1
|
Kang J, Wu X, Li Y, Zhao S, Wang S, Yu D. Association between inflammatory bowel disease and osteoporosis in European and East Asian populations: exploring causality, mediation by nutritional status, and shared genetic architecture. Front Immunol 2024; 15:1425610. [PMID: 39136019 PMCID: PMC11317921 DOI: 10.3389/fimmu.2024.1425610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
Background While previous research has established an association between inflammatory bowel disease (IBD) and osteoporosis (OP), the nature of this association in different populations remains unclear. Objective Our study used linkage disequilibrium scores(LDSC) regression analysis and Mendelian randomization(MR) to assess the genetic correlation and causal relationship between IBD and OP in European and East Asian populations. Methods We performed separate genetic correlation and causal analyses for IBD and OP in European and East Asian populations, used the product of coefficients method to estimate the mediating effect of nutritional status on the causal relationship, and used multi-trait analysis to explore the biological mechanisms underlying the IBD-nutrition-OP causal pathway. Results Our analysis revealed a significant genetic correlation and causal relationship between IBD and OP in the European population. Conversely, no such correlation or causal relationship was observed in the East Asian population. Mediation analysis revealed a significant mediating effect of nutritional status on the causal pathway between IBD and OP in the European population. Multi-trait analysis of the IBD-nutrition-OP causal pathway identified MFAP2, ATP13A2, SERPINA1, FTO and VCAN as deleterious variants. Conclusion Our findings establish a genetic correlation and causal relationship between IBD and OP in the European population, with nutritional status playing a crucial mediating role.
Collapse
Affiliation(s)
- Jian Kang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xize Wu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yue Li
- Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shuangli Zhao
- Orthopedics and Traumatology, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shixuan Wang
- Orthopedics and Traumatology, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Dongdong Yu
- Orthopedics and Traumatology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
2
|
Penarete-Acosta D, Stading R, Emerson L, Horn M, Chakraborty S, Han A, Jayaraman A. A microfluidic co-culture model for investigating colonocytes-microbiota interactions in colorectal cancer. LAB ON A CHIP 2024; 24:3690-3703. [PMID: 38973701 DOI: 10.1039/d4lc00013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Changes in the abundance of certain bacterial species within the colorectal microbiota correlate with colorectal cancer (CRC) development. While carcinogenic mechanisms of single pathogenic bacteria have been characterized in vitro, limited tools are available to investigate interactions between pathogenic bacteria and both commensal microbiota and colonocytes in a physiologically relevant tumor microenvironment. To address this, we developed a microfluidic device that can be used to co-culture colonocyte spheroids and colorectal microbiota. The device was used to explore the effect of Fusobacterium nucleatum, an opportunistic pathogen associated with colorectal cancer development in humans, on colonocyte gene expression and microbiota composition. F. nucleatum altered the transcription of genes involved in cytokine production, epithelial-to-mesenchymal transition, and proliferation in colonocytes in a contact-independent manner; however, most of these effects were significantly diminished by the presence of commensal microbiota. Interestingly, F. nucleatum significantly altered the abundance of multiple bacterial clades associated with mucosal immune responses and cancer development in the colon. Our results highlight the importance of evaluating the potential carcinogenic activity of pathogens in the context of a commensal microbiota, and the potential to discover novel inter-species microbial interactions in the CRC microenvironment.
Collapse
Affiliation(s)
| | - Rachel Stading
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, USA
| | - Laura Emerson
- Department of Biomedical Engineering, Texas A&M University, USA.
| | - Mitchell Horn
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Arum Han
- Department of Biomedical Engineering, Texas A&M University, USA.
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, USA
- Department of Electrical and Computer Engineering, Texas A&M University, USA
| | - Arul Jayaraman
- Department of Biomedical Engineering, Texas A&M University, USA.
