1
|
Zhang D, Ma S, Wang L, Liu D. Identification and functional analysis of a new cold induced LncRNA44154. Gene 2025; 933:148921. [PMID: 39265842 DOI: 10.1016/j.gene.2024.148921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
With the development of high-throughput sequencing technology, numerous unknown long noncoding RNAs (lncRNAs) have been discovered. Preliminary research found that after being subjected to low-temperature enviroment, lncRNA44154 expression in the subcutaneous fat of pigs significantly increased. In order to analyze its biological function and regulatory mechanism, qRT-PCR was used to detect its spatiotemporal expression pattern. The nucleoplasmic isolation and FISH were used to locate it subcellular. Through overexpression or interference assays discussed the effect of lncRNA44154 on adipocyte proliferation and differentiation. RNA-seq was used to screen the biological pathways that lncRNA44154 may be involved in. RNA-pull down was used to find the interaction protein and double luciferase reporter gene detection experiment was used to validate the target gene. It was found that the expression of lncRNA44154 had tissue specificity and played a role in adipocyte proliferation. It was expressed in both cytoplasm and nucleus. After overexpression of lncRNA44154 in adipocytes, the expression level of Cyclins B, D, and E were all up-regulated and the cell proliferation ability was significantly enhanced. The number of positive cells increased significantly and the DNA replication activity was significantly enhanced. LncRNA44154 can promote the proliferation of porcine preadipocytes by encouraging cells to enter the S phase of the cell cycle. The result of interfering with lncRNA44154 is the opposite. Further analysis revealed that lncRNA44154 regulates intracellular lipid metabolism, inhibits the production of intracellular lipid droplets, and inhibits preadipocyte differentiation. RNA-seq results indicate that lncRNA44154 may be involved in biological pathways such as AMPK, PPAR and cAMP signaling pathway. It may work by regulating the RPS4X gene. This research may provide a new perspective for investigating the regulation of adipose metabolism by lncRNAs.
Collapse
Affiliation(s)
- Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, China
| | - Shouzheng Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, China
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, China.
| |
Collapse
|
2
|
Ali A, Azmat U, Ji Z, Khatoon A, Murtaza B, Akbar K, Irshad U, Raza R, Su Z. Beyond Genes: Epiregulomes as Molecular Commanders in Innate Immunity. Int Immunopharmacol 2024; 142:113149. [PMID: 39278059 DOI: 10.1016/j.intimp.2024.113149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/09/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
The natural fastest way to deal with pathogens or danger signals is the innate immune system. This system prevents too much inflammation and tissue damage and efficiently eliminates pathogens. The epiregulome is the chromatin structure influenced by epigenetic factors and linked to cis-regulatory elements (CREs). The epiregulome helps to end the inflammatory response and also assists innate immune cells to show specific action by making cell-specific gene expression patterns. This inspection unfolds two concepts: (1) how epiregulomes are shaped by switching the expression levels of genes, manoeuvre enzyme activity and earmark of chromatin modifiers on specific genes; during and after the infection, and (2) how the expression of specific genes (aids in prompt management of innate cell growth, or the reaction to aggravation and illness) command by epiregulomes that formed during the above process. In this review, the consequences of intrinsic immuno-metabolic remodelling on epiregulomes and potential difficulties in identifying the master epiregulome that regulates innate immunity and inflammation have been discussed.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, China.
| | - Urooj Azmat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Ziyi Ji
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Science and Technology, Dalian, China
| | - Kaynaat Akbar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Urooj Irshad
- Department Biological Sciences, Faculty of Sciences, Superior University Lahore, Punjab, Pakistan
| | - Rameen Raza
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, China.
| |
Collapse
|
3
|
Hassani S, Rostami P, Pourtavakol M, Karamashtiani A, Sayyadi M. Correlation of SNHG7 and BGL3 expression in patients with de novo acute myeloid leukemia; novel insights into lncRNA effect in PI3K signaling context in AML pathogenesis. Biochem Biophys Rep 2024; 40:101850. [PMID: 39469045 PMCID: PMC11513491 DOI: 10.1016/j.bbrep.2024.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Background Acute myeloid leukemia (AML) has been identified as a top priority for discovering a reliable biomarker for treatment improvement and patient outcome prediction due to the heterogeneous nature of AML and the obstacle to find an appropriate treatment strategy for this malignancy. Considering the involvement of long noncoding RNA (lncRNA) SNHG7 and BGL3 found in various cancers, the exact expression pattern of these lncRNAs and their clinical implications in acute myeloid leukemia (AML) continue to be elusive. In order to demonstrate a possible mechanism underlying AML pathogenesis, our goal was to examine BGL3 and SNHG7 lncRNA expressions in PI3K pathway. Methods This case-control cross-sectional study were conducted on RNA extracted from blood samples of 30 patients diagnosed with AML (Ayatollah-Khansari hospital, Arak, Iran) and 30 (age and gender matched) healthy controls. The expression levels of SNHG7 and BGL3 lncRNAs and their target genes Akt and PTEN, were measured using qRT-PCR. Subsequently, by means of statistical analysis, we determined the plausible correlation between the expressions of the aforementioned genes and lncRNA respectively. Results In AML samples, a considerable increase in the expression levels of SNHG7 lncRNA and Akr gene was accompanied by a marked reduction in the expression levels of BGL3 lncRNA and PTEN gene. Nevertheless, No significant relationship between the expression level of the indicated genes/lncRNAs and age and sex was found. The remarkable correlation between the expression of genes/lncRNAs and the blast percentage in patients was the notable point in the result of this study. Conclusions As the most straightforward interpretation of our results, we propose that perhaps the association between SNHG7 and BGL3 built through the interaction between Akt and PTEN may play a crucial role in the AML pathogenesis and any element of this axis could be a potential novel target for further profound treatment strategies. Nonetheless, in the context of Hematological Malignancies, particularly AML, more detailed studies are needed in this area to elucidate the precise role played by this interesting testis-specific pathway.
Collapse
Affiliation(s)
- Saeed Hassani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Parsa Rostami
- Department of Internal Medicine, School of Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | | | | | - Mohammad Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
4
|
Zhang J, Zhu H, Li L, Gao Y, Yu B, Ma G, Jin X, Sun Y. New mechanism of LncRNA: In addition to act as a ceRNA. Noncoding RNA Res 2024; 9:1050-1060. [PMID: 39022688 PMCID: PMC11254507 DOI: 10.1016/j.ncrna.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Long non-coding RNAs (LncRNAs) are a class of RNA molecules with nucleic acid lengths ranging from 200 bp to 100 kb that cannot code for proteins, which are diverse and widely expressed in both animals and plants. Scholars have found that lncRNAs can regulate human physiological processes at the gene and protein levels, mainly through the regulation of epigenetic, transcriptional and post-transcriptional levels of genes and proteins, as well as in the immune response by regulating the expression of immune cells and inflammatory factors, and thus participate in the occurrence and development of a variety of diseases. From the downstream targets of lncRNAs, we summarize the new research progress of lncRNA mechanisms other than miRNA sponges in recent years, aiming to provide new ideas and directions for the study of lncRNA mechanisms.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huike Zhu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Linjing Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuting Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, Northwest Normal University, Gansu Province, Lanzhou, 730070, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guorong Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Hu H, Liu Y, Qiu C, Zhang L, Cui H, Gu J. LINC00894 inhibited neuron cellular apoptosis and regulated activating transcription factor 3 expression. Gene 2024; 927:148670. [PMID: 38857714 DOI: 10.1016/j.gene.2024.148670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
LINC00894 may be associated with synaptic function, but its biology function in neural cells is still unknown. In this study, LINC00894 knockdown decreased the EdU incorporated into newly synthesized DNA and cell viability in MTT or CCK-8 assay in HEK-293T and BE(2)-M17 (M17) neuroblastoma cells. And LINC00894 knockdown increased cellular apoptosis in Annexin V-FITC staining, the expression of activated Caspase3 and the level of reactive oxygen species (ROS) both in HEK-293T and M17 cells. Moreover, LINC00894 also protected cells from hydrogen peroxide induced apoptosis in in vitro models. Utilizing RNA sequencing (RNA-seq) integrated with quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunoblot, we identified that LINC00894 affected activating transcription factor 3 (ATF3) expression in HEK-293T, M17, and SH-SY5Y neuroblastoma cells. Finally, we found that ectopic expression of ATF3 restored cell proliferation and inhibited cell apoptosis in LINC00894 downregulated M17 cells. While knockdown of ATF3 also significantly increased the cell viability inhibition and apoptosis promotion induced by LINC00894 knockdown in M17 cells. Our results from in vitro models revealed that LINC00894 could promote neuronal cell proliferation and inhibit cellular apoptosis by affecting ATF3 expression.
Collapse
Affiliation(s)
- Hanjing Hu
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Yuxiao Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Cheng Qiu
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Liti Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Hengxiang Cui
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jianlan Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
6
|
Yan W, Fu X, Li H, Wang K, Song C, Hou C, Lei C, Wang H, Yang X. The long non-coding RNA lncRNA-DRNR enhances infectious bronchitis virus replication by targeting chicken JMJD6 and modulating interferon-stimulated genes expression via the JAK-STAT signalling pathway. Vet Res 2024; 55:141. [PMID: 39501382 PMCID: PMC11539454 DOI: 10.1186/s13567-024-01396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 11/08/2024] Open
Abstract
Infectious bronchitis virus (IBV) is the causative agent of infectious bronchitis (IB), a severe disease that primarily affects young chickens and poses a significant challenge to the global poultry industry. Understanding the complex interaction between the virus and its host is vital for developing innovative antiviral strategies. Long non-coding RNA (lncRNA) plays a crucial role in regulating host antiviral immune responses. Our previous studies have shown that IBV infection disrupts the stability of lncRNA in host cells, indicating a potential regulatory role for lncRNA in IBV pathogenesis. It is still not clear how lncRNA precisely modulates IBV replication. In this study, we observed down-regulation ofMSTRG.26120.58 (named lncRNA-DRNR) expression in various chicken cell lines upon IBV infection. We demonstrated that silencing lncRNA-DRNR using siRNA enhances intracellular replication of IBV. Through exploring genes encoding proteins upstream and downstream of lncRNA-DRNR within a 100 kb range, we identified chJMJD6 (chicken JMJD6) as a potential target gene negatively regulated by lncRNA-DRNR expression levels. Furthermore, chJMJD6 inhibits STAT1 methylation, thereby affecting the induction of interferon-stimulated genes (ISGs) through the activation of the IFN-β-mediated JAK-STAT signalling pathway, ultimately promoting the intracellular replication of IBV. In summary, our findings reveal the critical role played by lncRNA-DRNR during IBV infection, providing novel insights into mechanisms underlying coronavirus-induced disruption in lncRNA stability.
Collapse
Affiliation(s)
- Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Xue Fu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Hao Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Kailu Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Cailiang Song
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Chengyao Hou
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Cangwei Lei
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
7
|
Zhang N, Wen K. The role of lncRNA binding to RNA‑binding proteins to regulate mRNA stability in cancer progression and drug resistance mechanisms (Review). Oncol Rep 2024; 52:142. [PMID: 39219266 PMCID: PMC11378159 DOI: 10.3892/or.2024.8801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is a disease that poses a serious threat to human health, the occurrence and development of which involves complex molecular mechanisms. Long non‑coding RNAs (lncRNAs) and RNA‑binding proteins (RBPs) are important regulatory molecules within cells, which have garnered extensive attention in cancer research in recent years. The binding of lncRNAs and RBPs plays a crucial role in the post‑transcriptional regulation of mRNA, affecting the synthesis of proteins related to cancer by regulating the stability of mRNA. This, in turn, regulates the malignant biological behaviors of tumor cells, such as proliferation and metastasis, and serves an important role in therapeutic resistance. The present study reviewed the role of lncRNA‑RBP interactions in the regulation of mRNA stability in various malignant tumors, with a focus on the molecular mechanisms underlying this regulatory interaction. The aim of the present review was to gain a deeper understanding of these molecular mechanisms to provide new strategies and insights for the precise treatment of cancer.
