1
|
Nie Z, Zhao Y, Yu S, Mai J, Gao H, Fan Z, Bao Y, Li R, Xiao J. NucMap 2.0: An Updated Database of Genome-wide Nucleosome Positioning Maps Across Species. J Mol Biol 2024; 436:168655. [PMID: 38878855 DOI: 10.1016/j.jmb.2024.168655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024]
Abstract
Nucleosome dynamics plays important roles in many biological processes, such as DNA replication and gene expression. NucMap (https://ngdc.cncb.ac.cn/nucmap) is the first database of genome-wide nucleosome positioning maps across species. Here, we present an updated version, NucMap 2.0, by incorporating more species and MNase-seq samples. In addition, we integrate other related omics data for each MNase-seq sample to provide a comprehensive view of nucleosome positioning, such as gene expression, transcription factor binding sites, histone modifications and DNA methylation. In particular, NucMap 2.0 integrates and pre-analyzes RNA-seq data and ChIP-seq data of human-related samples, which facilitates the interpretation of nucleosome positioning in humans. All processed data are integrated into an in-built genome browser, and users can make comprehensive side-by-side analyses. In addition, more online analytical functions are developed, which allows researchers to identify differential nucleosome regions and explore potential gene regulatory regions. All resources are open access with a user-friendly web interface.
Collapse
Affiliation(s)
- Zhi Nie
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongbing Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China; Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Shuhuan Yu
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jialin Mai
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hao Gao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhuojing Fan
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
| | - Yiming Bao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rujiao Li
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
| | - Jingfa Xiao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Goldberg GW, Kogenaru M, Keegan S, Haase MAB, Kagermazova L, Arias MA, Onyebeke K, Adams S, Beyer DK, Fenyö D, Noyes MB, Boeke JD. Engineered transcription-associated Cas9 targeting in eukaryotic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.18.558319. [PMID: 37781609 PMCID: PMC10541143 DOI: 10.1101/2023.09.18.558319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
DNA targeting Class 2 CRISPR-Cas effector nucleases, including the well-studied Cas9 proteins, evolved protospacer-adjacent motif (PAM) and guide RNA interactions that sequentially license their binding and cleavage activities at protospacer target sites. Both interactions are nucleic acid sequence specific but function constitutively; thus, they provide intrinsic spatial control over DNA targeting activities but naturally lack temporal control. Here we show that engineered Cas9 fusion proteins which bind to nascent RNAs near a protospacer can facilitate spatiotemporal coupling between transcription and DNA targeting at that protospacer: Transcription-associated Cas9 Targeting (TraCT). Engineered TraCT is enabled in eukaryotic yeast or human cells when suboptimal PAM interactions limit basal activity and when one or more nascent RNA substrates are still tethered to the actively transcribed target DNA in cis. Using yeast, we further show that this phenomenon can be applied for selective editing at one of two identical targets in distinct gene loci, or, in diploid allelic loci that are differentially transcribed. Our work demonstrates that temporal control over Cas9's targeting activity at specific DNA sites may be engineered without modifying Cas9's core domains and guide RNA components or their expression levels. More broadly, it establishes co-transcriptional RNA binding as a cis-acting mechanism that can conditionally stimulate CRISPR-Cas DNA targeting in eukaryotic cells.
Collapse
Affiliation(s)
- Gregory W. Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Manjunatha Kogenaru
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Max A. B. Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Larisa Kagermazova
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Mauricio A. Arias
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Kenenna Onyebeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Samantha Adams
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Daniel K. Beyer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Marcus B. Noyes
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn NY 11201
| |
Collapse
|
3
|
Zhang X, Blumenthal RM, Cheng X. Updated understanding of the protein-DNA recognition code used by C2H2 zinc finger proteins. Curr Opin Struct Biol 2024; 87:102836. [PMID: 38754172 DOI: 10.1016/j.sbi.2024.102836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
C2H2 zinc-finger (ZF) proteins form the largest family of DNA-binding transcription factors coded by mammalian genomes. In a typical DNA-binding ZF module, there are twelve residues (numbered from -1 to -12) between the last zinc-coordinating cysteine and the first zinc-coordinating histidine. The established C2H2-ZF "recognition code" suggests that residues at positions -1, -4, and -7 recognize the 5', central, and 3' bases of a DNA base-pair triplet, respectively. Structural studies have highlighted that additional residues at positions -5 and -8 also play roles in specific DNA recognition. The presence of bulky and either charged or polar residues at these five positions determines specificity for given DNA bases: guanine is recognized by arginine, lysine, or histidine; adenine by asparagine or glutamine; thymine or 5-methylcytosine by glutamate; and unmodified cytosine by aspartate. This review discusses recent structural characterizations of C2H2-ZFs that add to our understanding of the principles underlying the C2H2-ZF recognition code.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Tonsager AJ, Zukowski A, Radebaugh CA, Weirich A, Stargell LA, Ramachandran S. The Histone Chaperone Spn1 Preserves Chromatin Protections at Promoters and Nucleosome Positioning in Open Reading Frames. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585010. [PMID: 38559248 PMCID: PMC10979989 DOI: 10.1101/2024.03.14.585010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Spn1 is a multifunctional histone chaperone that associates with RNA polymerase II during elongation and is essential for life in eukaryotes. While previous work has elucidated regions of the protein important for its many interactions, it is unknown how these domains contribute to the maintenance of chromatin structure. Here, we employ digestion by micrococcal nuclease followed by single-stranded library preparation and sequencing (MNase-SSP) to characterize chromatin structure in Saccharomyces cerevisiae expressing wild-type or mutants of Spn1. We mapped protections of all sizes genome-wide, and surprisingly, we observed a widespread loss of short fragments over nucleosome-depleted regions (NDRs) at promoters in the Spn1-K192N-containing strain, indicating critical functions of Spn1 in maintaining normal chromatin architecture outside open reading frames. Additionally, there are shifts in DNA protections in the Spn1 mutant expressing strains over open reading frames, which indicate changes in nucleosome and subnucleosome positioning. This was observed in markedly different mutant Spn1 strains, demonstrating that multiple functions of Spn1 are required to maintain proper chromatin structure in open reading frames. Taken together, our results reveal a previously unknown role of Spn1 in the maintenance of NDR architecture and deepen our understanding of Spn1-dependent chromatin maintenance over transcribed regions.
Collapse
|
5
|
Wernig-Zorc S, Kugler F, Schmutterer L, Räß P, Hausmann C, Holzinger S, Längst G, Schwartz U. nucMACC: An MNase-seq pipeline to identify structurally altered nucleosomes in the genome. SCIENCE ADVANCES 2024; 10:eadm9740. [PMID: 38959309 PMCID: PMC11221511 DOI: 10.1126/sciadv.adm9740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Micrococcal nuclease sequencing is the state-of-the-art method for determining chromatin structure and nucleosome positioning. Data analysis is complex due to the AT-dependent sequence bias of the endonuclease and the requirement for high sequencing depth. Here, we present the nucleosome-based MNase accessibility (nucMACC) pipeline unveiling the regulatory chromatin landscape by measuring nucleosome accessibility and stability. The nucMACC pipeline represents a systematic and genome-wide approach for detecting unstable ("fragile") nucleosomes. We have characterized the regulatory nucleosome landscape in Drosophila melanogaster, Saccharomyces cerevisiae, and mammals. Two functionally distinct sets of promoters were characterized, one associated with an unstable nucleosome and the other being nucleosome depleted. We show that unstable nucleosomes present intermediate states of nucleosome remodeling, preparing inducible genes for transcriptional activation in response to stimuli or stress. The presence of unstable nucleosomes correlates with RNA polymerase II proximal pausing. The nucMACC pipeline offers unparalleled precision and depth in nucleosome research and is a valuable tool for future nucleosome studies.
Collapse
Affiliation(s)
- Sara Wernig-Zorc
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Fabian Kugler
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Leo Schmutterer
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Patrick Räß
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Clemens Hausmann
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Simon Holzinger
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Gernot Längst
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Kumar S, Mashkoor M, Balamurugan P, Grove A. Yeast Crf1p is an activator with different roles in regulation of target genes. Yeast 2024; 41:379-400. [PMID: 38639144 DOI: 10.1002/yea.3939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Under stress conditions, ribosome biogenesis is downregulated. This process requires that expression of ribosomal RNA, ribosomal protein, and ribosome biogenesis genes be controlled in a coordinated fashion. The mechanistic Target of Rapamycin Complex 1 (mTORC1) participates in sensing unfavorable conditions to effect the requisite change in gene expression. In Saccharomyces cerevisiae, downregulation of ribosomal protein genes involves dissociation of the activator Ifh1p in a process that depends on Utp22p, a protein that also functions in pre-rRNA processing. Ifh1p has a paralog, Crf1p, which was implicated in communicating mTORC1 inhibition and hence was perceived as a repressor. We focus here on two ribosomal biogenesis genes, encoding Utp22p and the high mobility group protein Hmo1p, both of which are required for communication of mTORC1 inhibition to target genes. Crf1p functions as an activator on these genes as evidenced by reduced mRNA abundance and RNA polymerase II occupancy in a crf1Δ strain. Inhibition of mTORC1 has distinct effects on expression of HMO1 and UTP22; for example, on UTP22, but not on HMO1, the presence of Crf1p promotes the stable depletion of Ifh1p. Our data suggest that Crf1p functions as a weak activator, and that it may be required to prevent re-binding of Ifh1p to some gene promoters after mTORC1 inhibition in situations when Ifh1p is available. We propose that the inclusion of genes encoding proteins required for mTORC1-mediated downregulation of ribosomal protein genes in the same regulatory circuit as the ribosomal protein genes serves to optimize transcriptional responses during mTORC1 inhibition.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Muneera Mashkoor
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Priya Balamurugan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
7
|
Wu K, Dhillon N, Bajor A, Abrahamsson S, Kamakaka RT. Yeast heterochromatin stably silences only weak regulatory elements by altering burst duration. Cell Rep 2024; 43:113983. [PMID: 38517895 PMCID: PMC11141299 DOI: 10.1016/j.celrep.2024.113983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/25/2023] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae involves the generation of a chromatin state that stably represses transcription. Using multiple reporter assays, a diverse set of upstream activating sequence enhancers and core promoters were investigated for their susceptibility to silencing. We show that heterochromatin stably silences only weak and stress-induced regulatory elements but is unable to stably repress housekeeping gene regulatory elements, and the partial repression of these elements did not result in bistable expression states. Permutation analysis of enhancers and promoters indicates that both elements are targets of repression. Chromatin remodelers help specific regulatory elements to resist repression, most probably by altering nucleosome mobility and changing transcription burst duration. The strong enhancers/promoters can be repressed if silencer-bound Sir1 is increased. Together, our data suggest that the heterochromatic locus has been optimized to stably silence the weak mating-type gene regulatory elements but not strong housekeeping gene regulatory sequences.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of MCD Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Namrita Dhillon
- Department of MCD Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Antone Bajor
- Electrical Engineering Department, Baskin School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Sara Abrahamsson
- Electrical Engineering Department, Baskin School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Rohinton T Kamakaka
- Department of MCD Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
8
|
Xi S, Nguyen T, Murray S, Lorenz P, Mellor J. Size fractionated NET-Seq reveals a conserved architecture of transcription units around yeast genes. Yeast 2024; 41:222-241. [PMID: 38433440 DOI: 10.1002/yea.3931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET-Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII-associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS -60nt with respect to PAS) noncoding transcription unit co-occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median -240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein-coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control.