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, USA
| |
Collapse
|
3
|
Wu H, Sun Z, Guo Q, Li C. Mapping knowledge landscapes and research frontiers of gastrointestinal microbiota and bone metabolism: a text-mining study. Front Cell Infect Microbiol 2024; 14:1407180. [PMID: 39055979 PMCID: PMC11270605 DOI: 10.3389/fcimb.2024.1407180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction Extensive research efforts have been dedicated to elucidating the intricate pathways by which gastrointestinal microbiota and their metabolites exert influence on the processes of bone formation. Nonetheless, a notable gap exists in the literature concerning a bibliometric analysis of research trends at the nexus of gastrointestinal microbiota and bone metabolism. Methods To address this scholarly void, the present study employs a suite of bibliometric tools including online platforms, CiteSpace and VOSviewer to scrutinize the pertinent literature in the realm of gastrointestinal microbiota and bone metabolism. Results and discussion Examination of the temporal distribution of publications spanning from 2000 to 2023 reveals a discernible upward trajectory in research output, characterized by an average annual growth rate of 19.2%. Notably, China and the United States emerge as primary contributors. Predominant among contributing institutions are Emory University, Harvard University, and the University of California. Pacifici R from Emory University contributed the most research with 15 publications. In the realm of academic journals, Nutrients emerges as the foremost publisher, followed closely by Frontiers in Microbiology and PLOS One. And PLOS One attains the highest average citations of 32.48. Analysis of highly cited papers underscores a burgeoning interest in the therapeutic potential of probiotics or probiotic blends in modulating bone metabolism by augmenting host immune responses. Notably, significant research attention has coalesced around the therapeutic interventions of probiotics, particularly Lactobacillus reuteri, in osteoporosis, as well as the role of gastrointestinal microbiota in the etiology and progression of osteoarthritis. Keyword analysis reveals prevalent terms including gut microbiota, osteoporosis, bone density, probiotics, inflammation, SCFAs, metabolism, osteoarthritis, calcium absorption, obesity, double-blind, prebiotics, mechanisms, postmenopausal women, supplementation, risk factors, oxidative stress, and immune system. Future research endeavors warrant a nuanced exploration of topics such as inflammation, obesity, SCFAs, postmenopausal osteoporosis, skeletal muscle, oxidative stress, double-blind trials, and pathogenic mechanisms. In summary, this study presents a comprehensive bibliometric analysis of global research on the interplay between gastrointestinal microbiota and bone metabolism, offering valuable insights for scholars, particularly nascent researchers, embarking on analogous investigations within this domain.
Collapse
Affiliation(s)
- Haiyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Qiang Guo
- Department of Spine and Joint Surgery, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Cheng Li
- Department of Spine Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Center for Musculoskeletal Surgery (CMSC), Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
4
|
Baaziz H, Makhlouf R, McClelland M, Hsu BB. Bacterial resistance to temperate phage is influenced by the frequency of lysogenic establishment. iScience 2024; 27:109595. [PMID: 38623331 PMCID: PMC11016777 DOI: 10.1016/j.isci.2024.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Temperate phages can shape bacterial community dynamics and evolution through lytic and lysogenic life cycles. In response, bacteria that resist phage infection can emerge. This study explores phage-based factors that influence bacterial resistance using a model system of temperate P22 phage and Salmonella both inside and outside the mammalian host. Phages that remained functional despite gene deletions had minimal impact on lysogeny and phage resistance except for deletions in the immI region that substantially reduced lysogeny and increased phage resistance to levels comparable to that observed with an obligately lytic P22. This immI deletion does not make the lysogen less competitive but instead increases the frequency of bacterial lysis. Thus, subtle changes in the balance between lysis and lysogeny during the initial stages of infection can significantly influence the extent of phage resistance in the bacterial population. Our work highlights the complex nature of the phage-bacteria-mammalian host triad.
Collapse
Affiliation(s)
- Hiba Baaziz
- Department of Biological Sciences, Fralin Life Sciences Institute, Center for Emerging, and Zoonotic, Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rita Makhlouf
- Department of Biological Sciences, Fralin Life Sciences Institute, Center for Emerging, and Zoonotic, Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Bryan B. Hsu
- Department of Biological Sciences, Fralin Life Sciences Institute, Center for Emerging, and Zoonotic, Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
6
|
Duncanson K, Williams G, Hoedt EC, Collins CE, Keely S, Talley NJ. Diet-microbiota associations in gastrointestinal research: a systematic review. Gut Microbes 2024; 16:2350785. [PMID: 38725230 PMCID: PMC11093048 DOI: 10.1080/19490976.2024.2350785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Interactions between diet and gastrointestinal microbiota influence health status and outcomes. Evaluating these relationships requires accurate quantification of dietary variables relevant to microbial metabolism, however current dietary assessment methods focus on dietary components relevant to human digestion only. The aim of this study was to synthesize research on foods and nutrients that influence human gut microbiota and thereby identify knowledge gaps to inform dietary assessment advancements toward better understanding of diet-microbiota interactions. Thirty-eight systematic reviews and 106 primary studies reported on human diet-microbiota associations. Dietary factors altering colonic microbiota included dietary patterns, macronutrients, micronutrients, bioactive compounds, and food additives. Reported diet-microbiota associations were dominated by routinely analyzed nutrients, which are absorbed from the small intestine but analyzed for correlation to stool microbiota. Dietary derived microbiota-relevant nutrients are more challenging to quantify and underrepresented in included studies. This evidence synthesis highlights advancements needed, including opportunities for expansion of food composition databases to include microbiota-relevant data, particularly for human intervention studies. These advances in dietary assessment methodology will facilitate translation of microbiota-specific nutrition therapy to practice.