Collapse
Affiliation(s)
- Nianjie Zhang
- Department of Gastrointestinal Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, P.R. China
| | - Kunming Wen
- Department of Gastrointestinal Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, P.R. China
| |
Collapse
|
8
|
Anver S, Sumit AF, Sun XM, Hatimy A, Thalassinos K, Marguerat S, Alic N, Bähler J. Ageing-associated long non-coding RNA extends lifespan and reduces translation in non-dividing cells. EMBO Rep 2024; 25:4921-4949. [PMID: 39358553 PMCID: PMC11549352 DOI: 10.1038/s44319-024-00265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Genomes produce widespread long non-coding RNAs (lncRNAs) of largely unknown functions. We characterize aal1 (ageing-associated lncRNA), which is induced in quiescent fission yeast cells. Deletion of aal1 shortens the chronological lifespan of non-dividing cells, while ectopic overexpression prolongs their lifespan, indicating that aal1 acts in trans. Overexpression of aal1 represses ribosomal-protein gene expression and inhibits cell growth, and aal1 genetically interacts with coding genes functioning in protein translation. The aal1 lncRNA localizes to the cytoplasm and associates with ribosomes. Notably, aal1 overexpression decreases the cellular ribosome content and inhibits protein translation. The aal1 lncRNA binds to the rpl1901 mRNA, encoding a ribosomal protein. The rpl1901 levels are reduced ~2-fold by aal1, which is sufficient to extend lifespan. Remarkably, the expression of the aal1 lncRNA in Drosophila boosts fly lifespan. We propose that aal1 reduces the ribosome content by decreasing Rpl1901 levels, thus attenuating the translational capacity and promoting longevity. Although aal1 is not conserved, its effect in flies suggests that animals feature related mechanisms that modulate ageing, based on the conserved translational machinery.
Collapse
Affiliation(s)
- Shajahan Anver
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Ahmed Faisal Sumit
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Xi-Ming Sun
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
| | - Abubakar Hatimy
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Samuel Marguerat
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Nazif Alic
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Hara T, Meng S, Arao Y, Saito Y, Inoue K, Rennie S, Ofusa K, Doki Y, Eguchi H, Kitagawa T, Ishii H. Recent advances in noncoding RNA modifications of gastrointestinal cancer. Cancer Sci 2024. [PMID: 39487589 DOI: 10.1111/cas.16380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 11/04/2024] Open
Abstract
Elucidating the mechanisms underlying cancer development and proliferation is important for the development of therapeutic methods for the complete cure of cancer. In particular, the identification of diagnostic markers for early detection and new therapeutic strategies for refractory gastrointestinal cancers are needed. Various abnormal phenomena occur in cancer cells, such as functional changes of proteins, led by genomic mutations, and changes in gene expression due to dysregulation of epigenetic regulation. This is no exception for noncoding RNA (ncRNA), which do not encode proteins. Recent reports have revealed that microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) are deeply involved in cancer progression. These ncRNAs have attracted attention as gene expression regulatory molecules. Recent advances in technology have made it possible not only to read DNA and RNA sequences but also to study the modification state of each base. In particular, comprehensive analysis of N6-methyladenosine (m6A) has been performed by many research groups, with multiple studies reporting that m6A modifications of specific genes are associated with cancer progression. Based on the above, this review examines how ncRNA modifications are related to cancer progression in gastrointestinal cancers such as colorectal and pancreatic cancer. We also discuss enzyme inhibitors that have been reported to have drug discovery potential targeting m6A modifications. By utilizing the new perspective of ncRNA modification, we may be able to accumulate knowledge on the molecular biology of cancer and contribute to human health through diagnosis and treatment.
Collapse
Affiliation(s)
- Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiko Saito
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kana Inoue
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sarah Rennie
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ken Ofusa
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka, Japan
- Prophoenix Division, Food and Life-Science Laboratory, IDEA Consultants, Inc., Osaka, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Kitagawa
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka, Japan
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Kyowa-kai Medical Corporation, Kawanishi, Hyogo, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka, Japan
- Kyowa-kai Medical Corporation, Kawanishi, Hyogo, Japan
| |
Collapse
|
10
|
Xie Y, Zhang G, Pan J, Qiu S, Zhang D. The LncRNA6524/miR-92a-2-5p/Dvl1/Wnt/β-catenin axis promotes renal fibrosis in the UUO mouse model. Arch Biochem Biophys 2024; 761:110175. [PMID: 39389150 DOI: 10.1016/j.abb.2024.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
LncRNAs are reported to participate in multiple biological and pathological processes, including renal fibrosis due to obstructive nephropathy. However, the function and mechanisms of each lncRNA in this context differ. In this study, we created a fibrosis model in vitro using TGF-β1 treatment and in vivo through unilateral ureteral obstruction. We demonstrated that lncRNA6524 expression increased in both models, as confirmed by qPCR. Additionally, we discovered that lncRNA6524 mediates the TGF-β1-induced accumulation of extracellular matrix (ECM) proteins in BUMPT cells. We investigated the mechanism using dual luciferase reporter assays, immunofluorescence, and qPCR. Our results indicate that lncRNA6524 acts as a sponge for miR-92a-2-5p, promoting renal fibrosis by upregulating the Dvl1/Wnt/β-catenin signaling pathway. In summary, our findings demonstrate a linear regulatory relationship among lncRNA6524, miR-92a-2-5p, and the Dvl1/Wnt/β-catenin axis in renal epithelial cells during kidney obstruction. This highlights a new potential target for treating obstruction-related renal fibrosis.
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Guoxiu Zhang
- Department of General Practice, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Jian Pan
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shuangfa Qiu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
11
|
Wang Z, Tan W, Li B, Chen J, Zhu J, Xu F, Tang F, Yoshida S, Zhou Y. LncRNA-MM2P regulates retinal neovascularization through M2 macrophage polarization. Exp Eye Res 2024; 248:110072. [PMID: 39241859 DOI: 10.1016/j.exer.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/19/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The study aims to investigate the effects and potential mechanisms of lncRNA-MM2P on retinal neovascularization in a mouse model of oxygen-induced retinopathy (OIR). The OIR model was established in C57BL/6J mice. RAW264.7 cell line and bone marrow-derived macrophages (BMDMs) from mice were used for in vitro studies. RT-qPCR was used to analyze the expressions of lncRNA and mRNAs. The protein expression levels were determined by western blotting. The size of avascular areas and neovascular tufts were assessed based on isolectin B4 immunofluorescence staining images. The human retinal endothelial cells (HRECs) were used to evaluate the proliferation, migration, and tube formation of endothelial cells. The expression of lncRNA-MM2P was significantly upregulated from P17 to P25 in OIR retinas. Knockdown of lncRNA-MM2P levels in vivo led to a significant reduction in the neovascular tufts and avascular areas in the retinas of OIR mice. Knockdown of lncRNA-MM2P levels in vitro suppressed the expression of M2 markers in macrophages. Moreover, we found a significant inhibition of avascular areas and neovascular tufts in OIR mice injected intravitreally with M2 macrophages treated by shRNA-MM2P. The cellular functions of proliferation, migration, and tube formation were significantly attenuated in HRECs cultured with a supernatant of shRNA-MM2P-treated M2 macrophages. Our results indicate that lncRNA-MM2P regulates retinal neovascularization by inducing M2 polarization of macrophages in OIR mice. Therefore, lncRNA-MM2P may be a potential molecular target for immunoregulation of retinal neovascularization.
Collapse
Affiliation(s)
- Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fan Xu
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health, Nanning, Guangxi, 530021, China
| | - Fen Tang
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health, Nanning, Guangxi, 530021, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
12
|
Meng X, Tan Z, Qiu B, Zhang J, Wang R, Ni W, Fan J. METTL3-induced lncARSR aggravates neuroblastoma tumorigenic properties through stabilizing PHOX2B. Pathol Res Pract 2024; 263:155670. [PMID: 39461245 DOI: 10.1016/j.prp.2024.155670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/25/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Neuroblastoma (NB), the most common extracranial solid tumor in pediatric patients, manifests with considerable variability across multiple primary sites. Despite this, the extent of genetic heterogeneity within these tumor foci and the identification of consistent oncogenic drivers remains largely unexplored. Of particular interest, genetic mutations in PHOX2B have been linked to familial cases of NB, yet the underlying molecular mechanisms are not fully delineated. In our research, we focus on unraveling the role of a novel functional long non-coding RNA (lncRNA) associated with PHOX2B in the context of NB. Using NB cell models with overexpressed PHOX2B, combined with lncRNA microarray analysis, we discovered that lncARSR is significantly upregulated in response to PHOX2B overexpression. Subsequent biological assays demonstrated that lncARSR promotes both the proliferation and metastasis of NB cells. Further molecular investigations revealed that lncARSR plays a crucial role in stabilizing PHOX2B expression within NB cells. Moreover, we identified that the expression of lncARSR is regulated by methylation through methyltransferase-like 3 (METTL3), which itself is positively correlated with PHOX2B expression. Rescue experiments underscored the functional importance of METTL3, lncARSR, and PHOX2B in NB cells. In summary, our findings provide new insights into the molecular functions of PHOX2B in the progression of neuroblastoma and propose a novel therapeutic target for this aggressive malignancy.
Collapse
Affiliation(s)
- Xiangyi Meng
- Department of Pediatrics, Shenzhen University General Hospital, China
| | - Zhu Tan
- Department of Pediatrics, Shenzhen University General Hospital, China
| | - Bihua Qiu
- Department of Pediatrics, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, China
| | - Jie Zhang
- Department of Pediatrics, Shenzhen University General Hospital, China
| | - Ruobing Wang
- Department of Pediatrics, Shenzhen University General Hospital, China
| | - Wensi Ni
- Department of Pediatrics, Shenzhen University General Hospital, China.
| | - Jialing Fan
- Department of Pediatrics, Shenzhen University General Hospital, China.
| |
Collapse
|
13
|
Lei M, Liang J, Guo K, Tang L, He Y, Wu X. Roles of noncoding RNAs in multiple myeloma. Leuk Res 2024; 146:107593. [PMID: 39307099 DOI: 10.1016/j.leukres.2024.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024]
Abstract
Noncoding RNAs (ncRNAs) constitute a class of nucleic acid molecules within cells that do not encode proteins but play important roles in regulating gene expression, maintaining cellular homeostasis, and mediating cell signaling. This class encompasses microRNAs (miRNAs), long noncoding RNAs (lncRNAs), transfer RNAs (tRNAs), circular RNAs (circRNAs), small interfering RNAs (siRNAs), and others. miRNAs are pivotal in the regulation of gene expression in hematologic malignancies. Aberrant expression of lncRNAs has been confirmed in cancerous tissues, implicating their involvement in carcinogenesis or tumor suppression processes. tRNAs may induce errors or disturbances in protein synthesis, thereby affecting normal cellular function and proliferation. Moreover, circRNAs influence disease progression in tumors by modulating the expression of relevant genes, and siRNAs can inhibit tumor cell proliferation, invasion, and metastasis while inducing apoptosis. This review will elucidate the biological functions of ncRNAs in multiple myeloma (MM) and explore their potential value as therapeutic targets.