Collapse
Affiliation(s)
- Shidong Xi
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Tania Nguyen
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Struan Murray
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Phil Lorenz
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Zhang X, Xia F, Zhang X, Blumenthal RM, Cheng X. C2H2 Zinc Finger Transcription Factors Associated with Hemoglobinopathies. J Mol Biol 2024; 436:168343. [PMID: 37924864 PMCID: PMC11185177 DOI: 10.1016/j.jmb.2023.168343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
In humans, specific aberrations in β-globin results in sickle cell disease and β-thalassemia, symptoms of which can be ameliorated by increased expression of fetal globin (HbF). Two recent CRISPR-Cas9 screens, centered on ∼1500 annotated sequence-specific DNA binding proteins and performed in a human erythroid cell line that expresses adult hemoglobin, uncovered four groups of candidate regulators of HbF gene expression. They are (1) members of the nucleosome remodeling and deacetylase (NuRD) complex proteins that are already known for HbF control; (2) seven C2H2 zinc finger (ZF) proteins, including some (ZBTB7A and BCL11A) already known for directly silencing the fetal γ-globin genes in adult human erythroid cells; (3) a few other transcription factors of different structural classes that might indirectly influence HbF gene expression; and (4) DNA methyltransferase 1 (DNMT1) that maintains the DNA methylation marks that attract the MBD2-associated NuRD complex to DNA as well as associated histone H3 lysine 9 methylation. Here we briefly discuss the effects of these regulators, particularly C2H2 ZFs, in inducing HbF expression for treating β-hemoglobin disorders, together with recent advances in developing safe and effective small-molecule therapeutics for the regulation of this well-conserved hemoglobin switch.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Fangfang Xia
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaotian Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Basurto-Cayuela L, Guerrero-Martínez JA, Gómez-Marín E, Sánchez-Escabias E, Escaño-Maestre M, Ceballos-Chávez M, Reyes JC. SWI/SNF-dependent genes are defined by their chromatin landscape. Cell Rep 2024; 43:113855. [PMID: 38427563 DOI: 10.1016/j.celrep.2024.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/03/2024] Open
Abstract
SWI/SNF complexes are evolutionarily conserved, ATP-dependent chromatin remodeling machines. Here, we characterize the features of SWI/SNF-dependent genes using BRM014, an inhibitor of the ATPase activity of the complexes. We find that SWI/SNF activity is required to maintain chromatin accessibility and nucleosome occupancy for most enhancers but not for most promoters. SWI/SNF activity is needed for expression of genes with low to medium levels of expression that have promoters with (1) low chromatin accessibility, (2) low levels of active histone marks, (3) high H3K4me1/H3K4me3 ratio, (4) low nucleosomal phasing, and (5) enrichment in TATA-box motifs. These promoters are mostly occupied by the canonical Brahma-related gene 1/Brahma-associated factor (BAF) complex. These genes are surrounded by SWI/SNF-dependent enhancers and mainly encode signal transduction, developmental, and cell identity genes (with almost no housekeeping genes). Machine-learning models trained with different chromatin characteristics of promoters and their surrounding regulatory regions indicate that the chromatin landscape is a determinant for establishing SWI/SNF dependency.
Collapse
Affiliation(s)
- Laura Basurto-Cayuela
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - José A Guerrero-Martínez
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Elena Gómez-Marín
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Elena Sánchez-Escabias
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - María Escaño-Maestre
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - María Ceballos-Chávez
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - José C Reyes
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain.
| |
Collapse
|
11
|
Cuevas-Bermúdez A, Martínez-Fernández V, Garrido-Godino AI, Jordán-Pla A, Peñate X, Martín-Expósito M, Gutiérrez G, Govind CK, Chávez S, Pelechano V, Navarro F. The association of the RSC remodeler complex with chromatin is influenced by the prefoldin-like Bud27 and determines nucleosome positioning and polyadenylation sites usage in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:194995. [PMID: 37967810 DOI: 10.1016/j.bbagrm.2023.194995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
The tripartite interaction between the chromatin remodeler complex RSC, RNA polymerase subunit Rpb5 and prefoldin-like Bud27 is necessary for proper RNA pol II elongation. Indeed lack of Bud27 alters this association and affects transcription elongation. This work investigates the consequences of lack of Bud27 on the chromatin association of RSC and RNA pol II, and on nucleosome positioning. Our results demonstrate that RSC binds chromatin in gene bodies and lack of Bud27 alters this association, mainly around polyA sites. This alteration impacts chromatin organization and leads to the accumulation of RNA pol II molecules around polyA sites, likely due to pausing or arrest. Our data suggest that RSC is necessary to maintain chromatin organization around those sites, and any alteration of this organization results in the widespread use of alternative polyA sites. Finally, we also find a similar molecular phenotype that occurs upon TOR inhibition with rapamycin, which suggests that alternative polyadenylation observed upon TOR inhibition is likely Bud27-dependent.
Collapse
Affiliation(s)
- Abel Cuevas-Bermúdez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Verónica Martínez-Fernández
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Ana I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Antonio Jordán-Pla
- Instituto Biotecmed, Facultad de Biológicas, Universitat de València, E-46100 Burjassot, Valencia, Spain
| | - Xenia Peñate
- Departamento de Genética, Universidad de Sevilla, Seville, Spain; Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
| | - Manuel Martín-Expósito
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | | | - Chhabi K Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla, Seville, Spain; Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain; Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain.
| |
Collapse
|
12
|
Zeitler L, André K, Alberti A, Denby Wilkes C, Soutourina J, Goldar A. A genome-wide comprehensive analysis of nucleosome positioning in yeast. PLoS Comput Biol 2024; 20:e1011799. [PMID: 38266035 PMCID: PMC10843174 DOI: 10.1371/journal.pcbi.1011799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/05/2024] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
In eukaryotic cells, the one-dimensional DNA molecules need to be tightly packaged into the spatially constraining nucleus. Folding is achieved on its lowest level by wrapping the DNA around nucleosomes. Their arrangement regulates other nuclear processes, such as transcription and DNA repair. Despite strong efforts to study nucleosome positioning using Next Generation Sequencing (NGS) data, the mechanism of their collective arrangement along the gene body remains poorly understood. Here, we classify nucleosome distributions of protein-coding genes in Saccharomyces cerevisiae according to their profile similarity and analyse their differences using functional Principal Component Analysis. By decomposing the NGS signals into their main descriptive functions, we compared wild type and chromatin remodeler-deficient strains, keeping position-specific details preserved whilst considering the nucleosome arrangement as a whole. A correlation analysis with other genomic properties, such as gene size and length of the upstream Nucleosome Depleted Region (NDR), identified key factors that influence the nucleosome distribution. We reveal that the RSC chromatin remodeler-which is responsible for NDR maintenance-is indispensable for decoupling nucleosome arrangement within the gene from positioning outside, which interfere in rsc8-depleted conditions. Moreover, nucleosome profiles in chd1Δ strains displayed a clear correlation with RNA polymerase II presence, whereas wild type cells did not indicate a noticeable interdependence. We propose that RSC is pivotal for global nucleosome organisation, whilst Chd1 plays a key role for maintaining local arrangement.
Collapse
Affiliation(s)
- Leo Zeitler
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC),Gif-sur-Yvette, France
| | - Kévin André
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC),Gif-sur-Yvette, France
| | - Adriana Alberti
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC),Gif-sur-Yvette, France
| | - Cyril Denby Wilkes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC),Gif-sur-Yvette, France
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC),Gif-sur-Yvette, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC),Gif-sur-Yvette, France
| |
Collapse
|
13
|
Chen B, MacAlpine HK, Hartemink AJ, MacAlpine DM. Spatiotemporal kinetics of CAF-1-dependent chromatin maturation ensures transcription fidelity during S-phase. Genome Res 2023; 33:2108-2118. [PMID: 38081658 PMCID: PMC10760526 DOI: 10.1101/gr.278273.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023]
Abstract
Proper maintenance of epigenetic information after replication is dependent on the rapid assembly and maturation of chromatin. Chromatin Assembly Complex 1 (CAF-1) is a conserved histone chaperone that deposits (H3-H4)2 tetramers as part of the replication-dependent chromatin assembly process. Loss of CAF-1 leads to a delay in chromatin maturation, albeit with minimal impact on steady-state chromatin structure. However, the mechanisms by which CAF-1 mediates the deposition of (H3-H4)2 tetramers and the phenotypic consequences of CAF-1-associated assembly defects are not well understood. We used nascent chromatin occupancy profiling to track the spatiotemporal kinetics of chromatin maturation in both wild-type (WT) and CAF-1 mutant yeast cells. Our results show that loss of CAF-1 leads to a heterogeneous rate of nucleosome assembly, with some nucleosomes maturing at near WT kinetics and others showing significantly slower maturation kinetics. The slow-to-mature nucleosomes are enriched in intergenic and poorly transcribed regions, suggesting that transcription-dependent assembly mechanisms can reset the slow-to-mature nucleosomes following replication. Nucleosomes with slow maturation kinetics are also associated with poly(dA:dT) sequences, which implies that CAF-1 deposits histones in a manner that counteracts resistance from the inflexible DNA sequence, promoting the formation of histone octamers as well as ordered nucleosome arrays. In addition, we show that the delay in chromatin maturation is accompanied by a transient and S-phase-specific loss of gene silencing and transcriptional regulation, revealing that the DNA replication program can directly shape the chromatin landscape and modulate gene expression through the process of chromatin maturation.