Collapse
Affiliation(s)
- Kerith Duncanson
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine & Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Georgina Williams
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine & Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Emily C. Hoedt
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Clare E. Collins
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine & Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Simon Keely
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J. Talley
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine & Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
7
|
Wu F, Ren F, Xie X, Meng J, Wu X. The implication of viability and pathogenicity by truncated lipopolysaccharide in Yersinia enterocolitica. Appl Microbiol Biotechnol 2023; 107:7165-7180. [PMID: 37728625 DOI: 10.1007/s00253-023-12785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
The fast envelope stress responses play a key role in the transmission and pathogenesis of Yersinia enterocolitica, one of the most common foodborne pathogens. Our previous study showed that deletion of the waaF gene, essential for the biosynthesis of lipopolysaccharide (LPS) core polysaccharides, led to the formation of a truncated LPS structure and induced cell envelope stress. This envelope stress may disturb the intracellular signal transduction, thereby affecting the physiological functions of Y. enterocolitica. In this study, truncated LPS caused by waaF deletion was used as a model of envelope stress in Y. enterocolitica. We investigated the mechanisms of envelope stress responses and the cellular functions affected by truncated LPS. Transcriptome analysis and phenotypic validation showed that LPS truncation reduced flagellar assembly, bacterial chemotaxis, and inositol phosphate metabolism, presenting lower pathogenicity and viability both in vivo and in vitro environments. Further 4D label-free phosphorylation analysis confirmed that truncated LPS perturbed multiple intracellular signal transduction pathways. Specifically, a comprehensive discussion was conducted on the mechanisms by which chemotactic signal transduction and Rcs system contribute to the inhibition of chemotaxis. Finally, the pathogenicity of Y. enterocolitica with truncated LPS was evaluated in vitro using IPEC-J2 cells as models, and it was found that truncated LPS exhibited reduced adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells. Our research provides an understanding of LPS in the regulation of Y. enterocolitica viability and pathogenicity and, thus, opening new avenues to develop novel food safety strategies or drugs to prevent and control Y. enterocolitica infections. KEY POINTS: • Truncated LPS reduces flagellar assembly, chemotaxis, and inositol phosphate metabolism in Y. enterocolitica. • Truncated LPS reduces adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells. • Truncated LPS regulates intracellular signal transduction of Y. enterocolitica.
Collapse
Affiliation(s)
- Fan Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Fengyun Ren
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Jiao Meng
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China.
| | - Xin Wu
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China
| |
Collapse
|
8
|
MacNair CR, Tsai CN, Rutherford ST, Tan MW. Returning to Nature for the Next Generation of Antimicrobial Therapeutics. Antibiotics (Basel) 2023; 12:1267. [PMID: 37627687 PMCID: PMC10451936 DOI: 10.3390/antibiotics12081267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotics found in and inspired by nature are life-saving cures for bacterial infections and have enabled modern medicine. However, the rise in resistance necessitates the discovery and development of novel antibiotics and alternative treatment strategies to prevent the return to a pre-antibiotic era. Once again, nature can serve as a source for new therapies in the form of natural product antibiotics and microbiota-based therapies. Screening of soil bacteria, particularly actinomycetes, identified most of the antibiotics used in the clinic today, but the rediscovery of existing molecules prompted a shift away from natural product discovery. Next-generation sequencing technologies and bioinformatics advances have revealed the untapped metabolic potential harbored within the genomes of environmental microbes. In this review, we first highlight current strategies for mining this untapped chemical space, including approaches to activate silent biosynthetic gene clusters and in situ culturing methods. Next, we describe how using live microbes in microbiota-based therapies can simultaneously leverage many of the diverse antimicrobial mechanisms found in nature to treat disease and the impressive efficacy of fecal microbiome transplantation and bacterial consortia on infection. Nature-provided antibiotics are some of the most important drugs in human history, and new technologies and approaches show that nature will continue to offer valuable inspiration for the next generation of antibacterial therapeutics.
Collapse
Affiliation(s)
- Craig R. MacNair
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| | - Caressa N. Tsai
- School of Law, University of California, Berkeley, Berkeley, CA 94704, USA;
| | - Steven T. Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| |
Collapse
|
9
|
Dje Kouadio DK, Wieringa F, Greffeuille V, Humblot C. Bacteria from the gut influence the host micronutrient status. Crit Rev Food Sci Nutr 2023; 64:10714-10729. [PMID: 37366286 DOI: 10.1080/10408398.2023.2227888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Micronutrient deficiencies or "hidden hunger" remains a serious public health problem in most low- and middle-income countries, with severe consequences for child development. Traditional methods of treatment and prevention, such as supplementation and fortification, have not always proven to be effective and may have undesirable side-effects (i.e., digestive troubles with iron supplementation). Commensal bacteria in the gut may increase bioavailability of specific micronutrients (i.e., minerals), notably by removing anti-nutritional compounds, such as phytates and polyphenols, or by the synthesis of vitamins. Together with the gastrointestinal mucosa, gut microbiota is also the first line of protection against pathogens. It contributes to the reinforcement of the integrity of the intestinal epithelium and to a better absorption of micronutrients. However, its role in micronutrient malnutrition is still poorly understood. Moreover, the bacterial metabolism is also dependent of micronutrients acquired from the gut environment and resident bacteria may compete or collaborate to maintain micronutrient homeostasis. Gut microbiota composition can therefore be modulated by micronutrient availability. This review brings together current knowledge on this two-way relationship between micronutrients and gut microbiota bacteria, with a focus on iron, zinc, vitamin A and folate (vitamin B9), as these deficiencies are public health concerns in a global context.