Collapse
Affiliation(s)
- Ming Lei
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Juan Liang
- Hengyang Medical College, University of South China, China
| | - Kaiyun Guo
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Langui Tang
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Yuxing He
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Xuefeng Wu
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China.
| |
Collapse
|
14
|
Chen S, Liu M, Yi W, Li H, Yu Q. Micropeptides derived from long non-coding RNAs: Computational analysis and functional roles in breast cancer and other diseases. Gene 2024; 935:149019. [PMID: 39461573 DOI: 10.1016/j.gene.2024.149019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Long non-coding RNAs (lncRNAs), once thought to be mere transcriptional noise, are now revealing a hidden code. Recent advancements like ribosome sequencing have unveiled that many lncRNAs harbor small open reading frames and can potentially encode functional micropeptides. Emerging research suggests these micropeptides, not the lncRNAs themselves, play crucial roles in regulating homeostasis, inflammation, metabolism, and especially in breast cancer progression. This review delves into the rapidly evolving computational tools used to predict and validate lncRNA-encoded micropeptides. We then explore the diverse functions and mechanisms of action of these micropeptides in breast cancer pathogenesis, with a focus on their roles in various species. Ultimately, this review aims to illuminate the functional landscape of lncRNA-encoded micropeptides and their potential as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Saisai Chen
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Mengru Liu
- Department of Infection, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China
| | - Weizhen Yi
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Huagang Li
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Qingsheng Yu
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese Medicine, Hefei 230031, China.
| |
Collapse
|
15
|
Wang J, Si J, Zhao Z, Gao C, Liu T, Jia Y, Liu L. SNHG6 facilitates the epithelial-mesenchymal transition and metastatic potential of esophageal squamous carcinoma through miR-26b-5p/ ITGB1 axis. Sci Rep 2024; 14:25005. [PMID: 39443675 PMCID: PMC11499871 DOI: 10.1038/s41598-024-76521-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Long non-coding RNAs (lncRNAs), such as SNHG6, have been identified as crucial regulators in the progression of various cancers, including esophageal squamous cell carcinoma (ESCC). Although the role of SNHG6 in ESCC is not completely understood, our findings demonstrated that SNHG6 expression is upregulated in ESCC tissues compared to adjacent normal tissues. Furthermore, elevated levels of SNHG6 are significantly correlated with higher TNM stage and poorer clinical prognosis in ESCC patients. Functionally, both in vivo and in vitro experiments have shown that knocking down SNHG6 inhibits proliferation, invasion, and metastasis. Luciferase reporter assays and Ago2-RIP assay confirm that SNHG6 functions as a competing endogenous RNA (ceRNA) by sponging miR-26b-5p to modulate ITGB1 expression in ESCC. Given that ITGB1 is instrumental in EMT and metastasis, we assessed the expression of EMT-related proteins. The findings suggest that miR-26b-5p and reduced ITGB1 expression can reverse the EMT induced by lncRNA SHNG6, as demonstrated through rescue analysis. Overall, this study aims to elucidate the molecular mechanisms through which SNHG6 promotes EMT and metastasis in ESCC, providing a novel theoretical foundation for understanding ESCC progression and identifying new targets for improving outcomes in metastatic ESCC.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Jiaxin Si
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Ziyuan Zhao
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Changlin Gao
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Tianxu Liu
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Yunlong Jia
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Lihua Liu
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China.
- China International Cooperation Laboratory of Stem Cell Research, Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|
16
|
Xiao Y, Ren Y, Hu W, Paliouras AR, Zhang W, Zhong L, Yang K, Su L, Wang P, Li Y, Ma M, Shi L. Long non-coding RNA-encoded micropeptides: functions, mechanisms and implications. Cell Death Discov 2024; 10:450. [PMID: 39443468 PMCID: PMC11499885 DOI: 10.1038/s41420-024-02175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are typically described as RNA transcripts exceeding 200 nucleotides in length, which do not code for proteins. Recent advancements in technology, including ribosome RNA sequencing and ribosome nascent-chain complex sequencing, have demonstrated that many lncRNAs retain small open reading frames and can potentially encode micropeptides. Emerging studies have revealed that these micropeptides, rather than lncRNAs themselves, are responsible for vital functions, including but not limited to regulating homeostasis, managing inflammation and the immune system, moderating metabolism, and influencing tumor progression. In this review, we initially outline the rapidly advancing computational analytical methods and public tools to predict and validate the potential encoding of lncRNAs. We then focus on the diverse functions of micropeptides and their underlying mechanisms in the pathogenesis of disease. This review aims to elucidate the functions of lncRNA-encoded micropeptides and explore their potential applications as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yinan Xiao
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Yaru Ren
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenteng Hu
- Thoracic surgery department, The First Hospital, Lanzhou University, Lanzhou, 730000, PR China
| | | | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Linghui Zhong
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Kaixin Yang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Li Su
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Peng Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075131, PR China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Minjie Ma
- Thoracic surgery department, The First Hospital, Lanzhou University, Lanzhou, 730000, PR China
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
17
|
Carabetta N, Siracusa C, Leo I, Panuccio G, Strangio A, Sabatino J, Torella D, De Rosa S. Cardiomyopathies: The Role of Non-Coding RNAs. Noncoding RNA 2024; 10:53. [PMID: 39449507 PMCID: PMC11503404 DOI: 10.3390/ncrna10060053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiomyopathies are the structural and functional disorders of the myocardium. Etiopathogenesis is complex and involves an interplay of genetic, environmental, and lifestyle factors eventually leading to myocardial abnormalities. It is known that non-coding (Nc) RNAs, including micro (mi)-RNAs and long non-coding (lnc) RNAs, play a crucial role in regulating gene expression. Several studies have explored the role of miRNAs in the development of various pathologies, including heart diseases. In this review, we analyzed various patterns of ncRNAs expressed in the most common cardiomyopathies: dilated cardiomyopathy, hypertrophic cardiomyopathy and arrhythmogenic cardiomyopathy. Understanding the role of different ncRNAs implicated in cardiomyopathic processes may contribute to the identification of potential therapeutic targets and novel risk stratification models based on gene expression. The analysis of ncRNAs may also be helpful to unveil the molecular mechanisms subtended to these diseases.
Collapse
Affiliation(s)
- Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| | - Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Giuseppe Panuccio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200 Berlin, Germany
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| |
Collapse
|
18
|
Yang W, Huang X, Lv W, Jin Y, Zhu Y. LINC00365 promotes miR-221-5p to inhibit pyroptosis via Dicer in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39439418 DOI: 10.3724/abbs.2024173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Pyroptosis, a newly discovered form of programmed cell death, is involved in the occurrence, development and drug resistance of a variety of tumors and has attracted increasing attention in recent years. LINC00365 is a novel lncRNA that has rarely been reported before. We previously reported that LINC00365 expression in colorectal cancer is closely associated with poor patient outcomes. Additionally, LINC00365 was confirmed to be positively correlated with miR-221-5p, and miR-221-5p is negatively correlated with gasdermin-D (GSDMD) in colorectal cancer tissues. Bioinformatics analysis and luciferase reporter gene experiments revealed that GSDMD is the target gene of miR-221-5p. Cell function experiments and nude mouse tumor transplantation assays confirmed that LINC00365 could regulate the expressions of pyroptosis-related proteins such as Caspase-1, Caspase-11, NLRP3 and GSDMD. RNA pulldown and RNA immunoprecipitation experiments further elucidated the mechanism by which LINC00365 regulates miR-221-5p. In the present study, we observe that LINC00365 promotes the expression of miR-221-5p by binding to the Dicer enzyme to inhibit GSDMD and plays an antipyroptotic role. Our findings suggest that LINC00365 may serve as a molecular biomarker for estimating the prognosis of patients with colorectal cancer and as a potential therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Weiqing Yang
- School of Graduate Studies, Wannan Medical College, Wuhu 241002, China
- Department of Oncology, the First Affiliated Hospital of Wannan Medical College, Wuhu 241002, China
| | - Xiang Huang
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Weibin Lv
- School of Graduate Studies, Wannan Medical College, Wuhu 241002, China
- Department of Oncology, the First Affiliated Hospital of Wannan Medical College, Wuhu 241002, China
| | - Yuelong Jin
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Yiping Zhu
- Department of Oncology, the First Affiliated Hospital of Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
19
|
Wang H, Sun K, Peng H, Wang Y, Zhang L. Emerging roles of noncoding RNAs in idiopathic pulmonary fibrosis. Cell Death Discov 2024; 10:443. [PMID: 39433746 PMCID: PMC11494106 DOI: 10.1038/s41420-024-02170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic lung disease with limited treatment options and efficacy. Evidence suggests that IPF arises from genetic, environmental, and aging-related factors. The pathogenic mechanisms of IPF primarily involve dysregulated repeated microinjuries to epithelial cells, abnormal fibroblast/myofibroblast activation, and extracellular matrix (ECM) deposition, but thus far, the exact etiology remains unclear. Noncoding RNAs (ncRNAs) play regulatory roles in various biological processes and have been implicated in the pathophysiology of multiple fibrotic diseases, including IPF. This review summarizes the roles of ncRNAs in the pathogenesis of IPF and their potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Kai Sun
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Hao Peng
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Lei Zhang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Xianning Medical College, Hubei University of Science & Technology, Xianning, 437000, Hubei, China.
| |
Collapse
|
20
|
Jin J, Nguyen LTG, Wassef A, Sadek R, Schmitt TM, Guo GL, Rasmussen TP, Zhong XB. Correlations of Long Noncoding RNA HNF4A-AS1 Alternative Transcripts with Liver Diseases and Drug Metabolism. Drug Metab Dispos 2024; 52:1345-1355. [PMID: 39168525 DOI: 10.1124/dmd.124.001873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Hepatocyte nuclear factor 4 alpha antisense 1 (HNF4A-AS1) is a long noncoding RNA (lncRNA) gene physically located next to the transcription factor HNF4A gene in the human genome. Its transcription products have been reported to inhibit the progression of hepatocellular carcinoma (HCC) and negatively regulate the expression of cytochrome P450s (CYPs), including CYP1A2, 2B6, 2C9, 2C19, 2E1, and 3A4. By altering CYP expression, lncRNA HNF4A-AS1 also contributes to the susceptibility of drug-induced liver injury. Thus, HNF4A-AS1 lncRNA is a promising target for controlling HCC and modulating drug metabolism. However, HNF4A-AS1 has four annotated alternative transcripts in the human genome browsers, and it is unclear which transcripts the small interfering RNAs or small hairpin RNAs used in the previous studies are silenced and which transcripts should be used as the target. In this study, four annotated and two newly identified transcripts were confirmed. These six transcripts showed different expression levels in different liver disease conditions, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and obesity. The expression patterns of all HNF4A-AS1 transcripts were further investigated in liver cell growth from human embryonic stem cells to matured hepatocyte-like cells, HepaRG differentiation, and exposure to rifampicin treatment. Several HNF4A-AS1 transcripts highly displayed correlations with these situations. In addition, some of the HNF4A-AS1 transcripts also showed a strong correlation with CYP3A4 during HepaRG maturation and rifampicin exposure. Our findings provide valuable insights into the specific roles of HNF4A-AS1 transcripts, paving the way for more targeted therapeutic strategies for liver diseases and drug metabolism. SIGNIFICANCE STATEMENT: This study explores the alternative transcripts of HNF4A-AS1, showing how their expression changes in different biological conditions, from various liver diseases to the growth and differentiation of hepatocytes and drug metabolism. The generated knowledge is essential for understanding the independent roles of different transcripts from the same lncRNA in different liver diseases and drug metabolism situations.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| | - Le Tra Giang Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| | - Andrew Wassef
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| | - Ragui Sadek
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| | - Timothy M Schmitt
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| | - Grace L Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| |
Collapse
|
21
|
Li R, Li S, Shen L, Li J, Zhang D, Yu J, Huang L, Liu N, Lu H, Xu M. LINC00618 facilitates growth and metastasis of hepatocellular carcinoma via elevating cholesterol synthesis by promoting NSUN2-mediated SREBP2 m5C modification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117064. [PMID: 39299205 DOI: 10.1016/j.ecoenv.2024.117064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Dysregulation of cholesterol metabolism is an important feature of cancer development. There are limited reports on the involvement of lncRNAs in hepatocellular carcinoma (HCC) progression via the cholesterol metabolism pathway. The present study explored the effect of LINC00618 on HCC growth and metastasis, and elucidated the underlying mechanisms involved in cholesterol metabolism. Here, we found that LINC00618 expression was upregulated in cancerous tissues from 30 patients with HCC compared to that in adjacent normal tissues. High expression of LINC00618 was detected in metastatic HCC tissues. LINC00618 is predominantly localized in the nucleus and overexpression of LINC00618 facilitated HCC cell proliferation, migration and EMT progression by promoting cholesterol biosynthesis. Mechanistically, the 1-101nt region of LINC00618 bound to NSUN2. LINC00618 inhibited ubiquitin-proteasome pathway-induced NSUN2 degradation. NSUN2 stabilized by LINC00618 increased m5C modification of SREBP2 and promoted SREBP2 mRNA stability in a YBX1-dependent manner, thereby promoting cholesterol biosynthesis in HCC cells. Moreover, mouse HCC xenograft and lung metastasis models were established by subcutaneous and tail vein injections of MHCC97 cells transfected with or without sh-LINC00618. Silencing LINC00618 impeded HCC growth and metastasis. In conclusion, LINC00618 promoted HCC growth and metastasis by elevating cholesterol synthesis by stabilizing NSUN2 to enhance SREBP2 mRNA stability in an m5C-dependent manner.