Collapse
Affiliation(s)
- Boning Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| |
Collapse
|
14
|
Wu K, Dhillon N, Bajor A, Abrahamson S, Kamakaka RT. Yeast Heterochromatin Only Stably Silences Weak Regulatory Elements by Altering Burst Duration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561072. [PMID: 37873261 PMCID: PMC10592971 DOI: 10.1101/2023.10.05.561072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The interplay between nucleosomes and transcription factors leads to programs of gene expression. Transcriptional silencing involves the generation of a chromatin state that represses transcription and is faithfully propagated through DNA replication and cell division. Using multiple reporter assays, including directly visualizing transcription in single cells, we investigated a diverse set of UAS enhancers and core promoters for their susceptibility to heterochromatic gene silencing. These results show that heterochromatin only stably silences weak and stress induced regulatory elements but is unable to stably repress housekeeping gene regulatory elements and the partial repression did not result in bistable expression states. Permutation analysis of different UAS enhancers and core promoters indicate that both elements function together to determine the susceptibility of regulatory sequences to repression. Specific histone modifiers and chromatin remodellers function in an enhancer specific manner to aid these elements to resist repression suggesting that Sir proteins likely function in part by reducing nucleosome mobility. We also show that the strong housekeeping regulatory elements can be repressed if silencer bound Sir1 is increased, suggesting that Sir1 is a limiting component in silencing. Together, our data suggest that the heterochromatic locus has been optimized to stably silence the weak mating type gene regulatory elements but not strong housekeeping gene regulatory sequences which could help explain why these genes are often found at the boundaries of silenced domains.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of MCD Biology, 1156 High Street, University of California, Santa Cruz, CA 95064 USA
| | - Namrita Dhillon
- Department of MCD Biology, 1156 High Street, University of California, Santa Cruz, CA 95064 USA
| | - Antone Bajor
- Electrical Engineering Department, Baskin School of Engineering, 1156 High Street, University of California, Santa Cruz, CA 95064 USA
| | - Sara Abrahamson
- Electrical Engineering Department, Baskin School of Engineering, 1156 High Street, University of California, Santa Cruz, CA 95064 USA
| | - Rohinton T. Kamakaka
- Department of MCD Biology, 1156 High Street, University of California, Santa Cruz, CA 95064 USA
| |
Collapse
|
15
|
Schwartz U, Komatsu T, Huber C, Lagadec F, Baumgartl C, Silberhorn E, Nuetzel M, Rayne F, Basyuk E, Bertrand E, Rehli M, Wodrich H, Laengst G. Changes in adenoviral chromatin organization precede early gene activation upon infection. EMBO J 2023; 42:e114162. [PMID: 37641864 PMCID: PMC10548178 DOI: 10.15252/embj.2023114162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Within the virion, adenovirus DNA associates with the virus-encoded, protamine-like structural protein pVII. Whether this association is organized, and how genome packaging changes during infection and subsequent transcriptional activation is currently unclear. Here, we combined RNA-seq, MNase-seq, ChIP-seq, and single genome imaging during early adenovirus infection to unveil the structure- and time-resolved dynamics of viral chromatin changes as well as their correlation with gene transcription. Our MNase mapping data indicates that the adenoviral genome is arranged in precisely positioned nucleoprotein particles with nucleosome-like characteristics, that we term adenosomes. We identified 238 adenosomes that are positioned by a DNA sequence code and protect about 60-70 bp of DNA. The incoming adenoviral genome is more accessible at early gene loci that undergo additional chromatin de-condensation upon infection. Histone H3.3 containing nucleosomes specifically replaces pVII at distinct genomic sites and at the transcription start sites of early genes. Acetylation of H3.3 is predominant at the transcription start sites and precedes transcriptional activation. Based on our results, we propose a central role for the viral pVII nucleoprotein architecture, which is required for the dynamic structural changes during early infection, including the regulation of nucleosome assembly prior to transcription initiation. Our study thus may aid the rational development of recombinant adenoviral vectors exhibiting sustained expression in gene therapy.
Collapse
Affiliation(s)
- Uwe Schwartz
- Biochemie Zentrum RegensburgUniversity of RegensburgRegensburgGermany
| | - Tetsuro Komatsu
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular RegulationGunma UniversityGunmaJapan
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Claudia Huber
- Biochemie Zentrum RegensburgUniversity of RegensburgRegensburgGermany
| | - Floriane Lagadec
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center of Biosciences (GZMB)Georg‐August‐University GöttingenGöttingenGermany
| | | | | | - Margit Nuetzel
- Department of Internal Medicine IIIUniversity Hospital RegensburgRegensburgGermany
| | - Fabienne Rayne
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Eugenia Basyuk
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Edouard Bertrand
- CNRS UMR 5355Institut de Généthique Moléculaire de MontpellierMontpellierFrance
| | - Michael Rehli
- Department of Internal Medicine IIIUniversity Hospital RegensburgRegensburgGermany
- Leibniz Institute for ImmunotherapyRegensburgGermany
- University Hospital RegensburgRegensburgGermany
| | - Harald Wodrich
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Gernot Laengst
- Biochemie Zentrum RegensburgUniversity of RegensburgRegensburgGermany
| |
Collapse
|
16
|
Bondra ER, Rine J. Context-dependent function of the transcriptional regulator Rap1 in gene silencing and activation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2023; 120:e2304343120. [PMID: 37769255 PMCID: PMC10556627 DOI: 10.1073/pnas.2304343120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/04/2023] [Indexed: 09/30/2023] Open
Abstract
In Saccharomyces cerevisiae, heterochromatin is formed through interactions between site-specific DNA-binding factors, including the transcriptional activator Repressor Activator Protein (Rap1), and Sir proteins. Despite an understanding of the establishment and maintenance of Sir-silenced chromatin, the mechanism of gene silencing by Sir proteins has remained a mystery. Utilizing high-resolution chromatin immunoprecipitation, we found that Rap1, the native activator of the bidirectional HMLα promoter, bound its recognition sequence in silenced chromatin, and its binding was enhanced by the presence of Sir proteins. In contrast to prior results, various components of transcription machinery were not able to access HMLα in the silenced state. These findings disproved the long-standing model of indiscriminate steric occlusion by Sir proteins and led to investigation of the role of the transcriptional activator Rap1 in Sir-silenced chromatin. Using a highly sensitive assay that monitors loss-of-silencing events, we identified a role for promoter-bound Rap1 in the maintenance of silent chromatin through interactions with the Sir complex. We also found that promoter-bound Rap1 activated HMLα when in an expressed state, and aided in the transition from transcription initiation to elongation. Highlighting the importance of epigenetic context in transcription factor function, these results point toward a model in which the duality of Rap1 function was mediated by local chromatin environment rather than binding-site availability.
Collapse
Affiliation(s)
- Eliana R. Bondra
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| |
Collapse
|
17
|
Chen B, MacAlpine HK, Hartemink AJ, MacAlpine DM. Spatiotemporal kinetics of CAF-1-dependent chromatin maturation ensures transcription fidelity during S-phase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.541209. [PMID: 37292814 PMCID: PMC10245875 DOI: 10.1101/2023.05.25.541209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proper maintenance of epigenetic information after replication is dependent on the rapid assembly and maturation of chromatin. Chromatin Assembly Complex 1 (CAF-1) is a conserved histone chaperone that deposits (H3-H4)2 tetramers as part of the replication-dependent chromatin assembly process. Loss of CAF-1 leads to a delay in chromatin maturation, albeit with minimal impact on steady-state chromatin structure. However, the mechanisms by which CAF-1 mediates the deposition of (H3-H4)2 tetramers and the phenotypic consequences of CAF-1-associated assembly defects are not well understood. We used nascent chromatin occupancy profiling to track the spatiotemporal kinetics of chromatin maturation in both wild-type (WT) and CAF-1 mutant yeast cells. Our results show that loss of CAF-1 leads to a heterogeneous rate of nucleosome assembly, with some nucleosomes maturing at near WT kinetics and others exhibiting significantly slower maturation kinetics. The slow-to-mature nucleosomes are enriched in intergenic and poorly transcribed regions, suggesting that transcription-dependent assembly mechanisms can reset the slow-to-mature nucleosomes following replication. Nucleosomes with slow maturation kinetics are also associated with poly(dA:dT) sequences, which implies that CAF-1 deposits histones in a manner that counteracts resistance from the inflexible DNA sequence, promoting the formation of histone octamers as well as ordered nucleosome arrays. In addition, we demonstrate that the delay in chromatin maturation is accompanied by a transient and S-phase specific loss of gene silencing and transcriptional regulation, revealing that the DNA replication program can directly shape the chromatin landscape and modulate gene expression through the process of chromatin maturation.
Collapse
Affiliation(s)
- Boning Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Heather K. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | | | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
18
|
Patel HP, Coppola S, Pomp W, Aiello U, Brouwer I, Libri D, Lenstra TL. DNA supercoiling restricts the transcriptional bursting of neighboring eukaryotic genes. Mol Cell 2023; 83:1573-1587.e8. [PMID: 37207624 DOI: 10.1016/j.molcel.2023.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 02/14/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
DNA supercoiling has emerged as a major contributor to gene regulation in bacteria, but how DNA supercoiling impacts transcription dynamics in eukaryotes is unclear. Here, using single-molecule dual-color nascent transcription imaging in budding yeast, we show that transcriptional bursting of divergent and tandem GAL genes is coupled. Temporal coupling of neighboring genes requires rapid release of DNA supercoils by topoisomerases. When DNA supercoils accumulate, transcription of one gene inhibits transcription at its adjacent genes. Transcription inhibition of the GAL genes results from destabilized binding of the transcription factor Gal4. Moreover, wild-type yeast minimizes supercoiling-mediated inhibition by maintaining sufficient levels of topoisomerases. Overall, we discover fundamental differences in transcriptional control by DNA supercoiling between bacteria and yeast and show that rapid supercoiling release in eukaryotes ensures proper gene expression of neighboring genes.