Collapse
Affiliation(s)
- Dorgeles Kouakou Dje Kouadio
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Frank Wieringa
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Valérie Greffeuille
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Christèle Humblot
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| |
Collapse
|
10
|
Abstract
Microbial communities are shaped by positive and negative interactions ranging from competition to mutualism. In the context of the mammalian gut and its microbial inhabitants, the integrated output of the community has important impacts on host health. Cross-feeding, the sharing of metabolites between different microbes, has emergent roles in establishing communities of gut commensals that are stable, resistant to invasion, and resilient to external perturbation. In this review, we first explore the ecological and evolutionary implications of cross-feeding as a cooperative interaction. We then survey mechanisms of cross-feeding across trophic levels, from primary fermenters to H2 consumers that scavenge the final metabolic outputs of the trophic network. We extend this analysis to also include amino acid, vitamin, and cofactor cross-feeding. Throughout, we highlight evidence for the impact of these interactions on each species' fitness as well as host health. Understanding cross-feeding illuminates an important aspect of microbe-microbe and host-microbe interactions that establishes and shapes our gut communities.
Collapse
Affiliation(s)
- Elizabeth J Culp
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Gómez de la Torre Canny S, Nordgård CT, Mathisen AJH, Degré Lorentsen E, Vadstein O, Bakke I. A novel gnotobiotic experimental system for Atlantic salmon ( Salmo salar L.) reveals a microbial influence on mucosal barrier function and adipose tissue accumulation during the yolk sac stage. Front Cell Infect Microbiol 2023; 12:1068302. [PMID: 36817693 PMCID: PMC9929952 DOI: 10.3389/fcimb.2022.1068302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 02/04/2023] Open
Abstract
Gnotobiotic models have had a crucial role in studying the effect that commensal microbiota has on the health of their animal hosts. Despite their physiological and ecological diversity, teleost fishes are still underrepresented in gnotobiotic research. Moreover, a better understanding of host-microbe interactions in farmed fish has the potential to contribute to sustainable global food supply. We have developed a novel gnotobiotic experimental system that includes the derivation of fertilized eggs of farmed and wild Atlantic salmon, and gnotobiotic husbandry of fry during the yolk sac stage. We used a microscopy-based approach to estimate the barrier function of the skin mucus layer and used this measurement to select the derivation procedure that minimized adverse effects on the skin mucosa. We also used this method to demonstrate that the mucus barrier was reduced in germ-free fry when compared to fry colonized with two different bacterial communities. This alteration in the mucus barrier was preceded by an increase in the number of cells containing neutral mucosubstances in the anterior segment of the body, but without changes in the number of cells containing acidic substances in any of the other segments studied along the body axis. In addition, we showed how the microbial status of the fry temporarily affected body size and the utilization of internal yolk stores during the yolk sac stage. Finally, we showed that the presence of bacterial communities associated with the fry, as well as their composition, affected the size of adipose tissue. Fry colonized with water from a lake had a larger visceral adipose tissue depot than both conventionally raised and germ-free fry. Together, our results show that this novel gnotobiotic experimental system is a useful tool for the study of host-microbe interactions in this species of aquacultural importance.
Collapse
Affiliation(s)
| | | | | | | | | | - Ingrid Bakke
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
12
|
Celis AI, Relman DA, Huang KC. The impact of iron and heme availability on the healthy human gut microbiome in vivo and in vitro. Cell Chem Biol 2023; 30:110-126.e3. [PMID: 36603582 PMCID: PMC9913275 DOI: 10.1016/j.chembiol.2022.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/12/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023]
Abstract
Responses of the indigenous human gut commensal microbiota to iron are poorly understood because of an emphasis on in vitro studies of pathogen iron sensitivity. In a study of iron supplementation in healthy humans, we identified gradual microbiota shifts in some participants correlated with bacterial iron internalization. To identify direct effects due to taxon-specific iron sensitivity, we used participant stool samples to derive diverse in vitro communities. Iron supplementation of these communities caused small compositional shifts, mimicking those in vivo, whereas iron deprivation dramatically inhibited growth with irreversible, cumulative reduction in diversity and replacement of dominant species. Sensitivity of individual species to iron deprivation in axenic culture generally predicted iron dependency in a community. Finally, exogenous heme acted as a source of inorganic iron to prevent depletion of some species. Our results highlight the complementarity of in vivo and in vitro studies in understanding how environmental factors affect gut microbiotas.
