1
|
Benziger PT, Kopping EJ, McLaughlin PA, Thanassi DG. Francisella tularensis disrupts TLR2-MYD88-p38 signaling early during infection to delay apoptosis of macrophages and promote virulence in the host. mBio 2023; 14:e0113623. [PMID: 37404047 PMCID: PMC10470500 DOI: 10.1128/mbio.01136-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
Francisella tularensis is a zoonotic pathogen and the causative agent of tularemia. F. tularensis replicates to high levels within the cytosol of macrophages and other host cells while subverting the host response to infection. Critical to the success of F. tularensis is its ability to delay macrophage apoptosis to maintain its intracellular replicative niche. However, the host-signaling pathway(s) modulated by F. tularensis to delay apoptosis are poorly characterized. The outer membrane channel protein TolC is required for F. tularensis virulence and its ability to suppress apoptosis and cytokine expression during infection of macrophages. We took advantage of the F. tularensis ∆tolC mutant phenotype to identify host pathways that are important for activating macrophage apoptosis and that are disrupted by the bacteria. Comparison of macrophages infected with wild-type or ∆tolC F. tularensis revealed that the bacteria interfere with TLR2-MYD88-p38 signaling at early times post infection to delay apoptosis, dampen innate host responses, and preserve the intracellular replicative niche. Experiments using the mouse pneumonic tularemia model confirmed the in vivo relevance of these findings, revealing contributions of TLR2 and MYD88 signaling to the protective host response to F. tularensis, which is modulated by the bacteria to promote virulence. IMPORTANCE Francisella tularensis is a Gram-negative intracellular bacterial pathogen and the causative agent of the zoonotic disease tularemia. F. tularensis, like other intracellular pathogens, modulates host-programmed cell death pathways to ensure its replication and survival. We previously identified the outer membrane channel protein TolC as required for the ability of F. tularensis to delay host cell death. However, the mechanism by which F. tularensis delays cell death pathways during intracellular replication is unclear despite being critical to pathogenesis. In the present study, we address this gap in knowledge by taking advantage of ∆tolC mutants of F. tularensis to uncover signaling pathways governing host apoptotic responses to F. tularensis and which are modulated by the bacteria during infection to promote virulence. These findings reveal mechanisms by which intracellular pathogens subvert host responses and enhance our understanding of the pathogenesis of tularemia.
Collapse
Affiliation(s)
- P. Todd Benziger
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - Erik J. Kopping
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - Patrick A. McLaughlin
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - David G. Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Cao M, Ma L, Yan C, Wang H, Ran M, Chen Y, Wang X, Liang X, Chai L, Li X. Mouse Ocilrp2/Clec2i negatively regulates LPS-mediated IL-6 production by blocking Dap12-Syk interaction in macrophage. Front Immunol 2022; 13:984520. [PMID: 36300111 PMCID: PMC9589251 DOI: 10.3389/fimmu.2022.984520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
C-type lectin Ocilrp2/Clec2i is widely expressed in dendritic cells, lymphokine-activated killer cells and activated T cells. Previous studies have shown that Ocilrp2 is an important regulator in the activation of T cells and NK cells. However, the role of Ocilrp2 in the inflammatory responses by activated macrophages is currently unknown. This study investigated the expression of inflammatory cytokines in LPS-induced macrophages from primary peritoneal macrophages silenced by specific siRNA target Ocilrp2. Ocilrp2 was significantly downregulated in macrophages via NF-κB and pathways upon LPS stimuli or VSV infection. Silencing Ocilrp2 resulted in the increased expression of IL-6 in LPS-stimulated peritoneal macrophages and mice. Moreover, IL-6 expression was reduced in LPS-induced Ocilrp2 over-expressing iBMDM cells. Furthermore, we found that Ocilrp2-related Syk activation is responsible for expressing inflammatory cytokines in LPS-stimulated macrophages. Silencing Ocilrp2 significantly promotes the binding of Syk to Dap12. Altogether, we identified the Ocilrp2 as a critical role in the TLR4 signaling pathway and inflammatory macrophages’ immune regulation, and added mechanistic insights into the crosstalk between TLR and Syk signaling.
Collapse
Affiliation(s)
- Mingya Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- Institute of Translational Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lina Ma
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Chenyang Yan
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Han Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Mengzhe Ran
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Ying Chen
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Xiao Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Xiaonan Liang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Lihui Chai
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- Institute of Translational Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Lihui Chai, ; Xia Li,
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- Institute of Translational Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Lihui Chai, ; Xia Li,
| |
Collapse
|
3
|
Kinkead LC, Krysa SJ, Allen LAH. Neutrophil Survival Signaling During Francisella tularensis Infection. Front Cell Infect Microbiol 2022; 12:889290. [PMID: 35873156 PMCID: PMC9299441 DOI: 10.3389/fcimb.2022.889290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/07/2022] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are the most abundant and shortest-lived leukocytes in humans and tight regulation of neutrophil turnover via constitutive apoptosis is essential for control of infection and resolution of inflammation. Accordingly, aberrant neutrophil turnover is hallmark of many disease states. We have shown in previous work that the intracellular bacterial pathogen Francisella tularensis markedly prolongs human neutrophil lifespan. This is achieved, in part, by changes in neutrophil gene expression. Still unknown is the contribution of major neutrophil pro-survival signaling cascades to this process. The objective of this study was to interrogate the contributions of ERK and p38 MAP kinase, Class I phosphoinositide 3-kinases (PI3K), AKT, and NF-κB to neutrophil survival in our system. We demonstrate that both ERK2 and p38α were activated in F. tularensis-infected neutrophils, but only p38α MAPK was required for delayed apoptosis and the rate of cell death in the absence of infection was unchanged. Apoptosis of both infected and uninfected neutrophils was markedly accelerated by the pan-PI3K inhibitor LY2094002, but AKT phosphorylation was not induced, and neutrophil death was not enhanced by AKT inhibitors. In addition, isoform specific and selective inhibitors revealed a unique role for PI3Kα in neutrophil survival after infection, whereas only simultaneous inhibition of PI3Kα and PI3kδ accelerated death of the uninfected controls. Finally, we show that inhibition of NF-κB triggered rapid death of neutrophil after infection. Thus, we defined roles for p38α, PI3Kα and NF-κB delayed apoptosis of F. tularensis-infected cells and advanced understanding of Class IA PI3K isoform activity in human neutrophil survival.
Collapse
Affiliation(s)
- Lauren C. Kinkead
- Inflammation Program, University of Iowa, Iowa City, IA, United States,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States,Iowa City VA Health Care System, Iowa City, IA, United States
| | - Samantha J. Krysa
- Inflammation Program, University of Iowa, Iowa City, IA, United States,Iowa City VA Health Care System, Iowa City, IA, United States,Molecular Medicine Training Program, University of Iowa, Iowa City, IA, United States
| | - Lee-Ann H. Allen
- Inflammation Program, University of Iowa, Iowa City, IA, United States,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States,Iowa City VA Health Care System, Iowa City, IA, United States,Molecular Medicine Training Program, University of Iowa, Iowa City, IA, United States,Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States,Harry S. Truman Memorial VA Hospital, Columbia, MO, United States,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States,*Correspondence: Lee-Ann H. Allen,
| |
Collapse
|
4
|
Wu J, Peng J, Zhou Y, Zhang R, Wang Z, Hu N, Zhang D, Quan G, Wu Y, Feng J, Shen B, Zhao J, Zhang Y, Yang K, Luo L. Screening and Identification of A Novel Anti-Siglec-15 Human Antibody 3F1 and Relevant Antitumor Activity. Mol Pharmacol 2022; 102:161-171. [PMID: 35764384 DOI: 10.1124/molpharm.121.000470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/19/2022] [Indexed: 11/22/2022] Open
Abstract
Siglec-15 is an important immunosuppressive molecule considered to be a key target in next generation tumor immunotherapy. In this study, we screened 22 high affinity antibodies that specifically recognize human siglec-15 by using a large human phage antibody library and 5 representative sequences were selected for further study. The results showed the binding activity of 5 antibodies to siglec-15 (EC50 ranged from 0.02368μg /mL to 0.07949 μg /mL) and in 2 siglec-15 overexpressed cell lines, 3 antibodies had the strongest binding activity, so the 2 clones were discarded for further study. Subsequently the affinity of 3 antibodies were measured by Bio-layer interferometry technology (5-9×10E-09M). As the reported ligands of siglec-15, the binding activity of siglec-15 and sialyl-Tn, CD44, MAG and LRRC4C can be blocked by 3 of the antibodies. Among these, 3F1 had a competitive advantage. Then, the antibody 3F1 showed an obvious ADCC effect (EC50 were 0.85 μg/mL). Further, antibody 3F1 can reverse the inhibitory effect of siglec-15 on lymphocyte proliferation (especially CD4+T, CD8+T) and cytokine release (IFN-γ). Given the above results, 3F1 was selected as a candidate for the in vivo pharmacodynamics study. In the tumor model of Balb/c Nude mice, 3F1 (10 mg/kg) showed certain anti-tumor effects (TGI was 31.5%) while the combination of 3F1 (5 mg/kg) and ERBITUX (5 mg/kg) showed significant antitumor effects (TGI was 48.7%) compared with the PBS group. In conclusion, novel human antibody 3F1 has anti-tumor activity and is expected to be an innovative candidate drug targeting siglec-15 for tumor immunotherapy Significance Statement Siglec-15 is considered as an important target in the next generation of tumor immunotherapy. 3F1 is expected to be the most promising potential candidate for targeting siglec-15 for cancer treatment, and could provide a reference for the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Jiaguo Wu
- Dali University; Institute of Pharmacology and Toxicology, China
| | - Jingyi Peng
- Institute of Pharmacology and Toxicology, China
| | | | - Ran Zhang
- Hunan Normal University School of Medicine, China
| | - Zhihong Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | - Naijing Hu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | - Dingmu Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | - Guiqi Quan
- Institute of Pharmacology and Toxicology, China
| | - Yuanyu Wu
- Institute of Pharmacology and Toxicology, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | | | - Yan Zhang
- Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, China
| | - Kaiming Yang
- School of Basic Medical Sciences of Dali University, China
| | | |
Collapse
|
5
|
Qiao Y, Yan W, He J, Liu X, Zhang Q, Wang X. Identification, evolution and expression analyses of mapk gene family in Japanese flounder (Paralichthys olivaceus) provide insight into its divergent functions on biotic and abiotic stresses response. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:106005. [PMID: 34731643 DOI: 10.1016/j.aquatox.2021.106005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Mitogen-activated protein kinase (MAPK) are a series of serine/threonine protein kinases showing evolutionary conservation, which can be activated by many stimulus signals and then transfer them from cell membrane to nucleus. MAPKs regulate a variety of biological processes, such as apoptosis, hormone signaling and immune response. In this study, 14 putative mapk genes in Japanese flounder were identified, and their basic physical and chemical properties were characterized. Phylogenetic analysis showed that mapk genes were divided into three main subfamilies, including ERK, JNK and the p38 MAPK. Selection pressure analysis revealed they were evolutionarily-constrained and undergone strong purifying selection. Gene structure and conserved protein motif comparison suggested high levels of conservation in members of mapk gene family. The expression patterns were further investigated in each embryonic and larval development stages and different tissues. In addition, RNA-seq analyses after bacteria and temperature stresses suggested mapk genes had different expression patterns. Three mapk genes showed significant differences in response to E. tarda challenge and five were induced significantly after temperature stress, indicating their potential functions. This systematic analysis provided valuable information for further understanding of the regulation mechanism of mapk gene family under different stresses in Japanese flounder.