Collapse
Affiliation(s)
- Heta P Patel
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Stefano Coppola
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Wim Pomp
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Umberto Aiello
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Ineke Brouwer
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Domenico Libri
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Bondra ER, Rine J. Context dependent function of the transcriptional regulator Rap1 in gene silencing and activation in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539937. [PMID: 37214837 PMCID: PMC10197613 DOI: 10.1101/2023.05.08.539937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In Saccharomyces cerevisiae, heterochromatin is formed through interactions between site-specific DNA-binding factors, including the transcriptional activator Rap1, and Sir proteins. Despite a vast understanding of the establishment and maintenance of Sir-silenced chromatin, the mechanism of gene silencing by Sir proteins has remained a mystery. Utilizing high resolution chromatin immunoprecipitation, we found that Rap1, the native activator of the bi-directional HML α promoter, bound its recognition sequence in silenced chromatin and its binding was enhanced by the presence of Sir proteins. In contrast to prior results, various components of transcription machinery were not able to access HML α in the silenced state. These findings disproved the long-standing model of indiscriminate steric occlusion by Sir proteins and led to investigation of the transcriptional activator Rap1 in Sir-silenced chromatin. Using a highly sensitive assay that monitors loss-of-silencing events, we identified a novel role for promoter-bound Rap1 in the maintenance of silent chromatin through interactions with the Sir complex. We also found that promoter-bound Rap1 activated HML α when in an expressed state, and aided in the transition from transcription initiation to elongation. Highlighting the importance of epigenetic context in transcription factor function, these results point toward a model in which the duality of Rap1 function was mediated by local chromatin environment rather than binding-site availability. Significance Statement The coarse partitioning of the genome into regions of active euchromatin and repressed heterochromatin is an important, and conserved, level gene expression regulation in eukaryotes. Repressor Activator Protein (Rap1) is a transcription factor that promotes the activation of genes when recruited to promoters, and aids in the establishment of heterochromatin through interactions with silencer elements. Here, we investigate the role of Rap1 when bound to a promoter in silent chromatin and dissect the context-specific epigenetic cues that regulate the dual properties of this transcription factor. Together, our data highlight the importance of protein-protein interactions and local chromatin state on transcription factor function.
Collapse
Affiliation(s)
- Eliana R Bondra
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
20
|
André KM, Giordanengo Aiach N, Martinez-Fernandez V, Zeitler L, Alberti A, Goldar A, Werner M, Denby Wilkes C, Soutourina J. Functional interplay between Mediator and RSC chromatin remodeling complex controls nucleosome-depleted region maintenance at promoters. Cell Rep 2023; 42:112465. [PMID: 37133993 DOI: 10.1016/j.celrep.2023.112465] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/05/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023] Open
Abstract
Chromatin organization is crucial for transcriptional regulation in eukaryotes. Mediator is an essential and conserved co-activator thought to act in concert with chromatin regulators. However, it remains largely unknown how their functions are coordinated. Here, we provide evidence in the yeast Saccharomyces cerevisiae that Mediator establishes physical contact with RSC (Remodels the Structure of Chromatin), a conserved and essential chromatin remodeling complex that is crucial for nucleosome-depleted region (NDR) formation. We determine the role of Mediator-RSC interaction in their chromatin binding, nucleosome occupancy, and transcription on a genomic scale. Mediator and RSC co-localize on wide NDRs of promoter regions, and specific Mediator mutations affect nucleosome eviction and TSS-associated +1 nucleosome stability. This work shows that Mediator contributes to RSC remodeling function to shape NDRs and maintain chromatin organization on promoter regions. It will help in our understanding of transcriptional regulation in the chromatin context relevant for severe diseases.
Collapse
Affiliation(s)
- Kévin M André
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Nathalie Giordanengo Aiach
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Veronica Martinez-Fernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Leo Zeitler
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Adriana Alberti
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Michel Werner
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Cyril Denby Wilkes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
21
|
Brouwer I, Kerklingh E, van Leeuwen F, Lenstra TL. Dynamic epistasis analysis reveals how chromatin remodeling regulates transcriptional bursting. Nat Struct Mol Biol 2023; 30:692-702. [PMID: 37127821 DOI: 10.1038/s41594-023-00981-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Transcriptional bursting has been linked to the stochastic positioning of nucleosomes. However, how bursting is regulated by the remodeling of promoter nucleosomes is unknown. Here, we use single-molecule live-cell imaging of GAL10 transcription in Saccharomyces cerevisiae to measure how bursting changes upon combined perturbations of chromatin remodelers, the transcription factor Gal4 and preinitiation complex components. Using dynamic epistasis analysis, we reveal how the remodeling of different nucleosomes regulates transcriptional bursting parameters. At the nucleosome covering the Gal4 binding sites, RSC and Gal4 binding synergistically facilitate each burst. Conversely, nucleosome remodeling at the TATA box controls only the first burst upon galactose induction. At canonical TATA boxes, the nucleosomes are displaced by TBP binding to allow for transcription activation even in the absence of remodelers. Overall, our results reveal how promoter nucleosome remodeling together with Gal4 and preinitiation complex binding regulates transcriptional bursting.
Collapse
Affiliation(s)
- Ineke Brouwer
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands
| | - Emma Kerklingh
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, the Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Gnügge R, Reginato G, Cejka P, Symington LS. Sequence and chromatin features guide DNA double-strand break resection initiation. Mol Cell 2023; 83:1237-1250.e15. [PMID: 36917982 PMCID: PMC10131398 DOI: 10.1016/j.molcel.2023.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023]
Abstract
DNA double-strand breaks (DSBs) are cytotoxic genome lesions that must be accurately and efficiently repaired to ensure genome integrity. In yeast, the Mre11-Rad50-Xrs2 (MRX) complex nicks 5'-terminated DSB ends to initiate nucleolytic processing of DSBs for repair by homologous recombination. How MRX-DNA interactions support 5' strand-specific nicking and how nicking is influenced by the chromatin context have remained elusive. Using a deep sequencing-based assay, we mapped MRX nicks at single-nucleotide resolution next to multiple DSBs in the yeast genome. We observed that the DNA end-binding Ku70-Ku80 complex directed DSB-proximal nicks and that repetitive MRX cleavage extended the length of resection tracts. We identified a sequence motif and a DNA meltability profile that is preferentially nicked by MRX. Furthermore, we found that nucleosomes as well as transcription impeded MRX incisions. Our findings suggest that local DNA sequence and chromatin features shape the activity of this central DSB repair complex.
Collapse
Affiliation(s)
- Robert Gnügge
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Giordano Reginato
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland; Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Petr Cejka
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland; Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
23
|
Klein DC, Troy K, Tripplehorn SA, Hainer SJ. The esBAF and ISWI nucleosome remodeling complexes influence occupancy of overlapping dinucleosomes and fragile nucleosomes in murine embryonic stem cells. BMC Genomics 2023; 24:201. [PMID: 37055726 PMCID: PMC10103515 DOI: 10.1186/s12864-023-09287-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Nucleosome remodeling factors regulate the occupancy and positioning of nucleosomes genome-wide through ATP-driven DNA translocation. While many nucleosomes are consistently well-positioned, some nucleosomes and alternative nucleosome structures are more sensitive to nuclease digestion or are transitory. Fragile nucleosomes are nucleosome structures that are sensitive to nuclease digestion and may be composed of either six or eight histone proteins, making these either hexasomes or octasomes. Overlapping dinucleosomes are composed of two merged nucleosomes, lacking one H2A:H2B dimer, creating a 14-mer wrapped by ~ 250 bp of DNA. In vitro studies of nucleosome remodeling suggest that the collision of adjacent nucleosomes by sliding stimulates formation of overlapping dinucleosomes. RESULTS To better understand how nucleosome remodeling factors regulate alternative nucleosome structures, we depleted murine embryonic stem cells of the transcripts encoding remodeler ATPases BRG1 or SNF2H, then performed MNase-seq. We used high- and low-MNase digestion to assess the effects of nucleosome remodeling factors on nuclease-sensitive or "fragile" nucleosome occupancy. In parallel we gel-extracted MNase-digested fragments to enrich for overlapping dinucleosomes. We recapitulate prior identification of fragile nucleosomes and overlapping dinucleosomes near transcription start sites, and identify enrichment of these features around gene-distal DNaseI hypersensitive sites, CTCF binding sites, and pluripotency factor binding sites. We find that BRG1 stimulates occupancy of fragile nucleosomes but restricts occupancy of overlapping dinucleosomes. CONCLUSIONS Overlapping dinucleosomes and fragile nucleosomes are prevalent within the ES cell genome, occurring at hotspots of gene regulation beyond their characterized existence at promoters. Although neither structure is fully dependent on either nucleosome remodeling factor, both fragile nucleosomes and overlapping dinucleosomes are affected by knockdown of BRG1, suggesting a role for the complex in creating or removing these structures.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kris Troy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Quantitative and Systems Biology, University of California, 95343, Merced, Merced, CA, USA
| | - Sarah A Tripplehorn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
24
|
Wang L, Yu J, Yu Z, Wang Q, Li W, Ren Y, Chen Z, He S, Xu Y. Structure of nucleosome-bound human PBAF complex. Nat Commun 2022; 13:7644. [PMID: 36496390 PMCID: PMC9741621 DOI: 10.1038/s41467-022-34859-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
BAF and PBAF are mammalian SWI/SNF family chromatin remodeling complexes that possess multiple histone/DNA-binding subunits and create nucleosome-depleted/free regions for transcription activation. Despite previous structural studies and recent advance of SWI/SNF family complexes, it remains incompletely understood how PBAF-nucleosome complex is organized. Here we determined structure of 13-subunit human PBAF in complex with acetylated nucleosome in ADP-BeF3-bound state. Four PBAF-specific subunits work together with nine BAF/PBAF-shared subunits to generate PBAF-specific modular organization, distinct from that of BAF at various regions. PBAF-nucleosome structure reveals six histone-binding domains and four DNA-binding domains/modules, the majority of which directly bind histone/DNA. This multivalent nucleosome-binding pattern, not observed in previous studies, suggests that PBAF may integrate comprehensive chromatin information to target genomic loci for function. Our study reveals molecular organization of subunits and histone/DNA-binding domains/modules in PBAF-nucleosome complex and provides structural insights into PBAF-mediated nucleosome association complimentary to the recently reported PBAF-nucleosome structure.