Collapse
Affiliation(s)
- Arianna I Celis
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Fujitani T, Lyu Z, Sassa MH, Harada KH. Association between urinary zinc excretion and isoflavone-metabolizing enterotypes among Japanese females: a cross-sectional study. Environ Health Prev Med 2023; 28:63. [PMID: 37899210 PMCID: PMC10613555 DOI: 10.1265/ehpm.23-00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/30/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Zinc absorption and competition among gut bacteria have been reported in animal studies. Thus, gut bacteria may modify zinc availability in humans. Metabolism of intestinal bacteria is known to be necessary for the activation of several phytoconstituents in the body. For example, equol, a typical substance of soybean isoflavone, is produced by intestinal bacteria metabolizing daidzein and the enterotype is one of distinct ones among Japanese population. The difference in the intestinal microflora can modify the bioavailability of zinc. In this study, we examined urinary zinc concentrations in adult female equol producers (EQPs). METHODS Urine samples from women participating in health examinations in Miyagi, Okinawa, Kyoto, Kochi, and Hokkaido prefectures were used; from total 17,484 samples, approximately 25 samples were randomly selected for each age group from 30 to 60 years per region (subsample: n = 520), and 520 samples with available urinary zinc concentration (determined by flame atomic absorption analysis) and enterobacterial type were analyzed. EQP was defined as log(equol/daidzein) ≥ -1.42, and urinary concentrations were corrected for creatinine concentration. Urinary zinc concentrations were compared by Student's t-test and multiple regression analyses. RESULTS The geometric mean urinary zinc concentration (µg/g-Cr) was lower in EQP than in non-EQP (p = 0.0136 by t-test after logarithm transformation). On the other hand, there was no correlation between urinary zinc concentration with daidzein (r = -0.0495, P = 0.436) and equol concentrations (r = -0.0721, P = 0.256). There was a significant negative association between urinary zinc concentration and EQP (β = -0.392, P = 0.0311) after adjusting with other potential confounding variables, such as daidzein intake. CONCLUSIONS The results suggest that gut bacteria that produce equol are involved in the metabolism of zinc. Based on previous studies, the bacteria that affect the metabolism of both substances are thought to be Enterococcus. Future studies are expected to identify specific intestinal bacteria for zinc availability and understand individual differences in the effects of micronutrients.
Collapse
Affiliation(s)
- Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Zhaoqing Lyu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Mariko Harada Sassa
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Kouji H. Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Zhan Q, Wang R, Thakur K, Feng JY, Zhu YY, Zhang JG, Wei ZJ. Unveiling of dietary and gut-microbiota derived B vitamins: Metabolism patterns and their synergistic functions in gut-brain homeostasis. Crit Rev Food Sci Nutr 2022; 64:4046-4058. [PMID: 36271691 DOI: 10.1080/10408398.2022.2138263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nutrition-gut cross-talk holds a vital position in sustaining intestinal function, and micronutrient metabolism has emerged as the foremost metabolic pathway to preserve gut homeostasis. Among micronutrients, B vitamins have evolved prior to DNA/RNA and are known for their vital roles for major evolutionary transitions in extant organisms. Despite their universal requirement and critical role, not all the three domains of life are endowed with a natural ability for de novo B vitamins synthesis. The human gut microbiome constitutes prototrophs and auxotroph which are entirely dependent on dietary intake and gut microbial production of B vitamins. The syntrophic metabolism involving cross-feeding of B vitamins and community-wide exchange between commensal bacteria elicit important changes in the diversity and composition of the human gut microbiome. Hereto, we discuss the B-vitamins sharing among prototrophic and auxotrophic gut bacteria, their absorption in small intestine and transport in distal gut, functional role in relation to the gut homeostasis and symptoms linked to their deficiency. We also briefly explore their potential involvement as psychobiotics in brain energetic metabolism (kynurenines/tryptophan pathway) for neurological functions and highlight their deficiency related malfunctioning.
Collapse
Affiliation(s)
- Qi Zhan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Rui Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Jing-Yu Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Yun-Yang Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| |
Collapse
|
16
|
Zhang X, Zhang Y, Sun A, Ge J. The effects of nicotinamide adenine dinucleotide in cardiovascular diseases: Molecular mechanisms, roles and therapeutic potential. Genes Dis 2022; 9:959-972. [PMID: 35685463 PMCID: PMC9170600 DOI: 10.1016/j.gendis.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/23/2022] Open
Abstract
Recently, cardiovascular diseases (CVDs) were identified as the leading cause of mortality, imposing a heavy burden on health care systems and the social economy. Nicotinamide adenine dinucleotide (NAD+), as a pivotal co-substrate for a range of different enzymes, is involved in many signal transduction pathways activated in CVDs. Emerging evidence has shown that NAD+ can exert remediating effects on CVDs by regulating metabolism, maintaining redox homeostasis and modulating the immune response. In fact, NAD+ might delay ageing through sirtuin and non-sirtuin pathways and thus contribute to interventions for age-related diseases such as CVDs. Considering that robust clinical studies of NAD+ are ongoing, we discuss current challenges and the future translational potential of NAD+ based on existing studies and our understanding. Despite some remaining gaps in its clinical application, NAD+ has been shown to have broad prospects and pan-effects, making it a suitable prophylactic drug for CVDs.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, PR China
| | - Yang Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, PR China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, PR China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, PR China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| |
Collapse
|
17
|
Strain-specific predation of Bdellovibrio bacteriovorus on Pseudomonas aeruginosa with a higher range for cystic fibrosis than for bacteremia isolates. Sci Rep 2022; 12:10523. [PMID: 35732651 PMCID: PMC9217795 DOI: 10.1038/s41598-022-14378-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
This work aimed to evaluate the predatory activity of Bdellovibrio bacteriovorus 109J on clinical isolates of Pseudomonas aeruginosa selected from well-characterized collections of cystic fibrosis (CF) lung colonization (n = 30) and bloodstream infections (BSI) (n = 48) including strains selected by genetic lineage (frequent and rare sequence types), antibiotic resistance phenotype (susceptible and multidrug-resistant isolates), and colony phenotype (mucoid and non-mucoid isolates). The intraspecies predation range (I-PR) was defined as the proportion of susceptible strains within the entire collection. In contrast, the predation efficiency (PE) is the ratio of viable prey cells remaining after predation compared to the initial inoculum. I-PR was significantly higher for CF (67%) than for BSI P. aeruginosa isolates (35%) probably related to an environmental origin of CF strains whereas invasive strains are more adapted to humans. I-PR correlation with bacterial features such as mucoid morphotype, genetic background, or antibiotic susceptibility profile was not detected. To test the possibility of increasing I-PR of BSI isolates, a polyhydroxyalkanoate depolymerase deficient B. bacteriovorus bd2637 mutant was used. Global median I-PR and PE values remained constant for both predators, but 31.2% of 109J-resistant isolates were susceptible to the mutant, and 22.9% of 109J-susceptible isolates showed resistance to predation by the mutant, pointing to a predator–prey specificity process. The potential use of predators in the clinical setting should be based on the determination of the I-PR for each species, and the PE of each particular target strain.