Collapse
Affiliation(s)
- Yingjie Qiao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Weijie Yan
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Jiayi He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Murugesan G, Correia VG, Palma AS, Chai W, Li C, Feizi T, Martin E, Laux B, Franz A, Fuchs K, Weigle B, Crocker PR. Siglec-15 recognition of sialoglycans on tumor cell lines can occur independently of sialyl Tn antigen expression. Glycobiology 2021; 31:44-54. [PMID: 32501471 PMCID: PMC7799145 DOI: 10.1093/glycob/cwaa048] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Siglec-15 is a conserved sialic acid-binding Ig-like lectin expressed on osteoclast progenitors, which plays an important role in osteoclast development and function. It is also expressed by tumor-associated macrophages and by some tumors, where it is thought to contribute to the immunosuppressive microenvironment. It was shown previously that engagement of macrophage-expressed Siglec-15 with tumor cells expressing its ligand, sialyl Tn (sTn), triggered production of TGF-β. In the present study, we have further investigated the interaction between Siglec-15 and sTn on tumor cells and its functional consequences. Based on binding assays with lung and breast cancer cell lines and glycan-modified cells, we failed to see evidence for recognition of sTn by Siglec-15. However, using a microarray of diverse, structurally defined glycans, we show that Siglec-15 binds with higher avidity to sialylated glycans other than sTn or related antigen sequences. In addition, we were unable to demonstrate enhanced TGF-β secretion following co-culture of Siglec-15-expressing monocytic cell lines with tumor cells expressing sTn or following Siglec-15 cross-linking with monoclonal antibodies. However, we did observe activation of the SYK/MAPK signaling pathway following antibody cross-linking of Siglec-15 that may modulate the functional activity of macrophages.
Collapse
Affiliation(s)
- Gavuthami Murugesan
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Viviana G Correia
- Applied Molecular Biosciences Unit, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Angelina S Palma
- Applied Molecular Biosciences Unit, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Wengang Chai
- Glycosciences Laboratory, Imperial College London, London, United Kingdom
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy and Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao 266003, China
| | - Ten Feizi
- Glycosciences Laboratory, Imperial College London, London, United Kingdom
| | - Eva Martin
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Brigitte Laux
- Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Alexandra Franz
- Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Klaus Fuchs
- Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Bernd Weigle
- Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Paul R Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
7
|
Parashar K, Carpino N. A role for the Sts phosphatases in negatively regulating IFNγ-mediated production of nitric oxide in monocytes. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:523-533. [PMID: 32841534 PMCID: PMC7654413 DOI: 10.1002/iid3.336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
Introduction The atypical Sts phosphatases negatively regulate signaling pathways in diverse immune cell types, with two of their molecular targets being the related kinases Syk and Zap‐70. Mice lacking Sts expression (Sts−/−) are resistant to infection by the live vaccine strain (LVS) of Francisella tularensis. Although the mechanisms underlying the enhanced resistance of Sts−/− mice have not been definitively established, Sts−/− bone marrow‐derived monocytes (BMMs) demonstrate greater clearance of intracellular LVS following ex vivo infection, relative to wild type cells. To determine how the Sts proteins regulate monocyte bactericidal properties, we analyzed responses of infected cells. Methods Monocyte bacterial clearance was assayed using ex vivo coculture infections followed by colony‐forming unit analysis of intracellular bacteria. Levels of gene expression were quantified by quantitative reverse‐transcription polymerase chain reaction, levels of Nos2 protein levels were quantified by Western blot analysis, and levels of nitric oxide (NO) were quantified directly using the Griess reagent. We characterized monocyte cytokine production via enzyme‐linked immunosorbent assay. Results We demonstrate that Sts−/− monocyte cultures produce elevated levels of interferon‐γ (IFNγ) after infection, relative to wild type cultures. Sts−/− monocytes also demonstrate heightened responsiveness to IFNγ. Specifically, Sts−/− monocytes produce elevated levels of antimicrobial NO following IFNγ stimulation, and this NO plays an important role in LVS restriction. Additional IFNγ‐stimulated genes, including Ip10 and members of the Gbp gene family, also display heightened upregulation in Sts−/− cells. Both Sts‐1 and Sts‐2 contribute to the regulation of NO production, as evidenced by the responses of monocytes lacking each phosphatase individually. Finally, we demonstrate that the elevated production of IFNγ‐induced NO in Sts−/− monocytes is abrogated following chemical inhibition of Syk kinase. Conclusion Our results indicate a novel role for the Sts enzymes in regulating monocyte antibacterial responses downstream of IFNγ.
Collapse
Affiliation(s)
- Kaustubh Parashar
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York
| | - Nicholas Carpino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York
| |
Collapse
|
8
|
Wei X, Zhang Y, Li C, Ai K, Li K, Li H, Yang J. The evolutionarily conserved MAPK/Erk signaling promotes ancestral T-cell immunity in fish via c-Myc-mediated glycolysis. J Biol Chem 2020; 295:3000-3016. [PMID: 31996375 DOI: 10.1074/jbc.ra119.012231] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/23/2020] [Indexed: 01/02/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade is an ancient and evolutionarily conserved signaling pathway involved in numerous physiological processes. Despite great advances in understanding MAPK-mediated regulation of adaptive immune responses in mammals, its contribution to T-cell immunity in early vertebrates remains unclear. Herein, we used Nile tilapia (Oreochromis niloticus) to investigate the regulatory roles of MAPK/extracellular signal-regulated kinase (Erk) signaling in ancestral T-cell immunity of jawed fish. We found that Nile tilapia possesses an evolutionarily conserved MAPK/Erk axis that is activated through a classical three-tier kinase cascade, involving sequential phosphorylation of RAF proto-oncogene serine/threonine-protein kinase (Raf), MAPK/Erk kinase 1/2 (Mek1/2), and Erk1/2. In Nile tilapia, MAPK/Erk signaling participates in adaptive immune responses during bacterial infection. Upon T-cell activation, the MAPK/Erk axis is robustly activated, and MAPK/Erk blockade by specific inhibitors severely impairs T-cell activation. Furthermore, signals from MAPK/Erk were indispensable for primordial T cells to proliferate and exert their effector functions. Mechanistically, activation of the MAPK/Erk axis promoted glycolysis via induction of the transcriptional regulator proto-oncogene c-Myc (c-Myc), to ensure the proper activation and proliferation of fish T cells. Our results reveal the regulatory mechanisms of MAPK/Erk signaling in T-cell immunity in fish and highlight a close link between immune signals and metabolic programs. We propose that regulation of T-cell immunity by MAPK/Erk is a basic and sophisticated strategy that evolved before the emergence of the tetrapod lineage. These findings shed light on the evolution of the adaptive immune system.
