NordLab, Oulu University Hospital, Oulu, Finland
| |
Collapse
|