Collapse
|
18
|
Scarpellini E, Balsiger LM, Maurizi V, Rinninella E, Gasbarrini A, Giostra N, Santori P, Abenavoli L, Rasetti C. Zinc and gut microbiota in health and gastrointestinal disease under the COVID-19 suggestion. Biofactors 2022; 48:294-306. [PMID: 35218585 PMCID: PMC9082519 DOI: 10.1002/biof.1829] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022]
Abstract
Microelements represent an emerging resource for medicine and its preventive branch. Zinc is the second most abundant element in our organism with peculiar physiologic functions and pathophysiologic implications in systemic and gastrointestinal (GI) diseases. It interacts very often with gut microbiota (GM) and can affect natural course of GI diseases through a bidirectional relationship with intestinal bugs. We aimed to review literature data regarding zinc chemistry, role in health, and GI diseases in man with a special focus on its interaction with GM. We conducted a search on the main medical databases for original articles, reviews, meta-analyses, randomized clinical trials and case series using the following keywords and acronyms and their associations: zinc, microelements, gut microbiota, gut health, and COVID-19. Zinc has a rapid and simple metabolism and limited storage within our body. Its efficacy on immune system modulation reflects on improved response to pathogens, reduced inflammatory response, and improved atopic/allergic reactions. Zinc is also involved in cell cycle regulation (namely, apoptosis) with potential anti-cancerogenic effects. All these effects are in a "symbiotic" relationship with GM. Finally, zinc shows preliminary viral antireplicative effects. Zinc seems to gain more and more evidences on its efficacy in allergic, atopic and infectious diseases treatment, and prevention. COVID-19 can be the booster for research on future applications of zinc as perfect "postbiotic" in medicine.
Collapse
Affiliation(s)
- Emidio Scarpellini
- Hepatology and Internal Medicine Unit“Madonna del soccorso” General HospitalSan Benedetto del TrontoItaly
- T.A.R.G.I.DGasthuisberg University Hospital, KULeuvenLuevenBelgium
| | | | - Valentina Maurizi
- Internal Medicine Residency ProgramUniversità Politecnica delle MarcheAnconaItaly
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Gastroenterology, EndocrinologyNephrology and Urology Department, Fondazione Policlinico A. Gemelli IRCCSRomeItaly
- Institute of Medical PathologyCatholic University of the Sacred HeartRomeItaly
| | - Antonio Gasbarrini
- Institute of Medical PathologyCatholic University of the Sacred HeartRomeItaly
| | - Nena Giostra
- Hepatology and Internal Medicine Unit“Madonna del soccorso” General HospitalSan Benedetto del TrontoItaly
| | - Pierangelo Santori
- Hepatology and Internal Medicine Unit“Madonna del soccorso” General HospitalSan Benedetto del TrontoItaly
| | | | - Carlo Rasetti
- Hepatology and Internal Medicine Unit“Madonna del soccorso” General HospitalSan Benedetto del TrontoItaly
| |
Collapse
|
19
|
Daisley BA, Koenig D, Engelbrecht K, Doney L, Hards K, Al KF, Reid G, Burton JP. Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Rep 2021; 37:110087. [PMID: 34879270 DOI: 10.1016/j.celrep.2021.110087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The conventional viewpoint of single-celled microbial metabolism fails to adequately depict energy flow at the systems level in host-adapted microbial communities. Emerging paradigms instead support that distinct microbiomes develop interconnected and interdependent electron transport chains that rely on cooperative production and sharing of bioenergetic machinery (i.e., directly involved in generating ATP) in the extracellular space. These communal resources represent an important subset of the microbial metabolome, designated here as the "pantryome" (i.e., pantry or external storage compartment), that critically supports microbiome function and can exert multifunctional effects on host physiology. We review these interactions as they relate to human health by detailing the genomic-based sharing potential of gut-derived bacterial and archaeal reference strains. Aromatic amino acids, metabolic cofactors (B vitamins), menaquinones (vitamin K2), hemes, and short-chain fatty acids (with specific emphasis on acetate as a central regulator of symbiosis) are discussed in depth regarding their role in microbiome-related metabolic diseases.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - David Koenig
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kathleen Engelbrecht
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Liz Doney
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
| | - Kait F Al
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada.