Collapse
Affiliation(s)
- Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Cheng Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huiying Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
9
|
Zhang FL, Zhou BW, Yan ZZ, Zhao J, Zhao BC, Liu WF, Li C, Liu KX. 6-Gingerol attenuates macrophages pyroptosis via the inhibition of MAPK signaling pathways and predicts a good prognosis in sepsis. Cytokine 2019; 125:154854. [PMID: 31539844 DOI: 10.1016/j.cyto.2019.154854] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Sepsis is a major cause of death for ICU patients. Sepsis development depends heavily on the presence of mature IL-1β cytokine. This study evaluates the potential therapeutic properties of a bioactive compound known as 6-gingerol on sepsis. This compound has previously been demonstrated to possess anti-inflammatory properties both in vivo and in vitro. METHODS C57BL/6 mice was used to establish models of sepsis by means of cecal ligation and puncture (CLP). Upon treatment with 6-gingerol, we assessed the survival rate of mice and measured the levels of key pro-inflammatory cytokines in serum and colon tissues. Sepsis pathogenesis was further explored using the RAW264.7 cell line and bone marrow-derived macrophages (BMDMs) treated with ATP and lipopolysaccharide (LPS). The impact of 6-gingerol on pyroptosis was also examined. In addition, we assessed the role of MAPK signaling in 6-gingerol-induced effects in BMDMs and RAW264.7 cells. RESULTS In CLP mice, 6-gingerol significantly ameliorated sepsis development, which was associated with the reduction of serum IL-1β. In BMDMs and RAW264.7 cells, 6-gingerol strongly attenuated pyroptosis as well as the release of caspase-1p20, HMGB1, mature IL-1β, IL-18 in response to ATP and LPS treatment. 6-Gingerol conferred these effects by blocking MAPK activation. Exposure to an ERK agonist (EGF) reversed effects of 6-gingerol, causing pyroptosis, LDH and caspase-1p20 release. CONCLUSIONS By targeting MAPK signaling, 6-gingerol significantly suppressed secretion of pro-inflammatory cytokines and inhibited macrophage cells pyroptosis resulting in overall inhibition of sepsis development.
Collapse
Affiliation(s)
- Fang-Ling Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo-Wei Zhou
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng-Zheng Yan
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jin Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bing-Cheng Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
10
|
Kubelkova K, Macela A. Innate Immune Recognition: An Issue More Complex Than Expected. Front Cell Infect Microbiol 2019; 9:241. [PMID: 31334134 PMCID: PMC6616152 DOI: 10.3389/fcimb.2019.00241] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022] Open
Abstract
Primary interaction of an intracellular bacterium with its host cell is initiated by activation of multiple signaling pathways in response to bacterium recognition itself or as cellular responses to stress induced by the bacterium. The leading molecules in these processes are cell surface membrane receptors as well as cytosolic pattern recognition receptors recognizing pathogen-associated molecular patterns or damage-associated molecular patterns induced by the invading bacterium. In this review, we demonstrate possible sequences of events leading to recognition of Francisella tularensis, present findings on known mechanisms for manipulating cell responses to protect Francisella from being killed, and discuss newly published data from the perspective of early stages of host-pathogen interaction.
Collapse
Affiliation(s)
- Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | | |
Collapse
|
11
|
Behera S, Kapadia B, Kain V, Alamuru-Yellapragada NP, Murunikkara V, Kumar ST, Babu PP, Seshadri S, Shivarudraiah P, Hiriyan J, Gangula NR, Maddika S, Misra P, Parsa KV. ERK1/2 activated PHLPP1 induces skeletal muscle ER stress through the inhibition of a novel substrate AMPK. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1702-1716. [DOI: 10.1016/j.bbadis.2018.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/29/2018] [Accepted: 02/22/2018] [Indexed: 11/28/2022]
|
12
|
Chiang CK, Tworak A, Kevany BM, Xu B, Mayne J, Ning Z, Figeys D, Palczewski K. Quantitative phosphoproteomics reveals involvement of multiple signaling pathways in early phagocytosis by the retinal pigmented epithelium. J Biol Chem 2017; 292:19826-19839. [PMID: 28978645 PMCID: PMC5712622 DOI: 10.1074/jbc.m117.812677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
One of the major biological functions of the retinal pigmented epithelium (RPE) is the clearance of shed photoreceptor outer segments (POS) through a multistep process resembling phagocytosis. RPE phagocytosis helps maintain the viability of photoreceptors that otherwise could succumb to the high metabolic flux and photo-oxidative stress associated with visual processing. The regulatory mechanisms underlying phagocytosis in the RPE are not fully understood, although dysfunction of this process contributes to the pathogenesis of multiple human retinal degenerative disorders, including age-related macular degeneration. Here, we present an integrated transcriptomic, proteomic, and phosphoproteomic analysis of phagocytosing RPE cells, utilizing three different experimental models: the human-derived RPE-like cell line ARPE-19, cultured murine primary RPE cells, and RPE samples from live mice. Our combined results indicated that early stages of phagocytosis in the RPE are mainly characterized by pronounced changes in the protein phosphorylation level. Global phosphoprotein enrichment analysis revealed involvement of PI3K/Akt, mechanistic target of rapamycin (mTOR), and MEK/ERK pathways in the regulation of RPE phagocytosis, confirmed by immunoblot analyses and in vitro phagocytosis assays. Most strikingly, phagocytosis of POS by cultured RPE cells was almost completely blocked by pharmacological inhibition of phosphorylation of Akt. Our findings, along with those of previous studies, indicate that these phosphorylation events allow the RPE to integrate multiple signals instigated by shed POS at different stages of the phagocytic process.
Collapse
Affiliation(s)
- Cheng-Kang Chiang
- From the Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- the Department of Chemistry, National Dong Hwa University, No. 1 Sec. 2 Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan
| | | | | | - Bo Xu
- From the Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Janice Mayne
- From the Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Zhibin Ning
- From the Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Daniel Figeys
- From the Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada,
- the Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Krzysztof Palczewski
- the Department of Pharmacology and
- the Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, and
| |
Collapse
|
13
|
Fabrik I, Link M, Putzova D, Plzakova L, Lubovska Z, Philimonenko V, Pavkova I, Rehulka P, Krocova Z, Hozak P, Santic M, Stulik J. The Early Dendritic Cell Signaling Induced by Virulent Francisella tularensis Strain Occurs in Phases and Involves the Activation of Extracellular Signal-Regulated Kinases (ERKs) and p38 In the Later Stage. Mol Cell Proteomics 2017; 17:81-94. [PMID: 29046388 DOI: 10.1074/mcp.ra117.000160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/22/2017] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) infected by Francisella tularensis are poorly activated and do not undergo classical maturation process. Although reasons of such unresponsiveness are not fully understood, their impact on the priming of immunity is well appreciated. Previous attempts to explain the behavior of Francisella-infected DCs were hypothesis-driven and focused on events at later stages of infection. Here, we took an alternative unbiased approach by applying methods of global phosphoproteomics to analyze the dynamics of cell signaling in primary DCs during the first hour of infection by Francisella tularensis Presented results show that the early response of DCs to Francisella occurs in phases and that ERK and p38 signaling modules induced at the later stage are differentially regulated by virulent and attenuated ΔdsbA strain. These findings imply that the temporal orchestration of host proinflammatory pathways represents the integral part of Francisella life-cycle inside hijacked DCs.
Collapse
Affiliation(s)
- Ivo Fabrik
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Marek Link
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Daniela Putzova
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Lenka Plzakova
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Zuzana Lubovska
- §Institute of Molecular Genetics ASCR v.v.i., Microscopy Centre, Electron Microscopy Core Facility, 142 20 Prague 4, Czech Republic
| | - Vlada Philimonenko
- §Institute of Molecular Genetics ASCR v.v.i., Microscopy Centre, Electron Microscopy Core Facility, 142 20 Prague 4, Czech Republic.,¶Institute of Molecular Genetics ASCR v.v.i., Department of Biology of the Cell Nucleus, 142 20 Prague 4, Czech Republic
| | - Ivona Pavkova
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Pavel Rehulka
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Zuzana Krocova
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Pavel Hozak
- §Institute of Molecular Genetics ASCR v.v.i., Microscopy Centre, Electron Microscopy Core Facility, 142 20 Prague 4, Czech Republic.,¶Institute of Molecular Genetics ASCR v.v.i., Department of Biology of the Cell Nucleus, 142 20 Prague 4, Czech Republic
| | - Marina Santic
- ‖Department of Microbiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Jiri Stulik
- From the ‡Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic;
| |
Collapse
|
14
|
Increased Resistance to Intradermal Francisella tularensis LVS Infection by Inactivation of the Sts Phosphatases. Infect Immun 2017. [PMID: 28630061 DOI: 10.1128/iai.00406-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Suppressor of TCR signaling proteins (Sts-1 and Sts-2) are two homologous phosphatases that negatively regulate signaling pathways in a number of hematopoietic lineages, including T lymphocytes. Mice lacking Sts expression are characterized by enhanced T cell responses. Additionally, a recent study demonstrated that Sts-/- mice are profoundly resistant to systemic infection by Candida albicans, with resistance characterized by enhanced survival, more rapid fungal clearance in key peripheral organs, and an altered inflammatory response. To investigate the role of Sts in the primary host response to infection by a bacterial pathogen, we evaluated the response of Sts-/- mice to infection by a Gram-negative bacterial pathogen. Francisella tularensis is a facultative bacterial pathogen that replicates intracellularly within a variety of cell types and is the causative agent of tularemia. Francisella infections are characterized by a delayed immune response, followed by an intense inflammatory reaction that causes widespread tissue damage and septic shock. Herein, we demonstrate that mice lacking Sts expression are significantly resistant to infection by the live vaccine strain (LVS) of F. tularensis Resistance is characterized by reduced lethality following high-dose intradermal infection, an altered cytokine response in the spleen, and enhanced bacterial clearance in multiple peripheral organs. Sts-/- bone marrow-derived monocytes and neutrophils, infected with F. tularensis LVS ex vivo, display enhanced restriction of intracellular bacteria. These observations suggest the Sts proteins play an important regulatory role in the host response to bacterial infection, and they underscore a role for Sts in regulating functionally relevant immune response pathways.