Collapse
Affiliation(s)
- Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Shunle Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Lin Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Jinmin Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Lanxuan Huang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China.
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China.
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China.
| |
Collapse
|
22
|
Chen Y, Chen S, Wu Z, Cheng Q, Ji D. Hypoxia-related lncRNA correlates with prognosis and immune microenvironment in uveal melanoma. Cancer Cell Int 2024; 24:336. [PMID: 39385179 PMCID: PMC11465649 DOI: 10.1186/s12935-024-03509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Hypoxia-related genes are linked to the prognosis of various solid malignant tumors. However, the role of hypoxia-related long non-coding RNAs (HRLs) in uveal melanoma (UVM) remains unclear. This study aimed to identify HRLs associated with UVM prognosis and develop a novel risk signature to predict patient outcomes. METHODS Data from 80 UVM samples were obtained from The Cancer Genome Atlas. Prognostic HRLs were screened using Cox univariate and Pearson correlation analyses. HRL signature were constructed using Lasso analysis, and gene enrichment analysis was performed to explore the association between HRLs and immune features. Cell Counting Kit-8 assay was used to measure the propagation of human uveal melanoma (MuM2B) cells, while tumor invasion and migration were evaluated using Transwell and wound-healing experiments. Inflammatory factors and macrophage polarization were evaluated using quantitative PCR. RESULTS In total, 621 prognostic HRLs were screened and constructed in 12 HRLs. The risk score showed a significant correlation with the survival time of patients with UVM. Additionally, HRL correlated with diverse key immune checkpoints, revealing possible targets for immunotherapy. Immune-related pathways were highly enriched in the high-risk group. LINC02367, a protective HRL, was associated with the tumor microenvironment and survival time of patients with UVM. In vitro, LINC02367 significantly influenced MuM2B proliferation and migration. It also modulated macrophage polarization by regulating inflammatory factor levels, thereby affecting the immune microenvironment. CONCLUSIONS We developed a novel HRL signature to predict prognosis in patients with UVM. HRLs are potential biomarkers and therapeutic targets for the treatment of UVM.
Collapse
Affiliation(s)
- Yu Chen
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shen Chen
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenkai Wu
- Department of Ophthalmology, Changde Hospital, Xiangya School of Medicine, Central South University, (The First People's Hospital of Changde City), Hunan Province, Changde, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Dan Ji
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
23
|
Lodde V, Zarbo IR, Farina G, Masia A, Solla P, Campesi I, Delogu G, Muroni MR, Tsitsipatis D, Gorospe M, Floris M, Idda ML. Identification of hsa_circ_0018905 as a New Potential Biomarker for Multiple Sclerosis. Cells 2024; 13:1668. [PMID: 39404430 PMCID: PMC11475351 DOI: 10.3390/cells13191668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Multiple sclerosis (MS) is a demyelinating autoimmune disease characterized by early onset, for which the interaction of genetic and environmental factors is crucial. Dysregulation of the immune system as well as myelinization-de-myelinization has been shown to correlate with changes in RNA, including non-coding RNAs. Recently, circular RNAs (circRNAs) have emerged as a key player in the complex network of gene dysregulation associated with MS. Despite several efforts, the mechanisms driving circRNA regulation and dysregulation in MS still need to be properly elucidated. Here, we explore the panorama of circRNA expression in PBMCs purified from five newly diagnosed MS patients and five healthy controls (HCs) using the Arraystar Human circRNAs microarray. Experimental validation was then carried out in a validation cohort, and a possible correlation with disease severity was tested. We identified 64 differentially expressed circRNAs, 53 of which were downregulated in PBMCs purified from MS compared to the HCs. The discovery dataset was subsequently validated using qRT-PCR with an independent cohort of 20 RRMS patients and 20 HCs. We validated seven circRNAs differentially expressed in the RRMS group versus the HC group. hsa_circ_0000518, hsa_circ_0000517, hsa_circ_0000514, and hsa_circ_0000511 were significantly upregulated in the MS group, while hsa_circ_0018905, hsa_circ_0048764, and hsa_circ_0003445 were significantly downregulated; Among them, the expression level of hsa_circ_0018905 was significantly decreased in patients showing a higher level of disability and in progressive forms of MS. We described the circRNAs expression profile of PBMCs in newly diagnosed MS patients and proposed hsa_circ_0018905 as potential MS biomarker.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; (V.L.); (I.C.); (G.D.); (M.F.)
| | - Ignazio Roberto Zarbo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy; (I.R.Z.); (A.M.); (P.S.); (M.R.M.)
- Unit of Clinical Neurology, AOU, Sassari 07100, Italy;
| | | | - Aurora Masia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy; (I.R.Z.); (A.M.); (P.S.); (M.R.M.)
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari 09042, Italy
| | - Paolo Solla
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy; (I.R.Z.); (A.M.); (P.S.); (M.R.M.)
- Unit of Clinical Neurology, AOU, Sassari 07100, Italy;
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; (V.L.); (I.C.); (G.D.); (M.F.)
| | - Giuseppe Delogu
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; (V.L.); (I.C.); (G.D.); (M.F.)
| | - Maria Rosaria Muroni
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy; (I.R.Z.); (A.M.); (P.S.); (M.R.M.)
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA; (D.T.); (M.G.)
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA; (D.T.); (M.G.)
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; (V.L.); (I.C.); (G.D.); (M.F.)
| | - Maria Laura Idda
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; (V.L.); (I.C.); (G.D.); (M.F.)
| |
Collapse
|
24
|
Nie H, Zhao N, Li B, Jiang K, Li H, Zhang J, Guo A, Hua J. Evolutionary comparison of lncRNAs in four cotton species and functional identification of LncR4682-PAS2-KCS19 module in fiber elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39376043 DOI: 10.1111/tpj.17058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Long non-coding RNAs (lncRNAs) play an important role in various biological processes in plants. However, there have been few reports on the evolutionary signatures of lncRNAs in closely related cotton species. The lncRNA transcription patterns in two tetraploid cotton species and their putative diploid ancestors were compared in this paper. By performing deep RNA sequencing, we identified 280 429 lncRNAs from 21 tissues in four cotton species. lncRNA transcription evolves more rapidly than mRNAs, and exhibits more severe turnover phenomenon in diploid species compared to that in tetraploid species. Evolutionarily conserved lncRNAs exhibit higher expression levels, and lower tissue specificity compared with species-specific lncRNAs. Remarkably, tissue expression of homologous lncRNAs in Gossypium hirsutum and G. barbadense exhibited similar patterns, suggesting that these lncRNAs may be functionally conserved and selectively maintained during domestication. An orthologous lncRNA, lncR4682, was identified and validated in fibers of G. hirsutum and G. barbadense with the highest conservatism and expression abundance. Through virus-induced gene silencing in upland cotton, we found that lncR4682 and its target genes GHPAS2 and GHKCS19 positively regulated fiber elongation. In summary, the present study provides a systematic analysis of lncRNAs in four closely related cotton species, extending the understanding of transcriptional conservation of lncRNAs across cotton species. In addition, LncR4682-PAS2-KCS19 contributes to cotton fiber elongation by participating in the biosynthesis of very long-chain fatty acids.
Collapse
Affiliation(s)
- Hushuai Nie
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Bin Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Kaiyun Jiang
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Huijing Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Jingrou Zhang
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Anhui Guo
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| |
Collapse
|
25
|
Li D, Liu Z, Zhang L, Bian X, Wu J, Li L, Chen Y, Luo L, Pan L, Kong L, Xiao Y, Wang J, Zhang X, Wang W, Toma M, Piipponen M, Sommar P, Xu Landén N. The lncRNA SNHG26 drives the inflammatory-to-proliferative state transition of keratinocyte progenitor cells during wound healing. Nat Commun 2024; 15:8637. [PMID: 39366968 PMCID: PMC11452505 DOI: 10.1038/s41467-024-52783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The cell transition from an inflammatory phase to a subsequent proliferative phase is crucial for wound healing, yet the driving mechanism remains unclear. By profiling lncRNA expression changes during human skin wound healing and screening lncRNA functions, we identify SNHG26 as a pivotal regulator in keratinocyte progenitors underpinning this phase transition. Snhg26-deficient mice exhibit impaired wound repair characterized by delayed re-epithelization accompanied by exacerbated inflammation. Single-cell transcriptome analysis combined with gain-of-function and loss-of-function of SNHG26 in vitro and ex vivo reveals its specific role in facilitating inflammatory-to-proliferative state transition of keratinocyte progenitors. A mechanistic study unravels that SNHG26 interacts with and relocates the transcription factor ILF2 from inflammatory genomic loci, such as JUN, IL6, IL8, and CCL20, to the genomic locus of LAMB3. Collectively, our findings suggest that lncRNAs play cardinal roles in expediting tissue repair and regeneration and may constitute an invaluable reservoir of therapeutic targets in reparative medicine.