| |
Collapse
|
20
|
Direct Cobamide Remodeling via Additional Function of Cobamide Biosynthesis Protein CobS from Vibrio cholerae. J Bacteriol 2021; 203:e0017221. [PMID: 34031037 DOI: 10.1128/jb.00172-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vitamin B12 belongs to a family of structurally diverse cofactors with over a dozen natural analogs, collectively referred to as cobamides. Most bacteria encode cobamide-dependent enzymes, many of which can only utilize a subset of cobamide analogs. Some bacteria employ a mechanism called cobamide remodeling, a process in which cobamides are converted into other analogs to ensure that compatible cobamides are available in the cell. Here, we characterize an additional pathway for cobamide remodeling that is distinct from the previously characterized ones. Cobamide synthase (CobS) is an enzyme required for cobamide biosynthesis that attaches the lower ligand moiety in which the base varies between analogs. In a heterologous model system, we previously showed that Vibrio cholerae CobS (VcCobS) unexpectedly conferred remodeling activity in addition to performing the known cobamide biosynthesis reaction. Here, we show that additional Vibrio species perform the same remodeling reaction, and we further characterize VcCobS-mediated remodeling using bacterial genetics and in vitro assays. We demonstrate that VcCobS acts upon the cobamide pseudocobalamin directly to remodel it, a mechanism which differs from the known remodeling pathways in which cobamides are first cleaved into biosynthetic intermediates. This suggests that some CobS homologs have the additional function of cobamide remodeling, and we propose the term "direct remodeling" for this process. This characterization of yet another pathway for remodeling suggests that cobamide profiles are highly dynamic in polymicrobial environments, with remodeling pathways conferring a competitive advantage. IMPORTANCE Cobamides are widespread cofactors that mediate metabolic interactions in complex microbial communities. Few studies directly examine cobamide profiles, but several have shown that mammalian gastrointestinal tracts are rich in cobamide analogs. Studies of intestinal bacteria, including beneficial commensals and pathogens, show variation in the ability to produce and utilize different cobamides. Some bacteria can convert imported cobamides into compatible analogs in a process called remodeling. Recent discoveries of additional cobamide remodeling pathways, including this work, suggest that remodeling is an important factor in cobamide dynamics. Characterization of such pathways is critical in understanding cobamide flux and nutrient cross-feeding in polymicrobial communities, and it facilitates the establishment of microbiome manipulation strategies via modulation of cobamide profiles.
Collapse
|
21
|
Bielik V, Kolisek M. Bioaccessibility and Bioavailability of Minerals in Relation to a Healthy Gut Microbiome. Int J Mol Sci 2021; 22:ijms22136803. [PMID: 34202712 PMCID: PMC8268569 DOI: 10.3390/ijms22136803] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Adequate amounts of a wide range of micronutrients are needed by body tissues to maintain health. Dietary intake must be sufficient to meet these micronutrient requirements. Mineral deficiency does not seem to be the result of a physically active life or of athletic training but is more likely to arise from disturbances in the quality and quantity of ingested food. The lack of some minerals in the body appears to be symbolic of the modern era reflecting either the excessive intake of empty calories or a negative energy balance from drastic weight-loss diets. Several animal studies provide convincing evidence for an association between dietary micronutrient availability and microbial composition in the gut. However, the influence of human gut microbiota on the bioaccessibility and bioavailability of trace elements in human food has rarely been studied. Bacteria play a role by effecting mineral bioavailability and bioaccessibility, which are further increased through the fermentation of cereals and the soaking and germination of crops. Moreover, probiotics have a positive effect on iron, calcium, selenium, and zinc in relation to gut microbiome composition and metabolism. The current literature reveals the beneficial effects of bacteria on mineral bioaccessibility and bioavailability in supporting both the human gut microbiome and overall health. This review focuses on interactions between the gut microbiota and several minerals in sport nutrition, as related to a physically active lifestyle.