Collapse
|
15
|
Alamuru-Yellapragada NP, Vundyala S, Behera S, Parsa KVL. LPS depletes PHLPP levels in macrophages through the inhibition of SP1 dependent transcriptional regulation. Biochem Biophys Res Commun 2017; 486:533-538. [PMID: 28322791 DOI: 10.1016/j.bbrc.2017.03.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 11/18/2022]
Abstract
We have previously reported that bacterial endotoxin LPS attenuates expression of PHLPP, a ser/thr phosphatase, at both transcript and protein levels in different immune cells, however the underlying molecular mechanism is unknown and is of significant interest. Here, in line with the decreased transcript levels upon LPS treatment, we observed that LPS caused significant reduction in PHLPP promoter activity. We observed that SP1, a transcription factor frequently associated with inflammation, was recruited to the PHLPP promoter region. Ectopic expression of SP1 enhanced both transcript and protein levels of PHLPP while knockdown of SP1 or pharmacological inhibition of SP1 DNA binding by mithramycin reduced PHLPP expression. Moreover, over-expression of SP1 co-activators CBP/p300 augmented SP1 driven PHLPP promoter activity. Of note, LPS treatment depleted SP1 and CBP protein levels due to which recruitment of SP1 to PHLPP promoter was reduced. Further, we found that re-introduction of SP1 restored promoter activity and transcript levels of PHLPP in LPS stimulated cells. Collectively, our data revealed the molecular mechanism underlying the regulation of PHLPP expression during LPS induced macrophage inflammatory response.
Collapse
Affiliation(s)
- Neeraja P Alamuru-Yellapragada
- Department of Biology, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, Telangana, India
| | - Sanghamitra Vundyala
- Department of Biology, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, Telangana, India
| | - Soma Behera
- Department of Biology, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, Telangana, India
| | - Kishore V L Parsa
- Department of Biology, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, Telangana, India.
| |
Collapse
|
16
|
Saint RJ, D'Elia RV, Bryant C, Clark GC, Atkins HS. Mitogen-activated protein kinases (MAPKs) are modulated during Francisella tularensis infection, but inhibition of extracellular-signal-regulated kinases (ERKs) is of limited therapeutic benefit. Eur J Clin Microbiol Infect Dis 2016; 35:2015-2024. [PMID: 27714591 PMCID: PMC5138274 DOI: 10.1007/s10096-016-2754-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023]
Abstract
Francisella tularensis is a Gram-negative intracellular bacterium that causes the disease tularemia. The disease can be fatal if left untreated and there is currently no licenced vaccine available; the identification of new therapeutic targets is therefore required. Toll-like receptors represent an interesting target for therapeutic modulation due to their essential role in generating immune responses. In this study, we analysed the in vitro expression of the key mitogen-activated protein kinases (MAPKs) p38, JNK and ERK in murine alveolar macrophages during infection with F. tularensis. The phosphorylation profile of ERK highlighted its potential as a target for therapeutic modulation and subsequently the effect of ERK manipulation was measured in a lethal intranasal F. tularensis in vivo model of infection. The selective ERK1/2 inhibitor PD0325901 was administered orally to mice either pre- or post-challenge with F. tularensis strain LVS. Both treatment regimens selectively reduced ERK expression, but only the pre-exposure treatment produced decreased bacterial burden in the spleen and liver, which correlated with a significant reduction in the pro-inflammatory cytokines IFN-γ, MCP-1, IL-6, and TNF-α. However, no overall improvements in survival were observed for treated animals in this study. ERK may represent a useful therapeutic target where selective dampening of the immune response (to control the damaging pathology seen during infection) is combined with antibiotic treatment required to eradicate bacterial infection. This combination treatment strategy has been shown to be effective in other models of tularemia.
Collapse
Affiliation(s)
- R J Saint
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - R V D'Elia
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.
| | - C Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - G C Clark
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - H S Atkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.,University of Exeter, Exeter, UK
| |
Collapse
|
17
|
Yasuda K, Ushio H. Keyhole limpet hemocyanin induces innate immunity via Syk and Erk phosphorylation. EXCLI JOURNAL 2016; 15:474-481. [PMID: 27822175 PMCID: PMC5083961 DOI: 10.17179/excli2016-488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/11/2016] [Indexed: 01/01/2023]
Abstract
Hemocyanin is an extracellular respiratory protein containing copper in hemolymph of invertebrates, such as Mollusk and Arthropod. Keyhole limpet hemocyanin (KLH) is one of hemocyanins and has many years of experience for vaccine developments and immunological studies in mammals including human. However, the association between KLH and the immune systems, especially the innate immune systems, remains poorly understood. The aim of this study is to clarify the direct effects of KLH on the innate immune systems. KLH activated an inflammation-related transcription factor NF-κB as much as lipopolysaccharide (LPS) in a human monocytic leukemia THP-1 reporter cell line. We have found that the KLH-induced NF-κB activation is partially involved in a spleen tyrosine kinase (Syk) pathway. We have also successfully revealed that an extracellular signal-regulated kinase (Erk), a member of mitogen-activated protein kinases, is located in an upstream of NF-κB activation induced by KLH. Furthermore, a Syk phosphorylation inhibitor partially suppressed the Erk activation in KLH-stimulated THP-1. These results suggest that both Syk and Erk associate with the KLH-induced NF-κB activation in the human monocyte.
Collapse
Affiliation(s)
- Kyoko Yasuda
- Laboratory of Marine Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Hideki Ushio
- Laboratory of Marine Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
18
|
Shakerley NL, Chandrasekaran A, Trebak M, Miller BA, Melendez JA. Francisella tularensis Catalase Restricts Immune Function by Impairing TRPM2 Channel Activity. J Biol Chem 2016; 291:3871-81. [PMID: 26679996 PMCID: PMC4759167 DOI: 10.1074/jbc.m115.706879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
As an innate defense mechanism, macrophages produce reactive oxygen species that weaken pathogens and serve as secondary messengers involved in immune function. The Gram-negative bacterium Francisella tularensis utilizes its antioxidant armature to limit the host immune response, but the mechanism behind this suppression is not defined. Here we establish that F. tularensis limits Ca(2+) entry in macrophages, thereby limiting actin reorganization and IL-6 production in a redox-dependent fashion. Wild type (live vaccine strain) or catalase-deficient F. tularensis (ΔkatG) show distinct profiles in their H2O2 scavenging rates, 1 and 0.015 pm/s, respectively. Murine alveolar macrophages infected with ΔkatG display abnormally high basal intracellular Ca(2+) concentration that did not increase further in response to H2O2. Additionally, ΔkatG-infected macrophages displayed limited Ca(2+) influx in response to ionomycin, as a result of ionophore H2O2 sensitivity. Exogenously added H2O2 or H2O2 generated by ΔkatG likely oxidizes ionomycin and alters its ability to transport Ca(2+). Basal increases in cytosolic Ca(2+) and insensitivity to H2O2-mediated Ca(2+) entry in ΔkatG-infected cells are reversed by the Ca(2+) channel inhibitors 2-aminoethyl diphenylborinate and SKF-96365. 2-Aminoethyl diphenylborinate but not SKF-96365 abrogated ΔkatG-dependent increases in macrophage actin remodeling and IL-6 secretion, suggesting a role for H2O2-mediated Ca(2+) entry through the transient receptor potential melastatin 2 (TRPM2) channel in macrophages. Indeed, increases in basal Ca(2+), actin polymerization, and IL-6 production are reversed in TRPM2-null macrophages infected with ΔkatG. Together, our findings provide compelling evidence that F. tularensis catalase restricts reactive oxygen species to temper macrophage TRPM2-mediated Ca(2+) signaling and limit host immune function.
Collapse
Affiliation(s)
- Nicole L Shakerley
- From the Colleges of Nanoscale Science, State University of New York, Polytechnic Institute, Albany, New York 12203 and
| | - Akshaya Chandrasekaran
- From the Colleges of Nanoscale Science, State University of New York, Polytechnic Institute, Albany, New York 12203 and
| | - Mohamed Trebak
- From the Colleges of Nanoscale Science, State University of New York, Polytechnic Institute, Albany, New York 12203 and the Departments of Cellular & Molecular Physiology and
| | - Barbara A Miller
- Pediatrics and Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - J Andrés Melendez
- From the Colleges of Nanoscale Science, State University of New York, Polytechnic Institute, Albany, New York 12203 and
| |
Collapse
|
19
|
Xu Y, Zhang R, Li C, Yin X, Lv C, Wang Y, Zhao W, Zhang X. Dexmedetomidine attenuates acute lung injury induced by lipopolysaccharide in mouse through inhibition of MAPK pathway. Fundam Clin Pharmacol 2015. [PMID: 26211495 DOI: 10.1111/fcp.12138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yingzhen Xu
- Department of Anesthesiology; Binzhou Medical University Hospital; Binzhou Medical University; Binzhou Shandong 256603 China
| | - Ruyi Zhang
- Department of Anesthesiology; Binzhou Medical University Hospital; Binzhou Medical University; Binzhou Shandong 256603 China
| | - Chunli Li
- School of Pharmaceutical Sciences; Binzhou Medical University; Yantai Shandong 264003 China
| | - Xue Yin
- School of Pharmaceutical Sciences; Binzhou Medical University; Yantai Shandong 264003 China
| | - Changjun Lv
- School of Pharmaceutical Sciences; Binzhou Medical University; Yantai Shandong 264003 China
| | - Yaoqi Wang
- Department of Anesthesiology; Binzhou Medical University Hospital; Binzhou Medical University; Binzhou Shandong 256603 China
| | - Wenxiang Zhao
- Department of Anesthesiology; Binzhou Medical University Hospital; Binzhou Medical University; Binzhou Shandong 256603 China
| | - Xiuli Zhang
- School of Pharmaceutical Sciences; Binzhou Medical University; Yantai Shandong 264003 China
| |
Collapse
|
20
|
Yang M, Liu J, Piao C, Shao J, Du J. ICAM-1 suppresses tumor metastasis by inhibiting macrophage M2 polarization through blockade of efferocytosis. Cell Death Dis 2015; 6:e1780. [PMID: 26068788 PMCID: PMC4669827 DOI: 10.1038/cddis.2015.144] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022]
Abstract
Efficient clearance of apoptotic cells (efferocytosis) can profoundly influence tumor-specific immunity. Tumor-associated macrophages are M2-polarized macrophages that promote key processes in tumor progression. Efferocytosis stimulates M2 macrophage polarization and contributes to cancer metastasis, but the signaling mechanism underlying this process is unclear. Intercellular cell adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein member of the immunoglobulin superfamily, which has been implicated in mediating cell–cell interaction and outside-in cell signaling during the immune response. We report that ICAM-1 expression is inversely associated with macrophage infiltration and the metastasis index in human colon tumors by combining Oncomine database analysis and immunohistochemistry for ICAM-1. Using a colon cancer liver metastasis model in ICAM-1-deficient (ICAM-1−/−) mice and their wild-type littermates, we found that loss of ICAM-1 accelerated liver metastasis of colon carcinoma cells. Moreover, ICAM-1 deficiency increased M2 macrophage polarization during tumor progression. We further demonstrated that ICAM-1 deficiency in macrophages led to promotion of efferocytosis of apoptotic tumor cells through activation of the phosphatidylinositol 3 kinase/Akt signaling pathway. More importantly, coculture of ICAM-1−/− macrophages with apoptotic cancer cells resulted in an increase of M2-like macrophages, which was blocked by an efferocytosis inhibitor. Our findings demonstrate a novel role for ICAM-1 in suppressing M2 macrophage polarization via downregulation of efferocytosis in the tumor microenvironment, thereby inhibiting metastatic tumor progression.