Collapse
Affiliation(s)
- Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China.
| | - Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Jianmin Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, Wenzhou Medical University, 325035, Wenzhou, China
| | - Li Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Ling Pan
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Lingzhuo Kong
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Yunting Xiao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Jiating Wang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Xiya Zhang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Wang Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Maria Toma
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Minna Piipponen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
26
|
Fang Y, Du X, Ji X, Wang W, Wang C, Chen R, Niu Y, Kan H. Genome-wide profiling of long non-coding RNA following ozone exposure: A randomized, controlled exposure trial. ENVIRONMENTAL RESEARCH 2024; 263:120101. [PMID: 39366440 DOI: 10.1016/j.envres.2024.120101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Exposure to ambient ozone has been associated with extrapulmonary health, but the underlying mechanisms remain to be understood. LncRNAs are involved in the regulation of gene expression, but their regulatory mechanisms in ozone-related health effects are scarcely explored. OBJECTIVE To investigate genome-wide lncRNA changes after short-term ozone exposure and their regulatory roles in ozone exposure and gene expression. METHOD We conducted a randomized, crossover, controlled exposure trial in 32 healthy college students in Shanghai, China. Each participant received both 200-ppb ozone exposure and filtered air exposure for 2 h in a random order with a 14-day washout period. Blood samples were collected after each exposure and used for lncRNA sequencing. Differentially expressed lncRNAs between the two exposures were identified using orthogonal partial least squares discriminant analysis and linear regression analysis. LncRNAs-targeted mRNAs were mapped and subjected to enrichment analyses. We also constructed lncRNA-miRNA-mRNA networks. RESULTS A total of 90 lncRNAs were differentially expressed after exposure to ozone, with 49 up-regulated and 41 down-regulated. Enrichment analyses suggested that these dysregulated lncRNAs were involved in a variety of biological processes, including those related to oxidative stress, inflammation response, and cell proliferation, development, and differentiation. Multiple pathways such as IL-17 signaling, NF-kB signaling, and Rho GTPases signaling were also enriched. Furthermore, the lncRNA-miRNA-mRNA network revealed that specific lncRNAs may regulate the expression of inflammation- and angiogenesis-related genes by interacting with miRNAs, such as NEAT1/hsa-miR-500a-3p/SIGLEC8, NEAT1/hsa-miR-6835-3p/SLC16A14, OIP5-AS1/miR-183-5p/EGR1, and SNHG25/hsa-miR-663a/FOSB axes. CONCLUSION This study characterized a thorough profile of human lncRNAs following short-term ozone exposure and suggested the regulatory roles of these lncRNAs in ozone-induced inflammatory responses and angiogenesis, providing novel epigenetic insights into the mechanisms of the health effects of ozone exposure.
Collapse
Affiliation(s)
- Ying Fang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xihao Du
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Ji
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, 201102, China.
| |
Collapse
|
27
|
López-Royo T, Moreno-Martínez L, Zaragoza P, García-Redondo A, Manzano R, Osta R. Differentially expressed lncRNAs in SOD1 G93A mice skeletal muscle: H19, Myhas and Neat1 as potential biomarkers in amyotrophic lateral sclerosis. Open Biol 2024; 14:240015. [PMID: 39406341 PMCID: PMC11479763 DOI: 10.1098/rsob.240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 10/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disease characterized by progressive motor function and muscle mass loss. Despite extensive research in the field, the underlying causes of ALS remain incompletely understood, contributing to the absence of specific diagnostic and prognostic biomarkers and effective therapies. This study investigates the expression of long-non-coding RNAs (lncRNAs) in skeletal muscle as a potential source of biomarkers and therapeutic targets for the disease. The expression profiles of 12 lncRNAs, selected from the literature, were evaluated across different disease stages in tissue and muscle biopsies from the SOD1G93A transgenic mouse model of ALS. Nine out of the 12 lncRNAs were differentially expressed, with Pvt1, H19 and Neat1 showing notable increases in the symptomatic stages of the disease, and suggesting their potential as candidate biomarkers to support diagnosis and key players in muscle pathophysiology in ALS. Furthermore, the progression of Myhas and H19 RNA levels across disease stages correlated with longevity in the SOD1G93A animal model, effectively discriminating between long- and short-term survival individuals, thereby highlighting their potential as prognostic indicators. These findings underscore the involvement of lncRNAs, especially H19 and Myhas, in ALS pathophysiology, offering novel insights for diagnostic, prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Tresa López-Royo
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Laura Moreno-Martínez
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Pilar Zaragoza
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Alberto García-Redondo
- Neurology Department, ALS Unit, Hospital 12 de Octubre Health Research Institute (i+12), CIBERER U-723 (Instituto de Salud Carlos III), Avenida Córdoba, s/n, 28041 Madrid, Spain
| | - Raquel Manzano
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Rosario Osta
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
28
|
Xiao Q, Wang L, Wang J, Wang M, Wang DW, Ding H. A novel lncRNA GM47544 modulates triglyceride metabolism by inducing ubiquitination-dependent protein degradation of APOC3. Mol Metab 2024; 88:102011. [PMID: 39173944 PMCID: PMC11399561 DOI: 10.1016/j.molmet.2024.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
OBJECTIVE Emerging evidence highlights the pivotal roles of long non-coding RNAs (lncRNAs) in lipid metabolism. Apoprotein C3 (ApoC3) is a well-established therapeutic target for hypertriglyceridemia and exhibits a strong association with cardiovascular disease. However, the exact mechanisms via which the lncRNAs control ApoC3 expression remain unclear. METHODS We identified a novel long noncoding RNA (lncRNA), GM47544, within the ApoA1/C3/A4/A5 gene cluster. Subsequently, the effect of GM47544 on intracellular triglyceride metabolism was analyzed. The diet-induced mouse models of hyperlipidemia and atherosclerosis were established to explore the effect of GM47544 on dyslipidemia and plaque formation in vivo. The molecular mechanism was explored through RNA sequencing, immunoprecipitation, RNA pull-down assay, and RNA immunoprecipitation. RESULTS GM47544 was overexpressed under high-fat stimulation. GM47544 effectively improved hepatic steatosis, reduced blood lipid levels, and alleviated atherosclerosis in vitro and in vivo. Mechanistically, GM47544 directly bound to ApoC3 and facilitated the ubiquitination at lysine 79 in ApoC3, thereby facilitating ApoC3 degradation via the ubiquitin-proteasome pathway. Moreover, we identified AP006216.5 as the human GM47544 transcript, which fulfills a comparable function in human hepatocytes. CONCLUSIONS The identification of GM47544 as a lncRNA modulator of ApoC3 reveals a novel mechanism of post-translational modification, with significant clinical implications for the treatment of hypertriglyceridemia and atherosclerosis.
Collapse
Affiliation(s)
- Qianqian Xiao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Luyun Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Man Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Dao Wen Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
29
|
Zheng Y, Cai X, Ren F, Yao Y. The role of non-coding RNAs in fibroblast-like synoviocytes in rheumatoid arthritis. Int J Rheum Dis 2024; 27:e15376. [PMID: 39439368 DOI: 10.1111/1756-185x.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by synovial hyperplasia, and fibroblast-like synoviocytes (FLSs) constitute the majority of cells in the synovial tissue, playing a crucial role in the onset of RA. Dysregulation of FLSs function is a critical strategy in treating joint damage associated with RA. Non-coding RNAs, a class of RNA molecules that do not encode proteins, participate in the development of various diseases. This article aims to review the progress in the study of long non-coding RNAs, microRNAs, and circular RNAs in FLSs. Non-coding RNAs are involved in the pathogenesis of RA, directly or indirectly regulating FLSs' proliferation, migration, invasion, apoptosis, and inflammatory responses. Furthermore, non-coding RNAs also influence DNA methylation and osteogenic differentiation in FLSs. Therefore, non-coding RNAs hold promise as biomarkers for diagnosing RA. Targeting non-coding RNAs in FLSs locally represents a potential strategy for future therapies in RA.
Collapse
Affiliation(s)
- Yongquan Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Fujia Ren
- Department of Pharmacy, Hangzhou Women's Hospital, Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Zhang Y, Zhang J, Chen S, Li M, Yang J, Tan J, He B, Zhu L. Unveiling the Network regulatory mechanism of ncRNAs on the Ferroptosis Pathway: Implications for Preeclampsia. Int J Womens Health 2024; 16:1633-1651. [PMID: 39372667 PMCID: PMC11451465 DOI: 10.2147/ijwh.s485653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are transcripts originating from the genome that do not serve as templates for protein synthesis. They function as epigenetic and translational regulators in various pathophysiological mechanisms, including cell proliferation and apoptosis. The ferroptosis signaling pathway, a novel mode of cell death, participates in numerous pathophysiological processes. Its signaling transmission is both complex and precise, featuring interconnected and interdependent pathways. Recent studies suggest that ncRNAs can finely regulate key genes in the ferroptosis pathway, thus modulating cellular functions, reducing oxidative stress, and maintaining maternal-fetal interface homeostasis. Future strategies targeting the ncRNA/ferroptosis axis may provide new perspectives and potential intervention points for treating preeclampsia. This article clarifies how the ncRNA/ferroptosis axis impacts preeclampsia, revealing how ncRNAs interact with ferroptosis, and pinpointing new molecular targets for the treatment of preeclampsia, thereby providing theoretical support for clinical strategies.
Collapse
Affiliation(s)
- Yuan Zhang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Stomatology, Changsha Medical University, Changsha410219, People’s Republic of China
| | - Jingjing Zhang
- Department of Gynaecology and Obstetrics, Hunan Provincial Maternal and Child Health Hospital, Changsha410219, People’s Republic of China
| | - Sirui Chen
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
| | - Mianxin Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Public Health, Changsha Medical University, Changsha410219, People’s Republic of China
| | - Jin Yang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Stomatology, Changsha Medical University, Changsha410219, People’s Republic of China
| | - Jingsi Tan
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
| | - Binsheng He
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
| | - Lemei Zhu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Public Health, Changsha Medical University, Changsha410219, People’s Republic of China
| |
Collapse
|
31
|
Hu K, Wen H, Song T, Che Z, Song Y, Song M. Deciphering the Role of LncRNAs in Osteoarthritis: Inflammatory Pathways Unveiled. J Inflamm Res 2024; 17:6563-6581. [PMID: 39318993 PMCID: PMC11421445 DOI: 10.2147/jir.s489682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Long non-coding RNA (LncRNA), with transcripts over 200 nucleotides in length, play critical roles in numerous biological functions and have emerged as significant players in the pathogenesis of osteoarthritis (OA), an inflammatory condition traditionally viewed as a degenerative joint disease. This review comprehensively examines the influence of LncRNA on the inflammatory processes driving OA progression, focusing on their role in regulating gene expression, cellular activities, and inflammatory pathways. Notably, LncRNAs such as MALAT1, H19, and HOTAIR are upregulated in OA and exacerbate the inflammatory milieu by modulating key signaling pathways like NF-κB, TGF-β/SMAD, and Wnt/β-catenin. Conversely, LncRNA like MEG3 and GAS5, which are downregulated in OA, show potential in dampening inflammatory responses and protecting against cartilage degradation by influencing miRNA interactions and cytokine production. By enhancing our understanding of LncRNA' roles in OA inflammation, we can better leverage them as potential biomarkers for the disease and develop innovative therapeutic strategies for OA management. This paper aims to delineate the mechanisms by which LncRNA influence inflammatory responses in OA and propose them as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kangyi Hu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Haonan Wen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Ting Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Zhixin Che
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongjia Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Min Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
32
|
Xu W, Hu J, Ma Z, Feng W, Gong W, Fu S, Chen X. Decreased BIRC5-206 promotes epithelial-mesenchymal transition in nasopharyngeal carcinoma through sponging miR-145-5p. Open Med (Wars) 2024; 19:20241007. [PMID: 39308922 PMCID: PMC11416051 DOI: 10.1515/med-2024-1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 09/25/2024] Open
Abstract
Metastasis significantly contributes to the poor prognosis of advanced nasopharyngeal carcinoma (NPC). Our prior studies have demonstrated a decrease in BIRC5-206 expression in NPC, which promotes disease progression. However, the role of BIRC5-206 in the invasion and metastasis of NPC has not been fully elucidated. In this study, our objective was to explore the biological function and underlying mechanisms of BIRC5-206 in NPC. Additionally, we established an NPC mouse model of lung invasiveness using C666 cells to assess the impact of BIRC5-206 on NPC metastasis. Our results revealed that silencing BIRC5-206 inhibited apoptosis and enhanced the invasion of NPC cells, whereas its overexpression reversed these effects. Moreover, decreased BIRC5-206 expression significantly increased N-cadherin and Vimentin expression while reducing E-cadherin and occludin levels, both in vivo and in vitro. Additionally, silencing BIRC5-206 markedly augmented the formation of invasive foci in lung tissues. Rescue experiments further confirmed that decreased BIRC5-206 expression facilitates NPC metastasis via modulation of the miR-145-5p/CD40 signaling pathway. In summary, our study suggests that BIRC5-206 may serve as a potential prognostic biomarker and therapeutic target in the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Weihua Xu
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Hainan Tropical Cancer Research Institute, Haikou, Hainan, 570312, China
| | - Junjie Hu
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Hainan Tropical Cancer Research Institute, Haikou, Hainan, 570312, China
| | - Zhichao Ma
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Hainan Tropical Cancer Research Institute, Haikou, Hainan, 570312, China
| | - Wanyi Feng
- Hainan Lvtou Medical Laboratory Center, Haikou, Hainan, 570206, China
- School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Wei Gong
- Hainan Lvtou Medical Laboratory Center, Haikou, Hainan, 570206, China
- School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Shengmiao Fu
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
- Hainan Lvtou Medical Laboratory Center, No. 16 Jinyu East Road, Longhua District, Haikou, Hainan, 570206, China
| | - Xinping Chen
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Hainan Tropical Cancer Research Institute, No. 6, Changbin West 4th Street, Xiuying District, Haikou, Hainan, 570312, China
| |
Collapse
|
33
|
Rong J, Wang Q, Li T, Qian J, Cheng J. Glucose metabolism in glioma: an emerging sight with ncRNAs. Cancer Cell Int 2024; 24:316. [PMID: 39272133 PMCID: PMC11395608 DOI: 10.1186/s12935-024-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Glioma is a primary brain tumor that grows quickly, has an unfavorable prognosis, and can spread intracerebrally. Glioma cells rely on glucose as the major energy source, and glycolysis plays a critical role in tumorigenesis and progression. Substrate utilization shifts throughout glioma progression to facilitate energy generation and biomass accumulation. This metabolic reprogramming promotes glioma cell proliferation and metastasis and ultimately decreases the efficacy of conventional treatments. Non-coding RNAs (ncRNAs) are involved in several glucose metabolism pathways during tumor initiation and progression. These RNAs influence cell viability and glucose metabolism by modulating the expression of key genes of the glycolytic pathway. They can directly or indirectly affect glycolysis in glioma cells by influencing the transcription and post-transcriptional regulation of oncogenes and suppressor genes. In this review, we discussed the role of ncRNAs in the metabolic reprogramming of glioma cells and tumor microenvironments and their abnormal expression in the glucometabolic pathway in glioma. In addition, we consolidated the existing theoretical knowledge to facilitate the use of this emerging class of biomarkers as biological indicators and potential therapeutic targets for glioma.