Collapse
Affiliation(s)
- Li Wang
- grid.11841.3d0000 0004 0619 8943Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032 China ,grid.11841.3d0000 0004 0619 8943The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Jiali Yu
- grid.11841.3d0000 0004 0619 8943Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032 China
| | - Zishuo Yu
- grid.11841.3d0000 0004 0619 8943Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032 China
| | - Qianmin Wang
- grid.11841.3d0000 0004 0619 8943Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032 China
| | - Wanjun Li
- grid.11841.3d0000 0004 0619 8943Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032 China
| | - Yulei Ren
- grid.11841.3d0000 0004 0619 8943Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032 China
| | - Zhenguo Chen
- grid.11841.3d0000 0004 0619 8943Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443The Fifth People’s Hospital of Shanghai, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Shuang He
- grid.11841.3d0000 0004 0619 8943Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032 China
| | - Yanhui Xu
- grid.11841.3d0000 0004 0619 8943Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032 China ,grid.11841.3d0000 0004 0619 8943The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433 China
| |
Collapse
|
25
|
Wu AC, Vivori C, Patel H, Sideri T, Moretto F, van Werven FJ. RSC and GRFs confer promoter directionality by restricting divergent noncoding transcription. Life Sci Alliance 2022; 5:e202201394. [PMID: 36114005 PMCID: PMC9481977 DOI: 10.26508/lsa.202201394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
The directionality of gene promoters-the ratio of protein-coding over divergent noncoding transcription-is highly variable. How promoter directionality is controlled remains poorly understood. Here, we show that the chromatin remodelling complex RSC and general regulatory factors (GRFs) dictate promoter directionality by attenuating divergent transcription relative to protein-coding transcription. At gene promoters that are highly directional, depletion of RSC leads to a relative increase in divergent noncoding transcription and thus to a decrease in promoter directionality. We find that RSC has a modest effect on nucleosome positioning upstream in promoters at the sites of divergent transcription. These promoters are also enriched for the binding of GRFs such as Reb1 and Abf1. Ectopic targeting of divergent transcription initiation sites with GRFs or the dCas9 DNA-binding protein suppresses divergent transcription. Our data suggest that RSC and GRFs play a pervasive role in limiting divergent transcription relative to coding direction transcription. We propose that any DNA-binding factor, when stably associated with cryptic transcription start sites, forms a barrier which represses divergent transcription, thereby promoting promoter directionality.
Collapse
Affiliation(s)
- Andrew Ck Wu
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
| | - Claudia Vivori
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Theodora Sideri
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
| | - Fabien Moretto
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| | - Folkert J van Werven
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
26
|
Peil K, Värv S, Ilves I, Kristjuhan K, Jürgens H, Kristjuhan A. Transcriptional regulator Taf14 binds DNA and is required for the function of transcription factor TFIID in the absence of histone H2A.Z. J Biol Chem 2022; 298:102369. [PMID: 35970389 PMCID: PMC9478928 DOI: 10.1016/j.jbc.2022.102369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The transcriptional regulator Taf14 is a component of multiple protein complexes involved in transcription initiation and chromatin remodeling in yeast cells. Although Taf14 is not required for cell viability, it becomes essential in conditions where the formation of the transcription preinitiation complex is hampered. The specific role of Taf14 in mediating transcription initiation and preinitiation complex formation is unclear. Here, we explored its role in the general transcription factor IID by mapping Taf14 genetic and proteomic interactions and found that it was needed for the function of the complex if Htz1, the yeast homolog of histone H2A.Z, was absent from chromatin. Dissecting the functional domains of Taf14 revealed that the linker region between the YEATS and ET domains was required for cell viability in the absence of Htz1 protein. We further show that the linker region of Taf14 interacts with DNA. We propose that providing additional DNA binding capacity might be a general role of Taf14 in the recruitment of protein complexes to DNA and chromatin.
Collapse
Affiliation(s)
- Kadri Peil
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Signe Värv
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Ivar Ilves
- Institute of Technology, University of Tartu; Nooruse 1, Tartu 50411, Estonia
| | - Kersti Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Henel Jürgens
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Arnold Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia.
| |
Collapse
|
27
|
Carcamo CC, Poyton MF, Ranjan A, Park G, Louder RK, Feng XA, Kim JM, Dzu T, Wu C, Ha T. ATP binding facilitates target search of SWR1 chromatin remodeler by promoting one-dimensional diffusion on DNA. eLife 2022; 11:e77352. [PMID: 35876491 PMCID: PMC9365391 DOI: 10.7554/elife.77352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/22/2022] [Indexed: 12/01/2022] Open
Abstract
One-dimensional (1D) target search is a well-characterized phenomenon for many DNA-binding proteins but is poorly understood for chromatin remodelers. Herein, we characterize the 1D scanning properties of SWR1, a conserved yeast chromatin remodeler that performs histone exchange on +1 nucleosomes adjacent to a nucleosome-depleted region (NDR) at gene promoters. We demonstrate that SWR1 has a kinetic binding preference for DNA of NDR length as opposed to gene-body linker length DNA. Using single and dual color single-particle tracking on DNA stretched with optical tweezers, we directly observe SWR1 diffusion on DNA. We found that various factors impact SWR1 scanning, including ATP which promotes diffusion through nucleotide binding rather than ATP hydrolysis. A DNA-binding subunit, Swc2, plays an important role in the overall diffusive behavior of the complex, as the subunit in isolation retains similar, although faster, scanning properties as the whole remodeler. ATP-bound SWR1 slides until it encounters a protein roadblock, of which we tested dCas9 and nucleosomes. The median diffusion coefficient, 0.024 μm2/s, in the regime of helical sliding, would mediate rapid encounter of NDR-flanking nucleosomes at length scales found in cellular chromatin.
Collapse
Affiliation(s)
- Claudia C Carcamo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
| | - Matthew F Poyton
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
| | - Anand Ranjan
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Giho Park
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Robert K Louder
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Xinyu A Feng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
| | - Jee Min Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Thuc Dzu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Carl Wu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
- Howard Hughes Medical InstituteBaltimoreUnited States
- Johns Hopkins University, Department of Biomedical EngineeringBaltimoreUnited States
- Johns Hopkins University, Department of BiophysicsBaltimoreUnited States
| |
Collapse
|
28
|
Duan M, Sivapragasam S, Antony JS, Ulibarri J, Hinz JM, Poon GMK, Wyrick JJ, Mao P. High-resolution mapping demonstrates inhibition of DNA excision repair by transcription factors. eLife 2022; 11:73943. [PMID: 35289750 PMCID: PMC8970589 DOI: 10.7554/elife.73943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
DNA base damage arises frequently in living cells and needs to be removed by base excision repair (BER) to prevent mutagenesis and genome instability. Both the formation and repair of base damage occur in chromatin and are conceivably affected by DNA-binding proteins such as transcription factors (TFs). However, to what extent TF binding affects base damage distribution and BER in cells is unclear. Here, we used a genome-wide damage mapping method, N-methylpurine-sequencing (NMP-seq), and characterized alkylation damage distribution and BER at TF binding sites in yeast cells treated with the alkylating agent methyl methanesulfonate (MMS). Our data show that alkylation damage formation was mainly suppressed at the binding sites of yeast TFs ARS binding factor 1 (Abf1) and rDNA enhancer binding protein 1 (Reb1), but individual hotspots with elevated damage levels were also found. Additionally, Abf1 and Reb1 binding strongly inhibits BER in vivo and in vitro, causing slow repair both within the core motif and its adjacent DNA. Repair of ultraviolet (UV) damage by nucleotide excision repair (NER) was also inhibited by TF binding. Interestingly, TF binding inhibits a larger DNA region for NER relative to BER. The observed effects are caused by the TF–DNA interaction, because damage formation and BER can be restored by depletion of Abf1 or Reb1 protein from the nucleus. Thus, our data reveal that TF binding significantly modulates alkylation base damage formation and inhibits repair by the BER pathway. The interplay between base damage formation and BER may play an important role in affecting mutation frequency in gene regulatory regions.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| | - Smitha Sivapragasam
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Jacob S Antony
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Jenna Ulibarri
- Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| | - John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, United States
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| |
Collapse
|
29
|
|
30
|
Whole-genome methods to define DNA and histone accessibility and long-range interactions in chromatin. Biochem Soc Trans 2022; 50:199-212. [PMID: 35166326 PMCID: PMC9847230 DOI: 10.1042/bst20210959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023]
Abstract
Defining the genome-wide chromatin landscape has been a goal of experimentalists for decades. Here we review highlights of these efforts, from seminal experiments showing discontinuities in chromatin structure related to gene activation to extensions of these methods elucidating general features of chromatin related to gene states by exploiting deep sequencing methods. We also review chromatin conformational capture methods to identify patterns in long-range interactions between genomic loci.
Collapse
|
31
|
Reb1, Cbf1, and Pho4 bias histone sliding and deposition away from their binding sites. Mol Cell Biol 2021; 42:e0047221. [PMID: 34898278 DOI: 10.1128/mcb.00472-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In transcriptionally active genes, nucleosome positions in promoters are regulated by nucleosome displacing factors (NDFs) and chromatin remodeling enzymes. Depletion of NDFs or the RSC chromatin remodeler shrinks or abolishes the nucleosome depleted regions (NDRs) in promoters, which can suppress gene activation and result in cryptic transcription. Despite their vital cellular functions, how the action of chromatin remodelers may be directly affected by site-specific binding factors like NDFs is poorly understood. Here we demonstrate that two NDFs, Reb1 and Cbf1, can direct both Chd1 and RSC chromatin remodeling enzymes in vitro, stimulating repositioning of the histone core away from their binding sites. Interestingly, although the Pho4 transcription factor had a much weaker effect on nucleosome positioning, both NDFs and Pho4 were able to similarly redirect positioning of hexasomes. In chaperone-mediated nucleosome assembly assays, Reb1 but not Pho4 showed an ability to block deposition of the histone H3/H4 tetramer, but Reb1 did not block addition of the H2A/H2B dimer to hexasomes. Our in vitro results show that NDFs bias the action of remodelers to increase the length of the free DNA in the vicinity of their binding sites. These results suggest that NDFs could directly affect NDR architecture through chromatin remodelers.