Collapse
Affiliation(s)
- M Yang
- 1] Beijing Anzhen Hospital, Capital Medical University, Beijing, China [2] Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing, China
| | - J Liu
- 1] Beijing Anzhen Hospital, Capital Medical University, Beijing, China [2] Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing, China
| | - C Piao
- 1] Beijing Anzhen Hospital, Capital Medical University, Beijing, China [2] Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing, China
| | - J Shao
- Second Affiliated Hospital to Nanchang University, Jiangxi 330006, China
| | - J Du
- 1] Beijing Anzhen Hospital, Capital Medical University, Beijing, China [2] Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing, China
| |
Collapse
|
21
|
Ghonime MG, Mitra S, Eldomany RA, Wewers MD, Gavrilin MA. Inflammasome priming is similar for francisella species that differentially induce inflammasome activation. PLoS One 2015; 10:e0127278. [PMID: 25993107 PMCID: PMC4436270 DOI: 10.1371/journal.pone.0127278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/13/2015] [Indexed: 01/15/2023] Open
Abstract
Inflammasome activation is a two-step process where step one, priming, prepares the inflammasome for its subsequent activation, by step two. Classically step one can be induced by LPS priming followed by step two, high dose ATP. Furthermore, when IL-18 processing is used as the inflammasome readout, priming occurs before new protein synthesis. In this context, how intracellular pathogens such as Francisella activate the inflammasome is incompletely understood, particularly regarding the relative importance of priming versus activation steps. To better understand these events we compared Francisella strains that differ in virulence and ability to induce inflammasome activation for their relative effects on step one vs. step two. When using the rapid priming model, i.e., 30 min priming by live or heat killed Francisella strains (step 1), followed by ATP (step 2), we found no difference in IL-18 release, p20 caspase-1 release and ASC oligomerization between Francisella strains (F. novicida, F. holarctica -LVS and F. tularensis Schu S4). This priming is fast, independent of bacteria viability, internalization and phagosome escape, but requires TLR2-mediated ERK phosphorylation. In contrast to their efficient priming capacity, Francisella strains LVS and Schu S4 were impaired in inflammasome triggering compared to F. novicida. Thus, observed differences in inflammasome activation by F. novicida, LVS and Schu S4 depend not on differences in priming but rather on their propensity to trigger the primed inflammasome.
Collapse
Affiliation(s)
- Mohammed G. Ghonime
- Davis Heart & Lung Research Institute and Pulmonary Allergy Critical Care and Sleep Medicine Division, The Ohio State University, Columbus, OH, 43210, United States of America
- Microbiology and Immunology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Srabani Mitra
- Davis Heart & Lung Research Institute and Pulmonary Allergy Critical Care and Sleep Medicine Division, The Ohio State University, Columbus, OH, 43210, United States of America
| | - Ramadan A. Eldomany
- Microbiology and Immunology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mark D. Wewers
- Davis Heart & Lung Research Institute and Pulmonary Allergy Critical Care and Sleep Medicine Division, The Ohio State University, Columbus, OH, 43210, United States of America
- * E-mail: and
| | - Mikhail A. Gavrilin
- Davis Heart & Lung Research Institute and Pulmonary Allergy Critical Care and Sleep Medicine Division, The Ohio State University, Columbus, OH, 43210, United States of America
- * E-mail: and
| |
Collapse
|
22
|
Gillette DD, Tridandapani S, Butchar JP. Monocyte/macrophage inflammatory response pathways to combat Francisella infection: possible therapeutic targets? Front Cell Infect Microbiol 2014; 4:18. [PMID: 24600590 PMCID: PMC3930869 DOI: 10.3389/fcimb.2014.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/02/2014] [Indexed: 01/05/2023] Open
Abstract
Francisella tularensis can bypass and suppress host immune responses, even to the point of manipulating immune cell phenotypes and intercellular inflammatory networks. Strengthening these responses such that immune cells more readily identify and destroy the bacteria is likely to become a viable (and perhaps necessary) strategy for combating infections with Francisella, especially given the likelihood of antibiotic resistance in the foreseeable future. Monocytes and macrophages offer a niche wherein Francisella can invade and replicate, resulting in substantially higher bacterial load that can overcome the host. As such, understanding their responses to Francisella may uncover potential avenues of therapy that could promote a lowering of bacterial burden and clearance of infection. These response pathways include Toll-like Receptor 2 (TLR2), the caspase-1 inflammasome, Interferons, NADPH oxidase, Phosphatidylinositide 3-kinase (PI3K), and the Ras pathway. In this review we summarize the literature pertaining to the roles of these pathways during Francisella infection, with an emphasis on monocyte/macrophage responses. The therapeutic targeting of one or more such pathways may ultimately become a valuable tool for the treatment of tularemia, and several possibilities are discussed.
Collapse
Affiliation(s)
- Devyn D Gillette
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Susheela Tridandapani
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Jonathan P Butchar
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| |
Collapse
|
23
|
Alamuru NP, Behera S, Butchar JP, Tridandapani S, Kaimal Suraj S, Babu PP, Hasnain SE, Ehtesham NZ, Parsa KVL. A novel immunomodulatory function of PHLPP1: inhibition of iNOS via attenuation of STAT1 ser727 phosphorylation in mouse macrophages. J Leukoc Biol 2014; 95:775-783. [PMID: 24443556 DOI: 10.1189/jlb.0713360] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/10/2013] [Accepted: 01/06/2014] [Indexed: 11/24/2022] Open
Abstract
PHLPP1 is a novel tumor suppressor, but its role in the regulation of innate immune responses, which are frequently dysregulated in cancer, is unexplored. Here, we report that LPS attenuated PHLPP1 expression at mRNA and protein levels in immune cells, suggesting its involvement in immune responses. To test this, we overexpressed PHLPP1 in RAW 264.7 macrophages and observed a dramatic reduction in LPS/IFN-γ-induced iNOS expression. Conversely, silencing of PHLPP1 by siRNA or by shRNA robustly augmented LPS/IFN-γ-induced iNOS expression. qPCR and iNOS promoter reporter experiments showed that PHLPP1 inhibited iNOS transcription. Mechanistic analysis revealed that PHLPP1 suppressed LPS/IFN-γ-induced phosphorylation of ser727 STAT1; however, the underlying mechanisms differed. PHLPP1 reduced IFN-γ-stimulated but not LPS-induced ERK1/2 phosphorylation, and inhibition of ERK1/2 abolished IFN-γ-induced ser727 STAT1 phosphorylation and iNOS expression. In contrast, PHLPP1 knockdown augmented LPS-induced but not IFN-γ-elicited p38 phosphorylation. Blockade of p38 abolished LPS-stimulated phosphorylation of ser727 STAT1 and iNOS expression. Furthermore, PHLPP1 suppressed LPS-induced phosphorylation of tyr701 STAT1 by dampening p38-dependent IFN-β feedback. Collectively, our data demonstrate for the first time that PHLPP1 plays a vital role in restricting innate immune responses of macrophages, and further studies may show it to be a potential therapeutic target within the context of dysregulated macrophage activity.