Collapse
Affiliation(s)
- Jun Rong
- Department of Neurosurgery, Xuancheng People's Hospital, The Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, People's Republic of China
| | - Qifu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), WuHu, People's Republic of China
| | - Tingzheng Li
- Department of Neurosurgery, Xuancheng Central Hospital, Xuancheng, People's Republic of China
| | - Jin Qian
- Department of Neurosurgery, Xuancheng People's Hospital, The Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, People's Republic of China.
| | - Jinchao Cheng
- Department of Neurosurgery, Xuancheng Central Hospital, Xuancheng, People's Republic of China.
| |
Collapse
|
34
|
Desideri F, Grazzi A, Lisi M, Setti A, Santini T, Colantoni A, Proietti G, Carvelli A, Tartaglia GG, Ballarino M, Bozzoni I. CyCoNP lncRNA establishes cis and trans RNA-RNA interactions to supervise neuron physiology. Nucleic Acids Res 2024; 52:9936-9952. [PMID: 38989616 PMCID: PMC11381359 DOI: 10.1093/nar/gkae590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/30/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
The combination of morphogenetic and transcription factors together with the synergic aid of noncoding RNAs and their cognate RNA binding proteins contribute to shape motor neurons (MN) identity. Here, we extend the noncoding perspective of human MN, by detailing the molecular and biological activity of CyCoNP (as Cytoplasmic Coordinator of Neural Progenitors) a highly expressed and MN-enriched human lncRNA. Through in silico prediction, in vivo RNA purification and loss of function experiments followed by RNA-sequencing, we found that CyCoNP sustains a specific neuron differentiation program, required for the physiology of both neuroblastoma cells and hiPSC-derived MN, which mainly involves miR-4492 and NCAM1 mRNA. We propose a novel lncRNA-mediated 'dual mode' of action, in which CyCoNP acts in trans as a classical RNA sponge by sequestering miR-4492 from its pro-neuronal targets, including NCAM1 mRNA, and at the same time it plays an additional role in cis by interacting with NCAM1 mRNA and regulating the availability and localization of the miR-4492 in its proximity. These data highlight novel insights into the noncoding RNA-mediated control of human neuron physiology and point out the importance of lncRNA-mediated interactions for the spatial distribution of regulatory molecules.
Collapse
Affiliation(s)
- Fabio Desideri
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Alessandro Grazzi
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Michela Lisi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Adriano Setti
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Colantoni
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Gabriele Proietti
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Andrea Carvelli
- Department of Neuroscience, The Scripps Research institute, La Jolla, CA 92037, USA
| | - Gian Gaetano Tartaglia
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bozzoni
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
35
|
Wei X, Li Z, Zheng H, Li X, Lin Y, Yang H, Shen Y. Long non-coding RNA MAGEA4-AS1 binding to p53 enhances MK2 signaling pathway and promotes the proliferation and metastasis of oral squamous cell carcinoma. Funct Integr Genomics 2024; 24:158. [PMID: 39249547 PMCID: PMC11384635 DOI: 10.1007/s10142-024-01436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) regulate the occurrence, development and progression of oral squamous cell carcinoma (OSCC). We elucidated the expression features of MAGEA4-AS1 in patients with OSCC and its activity as an OSCC biomarker. Furthermore, the impact of up-regulation of MAGEA4-AS1 on the cellular behaviors (proliferation, migration and invasion) of OSCC cells and intrinsic signal mechanisms were evaluated. Firstly, we analyzed MAGEA4-AS1 expression data in The Cancer Genome Atlas (TCGA) OSCC using a bioinformatics approach and in 45 pairs of OSCC tissues using qPCR. Then CCK-8, ethynyl deoxyuridine, colony formation, transwell and wound healing assays were conducted to assess changes in the cell proliferation, migration and invasion protential of shMAGEA4-AS1 HSC3 and CAL27 cells. The RNA sequence of MAGEA4-AS1 was identified using the rapid amplification of cDNA ends (RACE) assay. And whole-transcriptome sequencing was used to identify MAGEA4-AS1 affected genes. Additionally, dual-luciferase reporter system, RNA-binding protein immunoprecipitation (RIP), and rescue experiments were performed to clarify the role of the MAGEA4-AS1-p53-MK2 signaling pathway. As results, we found MAGEA4-AS1 was up-regulated in OSCC tissues. We identified a 418 nucleotides length of the MAGEA4-AS1 transcript and it primarily located in the cell nucleus. MAGEA4-AS1 stable knockdown weakened the proliferation, migration and invasion abilities of OSCC cells. Mechanistically, p53 protein was capable to activate MK2 gene transcription. RIP assay revealed an interaction between p53 and MAGEA4-AS1. MK2 up-regulation in MAGEA4-AS1 down-regulated OSCC cells restored MK2 and epithelial-to-mesenchymal transition related proteins' expression levels. In conclusion, MAGEA4-AS1-p53 complexes bind to MK2 promoter, enhancing the transcription of MK2 and activating the downstream signaling pathways, consequently promoting the proliferation and metastasis of OSCC cells. MAGEA4-AS1 may serve as a diagnostic marker and therapeutic target for OSCC patients.
Collapse
Affiliation(s)
- Xiaoxiao Wei
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Zhangfu Li
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Heng Zheng
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Xiaolian Li
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Yuntao Lin
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Hongyu Yang
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China.
| | - Yuehong Shen
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
36
|
YuYan, Yuan E. Regulatory effect of N6-methyladenosine on tumor angiogenesis. Front Immunol 2024; 15:1453774. [PMID: 39295872 PMCID: PMC11408240 DOI: 10.3389/fimmu.2024.1453774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Previous studies have demonstrated that genetic alterations governing epigenetic processes frequently drive tumor development and that modifications in RNA may contribute to these alterations. In the 1970s, researchers discovered that N6-methyladenosine (m6A) is the most prevalent form of RNA modification in advanced eukaryotic messenger RNA (mRNA) and noncoding RNA (ncRNA). This modification is involved in nearly all stages of the RNA life cycle. M6A modification is regulated by enzymes known as m6A methyltransferases (writers) and demethylases (erasers). Numerous studies have indicated that m6A modification can impact cancer progression by regulating cancer-related biological functions. Tumor angiogenesis, an important and unregulated process, plays a pivotal role in tumor initiation, growth, and metastasis. The interaction between m6A and ncRNAs is widely recognized as a significant factor in proliferation and angiogenesis. Therefore, this article provides a comprehensive review of the regulatory mechanisms underlying m6A RNA modifications and ncRNAs in tumor angiogenesis, as well as the latest advancements in molecular targeted therapy. The aim of this study is to offer novel insights for clinical tumor therapy.
Collapse
Affiliation(s)
- YuYan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enwu Yuan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Li P, Ma X, Huang D. Role of the lncRNA/Wnt signaling pathway in digestive system cancer: a literature review. Eur J Med Res 2024; 29:447. [PMID: 39218950 PMCID: PMC11367813 DOI: 10.1186/s40001-024-02033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The long noncoding RNA (lncRNA)/Wingless (Wnt) axis is often dysregulated in digestive system tumors impacting critical cellular processes. Abnormal expression of specific Wnt-related lncRNAs such as LINC01606 (promotes motility), SLCO4A1-AS1 (promotes motility), and SH3BP5-AS1 (induces chemoresistance), plays a crucial role in these malignancies. These lncRNAs are promising targets for cancer diagnosis and therapy, offering new treatment perspectives. The lncRNAs, NEF and GASL1, differentially expressed in plasma show diagnostic potential for esophageal squamous cell carcinoma and gastric cancer, respectively. Additionally, Wnt pathway inhibitors like XAV-939 have demonstrated preclinical efficacy, underscoring their therapeutic potential. This review comprehensively analyzes the lncRNA/Wnt axis, highlighting its impact on cell proliferation, motility, and chemoresistance. By elucidating the complex molecular mechanisms of the lncRNA/Wnt axis, we aim to identify potential therapeutic targets for digestive system tumors to pave the way for the development of targeted treatment strategies.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Xiao Ma
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
38
|
Xiang T, Yang C, Deng Z, Sun D, Luo F, Chen Y. Krüppel-like factors family in health and disease. MedComm (Beijing) 2024; 5:e723. [PMID: 39263604 PMCID: PMC11387732 DOI: 10.1002/mco2.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Krüppel-like factors (KLFs) are a family of basic transcription factors with three conserved Cys2/His2 zinc finger domains located in their C-terminal regions. It is acknowledged that KLFs exert complicated effects on cell proliferation, differentiation, survival, and responses to stimuli. Dysregulation of KLFs is associated with a range of diseases including cardiovascular disorders, metabolic diseases, autoimmune conditions, cancer, and neurodegenerative diseases. Their multidimensional roles in modulating critical pathways underscore the significance in both physiological and pathological contexts. Recent research also emphasizes their crucial involvement and complex interplay in the skeletal system. Despite the substantial progress in understanding KLFs and their roles in various cellular processes, several research gaps remain. Here, we elucidated the multifaceted capabilities of KLFs on body health and diseases via various compliable signaling pathways. The associations between KLFs and cellular energy metabolism and epigenetic modification during bone reconstruction have also been summarized. This review helps us better understand the coupling effects and their pivotal functions in multiple systems and detailed mechanisms of bone remodeling and develop potential therapeutic strategies for the clinical treatment of pathological diseases by targeting the KLF family.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Chuan Yang
- Department of Biomedical Materials Science Third Military Medical University (Army Medical University) Chongqing China
| | - Zihan Deng
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Dong Sun
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Fei Luo
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Yueqi Chen
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
- Department of Orthopedics Chinese PLA 76th Army Corps Hospital Xining China
| |
Collapse
|
39
|
Liang Y, Zhao J, Dai T, Li X, Chen L, He Z, Guo M, Zhao J, Xu L. A review of KLF4 and inflammatory disease: Current status and future perspective. Pharmacol Res 2024; 207:107345. [PMID: 39134187 DOI: 10.1016/j.phrs.2024.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Inflammation is the response of the human body to injury, infection, or other abnormal states, which is involved in the development of many diseases. As a member of the Krüppel-like transcription factors (KLFs) family, KLF4 plays a crucial regulatory role in physiological and pathological processes due to its unique dual domain of transcriptional activation and inhibition. A growing body of evidence has demonstrated that KLF4 plays a pivotal role in the pathogenesis of various inflammatory disorders, including inflammatory bowel disease, osteoarthritis, renal inflammation, pneumonia, neuroinflammation, and so on. Consequently, KLF4 has emerged as a promising new therapeutic target for inflammatory diseases. This review systematically generalizes the molecular regulatory network, specific functions, and mechanisms of KLF4 to elucidate its complex roles in inflammatory diseases. An in-depth study on the biological function of KLF4 is anticipated to offer a novel research perspective and potential intervention strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Yidan Liang
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiamin Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Tengkun Dai
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xin Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Longqin Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
40
|
Wang BY, Gao Q, Sun Y, Qiu XB. Biochemical targets of the micropeptides encoded by lncRNAs. Noncoding RNA Res 2024; 9:964-969. [PMID: 38764490 PMCID: PMC11098672 DOI: 10.1016/j.ncrna.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of transcripts longer than 200 nucleotides, which play important roles in regulating various cellular activities by the action of the RNA itself. However, about 40% of lncRNAs in human cells are potentially translated into micropeptides (also referred to as microproteins) usually shorter than 100 amino acids. Thus, these lncRNAs may function by both RNAs directly and their encoded micropeptides. The micropeptides encoded by lncRNAs may regulate transcription, translation, protein phosphorylation or degradation, or subcellular membrane functions. This review attempts to summarize the biochemical targets of the micropeptides-encoded by lncRNAs, which function by both RNAs and micropeptides, and discuss their associations with various diseases and their potentials as drug targets.