Collapse
|
32
|
Singh AK, Schauer T, Pfaller L, Straub T, Mueller-Planitz F. The biogenesis and function of nucleosome arrays. Nat Commun 2021; 12:7011. [PMID: 34853297 PMCID: PMC8636622 DOI: 10.1038/s41467-021-27285-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Numerous chromatin remodeling enzymes position nucleosomes in eukaryotic cells. Aside from these factors, transcription, DNA sequence, and statistical positioning of nucleosomes also shape the nucleosome landscape. The precise contributions of these processes remain unclear due to their functional redundancy in vivo. By incisive genome engineering, we radically decreased their redundancy in Saccharomyces cerevisiae. The transcriptional machinery strongly disrupts evenly spaced nucleosomes. Proper nucleosome density and DNA sequence are critical for their biogenesis. The INO80 remodeling complex helps space nucleosomes in vivo and positions the first nucleosome over genes in an H2A.Z-independent fashion. INO80 requires its Arp8 subunit but unexpectedly not the Nhp10 module for spacing. Cells with irregularly spaced nucleosomes suffer from genotoxic stress including DNA damage, recombination and transpositions. We derive a model of the biogenesis of the nucleosome landscape and suggest that it evolved not only to regulate but also to protect the genome.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- grid.5252.00000 0004 1936 973XMolecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany
| | - Tamás Schauer
- grid.5252.00000 0004 1936 973XBioinformatics Unit, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany
| | - Lena Pfaller
- grid.5252.00000 0004 1936 973XMolecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany ,grid.419481.10000 0001 1515 9979Present Address: Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Tobias Straub
- grid.5252.00000 0004 1936 973XBioinformatics Unit, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany
| | - Felix Mueller-Planitz
- Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany. .,Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
33
|
Nguyen VQ, Ranjan A, Liu S, Tang X, Ling YH, Wisniewski J, Mizuguchi G, Li KY, Jou V, Zheng Q, Lavis LD, Lionnet T, Wu C. Spatiotemporal coordination of transcription preinitiation complex assembly in live cells. Mol Cell 2021; 81:3560-3575.e6. [PMID: 34375585 PMCID: PMC8420877 DOI: 10.1016/j.molcel.2021.07.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
Transcription initiation by RNA polymerase II (RNA Pol II) requires preinitiation complex (PIC) assembly at gene promoters. In the dynamic nucleus, where thousands of promoters are broadly distributed in chromatin, it is unclear how multiple individual components converge on any target to establish the PIC. Here we use live-cell, single-molecule tracking in S. cerevisiae to visualize constrained exploration of the nucleoplasm by PIC components and Mediator's key role in guiding this process. On chromatin, TFIID/TATA-binding protein (TBP), Mediator, and RNA Pol II instruct assembly of a short-lived PIC, which occurs infrequently but efficiently within a few seconds on average. Moreover, PIC exclusion by nucleosome encroachment underscores regulated promoter accessibility by chromatin remodeling. Thus, coordinated nuclear exploration and recruitment to accessible targets underlies dynamic PIC establishment in yeast. Our study provides a global spatiotemporal model for transcription initiation in live cells.
Collapse
Affiliation(s)
- Vu Q Nguyen
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anand Ranjan
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sheng Liu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiaona Tang
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yick Hin Ling
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jan Wisniewski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gaku Mizuguchi
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kai Yu Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vivian Jou
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Qinsi Zheng
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Timothée Lionnet
- Institute of Systems Genetics, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
34
|
Wu PS, Grosser J, Cameron DP, Baranello L, Ström L. Deficiency of Polη in Saccharomyces cerevisiae reveals the impact of transcription on damage-induced cohesion. PLoS Genet 2021; 17:e1009763. [PMID: 34499654 PMCID: PMC8454932 DOI: 10.1371/journal.pgen.1009763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/21/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
The structural maintenance of chromosome (SMC) complex cohesin mediates sister chromatid cohesion established during replication, and damage-induced cohesion formed in response to DSBs post-replication. The translesion synthesis polymerase Polη is required for damage-induced cohesion through a hitherto unknown mechanism. Since Polη is functionally associated with transcription, and transcription triggers de novo cohesion in Schizosaccharomyces pombe, we hypothesized that transcription facilitates damage-induced cohesion in Saccharomyces cerevisiae. Here, we show dysregulated transcriptional profiles in the Polη null mutant (rad30Δ), where genes involved in chromatin assembly and positive transcription regulation were downregulated. In addition, chromatin association of RNA polymerase II was reduced at promoters and coding regions in rad30Δ compared to WT cells, while occupancy of the H2A.Z variant (Htz1) at promoters was increased in rad30Δ cells. Perturbing histone exchange at promoters inactivated damage-induced cohesion, similarly to deletion of the RAD30 gene. Conversely, altering regulation of transcription elongation suppressed the deficient damage-induced cohesion in rad30Δ cells. Furthermore, transcription inhibition negatively affected formation of damage-induced cohesion. These results indicate that the transcriptional deregulation of the Polη null mutant is connected with its reduced capacity to establish damage-induced cohesion. This also suggests a linkage between regulation of transcription and formation of damage-induced cohesion after replication.
Collapse
Affiliation(s)
- Pei-Shang Wu
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Jan Grosser
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Donald P. Cameron
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Laura Baranello
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Lena Ström
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| |
Collapse
|
35
|
Barnes T, Korber P. The Active Mechanism of Nucleosome Depletion by Poly(dA:dT) Tracts In Vivo. Int J Mol Sci 2021; 22:ijms22158233. [PMID: 34360997 PMCID: PMC8347975 DOI: 10.3390/ijms22158233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
Poly(dA:dT) tracts cause nucleosome depletion in many species, e.g., at promoters and replication origins. Their intrinsic biophysical sequence properties make them stiff and unfavorable for nucleosome assembly, as probed by in vitro nucleosome reconstitution. The mere correlation between nucleosome depletion over poly(dA:dT) tracts in in vitro reconstituted and in in vivo chromatin inspired an intrinsic nucleosome exclusion mechanism in vivo that is based only on DNA and histone properties. However, we compile here published and new evidence that this correlation does not reflect mechanistic causation. (1) Nucleosome depletion over poly(dA:dT) in vivo is not universal, e.g., very weak in S. pombe. (2) The energy penalty for incorporating poly(dA:dT) tracts into nucleosomes is modest (<10%) relative to ATP hydrolysis energy abundantly invested by chromatin remodelers. (3) Nucleosome depletion over poly(dA:dT) is much stronger in vivo than in vitro if monitored without MNase and (4) actively maintained in vivo. (5) S. cerevisiae promoters evolved a strand-biased poly(dA) versus poly(dT) distribution. (6) Nucleosome depletion over poly(dA) is directional in vivo. (7) The ATP dependent chromatin remodeler RSC preferentially and directionally displaces nucleosomes towards 5′ of poly(dA). Especially distribution strand bias and displacement directionality would not be expected for an intrinsic mechanism. Together, this argues for an in vivo mechanism where active and species-specific read out of intrinsic sequence properties, e.g., by remodelers, shapes nucleosome organization.
Collapse
|
36
|
Brandani GB, Tan C, Takada S. The kinetic landscape of nucleosome assembly: A coarse-grained molecular dynamics study. PLoS Comput Biol 2021; 17:e1009253. [PMID: 34314440 PMCID: PMC8345847 DOI: 10.1371/journal.pcbi.1009253] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/06/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022] Open
Abstract
The organization of nucleosomes along the Eukaryotic genome is maintained over time despite disruptive events such as replication. During this complex process, histones and DNA can form a variety of non-canonical nucleosome conformations, but their precise molecular details and roles during nucleosome assembly remain unclear. In this study, employing coarse-grained molecular dynamics simulations and Markov state modeling, we characterized the complete kinetics of nucleosome assembly. On the nucleosome-positioning 601 DNA sequence, we observe a rich transition network among various canonical and non-canonical tetrasome, hexasome, and nucleosome conformations. A low salt environment makes nucleosomes stable, but the kinetic landscape becomes more rugged, so that the system is more likely to be trapped in off-pathway partially assembled intermediates. Finally, we find that the co-operativity between DNA bending and histone association enables positioning sequence motifs to direct the assembly process, with potential implications for the dynamic organization of nucleosomes on real genomic sequences. Nucleosomes are biomolecular complexes formed by DNA wrapped around histone proteins. They represent the basic units of Eukaryotic chromosomes, compacting the genome so that it fits into the small nucleus, and regulating important biological processes such as gene expression. Nucleosomes are disassembled during disruptive events such as DNA replication, and re-assembled afterwards to preserve the correct organization of chromatin. However, the molecular details of nucleosome assembly are still not well understood. In particular, experiments found that histones and DNA may associate into a variety of non-canonical complexes, but their precise conformation and role during assembly remain unclear. In this study, we addressed these problems by performing extensive molecular dynamics simulations of nucleosomes undergoing assembly and disassembly. The simulations reveal many insights into the kinetics of assembly, the structure of non-canonical nucleosome intermediates, and the influence of salt concentration and DNA sequence on the assembly process.
Collapse
Affiliation(s)
- Giovanni B. Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail: (GBB); (ST)
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail: (GBB); (ST)
| |
Collapse
|
37
|
Kim JM, Visanpattanasin P, Jou V, Liu S, Tang X, Zheng Q, Li KY, Snedeker J, Lavis LD, Lionnet T, Wu C. Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin. eLife 2021; 10:e69387. [PMID: 34313223 PMCID: PMC8352589 DOI: 10.7554/elife.69387] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Conserved ATP-dependent chromatin remodelers establish and maintain genome-wide chromatin architectures of regulatory DNA during cellular lifespan, but the temporal interactions between remodelers and chromatin targets have been obscure. We performed live-cell single-molecule tracking for RSC, SWI/SNF, CHD1, ISW1, ISW2, and INO80 remodeling complexes in budding yeast and detected hyperkinetic behaviors for chromatin-bound molecules that frequently transition to the free state for all complexes. Chromatin-bound remodelers display notably higher diffusion than nucleosomal histones, and strikingly fast dissociation kinetics with 4-7 s mean residence times. These enhanced dynamics require ATP binding or hydrolysis by the catalytic ATPase, uncovering an additional function to its established role in nucleosome remodeling. Kinetic simulations show that multiple remodelers can repeatedly occupy the same promoter region on a timescale of minutes, implicating an unending 'tug-of-war' that controls a temporally shifting window of accessibility for the transcription initiation machinery.