Collapse
Affiliation(s)
| | - Soma Behera
- Dr. Reddy's Institute of Life Sciences (DRILS), Hyderabad, India
| | | | | | | | - P Prakash Babu
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Seyed E Hasnain
- Department of Biological Sciences, Indian Institute of Technology, New Delhi, India; and
| | | | | |
Collapse
|
24
|
Edwards MW, Aultman JA, Harber G, Bhatt JM, Sztul E, Xu Q, Zhang P, Michalek SM, Katz J. Role of mTOR downstream effector signaling molecules in Francisella tularensis internalization by murine macrophages. PLoS One 2013; 8:e83226. [PMID: 24312679 PMCID: PMC3849438 DOI: 10.1371/journal.pone.0083226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 11/11/2013] [Indexed: 02/03/2023] Open
Abstract
Francisella tularensis is an infectious, gram-negative, intracellular microorganism, and the cause of tularemia. Invasion of host cells by intracellular pathogens like Francisella is initiated by their interaction with different host cell membrane receptors and the rapid phosphorylation of different downstream signaling molecules. PI3K and Syk have been shown to be involved in F. tularensis host cell entry, and both of these signaling molecules are associated with the master regulator serine/threonine kinase mTOR; yet the involvement of mTOR in F. tularensis invasion of host cells has not been assessed. Here, we report that infection of macrophages with F. tularensis triggers the phosphorylation of mTOR downstream effector molecules, and that signaling via TLR2 is necessary for these events. Inhibition of mTOR or of PI3K, ERK, or p38, but not Akt signaling, downregulates the levels of phosphorylation of mTOR downstream targets, and significantly reduces the number of F. tularensis cells invading macrophages. Moreover, while phosphorylation of mTOR downstream effectors occurs via the PI3K pathway, it also involves PLCγ1 and Ca(2+) signaling. Furthermore, abrogation of PLC or Ca(2+) signaling revealed their important role in the ability of F. tularensis to invade host cells. Together, these findings suggest that F. tularensis invasion of primary macrophages utilize a myriad of host signaling pathways to ensure effective cell entry.
Collapse
Affiliation(s)
- Michael W. Edwards
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - James A. Aultman
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gregory Harber
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jay M. Bhatt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Qingan Xu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ping Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Suzanne M. Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jannet Katz
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
25
|
Nakayasu ES, Tempel R, Cambronne XA, Petyuk VA, Jones MB, Gritsenko MA, Monroe ME, Yang F, Smith RD, Adkins JN, Heffron F. Comparative phosphoproteomics reveals components of host cell invasion and post-transcriptional regulation during Francisella infection. Mol Cell Proteomics 2013; 12:3297-309. [PMID: 23970565 DOI: 10.1074/mcp.m113.029850] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Francisella tularensis is a facultative intracellular bacterium that causes the deadly disease tularemia. Most evidence suggests that Francisella is not well recognized by the innate immune system that normally leads to cytokine expression and cell death. In previous work, we identified new bacterial factors that were hyper-cytotoxic to macrophages. Four of the identified hyper-cytotoxic strains (lpcC, manB, manC, and kdtA) had an impaired lipopolysaccharide (LPS) synthesis and produced an exposed lipid A lacking the O-antigen. These mutants were not only hyper-cytotoxic but also were phagocytosed at much higher rates compared with the wild type parent strain. To elucidate the cellular signaling underlying this enhanced phagocytosis and cell death, we performed a large-scale comparative phosphoproteomic analysis of cells infected with wild-type and delta-lpcC F. novicida. Our data suggest that not only actin but also intermediate filaments and microtubules are important for F. novicida entry into the host cells. In addition, we observed differential phosphorylation of tristetraprolin, a key component of the mRNA-degrading machinery that controls the expression of a variety of genes including many cytokines. Infection with the delta-lpcC mutant induced the hyper-phosphorylation and inhibition of tristetraprolin, leading to the production of cytokines such as IL-1beta and TNF-alpha that may kill the host cells by triggering apoptosis. Together, our data provide new insights for Francisella invasion and a post-transcriptional mechanism that prevents the expression of host immune response factors that control infection by this pathogen.
Collapse
Affiliation(s)
- Ernesto S Nakayasu
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Following pathogen infection or tissue damage, the stimulation of pattern recognition receptors on the cell surface and in the cytoplasm of innate immune cells activates members of each of the major mitogen-activated protein kinase (MAPK) subfamilies--the extracellular signal-regulated kinase (ERK), p38 and Jun N-terminal kinase (JNK) subfamilies. In conjunction with the activation of nuclear factor-κB and interferon-regulatory factor transcription factors, MAPK activation induces the expression of multiple genes that together regulate the inflammatory response. In this Review, we discuss our current knowledge about the regulation and the function of MAPKs in innate immunity, as well as the importance of negative feedback loops in limiting MAPK activity to prevent host tissue damage. We also examine how pathogens have evolved complex mechanisms to manipulate MAPK activation to increase their virulence. Finally, we consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases.
Collapse
|
27
|
Adiponectin inhibits neutrophil phagocytosis of Escherichia coli by inhibition of PKB and ERK 1/2 MAPK signalling and Mac-1 activation. PLoS One 2013; 8:e69108. [PMID: 23935932 PMCID: PMC3723777 DOI: 10.1371/journal.pone.0069108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/06/2013] [Indexed: 11/24/2022] Open
Abstract
Full length adiponectin is a potent immune modulatory adipokine, impacting upon the actions of several immune cells. Neutrophil oxidative burst has been shown to decrease in response to adiponectin, and we speculated that it could have other effects on neutrophil function. Here we report that adiponectin reduces the phagocytic ability of human neutrophils, decreasing significantly the ingestion of opsonised E. coli by these cells in whole blood (p<0.05) and as isolated neutrophils (p<0.05). We then determined the mechanisms involved. We observed that the activation of Mac-1, the receptor engaged in complement-mediated phagocytosis, was decreased by adiponectin in response to E. coli stimulation. Moreover, treatment of neutrophils with adiponectin prior to incubation with E. coli significantly inhibited signalling through the PI3K/PKB and ERK 1/2 pathways, with a parallel reduction of F-actin content. Studies with pharmacological inhibitors showed that inhibition of PI3K/PKB, but not ERK 1/2 signalling was able to prevent the activation of Mac-1. In conclusion, we propose that adiponectin negatively affects neutrophil phagocytosis, reducing the uptake of E. coli and inhibiting Mac-1 activation, the latter by blockade of the PI3K/PKB signal pathway.
Collapse
|
28
|
Abstract
Francisella tularensis is a highly virulent bacterial pathogen that is easily aerosolized and has a low infectious dose. As an intracellular pathogen, entry of Francisella into host cells is critical for its survival and virulence. However, the initial steps of attachment and internalization of Francisella into host cells are not well characterized, and little is known about bacterial factors that promote these processes. This review highlights our current understanding of Francisella attachment and internalization into host cells. In particular, we emphasize the host cell types Francisella has been shown to interact with, as well as specific receptors and signaling processes involved in the internalization process. This review will shed light on gaps in our current understanding and future areas of investigation.
Collapse
Affiliation(s)
- G Brett Moreau
- Department of Microbiology, Immunology, and Cancer Biology; University of Virginia; Charlottesville, VA USA
| | - Barbara J Mann
- Department of Microbiology, Immunology, and Cancer Biology; University of Virginia; Charlottesville, VA USA; Department of Medicine; Division of Infectious Diseases and International Health; University of Virginia; Charlottesville, VA USA
| |
Collapse
|
29
|
Bradburne CE, Verhoeven AB, Manyam GC, Chaudhry SA, Chang EL, Thach DC, Bailey CL, van Hoek ML. Temporal transcriptional response during infection of type II alveolar epithelial cells with Francisella tularensis live vaccine strain (LVS) supports a general host suppression and bacterial uptake by macropinocytosis. J Biol Chem 2013; 288:10780-91. [PMID: 23322778 DOI: 10.1074/jbc.m112.362178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pneumonic tularemia is caused by inhalation of Francisella tularensis, one of the most infectious microbes known. We wanted to study the kinetics of the initial and early interactions between bacterium and host cells in the lung. To do this, we examined the infection of A549 airway epithelial cells with the live vaccine strain (LVS) of F. tularensis. A549 cells were infected and analyzed for global transcriptional response at multiple time points up to 16 h following infection. At 15 min and 2 h, a strong transcriptional response was observed including cytoskeletal rearrangement, intracellular transport, and interferon signaling. However, at later time points (6 and 16 h), very little differential gene expression was observed, indicating a general suppression of the host response consistent with other reported cell lines and murine tissues. Genes for macropinocytosis and actin/cytoskeleton rearrangement were highly up-regulated and common to the 15 min and 2 h time points, suggesting the use of this method for bacterial entry into cells. We demonstrate macropinocytosis through the uptake of FITC-dextran and amiloride inhibition of Francisella LVS uptake. Our results suggest that macropinocytosis is a potential mechanism of intracellular entry by LVS and that the host cell response is suppressed during the first 2-6 h of infection. These results suggest that the attenuated Francisella LVS induces significant host cell signaling at very early time points after the bacteria's interaction with the cell.
Collapse
Affiliation(s)
- Christopher E Bradburne
- Center for Bio/Molecular Science and Engineering, United States Naval Research Laboratory, Washington, DC 20375, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Leander R, Dai S, Schlesinger LS, Friedman A. A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection. PLoS Comput Biol 2012; 8:e1002757. [PMID: 23133361 PMCID: PMC3486853 DOI: 10.1371/journal.pcbi.1002757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 09/05/2012] [Indexed: 02/04/2023] Open
Abstract
Complement Receptor 3 (CR3) and Toll-like Receptor 2 (TLR2) are pattern recognition receptors expressed on the surface of human macrophages. Although these receptors are essential components for recognition by the innate immune system, pathogen coordinated crosstalk between them can suppress the production of protective cytokines and promote infection. Recognition of the virulent Schu S4 strain of the intracellular pathogen Francisella tularensis by host macrophages involves CR3/TLR2 crosstalk. Although experimental data provide evidence that Lyn kinase and PI3K are essential components of the CR3 pathway that influences TLR2 activity, additional responsible upstream signaling components remain unknown. In this paper we construct a mathematical model of CR3 and TLR2 signaling in response to F. tularensis. After demonstrating that the model is consistent with experimental results we perform numerical simulations to evaluate the contributions that Akt and Ras-GAP make to ERK inhibition. The model confirms that phagocytosis-associated changes in the composition of the cell membrane can inhibit ERK activity and predicts that Akt and Ras-GAP synergize to inhibit ERK.