Collapse
Affiliation(s)
- Bi-Ying Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Qi Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiao-Bo Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| |
Collapse
|
41
|
Kumar J, Kowluru RA. Mitochondrial DNA transcription and mitochondrial genome-encoded long noncoding RNA in diabetic retinopathy. Mitochondrion 2024; 78:101925. [PMID: 38944370 PMCID: PMC11390302 DOI: 10.1016/j.mito.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
In diabetic retinopathy, mitochondrial DNA (mtDNA) is damaged and mtDNA-encoded genes and long noncoding RNA cytochrome B (LncCytB) are downregulated. LncRNAs lack an open reading frame, but they can regulate gene expression by associating with DNA/RNA/protein. Double stranded mtDNA has promoters on both heavy (HSP) and light (LSP) strands with binding sites for mitochondrial transcription factor A (TFAM) between them. The aim was to investigate the role of LncCytB in mtDNA transcription in diabetic retinopathy. Using human retinal endothelial cells incubated in high glucose, the effect of regulation of LncCytB on TFAM binding at mtDNA promoters was investigated by Chromatin immunoprecipitation, and binding of LncCytB at TFAM by RNA immunoprecipitation and RNA fluorescence in situ hybridization. High glucose decreased TFAM binding at both HSP and LSP, and binding of LncCytB at TFAM. While LncCytB overexpression ameliorated decrease in TFAM binding and transcription of genes encoded by both H- and L- strands, LncCytB-siRNA further downregulated them. Maintenance of mitochondrial homeostasis by overexpressing mitochondrial superoxide dismutase or Sirtuin-1 protected diabetes-induced decrease in TFAM binding at mtDNA and LncCytB binding at TFAM, and mtDNA transcription. Similar results were obtained from mouse retinal microvessels from streptozotocin-induced diabetic mice. Thus, LncCytB facilitates recruitment of TFAM at HSP and LSP, and its downregulation in diabetes compromises the binding, resulting in the downregulation of polypeptides encoded by mtDNA. Regulation of LncCytB, in addition to protecting mitochondrial genomic stability, should also help in maintaining the transcription of mtDNA encoded genes and electron transport chain integrity in diabetic retinopathy.
Collapse
Affiliation(s)
- Jay Kumar
- Ophthalmology, Visual and Anatomical Sciences, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA
| | - Renu A Kowluru
- Ophthalmology, Visual and Anatomical Sciences, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA.
| |
Collapse
|
42
|
Yang T, Li Y, Zheng Z, Qu P, Shao Z, Wang J, Ding N, Wang W. Comprehensive analysis of lncRNA-mediated ceRNA network in renal cell carcinoma based on GEO database. Medicine (Baltimore) 2024; 103:e39424. [PMID: 39213211 PMCID: PMC11365686 DOI: 10.1097/md.0000000000039424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Renal cell carcinoma (RCC) ranks among the leading causes of cancer-related mortality. Despite extensive research, the precise etiology and progression of RCC remain incompletely elucidated. Long noncoding RNA (lncRNA) has been identified as competitive endogenous RNA (ceRNA) capable of binding to microRNA (miRNA) sites, thereby modulating the expression of messenger RNAs (mRNA) and target genes. This regulatory network is known to exert a pivotal influence on cancer initiation and progression. However, the specific role and functional significance of the lncRNA-miRNA-mRNA ceRNA network in RCC remain poorly understood. The RCC transcriptome data was obtained from the gene expression omnibus database. The identification of differentially expressed long noncoding RNAs (DElncRNAs), differentially expressed miRNAs, and differentially expressed mRNAs (DEmRNAs) between RCC and corresponding paracancer tissues was performed using the "Limma" package in R 4.3.1 software. We employed a weighted gene co-expression network analysis to identify the key DElncRNAs that are most relevant to RCC. Subsequently, we utilized the encyclopedia of RNA interactomes database to predict the interactions between these DElncRNAs and miRNAs, and the miRDB database to predict the interactions between miRNAs and mRNAs. Therefore, key DElncRNAs were obtained to verify the expression of their related genes in the The Cancer Genome Atlas database and to analyze the prognosis. The construction of RCC-specific lncRNA-miRNA-mRNA ceRNA network was carried out using Cytoscape 3.7.0. A total of 286 DElncRNAs, 56 differentially expressed miRNAs, and 2065 DEmRNAs were identified in RCC. Seven key DElncRNAs (GAS6 antisense RNA 1, myocardial infarction associated transcript, long intergenic nonprotein coding RNA 921, MMP25 antisense RNA 1, Chromosome 22 Open Reading Frame 34, MIR34A host gene, MIR4435-2 host gene) were identified using weighted gene co-expression network analysis and encyclopedia of RNA interactomes databases. Subsequently, a network diagram comprising 217 nodes and 463 edges was constructed based on these key DElncRNAs. The functional analysis of DEmRNAs in the ceRNA network was conducted using Kyoto Encyclopedia of Genes and Genomes and gene ontology. We constructed RCC-specific ceRNA networks and identified the crucial lncRNAs associated with RCC using bioinformatics analysis, which will help us further understand the pathogenesis of this disease.
Collapse
Affiliation(s)
- Tianci Yang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Yixuan Li
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Zhouhang Zheng
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Pei Qu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Zhiang Shao
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Wei Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
43
|
Huang K, Yu L, Lu D, Zhu Z, Shu M, Ma Z. Long non-coding RNAs in ferroptosis, pyroptosis and necroptosis: from functions to clinical implications in cancer therapy. Front Oncol 2024; 14:1437698. [PMID: 39267831 PMCID: PMC11390357 DOI: 10.3389/fonc.2024.1437698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
As global population ageing accelerates, cancer emerges as a predominant cause of mortality. Long non-coding RNAs (lncRNAs) play crucial roles in cancer cell growth and death, given their involvement in regulating downstream gene expression levels and numerous cellular processes. Cell death, especially non-apoptotic regulated cell death (RCD), such as ferroptosis, pyroptosis and necroptosis, significantly impacts cancer proliferation, invasion and metastasis. Understanding the interplay between lncRNAs and the diverse forms of cell death in cancer is imperative. Modulating lncRNA expression can regulate cancer onset and progression, offering promising therapeutic avenues. This review discusses the mechanisms by which lncRNAs modulate non-apoptotic RCDs in cancer, highlighting their potential as biomarkers for various cancer types. Elucidating the role of lncRNAs in cell death pathways provides valuable insights for personalised cancer interventions.
Collapse
Affiliation(s)
- Ke Huang
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Li Yu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Dingci Lu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Ziyi Zhu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Min Shu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Zhaowu Ma
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
44
|
Li Y, Vulpe C, Lammers T, Pallares RM. Assessing inorganic nanoparticle toxicity through omics approaches. NANOSCALE 2024; 16:15928-15945. [PMID: 39145718 DOI: 10.1039/d4nr02328e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the last two decades, the development of nanotechnology has resulted in inorganic nanoparticles playing crucial roles in key industries, ranging from healthcare to energy technologies. For instance, gold and silver nanoparticles are widely used in rapid COVID-19 and flu tests, titania and zinc oxide nanoparticles are commonly found in cosmetic products, and superparamagnetic iron oxide nanoparticles have been clinically exploited as contrast agents and anti-anemia medicines. As a result, human exposure to nanomaterials is continuously increasing, raising concerns about their potential adverse health effects. Historically, the study of nanoparticle toxicity has largely relied on macroscopic observations obtained in different in vitro and in vivo models, resulting in readouts such as median lethal dose, biodistribution profile, and/or histopathological assessment. In recent years, omics methodologies, including transcriptomics, epigenomics, proteomics, metabolomics, and lipidomics, are increasingly used to characterize the biological interactions of nanomaterials, providing a better and broader understanding of their impact and mechanisms of toxicity. These approaches have been able to identify important genes and gene products that mediate toxicological effects, as well as endogenous functions and pathways dysregulated by nanoparticles. Omics methods improve our understanding of nanoparticle biology, and unravel mechanistic insights into nanomedicine-based therapies. This review aims to provide a deeper understanding and new perspectives of omics approaches to characterize the toxicity and biological interactions of inorganic nanoparticles, and improve the safety of nanoparticle applications.
Collapse
Affiliation(s)
- Yanchen Li
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
45
|
Xuan P, Wang W, Cui H, Wang S, Nakaguchi T, Zhang T. Mask-Guided Target Node Feature Learning and Dynamic Detailed Feature Enhancement for lncRNA-Disease Association Prediction. J Chem Inf Model 2024; 64:6662-6675. [PMID: 39112431 DOI: 10.1021/acs.jcim.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Identifying new relevant long noncoding RNAs (lncRNAs) for various human diseases can facilitate the exploration of the causes and progression of these diseases. Recently, several graph inference methods have been proposed to predict disease-related lncRNAs by exploiting the topological structure and node attributes within graphs. However, these methods did not prioritize the target lncRNA and disease nodes over auxiliary nodes like miRNA nodes, potentially limiting their ability to fully utilize the features of the target nodes. We propose a new method, mask-guided target node feature learning and dynamic detailed feature enhancement for lncRNA-disease association prediction (MDLD), to enhance node feature learning for improved lncRNA-disease association prediction. First, we designed a heterogeneous graph masked transformer autoencoder to guide feature learning, focusing more on the features of target lncRNA (disease) nodes. The target nodes were increasingly masked as training progressed, which helps develop a more robust prediction model. Second, we developed a graph convolutional network with dynamic residuals (GCNDR) to learn and integrate the heterogeneous topology and features of all lncRNA, disease, and miRNA nodes. GCNDR employs an interlayer residual strategy and a residual evolution strategy to mitigate oversmoothing caused by multilayer graph convolution. The interlayer residual strategy estimates the importance of node features learned in the previous GCN encoding layer for nodes in the current encoding layer. Additionally, since there are dependencies in the importance of features of individual lncRNA (disease, miRNA) nodes across multiple encoding layers, a gated recurrent unit-based strategy is proposed to encode these dependencies. Finally, we designed a perspective-level attention mechanism to obtain more informative features of lncRNA and disease node pairs from the perspectives of mask-enhanced and dynamic-enhanced node features. Cross-validation experimental results demonstrated that MDLD outperformed 10 other state-of-the-art prediction methods. Ablation experiments and case studies on candidate lncRNAs for three diseases further proved the technical contributions of MDLD and its capability to discover disease-related lncRNAs.