Collapse
Affiliation(s)
- Jee Min Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | | | - Vivian Jou
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Sheng Liu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Xiaona Tang
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Qinsi Zheng
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kai Yu Li
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Jonathan Snedeker
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Timothee Lionnet
- Institute of Systems Genetics, Langone Medical Center, New York UniversityNew YorkUnited States
| | - Carl Wu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Molecular Biology and Genetics, Johns Hopkins School of MedicineBaltimoreUnited States
| |
Collapse
|
38
|
Transcriptional control of ribosome biogenesis in yeast: links to growth and stress signals. Biochem Soc Trans 2021; 49:1589-1599. [PMID: 34240738 PMCID: PMC8421047 DOI: 10.1042/bst20201136] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Ribosome biogenesis requires prodigious transcriptional output in rapidly growing yeast cells and is highly regulated in response to both growth and stress signals. This minireview focuses on recent developments in our understanding of this regulatory process, with an emphasis on the 138 ribosomal protein genes (RPGs) themselves and a group of >200 ribosome biogenesis (RiBi) genes whose products contribute to assembly but are not part of the ribosome. Expression of most RPGs depends upon Rap1, a pioneer transcription factor (TF) required for the binding of a pair of RPG-specific TFs called Fhl1 and Ifh1. RPG expression is correlated with Ifh1 promoter binding, whereas Rap1 and Fhl1 remain promoter-associated upon stress-induced down regulation. A TF called Sfp1 has also been implicated in RPG regulation, though recent work reveals that its primary function is in activation of RiBi and other growth-related genes. Sfp1 plays an important regulatory role at a small number of RPGs where Rap1–Fhl1–Ifh1 action is subsidiary or non-existent. In addition, nearly half of all RPGs are bound by Hmo1, which either stabilizes or re-configures Fhl1–Ifh1 binding. Recent studies identified the proline rotamase Fpr1, known primarily for its role in rapamycin-mediated inhibition of the TORC1 kinase, as an additional TF at RPG promoters. Fpr1 also affects Fhl1–Ifh1 binding, either independently or in cooperation with Hmo1. Finally, a major recent development was the discovery of a protein homeostasis mechanism driven by unassembled ribosomal proteins, referred to as the Ribosome Assembly Stress Response (RASTR), that controls RPG transcription through the reversible condensation of Ifh1.
Collapse
|
39
|
Kumar A, Chan J, Taguchi M, Kono H. Interplay among transacting factors around promoter in the initial phases of transcription. Curr Opin Struct Biol 2021; 71:7-15. [PMID: 34111671 DOI: 10.1016/j.sbi.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
The initiation signals are raised around the promoter by one of the general transcription factors, triggering a sequence of events that lead to mRNA transcript formation from target genes. Both specific noncoding DNA regions and transacting, macromolecular assemblies are intricately involved and indispensable. The transition between the subsequent transcriptional stages is accompanied by stage-specific signals and structural changes in the macromolecular assemblies and facilitated by the recruitment/removal of other chromatin and transcription-associated elements. Here, we discuss the choreography of transacting factors around promoter in the establishment and effectuation of the initial phases of transcription such as NDR formation, +1 nucleosome positioning, promoter DNA opening, and RNAPII promoter escape from a structural viewpoint.
Collapse
Affiliation(s)
- Amarjeet Kumar
- Molecular Modeling and Simulation Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Justin Chan
- Molecular Modeling and Simulation Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Masahiko Taguchi
- Molecular Modeling and Simulation Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modeling and Simulation Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan.
| |
Collapse
|
40
|
Ohno M, Ando T, Priest DG, Taniguchi Y. Hi-CO: 3D genome structure analysis with nucleosome resolution. Nat Protoc 2021; 16:3439-3469. [PMID: 34050337 DOI: 10.1038/s41596-021-00543-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/23/2021] [Indexed: 01/03/2023]
Abstract
The nucleosome is the basic organizational unit of the genome. The folding structure of nucleosomes is closely related to genome functions, and has been reported to be in dynamic interplay with binding of various nuclear proteins to genomic loci. Here, we describe our high-throughput chromosome conformation capture with nucleosome orientation (Hi-CO) technology to derive 3D nucleosome positions with their orientations at every genomic locus in the nucleus. This technology consists of an experimental procedure for nucleosome proximity analysis and a computational procedure for 3D modeling. The experimental procedure is based on an improved method of high-throughput chromosome conformation capture (Hi-C) analysis. Whereas conventional Hi-C allows spatial proximity analysis among genomic loci with 1-10 kbp resolution, our Hi-CO allows proximity analysis among DNA entry or exit points at every nucleosome locus. This analysis is realized by carrying out ligations among the entry/exit points in every nucleosome in a micrococcal-nuclease-fragmented genome, and by quantifying frequencies of ligation products with next-generation sequencing. Our protocol has enabled this analysis by cleanly excluding unwanted non-ligation products that are abundant owing to the frequent genome fragmentation by micrococcal nuclease. The computational procedure is based on simulated annealing-molecular dynamics, which allows determination of optimized 3D positions and orientations of every nucleosome that satisfies the proximity ligation data sufficiently well. Typically, examination of the Saccharomyces cerevisiae genome with 130 million sequencing reads facilitates analysis of a total of 66,360 nucleosome loci with 6.8 nm resolution. The technique requires 2-3 weeks for sequencing library preparation and 2 weeks for simulation.
Collapse
Affiliation(s)
- Masae Ohno
- Laboratory for Cell Systems Control, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| | - Tadashi Ando
- Laboratory for Biomolecular Function Simulation, Quantitative Biology Center, RIKEN, Kobe, Japan.,Department of Applied Electronics, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - David G Priest
- Laboratory for Cell Systems Control, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Yuichi Taniguchi
- Laboratory for Cell Systems Control, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan. .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan. .,Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
41
|
Cucinotta CE, Dell RH, Braceros KCA, Tsukiyama T. RSC primes the quiescent genome for hypertranscription upon cell-cycle re-entry. eLife 2021; 10:e67033. [PMID: 34042048 PMCID: PMC8186906 DOI: 10.7554/elife.67033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Quiescence is a reversible G0 state essential for differentiation, regeneration, stem-cell renewal, and immune cell activation. Necessary for long-term survival, quiescent chromatin is compact, hypoacetylated, and transcriptionally inactive. How transcription activates upon cell-cycle re-entry is undefined. Here we report robust, widespread transcription within the first minutes of quiescence exit. During quiescence, the chromatin-remodeling enzyme RSC was already bound to the genes induced upon quiescence exit. RSC depletion caused severe quiescence exit defects: a global decrease in RNA polymerase II (Pol II) loading, Pol II accumulation at transcription start sites, initiation from ectopic upstream loci, and aberrant antisense transcription. These phenomena were due to a combination of highly robust Pol II transcription and severe chromatin defects in the promoter regions and gene bodies. Together, these results uncovered multiple mechanisms by which RSC facilitates initiation and maintenance of large-scale, rapid gene expression despite a globally repressive chromatin state.
Collapse
Affiliation(s)
| | - Rachel H Dell
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Keean CA Braceros
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
42
|
Clapier CR. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Int J Mol Sci 2021; 22:5578. [PMID: 34070411 PMCID: PMC8197500 DOI: 10.3390/ijms22115578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions-in particular, the regulation of gene expression-and involve the cooperative action of sequence-specific DNA-binding factors, histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through sophisticated structural and functional conversations with nucleosomes. In this review, I first present the functional and structural diversity of remodelers, while emphasizing the basic mechanism of DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and nucleosomes that accompanies the increase in challenges of remodeling processes. Next, I examine how, through nucleosome positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects of how alterations/mutations in remodelers introduce dissonance into the conversations between remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences & Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| |
Collapse
|
43
|
Yu J, Xiong C, Zhuo B, Wen Z, Shen J, Liu C, Chang L, Wang K, Wang M, Wu C, Wu X, Xu X, Ruan H, Li G. Analysis of Local Chromatin States Reveals Gene Transcription Potential during Mouse Neural Progenitor Cell Differentiation. Cell Rep 2021; 32:107953. [PMID: 32726618 DOI: 10.1016/j.celrep.2020.107953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 01/23/2023] Open
Abstract
Chromatin dynamics play a critical role in cell fate determination and maintenance by regulating the expression of genes essential for development and differentiation. In mouse embryonic stem cells (mESCs), maintenance of pluripotency coincides with a poised chromatin state containing active and repressive histone modifications. However, the structural features of poised chromatin are largely uncharacterized. By adopting mild time-course MNase-seq with computational analysis, the low-compact chromatin in mESCs is featured in two groups: one in more open regions, corresponding to an active state, and the other enriched with bivalent histone modifications, considered the poised state. A parameter called the chromatin opening potential index (COPI) is also devised to quantify the transcription potential based on the dynamic changes of MNase-seq signals at promoter regions. Use of COPI provides effective prediction of gene activation potential and, more importantly, reveals a few developmental factors essential for mouse neural progenitor cell (NPC) differentiation.
Collapse
Affiliation(s)
- Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chaoyang Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Baowen Zhuo
- Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen 518102, China
| | - Zengqi Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Shen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Luyuan Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kehui Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenyi Wu
- Molecular Biophysics Laboratories, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Xudong Wu
- Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Xueqing Xu
- Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen 518102, China.
| | - Haihe Ruan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
44
|
Cole L, Kurscheid S, Nekrasov M, Domaschenz R, Vera DL, Dennis JH, Tremethick DJ. Multiple roles of H2A.Z in regulating promoter chromatin architecture in human cells. Nat Commun 2021; 12:2524. [PMID: 33953180 PMCID: PMC8100287 DOI: 10.1038/s41467-021-22688-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/25/2021] [Indexed: 01/02/2023] Open
Abstract
Chromatin accessibility of a promoter is fundamental in regulating transcriptional activity. The histone variant H2A.Z has been shown to contribute to this regulation, but its role has remained poorly understood. Here, we prepare high-depth maps of the position and accessibility of H2A.Z-containing nucleosomes for all human Pol II promoters in epithelial, mesenchymal and isogenic cancer cell lines. We find that, in contrast to the prevailing model, many different types of active and inactive promoter structures are observed that differ in their nucleosome organization and sensitivity to MNase digestion. Key aspects of an active chromatin structure include positioned H2A.Z MNase resistant nucleosomes upstream or downstream of the TSS, and a MNase sensitive nucleosome at the TSS. Furthermore, the loss of H2A.Z leads to a dramatic increase in the accessibility of transcription factor binding sites. Collectively, these results suggest that H2A.Z has multiple and distinct roles in regulating gene expression dependent upon its location in a promoter.