Collapse
Affiliation(s)
- Rachel Leander
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Shipan Dai
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Larry S. Schlesinger
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Avner Friedman
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
31
|
Al-Khodor S, Abu Kwaik Y. Triggering Ras signalling by intracellular Francisella tularensis through recruitment of PKCα and βI to the SOS2/GrB2 complex is essential for bacterial proliferation in the cytosol. Cell Microbiol 2011; 12:1604-21. [PMID: 20618341 DOI: 10.1111/j.1462-5822.2010.01494.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intracellular proliferation of Francisella tularensis is essential for manifestation of the fatal disease tularaemia, and is classified as a category A bioterrorism agent. The F. tularensis-containing phagosome (FCP) matures into a late endosome-like phagosome with limited fusion to lysosomes, followed by rapid bacterial escape into the cytosol. The Francisella pathogenicity island (FPI) encodes a type VI-like secretion system, and the FPI-encoded IglC is essential for evasion of lysosomal fusion and phagosomal escape. Many host signalling events are likely to be modulated by F. tularensis to render the cell permissive for intracellular proliferation but they are not fully understood. Here we show that within 15 min of infection, intracellular F. tularensis ssp. novicida triggers IglC-dependent temporal activation of Ras, but attached extracellular bacteria fail to trigger Ras activation, which has never been shown for other intracellular pathogens. Intracellular F. tularensis ssp. novicida triggers activation of Ras through recruitment of PKCα and PKCβI to the SOS2/GrB2 complex. Silencing of SOS2, GrB2 and PKCα and PKCβI by RNAi has no effect on evasion of lysosomal fusion and bacterial escape into the cytosol but renders the cytosol non-permissive for replication of F. tularensis ssp. novicida. Since Ras activation promotes cell survival, we show that silencing of SOS2, GrB2 and PKCα and βI is associated with rapid early activation of caspase-3 within 8 h post infection. However, silencing of SOS2, GrB2 and PKCα and βI does not affect phosphorylation of Akt or Erk, indicating that activation of the PI3K/Akt and the Erk signalling cascade are independent of the F. tularensis-triggered Ras activation. We conclude that intracellular F. tularensis ssp. novicida triggers temporal and early activation of Ras through the SOS2/GrB2/PKCα/PKCβI quaternary complex. Temporal and rapid trigger of Ras signalling by intracellular F. tularensis is essential for intracellular bacterial proliferation within the cytosol, and this is associated with downregulation of early caspase-3 activation.
Collapse
Affiliation(s)
- Souhaila Al-Khodor
- Department of Microbiology and Immunology, College of Medicine, Department of Biology, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
32
|
Asare R, Kwaik YA. Exploitation of host cell biology and evasion of immunity by francisella tularensis. Front Microbiol 2011; 1:145. [PMID: 21687747 PMCID: PMC3109322 DOI: 10.3389/fmicb.2010.00145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 12/21/2010] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis is an intracellular bacterium that infects humans and many small mammals. During infection, F. tularensis replicates predominantly in macrophages but also proliferate in other cell types. Entry into host cells is mediate by various receptors. Complement-opsonized F. tularensis enters into macrophages by looping phagocytosis. Uptake is mediated in part by Syk, which may activate actin rearrangement in the phagocytic cup resulting in the engulfment of F. tularensis in a lipid raft rich phagosome. Inside the host cells, F. tularensis resides transiently in an acidified late endosome-like compartment before disruption of the phagosomal membrane and escape into the cytosol, where bacterial proliferation occurs. Modulation of phagosome biogenesis and escape into the cytosol is mediated by the Francisella pathogenicity island-encoded type VI-like secretion system. Whilst inside the phagosome, F. tularensis temporarily induce proinflammatory cytokines in PI3K/Akt-dependent manner, which is counteracted by the induction of SHIP that negatively regulates PI3K/Akt activation and promotes bacterial escape into the cytosol. Interestingly, F. tularensis subverts CD4 T cells-mediated killing by inhibiting antigen presentation by activated macrophages through ubiquitin-dependent degradation of MHC II molecules on activated macrophages. In the cytosol, F. tularensis is recognized by the host cell inflammasome, which is down-regulated by F. tularensis that also inhibits caspase-1 and ASC activity. During late stages of intracellular proliferation, caspase-3 is activated but apoptosis is delayed through activation of NF-κB and Ras, which ensures cell viability.
Collapse
Affiliation(s)
- Rexford Asare
- Department of Microbiology and Immunology, School of Medicine, University of Louisville Louisville, KY, USA
| | | |
Collapse
|
33
|
Chong A, Celli J. The francisella intracellular life cycle: toward molecular mechanisms of intracellular survival and proliferation. Front Microbiol 2010; 1:138. [PMID: 21687806 PMCID: PMC3109316 DOI: 10.3389/fmicb.2010.00138] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/05/2010] [Indexed: 11/13/2022] Open
Abstract
The tularemia-causing bacterium Francisella tularensis is a facultative intracellular organism with a complex intracellular lifecycle that ensures its survival and proliferation in a variety of mammalian cell types, including professional phagocytes. Because this cycle is essential to Francisella pathogenesis and virulence, much research has focused on deciphering the mechanisms of its intracellular survival and replication and characterizing both bacterial and host determinants of the bacterium's intracellular cycle. Studies of various strains and host cell models have led to the consensual paradigm of Francisella as a cytosolic pathogen, but also to some controversy about its intracellular cycle. In this review, we will detail major findings that have advanced our knowledge of Francisella intracellular survival strategies and also attempt to reconcile discrepancies that exist in our molecular understanding of the Francisella–phagocyte interactions.
Collapse
Affiliation(s)
- Audrey Chong
- Tularemia Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | | |
Collapse
|
34
|
Medina EA, Morris IR, Berton MT. Phosphatidylinositol 3-kinase activation attenuates the TLR2-mediated macrophage proinflammatory cytokine response to Francisella tularensis live vaccine strain. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:7562-72. [PMID: 21098227 DOI: 10.4049/jimmunol.0903790] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An inadequate innate immune response appears to contribute to the virulence of Francisella tularensis following pulmonary infection. Studies in mice suggest that this poor response results from suppression of proinflammatory cytokine production early during infection, but the mechanisms involved are not understood. PI3K is known to regulate proinflammatory cytokine expression, but its exact role (positive versus negative) is controversial. We sought to clarify the role of PI3K in regulating proinflammatory signaling and cytokine production during infection with F. tularensis live vaccine strain (LVS). In this study, we demonstrate that the induction of TNF and IL-6 expression by LVS in mouse bone marrow-derived macrophages was markedly enhanced when PI3K activity was inhibited by either of the well-known chemical inhibitors, wortmannin or LY294002. The enhanced cytokine expression was accompanied by enhanced activation of p38 MAPK and ERK1/2, both of which were critical for LVS-induced expression of TNF and IL-6. LVS-induced MAPK activation and cytokine production were TLR2- and MyD88- dependent. PI3K/Akt activation was MyD88-dependent, but was surprisingly TLR2-independent. LVS infection also rapidly induced MAPK phosphatase-1 (MKP-1) expression; PI3K and TLR2 signaling were required. Peak levels of MKP-1 correlated closely with the decline in p38 MAPK and ERK1/2 phosphorylation. These data suggest that infection by LVS restrains the TLR2-triggered proinflammatory response via parallel activation of PI3K, leading to enhanced MKP-1 expression, accelerated deactivation of MAPKs, and suppression of proinflammatory cytokine production. This TLR2-independent inhibitory pathway may be an important mechanism by which Francisella suppresses the host's innate immune response.
Collapse
Affiliation(s)
- Edward A Medina
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
35
|
Akimana C, Al-Khodor S, Abu Kwaik Y. Host factors required for modulation of phagosome biogenesis and proliferation of Francisella tularensis within the cytosol. PLoS One 2010; 5:e11025. [PMID: 20552012 PMCID: PMC2883998 DOI: 10.1371/journal.pone.0011025] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/13/2010] [Indexed: 01/07/2023] Open
Abstract
Francisella tularensis is a highly infectious facultative intracellular bacterium that can be transmitted between mammals by arthropod vectors. Similar to many other intracellular bacteria that replicate within the cytosol, such as Listeria, Shigella, Burkholderia, and Rickettsia, the virulence of F. tularensis depends on its ability to modulate biogenesis of its phagosome and to escape into the host cell cytosol where it proliferates. Recent studies have identified the F. tularensis genes required for modulation of phagosome biogenesis and escape into the host cell cytosol within human and arthropod-derived cells. However, the arthropod and mammalian host factors required for intracellular proliferation of F. tularensis are not known. We have utilized a forward genetic approach employing genome-wide RNAi screen in Drosophila melanogaster-derived cells. Screening a library of approximately 21,300 RNAi, we have identified at least 186 host factors required for intracellular bacterial proliferation. We silenced twelve mammalian homologues by RNAi in HEK293T cells and identified three conserved factors, the PI4 kinase PI4KCA, the ubiquitin hydrolase USP22, and the ubiquitin ligase CDC27, which are also required for replication in human cells. The PI4KCA and USP22 mammalian factors are not required for modulation of phagosome biogenesis or phagosomal escape but are required for proliferation within the cytosol. In contrast, the CDC27 ubiquitin ligase is required for evading lysosomal fusion and for phagosomal escape into the cytosol. Although F. tularensis interacts with the autophagy pathway during late stages of proliferation in mouse macrophages, this does not occur in human cells. Our data suggest that F. tularensis utilizes host ubiquitin turnover in distinct mechanisms during the phagosomal and cytosolic phases and phosphoinositide metabolism is essential for cytosolic proliferation of F. tularensis. Our data will facilitate deciphering molecular ecology, patho-adaptation of F. tularensis to the arthropod vector and its role in bacterial ecology and patho-evolution to infect mammals.