Collapse
Affiliation(s)
- Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, 81469 Bratislava, Slovakia
- Correspondence:
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
22
|
Antelo GT, Vila AJ, Giedroc DP, Capdevila DA. Molecular Evolution of Transition Metal Bioavailability at the Host-Pathogen Interface. Trends Microbiol 2021; 29:441-457. [PMID: 32951986 PMCID: PMC7969482 DOI: 10.1016/j.tim.2020.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
The molecular evolution of the adaptive response at the host-pathogen interface has been frequently referred to as an 'arms race' between the host and bacterial pathogens. The innate immune system employs multiple strategies to starve microbes of metals. Pathogens, in turn, develop successful strategies to maintain access to bioavailable metal ions under conditions of extreme restriction of transition metals, or nutritional immunity. However, the processes by which evolution repurposes or re-engineers host and pathogen proteins to perform or refine new functions have been explored only recently. Here we review the molecular evolution of several human metalloproteins charged with restricting bacterial access to transition metals. These include the transition metal-chelating S100 proteins, natural resistance-associated macrophage protein-1 (NRAMP-1), transferrin, lactoferrin, and heme-binding proteins. We examine their coevolution with bacterial transition metal acquisition systems, involving siderophores and membrane-spanning metal importers, and the biological specificity of allosteric transcriptional regulatory proteins tasked with maintaining bacterial metallostasis. We also discuss the evolution of metallo-β-lactamases; this illustrates how rapid antibiotic-mediated evolution of a zinc metalloenzyme obligatorily occurs in the context of host-imposed nutritional immunity.
Collapse
Affiliation(s)
- Giuliano T Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Brimberry M, Toma MA, Hines KM, Lanzilotta WN. HutW from Vibrio cholerae Is an Anaerobic Heme-Degrading Enzyme with Unique Functional Properties. Biochemistry 2021; 60:699-710. [PMID: 33600151 DOI: 10.1021/acs.biochem.0c00950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing antibiotic resistance, and a growing recognition of the importance of the human microbiome, demand that new therapeutic targets be identified. Characterization of metabolic pathways that are unique to enteric pathogens represents a promising approach. Iron is often the rate-limiting factor for growth, and Vibrio cholerae, the causative agent of cholera, has been shown to contain numerous genes that function in the acquisition of iron from the environment. Included in this arsenal of genes are operons dedicated to obtaining iron from heme and heme-containing proteins. Given the persistence of cholera, an important outstanding question is whether V. cholerae is capable of anaerobic heme degradation as was recently reported for enterohemorrhagic Escherichia coli O157:H7. In this work, we demonstrate that HutW from V. cholerae is a radical S-adenosylmethionine methyl transferase involved in the anaerobic opening of the porphyrin ring of heme. However, in contrast to the enzyme ChuW, found in enterohemorrhagic E. coli O157:H7, there are notable differences in the mechanism and products of the HutW reaction. Of particular interest are data that demonstrate HutW will catalyze ring opening as well as tetrapyrrole reduction and can utilize reduced nicotinamide adenine dinucleotide phosphate as an electron source. The biochemical and biophysical properties of HutW are presented, and the evolutionary implications are discussed.
Collapse
|
24
|
Yao ZD, Cao YN, Peng LX, Yan ZY, Zhao G. Coarse Cereals and Legume Grains Exert Beneficial Effects through Their Interaction with Gut Microbiota: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:861-877. [PMID: 33264009 DOI: 10.1021/acs.jafc.0c05691] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coarse cereals and legume grains (CCLGs) are rich in specific macro- and functional elements that are considered important dietary components for maintaining human health. Therefore, determining the precise nutritional mechanism involved in exerting the health benefits of CCLGs can help understand dietary nutrition in a better manner. Evidence suggests that gut microbiota play a crucial role in the function of CCLGs via their complicated interplay with CCLGs. First, CCLGs modulate gut microbiota and function. Second, gut microbiota convert CCLGs into compounds that perform different functions. Third, gut microbiota mediate interactions among different CCLG components. Therefore, using gut microbiota to expound the nutritional mechanism of CCLGs is important for future studies. A precise and rapid gut microbiota research model is required to screen and evaluate the quality of CCLGs. The outcomes of such research may promote the rapid discovery, classification, and evaluation of CCLG resources, thereby opening a new opportunity to guide nutrition-based development of CCLG products.
Collapse
Affiliation(s)
- Zhen-Dong Yao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Zhu-Yun Yan
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| |
Collapse
|
25
|
Gerner RR, Nuccio SP, Raffatellu M. Iron at the host-microbe interface. Mol Aspects Med 2020; 75:100895. [PMID: 32883564 PMCID: PMC7554189 DOI: 10.1016/j.mam.2020.100895] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Iron is an essential micronutrient for nearly all living organisms. In addition to facilitating redox reactions, iron is bound by metalloproteins that participate in a variety of biological processes. As the bioavailability of free iron in host environments is extremely low, iron lies at the center of a battle for nutrients between microbes and their host. Mucosal surfaces such as the respiratory and gastrointestinal tracts are constantly exposed to commensal and pathogenic microorganisms. Whereas a key strategy of mammalian antimicrobial defense is to deprive microbes of iron, pathogens and some commensals have evolved effective strategies to circumvent iron limitation. Here we provide an overview of mechanisms underpinning the tug-of-war for iron between microbes and their host, with a particular focus on mucosal surfaces.
Collapse
Affiliation(s)
- Romana R Gerner
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Division of Internal Medicine I, Department of Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA; Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD CMAV), La Jolla, CA, USA.
| |
Collapse
|