Collapse
Affiliation(s)
- Lauren Cole
- College of Arts and Sciences, Department of Biological Sciences, Florida State University, Tallahassee, FL, USA
| | - Sebastian Kurscheid
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Maxim Nekrasov
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Renae Domaschenz
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Daniel L Vera
- College of Arts and Sciences, Department of Biological Sciences, Florida State University, Tallahassee, FL, USA
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Jonathan H Dennis
- College of Arts and Sciences, Department of Biological Sciences, Florida State University, Tallahassee, FL, USA.
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
45
|
Liu G, Zhao H, Meng H, Xing Y, Cai L. A deformation energy model reveals sequence-dependent property of nucleosome positioning. Chromosoma 2021; 130:27-40. [PMID: 33452566 PMCID: PMC7889546 DOI: 10.1007/s00412-020-00750-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022]
Abstract
We present a deformation energy model for predicting nucleosome positioning, in which a position-dependent structural parameter set derived from crystal structures of nucleosomes was used to calculate the DNA deformation energy. The model is successful in predicting nucleosome occupancy genome-wide in budding yeast, nucleosome free energy, and rotational positioning of nucleosomes. Our model also indicates that the genomic regions underlying the MNase-sensitive nucleosomes in budding yeast have high deformation energy and, consequently, low nucleosome-forming ability, while the MNase-sensitive non-histone particles are characterized by much lower DNA deformation energy and high nucleosome preference. In addition, we also revealed that remodelers, SNF2 and RSC8, are likely to act in chromatin remodeling by binding to broad nucleosome-depleted regions that are intrinsically favorable for nucleosome positioning. Our data support the important role of position-dependent physical properties of DNA in nucleosome positioning.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
| | - Hongyu Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Hu Meng
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yongqiang Xing
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Lu Cai
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| |
Collapse
|
46
|
Biernat E, Kinney J, Dunlap K, Rizza C, Govind CK. The RSC complex remodels nucleosomes in transcribed coding sequences and promotes transcription in Saccharomyces cerevisiae. Genetics 2021; 217:6133232. [PMID: 33857307 PMCID: PMC8049546 DOI: 10.1093/genetics/iyab021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/05/2021] [Indexed: 01/06/2023] Open
Abstract
RSC (Remodels the Structure of Chromatin) is a conserved ATP-dependent chromatin remodeling complex that regulates many biological processes, including transcription by RNA polymerase II (Pol II). We report that RSC contributes in generating accessible nucleosomes in transcribed coding sequences (CDSs). RSC MNase ChIP-seq data revealed that RSC-bound nucleosome fragments were very heterogenous (∼80 bp to 180 bp) compared to a sharper profile displayed by the MNase inputs (140 bp to 160 bp), supporting the idea that RSC promotes accessibility of nucleosomal DNA. Notably, RSC binding to +1 nucleosomes and CDSs, but not with -1 nucleosomes, strongly correlated with Pol II occupancies, suggesting that RSC enrichment in CDSs is linked to transcription. We also observed that Pol II associates with nucleosomes throughout transcribed CDSs, and similar to RSC, Pol II-protected fragments were highly heterogenous, consistent with the idea that Pol II interacts with remodeled nucleosomes in CDSs. This idea is supported by the observation that the genes harboring high-levels of Pol II in their CDSs were the most strongly affected by ablating RSC function. Additionally, rapid nuclear depletion of Sth1 decreases nucleosome accessibility and results in accumulation of Pol II in highly transcribed CDSs. This is consistent with a slower clearance of elongating Pol II in cells with reduced RSC function, and is distinct from the effect of RSC depletion on PIC assembly. Altogether, our data provide evidence in support of the role of RSC in promoting Pol II elongation, in addition to its role in regulating transcription initiation.
Collapse
Affiliation(s)
- Emily Biernat
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Jeena Kinney
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Kyle Dunlap
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Christian Rizza
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Chhabi K Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
47
|
Nucleosome Positioning and Spacing: From Mechanism to Function. J Mol Biol 2021; 433:166847. [PMID: 33539878 DOI: 10.1016/j.jmb.2021.166847] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
Eukaryotes associate their genomes with histone proteins, forming nucleosome particles. Nucleosomes regulate and protect the genetic information. They often assemble into evenly spaced arrays of nucleosomes. These regular nucleosome arrays cover significant portions of the genome, in particular over genes. The presence of these evenly spaced nucleosome arrays is highly conserved throughout the entire eukaryotic domain. Here, we review the mechanisms behind the establishment of this primary structure of chromatin with special emphasis on the biogenesis of evenly spaced nucleosome arrays. We highlight the roles that transcription, nucleosome remodelers, DNA sequence, and histone density play towards the formation of evenly spaced nucleosome arrays and summarize our current understanding of their cellular functions. We end with key unanswered questions that remain to be explored to obtain an in-depth understanding of the biogenesis and function of the nucleosome landscape.
Collapse
|
48
|
Basu A, Bobrovnikov DG, Qureshi Z, Kayikcioglu T, Ngo TTM, Ranjan A, Eustermann S, Cieza B, Morgan MT, Hejna M, Rube HT, Hopfner KP, Wolberger C, Song JS, Ha T. Measuring DNA mechanics on the genome scale. Nature 2021; 589:462-467. [PMID: 33328628 PMCID: PMC7855230 DOI: 10.1038/s41586-020-03052-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
Mechanical deformations of DNA such as bending are ubiquitous and have been implicated in diverse cellular functions1. However, the lack of high-throughput tools to measure the mechanical properties of DNA has limited our understanding of how DNA mechanics influence chromatin transactions across the genome. Here we develop 'loop-seq'-a high-throughput assay to measure the propensity for DNA looping-and determine the intrinsic cyclizabilities of 270,806 50-base-pair DNA fragments that span Saccharomyces cerevisiae chromosome V, other genomic regions, and random sequences. We found sequence-encoded regions of unusually low bendability within nucleosome-depleted regions upstream of transcription start sites (TSSs). Low bendability of linker DNA inhibits nucleosome sliding into the linker by the chromatin remodeller INO80, which explains how INO80 can define nucleosome-depleted regions in the absence of other factors2. Chromosome-wide, nucleosomes were characterized by high DNA bendability near dyads and low bendability near linkers. This contrast increases for deeper gene-body nucleosomes but disappears after random substitution of synonymous codons, which suggests that the evolution of codon choice has been influenced by DNA mechanics around gene-body nucleosomes. Furthermore, we show that local DNA mechanics affect transcription through TSS-proximal nucleosomes. Overall, this genome-scale map of DNA mechanics indicates a 'mechanical code' with broad functional implications.
Collapse
Affiliation(s)
- Aakash Basu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dmitriy G Bobrovnikov
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zan Qureshi
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Tunc Kayikcioglu
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thuy T M Ngo
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anand Ranjan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Sebastian Eustermann
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Basilio Cieza
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Michael T Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miroslav Hejna
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - H Tomas Rube
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Karl-Peter Hopfner
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun S Song
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois, Urbana, IL, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
49
|
Zencir S, Dilg D, Rueda MP, Shore D, Albert B. Mechanisms coordinating ribosomal protein gene transcription in response to stress. Nucleic Acids Res 2020; 48:11408-11420. [PMID: 33084907 PMCID: PMC7672434 DOI: 10.1093/nar/gkaa852] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 11/14/2022] Open
Abstract
While expression of ribosomal protein genes (RPGs) in the budding yeast has been extensively studied, a longstanding enigma persists regarding their co-regulation under fluctuating growth conditions. Most RPG promoters display one of two distinct arrangements of a core set of transcription factors (TFs) and are further differentiated by the presence or absence of the HMGB protein Hmo1. However, a third group of promoters appears not to be bound by any of these proteins, raising the question of how the whole suite of genes is co-regulated. We demonstrate here that all RPGs are regulated by two distinct, but complementary mechanisms driven by the TFs Ifh1 and Sfp1, both of which are required for maximal expression in optimal conditions and coordinated downregulation upon stress. At the majority of RPG promoters, Ifh1-dependent regulation predominates, whereas Sfp1 plays the major role at all other genes. We also uncovered an unexpected protein homeostasis-dependent binding property of Hmo1 at RPG promoters. Finally, we show that the Ifh1 paralog Crf1, previously described as a transcriptional repressor, can act as a constitutive RPG activator. Our study provides a more complete picture of RPG regulation and may serve as a paradigm for unravelling RPG regulation in multicellular eukaryotes.
Collapse
Affiliation(s)
- Sevil Zencir
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Daniel Dilg
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Maria Paula Rueda
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Benjamin Albert
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
50
|
de Jonge WJ, Brok M, Lijnzaad P, Kemmeren P, Holstege FCP. Genome-wide off-rates reveal how DNA binding dynamics shape transcription factor function. Mol Syst Biol 2020; 16:e9885. [PMID: 33280256 PMCID: PMC7586999 DOI: 10.15252/msb.20209885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 11/25/2022] Open
Abstract
Protein-DNA interactions are dynamic, and these dynamics are an important aspect of chromatin-associated processes such as transcription or replication. Due to a lack of methods to study on- and off-rates across entire genomes, protein-DNA interaction dynamics have not been studied extensively. Here, we determine in vivo off-rates for the Saccharomyces cerevisiae chromatin organizing factor Abf1, at 191 sites simultaneously across the yeast genome. Average Abf1 residence times span a wide range, varying between 4.2 and 33 min. Sites with different off-rates are associated with different functional characteristics. This includes their transcriptional dependency on Abf1, nucleosome positioning and the size of the nucleosome-free region, as well as the ability to roadblock RNA polymerase II for termination. The results show how off-rates contribute to transcription factor function and that DIVORSEQ (Determining In Vivo Off-Rates by SEQuencing) is a meaningful way of investigating protein-DNA binding dynamics genome-wide.
Collapse
Affiliation(s)
- Wim J de Jonge
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Mariël Brok
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | |
Collapse
|