Collapse
Affiliation(s)
- Christine Akimana
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Souhaila Al-Khodor
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
36
|
Christie TL, Carter A, Rollins EL, Childs SJ. Syk and Zap-70 function redundantly to promote angioblast migration. Dev Biol 2010; 340:22-9. [DOI: 10.1016/j.ydbio.2010.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 12/07/2009] [Accepted: 01/08/2010] [Indexed: 01/01/2023]
|
37
|
Cremer TJ, Ravneberg DH, Clay CD, Piper-Hunter MG, Marsh CB, Elton TS, Gunn JS, Amer A, Kanneganti TD, Schlesinger LS, Butchar JP, Tridandapani S. MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response. PLoS One 2009; 4:e8508. [PMID: 20041145 PMCID: PMC2794384 DOI: 10.1371/journal.pone.0008508] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022] Open
Abstract
The intracellular gram-negative bacterium Francisella tularensis causes the disease tularemia and is known for its ability to subvert host immune responses. Previous work from our laboratory identified the PI3K/Akt pathway and SHIP as critical modulators of host resistance to Francisella. Here, we show that SHIP expression is strongly down-regulated in monocytes and macrophages following infection with F. tularensis novicida (F.n.). To account for this negative regulation we explored the possibility that microRNAs (miRs) that target SHIP may be induced during infection. There is one miR that is predicted to target SHIP, miR-155. We tested for induction and found that F.n. induced miR-155 both in primary monocytes/macrophages and in vivo. Using luciferase reporter assays we confirmed that miR-155 led to down-regulation of SHIP, showing that it specifically targets the SHIP 3'UTR. Further experiments showed that miR-155 and BIC, the gene that encodes miR-155, were induced as early as four hours post-infection in primary human monocytes. This expression was dependent on TLR2/MyD88 and did not require inflammasome activation. Importantly, miR-155 positively regulated pro-inflammatory cytokine release in human monocytes infected with Francisella. In sharp contrast, we found that the highly virulent type A SCHU S4 strain of Francisella tularensis (F.t.) led to a significantly lower miR-155 response than the less virulent F.n. Hence, F.n. induces miR-155 expression and leads to down-regulation of SHIP, resulting in enhanced pro-inflammatory responses. However, impaired miR-155 induction by SCHU S4 may help explain the lack of both SHIP down-regulation and pro-inflammatory response and may account for the virulence of Type A Francisella.
Collapse
Affiliation(s)
- Thomas J. Cremer
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
| | - David H. Ravneberg
- Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Corey D. Clay
- Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Melissa G. Piper-Hunter
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Clay B. Marsh
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Terry S. Elton
- College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - John S. Gunn
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Amal Amer
- Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | | | - Larry S. Schlesinger
- Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jonathan P. Butchar
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Susheela Tridandapani
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
- Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
38
|
Luo Y, Pollard JW, Casadevall A. Fcgamma receptor cross-linking stimulates cell proliferation of macrophages via the ERK pathway. J Biol Chem 2009; 285:4232-4242. [PMID: 19996316 DOI: 10.1074/jbc.m109.037168] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Macrophage proliferation can be stimulated by phagocytosis and by cross-linking of Fcgamma receptors (FcgammaR). In this study, we investigated the role of FcgammaR and the signaling cascades that link FcgammaR activation to cell cycle progression. This effect was mediated by the activating FcgammaR, including FcgammaRI and III, via their Fcgamma subunit. Further investigation revealed that the cell cycle machinery was activated by FcgammaR cross-linking through downstream signaling events. Specifically, we identified the extracellular signal-regulated kinase (ERK) signaling pathway as a mediator of signals from FcgammaR activation to cyclin D1 expression, because cyclin D1 expression associated with FcgammaR cross-linking was attenuated by specific inhibitors of the ERK1/2 signaling pathway, PD98059 and U0126 and the spleen tyrosine kinase (Syk) inhibitor, Piceatannol. Our findings establish a link between the ERK activation and cell cycle signaling pathways, thus providing a causal mechanism by which FcgammaR activation produces a mitogenic effect that stimulates macrophage proliferation. Macrophage mitosis following FcgammaR activation could potentially affect the outcome of macrophage interactions with intracellular pathogens. In addition, our results suggest the possibility of new treatment options for certain infectious diseases, chronic inflammatory diseases, and leukemias based on interference with FcgammaR-stimulated macrophage cell proliferation.
Collapse
Affiliation(s)
- Yong Luo
- From the Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jeffrey W Pollard
- Departments of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461; Departments of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Arturo Casadevall
- From the Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461; Departments of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461.
| |
Collapse
|
39
|
Rajaram MVS, Butchar JP, Parsa KVL, Cremer TJ, Amer A, Schlesinger LS, Tridandapani S. Akt and SHIP modulate Francisella escape from the phagosome and induction of the Fas-mediated death pathway. PLoS One 2009; 4:e7919. [PMID: 19936232 PMCID: PMC2775408 DOI: 10.1371/journal.pone.0007919] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/27/2009] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis infects macrophages and escapes phago-lysosomal fusion to replicate within the host cytosol, resulting in host cell apoptosis. Here we show that the Fas-mediated death pathway is activated in infected cells and correlates with escape of the bacterium from the phagosome and the bacterial burden. Our studies also demonstrate that constitutive activation of Akt, or deletion of SHIP, promotes phago-lysosomal fusion and limits bacterial burden in the host cytosol, and the subsequent induction of Fas expression and cell death. Finally, we show that phagosomal escape/intracellular bacterial burden regulate activation of the transcription factors sp1/sp3, leading to Fas expression and cell death. These data identify for the first time host cell signaling pathways that regulate the phagosomal escape of Francisella, leading to the induction of Fas and subsequent host cell death.
Collapse
Affiliation(s)
- Murugesan V. S. Rajaram
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Jonathan P. Butchar
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Kishore V. L. Parsa
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas J. Cremer
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Amal Amer
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Larry S. Schlesinger
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Susheela Tridandapani
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
40
|
Choi SH, Harkewicz R, Lee JH, Boullier A, Almazan F, Li AC, Witztum JL, Bae YS, Miller YI. Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake. Circ Res 2009; 104:1355-63. [PMID: 19461045 DOI: 10.1161/circresaha.108.192880] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toll-like receptor (TLR)4 recognizes microbial pathogens, such as lipopolysaccharide, and mediates lipopolysaccharide-induced proinflammatory cytokine secretion, as well as microbial uptake by macrophages. In addition to exogenous pathogens, TLR4 recognizes modified self, such as minimally oxidized low-density lipoprotein (mmLDL). Here we report that mmLDL and its active components, cholesteryl ester hydroperoxides, induce TLR4-dependent fluid phase uptake typical of macropinocytosis. We show that mmLDL induced recruitment of spleen tyrosine kinase (Syk) to a TLR4 signaling complex, TLR4 phosphorylation, activation of a Vav1-Ras-Raf-MEK-ERK1/2 signaling cascade, phosphorylation of paxillin, and activation of Rac, Cdc42, and Rho. These mmLDL-induced and TLR4- and Syk-dependent signaling events and cytoskeletal rearrangements lead to enhanced uptake of small molecules, dextran, and, most importantly, both native and oxidized LDL, resulting in intracellular lipid accumulation. An intravenous injection of fluorescently labeled mmLDL in wild-type mice resulted in its rapid accumulation in circulating monocytes, which was significantly attenuated in TLR4-deficient mice. These data describe a novel mechanism leading to enhanced lipoprotein uptake in macrophages that would contribute to foam cell formation and atherosclerosis. These data also suggest that cholesteryl ester hydroperoxides are an endogenous ligand for TLR4. Because TLR4 is highly expressed on the surface of circulating monocytes in patients with chronic inflammatory conditions, and cholesteryl ester hydroperoxides are present in plasma, lipid uptake by monocytes in circulation may contribute to the pathological roles of monocytes in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Soo-Ho Choi
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cremer TJ, Tridandapani S. Effective host response to Francisella tularensis requires functional mast cells. Future Microbiol 2008; 3:503-6. [PMID: 18811234 DOI: 10.2217/17460913.3.5.503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Ketavarapu JM, Rodriguez AR, Yu J et al.: Mast cells inhibit intramacrophage Francisella tularensis replication via contact and secreted products including IL-4. Proc. Natl Acad. Sci. USA 105(27), 9313-9318 (2008). The intracellular pathogen Francisella tularensis is a highly infectious organism that infects cells of the immune system. Mast cells have been known for their role in anaphylaxis, although they are also important for their ability to aid in the defense against pathogens. The report by Ketavarapu et al. has demonstrated that mast cells function to limit the replication of F. tularensis live vaccine strain within macrophages in vitro as well as in vivo. It was determined that IL-4 is one secreted mediator of this effect thus highlights a previously unknown mechanism of host defense against F. tularensis.
Collapse
Affiliation(s)
- Thomas J Cremer
- Molecular, Cellular & Developmental Biology Program, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|