Collapse
Affiliation(s)
- Ping Xuan
- Department of Computer Science and Technology, Shantou University, Shantou 515063, China
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| | - Wei Wang
- Department of Computer Science and Technology, Shantou University, Shantou 515063, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne 3083, Australia
| | - Shuai Wang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Toshiya Nakaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba 2638522, Japan
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
46
|
Wu H, Yuan H, Duan Y, Li G, Du J, Wang P, Li Z. LncRNA495810 Promotes Proliferation and Migration of Hepatocellular Carcinoma Cells by Interacting with FABP5. BIOLOGY 2024; 13:644. [PMID: 39194582 DOI: 10.3390/biology13080644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the malignant tumors with high morbidity and mortality. Long non-coding RNAs (lncRNAs) are frequently dysregulated in human cancers and play an important role in the initiation and progression of HCC. Here, we investigated the expression of a new reported lncRNA495810 in our previous study by analyzing the publicly available datasets and using RT-qPCR assay. The cell proliferation experiment, cell cycle and apoptosis assay, wound healing assay, cell migration assay were used to explore the biological function of lncRNA495810 in HCC. The western blot, RNA pull down and RNA immunoprecipitation (RIP) detection were used to investigate the potential molecular mechanisms of lncRNA495810. The results demonstrated that lncRNA495810 was significantly upregulated in hepatocellular carcinoma and associated with poor prognosis of hepatocellular carcinoma patients. Moreover, it proved that lncRNA495810 promotes the proliferation and metastasis of hepatoma cells by directly binding and upregulating the expression of fatty acid-binding protein 5. These results reveal the oncogenic roles of lncRNA495810 in HCC and provide a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Haiyan Yuan
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yiwei Duan
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Guangjun Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jin'e Du
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Panfeng Wang
- Shanxi Provincial Inspection and Testing Center (Shanxi Provincial Institute of Standard Metrology Technology), Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
47
|
Yankey A, Oh M, Lee BL, Desai TK, Somarowthu S. A novel partnership between lncTCF7 and SND1 regulates the expression of the TCF7 gene via recruitment of the SWI/SNF complex. Sci Rep 2024; 14:19384. [PMID: 39169000 PMCID: PMC11339422 DOI: 10.1038/s41598-024-69792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in cellular pathways and disease progression, yet their molecular mechanisms remain largely understudied. The lncRNA lncTCF7 has been shown to promote tumor progression by recruiting the SWI/SNF complex to the TCF7 promoter, activating its expression and the WNT signaling pathway. However, how lncTCF7 recruits SWI/SNF remains to be determined, and lncTCF7-specific binding partners are unknown. Using RNA-pulldown and quantitative mass spectrometry, we identified a novel interacting protein partner for lncTCF7, SND1, a multifunctional RNA binding protein that can also function as a transcription co-activator. Knockdown analysis of lncTCF7 and SND1 reveals that they are both required for the expression of TCF7. Chromatin immunoprecipitation assays suggest that both SND1 and lncTCF7 are required for recruiting the SWI/SNF chromatin remodeling complex, and these functions, in tandem, activate the expression of TCF7. Finally, using structural probing and RNA-pulldown of lncTCF7 and its subdomains, we highlight the potential binding region for SND1 in the 3'-end of lncTCF7. Overall, this study highlights the critical roles lncRNAs play in regulating gene expression and provides new insights into the complex network of interactions that underlie this process.
Collapse
Affiliation(s)
- Allison Yankey
- Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Mihyun Oh
- Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Bo Lim Lee
- Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Tisha Kalpesh Desai
- Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Srinivas Somarowthu
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Sweef O, Mahfouz R, Taşcıoğlu T, Albowaidey A, Abdelmonem M, Asfar M, Zaabout E, Corcino YL, Thomas V, Choi ES, Furuta S. Decoding LncRNA in COPD: Unveiling Prognostic and Diagnostic Power and Their Driving Role in Lung Cancer Progression. Int J Mol Sci 2024; 25:9001. [PMID: 39201688 PMCID: PMC11354875 DOI: 10.3390/ijms25169001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer represent formidable challenges in global health, characterized by intricate pathophysiological mechanisms and multifaceted disease progression. This comprehensive review integrates insights from diverse perspectives to elucidate the intricate roles of long non-coding RNAs (lncRNAs) in the pathogenesis of COPD and lung cancer, focusing on their diagnostic, prognostic, and therapeutic implications. In the context of COPD, dysregulated lncRNAs, such as NEAT1, TUG1, MALAT1, HOTAIR, and GAS5, emerge as pivotal regulators of genes involved in the disease pathogenesis and progression. Their identification, profiling, and correlation with the disease severity present promising avenues for prognostic and diagnostic applications, thereby shaping personalized disease interventions. These lncRNAs are also implicated in lung cancer, underscoring their multifaceted roles and therapeutic potential across both diseases. In the domain of lung cancer, lncRNAs play intricate modulatory roles in disease progression, offering avenues for innovative therapeutic approaches and prognostic indicators. LncRNA-mediated immune responses have been shown to drive lung cancer progression by modulating the tumor microenvironment, influencing immune cell infiltration, and altering cytokine production. Their dysregulation significantly contributes to tumor growth, metastasis, and chemo-resistance, thereby emphasizing their significance as therapeutic targets and prognostic markers. This review summarizes the transformative potential of lncRNA-based diagnostics and therapeutics for COPD and lung cancer, offering valuable insights into future research directions for clinical translation and therapeutic development.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Reda Mahfouz
- Core Laboratory, University Hospital Cleveland Medical Center, Department of Pathology, School of Medicine, Case Western Reserve University, 1100 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Clinical Pathology, Faculty of Medicine, Menofia University, Shebin-Elkom 32511, Egypt
| | - Tülin Taşcıoğlu
- Department of Molecular Biology and Genetics, Demiroglu Bilim University, Esentepe Central Campus, Besiktas, 34394 Istanbul, Turkey
| | - Ali Albowaidey
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Mohamed Abdelmonem
- Department of Pathology, Transfusion Medicine Service, Stanford Healthcare, Stanford, CA 94305, USA
| | - Malek Asfar
- Department of Pathology, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Elsayed Zaabout
- Department of Therapeutics & Pharmacology, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
| | - Yalitza Lopez Corcino
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Venetia Thomas
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Eun-Seok Choi
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| |
Collapse
|
49
|
Singh DK, Cong Z, Song YJ, Liu M, Chaudhary R, Liu D, Wang Y, Prasanth R, K C R, Lizarazo S, Akhnoukh M, Gholamalamdari O, Moitra A, Jenkins LM, Bhargava R, Nelson ER, Van Bortle K, Prasanth SG, Prasanth KV. MANCR lncRNA Modulates Cell-Cycle Progression and Metastasis by Cis-Regulation of Nuclear Rho-GEF. Mol Cell Biol 2024; 44:372-390. [PMID: 39133105 PMCID: PMC11376416 DOI: 10.1080/10985549.2024.2383773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
A significant number of the genetic alterations observed in cancer patients lie within nonprotein-coding segments of the genome, including regions coding for long noncoding RNAs (lncRNAs). LncRNAs display aberrant expression in breast cancer (BrCa), but the functional implications of this altered expression remain to be elucidated. By performing transcriptome screen in a triple negative BrCa (TNBC) isogenic 2D and 3D spheroid model, we observed aberrant expression of >1000 lncRNAs during BrCa progression. The chromatin-associated lncRNA MANCR shows elevated expression in metastatic TNBC. MANCR is upregulated in response to cellular stress and modulates DNA repair and cell proliferation. MANCR promotes metastasis as MANCR-depleted cells show reduced cell migration, invasion, and wound healing in vitro, and reduced metastatic lung colonization in xenograft experiments in vivo. Transcriptome analyses reveal that MANCR modulates expression and pre-mRNA splicing of genes, controlling DNA repair and checkpoint response. MANCR promotes the transcription of NET1A, a Rho-GEF that regulates DNA damage checkpoint and metastatic processes in cis, by differential promoter usage. Experiments suggest that MANCR regulates the expression of cancer-associated genes by modulating the association of various transcription factors and RNA-binding proteins. Our results identified the metastasis-promoting activities of MANCR in TNBC by cis-regulation of gene expression.
Collapse
Affiliation(s)
- Deepak K. Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhengmin Cong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Minxue Liu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ritu Chaudhary
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Dazhen Liu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Rajendra K C
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Simon Lizarazo
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Miriam Akhnoukh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Omid Gholamalamdari
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Anurupa Moitra
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Rohit Bhargava
- Department of Bioengineering, Cancer Center at Illinois, Beckman Institute of Advanced Science and Technology, UIUC, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Erik R. Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology-Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Supriya G. Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kannanganattu V. Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
50
|
Ferrito N, Báez-Flores J, Rodríguez-Martín M, Sastre-Rodríguez J, Coppola A, Isidoro-García M, Prieto-Matos P, Lacal J. Biomarker Landscape in RASopathies. Int J Mol Sci 2024; 25:8563. [PMID: 39201250 PMCID: PMC11354534 DOI: 10.3390/ijms25168563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
RASopathies are a group of related genetic disorders caused by mutations in genes within the RAS/MAPK signaling pathway. This pathway is crucial for cell division, growth, and differentiation, and its disruption can lead to a variety of developmental and health issues. RASopathies present diverse clinical features and pose significant diagnostic and therapeutic challenges. Studying the landscape of biomarkers in RASopathies has the potential to improve both clinical practices and the understanding of these disorders. This review provides an overview of recent discoveries in RASopathy molecular profiling, which extend beyond traditional gene mutation analysis. mRNAs, non-coding RNAs, protein expression patterns, and post-translational modifications characteristic of RASopathy patients within pivotal signaling pathways such as the RAS/MAPK, PI3K/AKT/mTOR, and Rho/ROCK/LIMK2/cofilin pathways are summarized. Additionally, the field of metabolomics holds potential for uncovering metabolic signatures associated with specific RASopathies, which are crucial for developing precision medicine. Beyond molecular markers, we also examine the role of histological characteristics and non-invasive physiological assessments in identifying potential biomarkers, as they provide evidence of the disease's effects on various systems. Here, we synthesize key findings and illuminate promising avenues for future research in RASopathy biomarker discovery, underscoring rigorous validation and clinical translation.
Collapse
Affiliation(s)
- Noemi Ferrito
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Julián Sastre-Rodríguez
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
| | - Alessio Coppola
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - María Isidoro-García
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Clinical Biochemistry Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Medicine, University of Salamanca (USAL), 37007 Salamanca, Spain
| | - Pablo Prieto-Matos
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Department of Pediatrics, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Biomedical and Diagnostics Science, University of Salamanca (USAL), 37007 Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| |
Collapse
|