1
|
Nichols JM, Pham HV, Lee EF, Mahalingam R, Shepherd AJ. Single-cell analysis of age-related changes in leukocytes of diabetic mouse hindpaws. Cell Mol Life Sci 2024; 81:146. [PMID: 38502310 PMCID: PMC10951029 DOI: 10.1007/s00018-024-05128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/28/2023] [Accepted: 01/13/2024] [Indexed: 03/21/2024]
Abstract
Complications associated with Type 1 and Type 2 diabetes, such as diabetic peripheral neuropathy and diabetic foot ulcers, are a growing health-care concern. In addition, this concern increases as diabetic patients age due to their increased susceptibility to complications. To address this growing problem, it is important to understand fluctuations in physiology which lead to pathological changes associated with the metabolic disturbances of diabetes. Our study explores dysregulation of immune cell populations in the hindpaws of healthy and diabetic mice at 12 and 21 weeks of age using single-cell RNA sequencing to provide insight into immune disruptions occurring in the distal limb during chronic diabetes. In 21-week-old Leprdb/db mice, increases were seen in mast cells/basophils, dermal γδ T cells, heterogeneous T cells, and Type 2 innate lymphoid cells. In addition, macrophages represented the largest cluster of immune cells and showed the greatest increase in genes associated with immune-specific pathways. Sub-clustering of macrophages revealed a bias toward angiogenic Lyve1+MHCIIlo macrophages in the hindpaws of 21-week-old diabetic mice, which corresponded to an increase in Lyve1+ macrophages in the hindpaws of 21-week-old diabetic mice on histology. Our results show that in Type 2 diabetes, the immunological function and phenotype of multiple immune cell types shift not only with metabolic disturbance, but also with duration of disease, which may explain the increased susceptibility to pathologies of the distal limb in patients with more chronic diabetes.
Collapse
Affiliation(s)
- James M Nichols
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Unit 1055, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Hoang Vu Pham
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Unit 1055, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Eric F Lee
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Unit 1055, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Rajasekaran Mahalingam
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Unit 1055, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA.
| | - Andrew J Shepherd
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Unit 1055, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Velumani K, Arasu A, Issac PK, Kishore Kumar MS, Guru A, Arockiaraj J. Advancements of fish-derived peptides for mucormycosis: a novel strategy to treat diabetic compilation. Mol Biol Rep 2023; 50:10485-10507. [PMID: 37917415 DOI: 10.1007/s11033-023-08882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Mucormycosis, an extremely fatal fungal infection, is a major hurdle in the treatment of diabetes consequences. The increasing prevalence and restricted treatment choices urge the investigation of novel therapeutic techniques. Because of their effective antimicrobial characteristics and varied modes of action, fish-derived peptides have lately emerged as viable options in the fight against mucormycosis. This review examines the potential further application of fish-derived peptides in diagnosing and managing mucormycosis in relation to diabetic complications. First, we examine the pathophysiology of mucormycosis and the difficulties in treating it in diabetics. We emphasize the critical need for alternative therapeutic methods for tackling the limitations of currently available antifungal medicines. The possibility of fish-derived peptides as an innovative approach to combat mucormycosis is then investigated. These peptides, derived from several fish species, provide wide antimicrobial properties against a variety of diseases. They also have distinct modes of action, such as rupture of cell membranes, suppression of development, and modification of the host immunological response. Furthermore, we investigate the problems and prospects connected with the clinical application of fish-derived peptides. Ultimately, future advances in fish-derived peptides, offer interesting avenues for the management of mucormycosis in the context of diabetic comorbidities. More research and clinical trials are needed to properly investigate these peptide's therapeutic potential and pave the way for their adoption into future antifungal therapies.
Collapse
Affiliation(s)
- Kadhirmathiyan Velumani
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India
| | - Abirami Arasu
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India.
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
3
|
Li CC, Munalisa R, Lee HY, Lien TS, Chan H, Hung SC, Sun DS, Cheng CF, Chang HH. Restraint Stress-Induced Immunosuppression Is Associated with Concurrent Macrophage Pyroptosis Cell Death in Mice. Int J Mol Sci 2023; 24:12877. [PMID: 37629059 PMCID: PMC10454201 DOI: 10.3390/ijms241612877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Psychological stress is widely acknowledged as a major contributor to immunosuppression, rendering individuals more susceptible to various diseases. The complex interplay between the nervous, endocrine, and immune systems underlies stress-induced immunosuppression. However, the underlying mechanisms of psychological-stress-induced immunosuppression remain unclear. In this study, we utilized a restraint stress mouse model known for its suitability in investigating physiological regulations during psychological stress. Comparing it with cold exposure, we observed markedly elevated levels of stress hormones corticosterone and cortisol in the plasma of mice subjected to restraint stress. Furthermore, restraint-stress-induced immunosuppression differed from the intravenous immunoglobulin-like immunosuppression observed in cold exposure, with restraint stress leading to increased macrophage cell death in the spleen. Suppression of pyroptosis through treatments of inflammasome inhibitors markedly ameliorated restraint-stress-induced spleen infiltration and pyroptosis cell death of macrophages in mice. These findings suggest that the macrophage pyroptosis associated with restraint stress may contribute to its immunosuppressive effects. These insights have implications for the development of treatments targeting stress-induced immunosuppression, emphasizing the need for further investigation into the underlying mechanisms.
Collapse
Affiliation(s)
- Chi-Cheng Li
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan;
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Rina Munalisa
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Hsuan-Yun Lee
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Hao Chan
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Shih-Che Hung
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 231, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| |
Collapse
|
4
|
Salomão R, Assis V, de Sousa Neto IV, Petriz B, Babault N, Durigan JLQ, de Cássia Marqueti R. Involvement of Matrix Metalloproteinases in COVID-19: Molecular Targets, Mechanisms, and Insights for Therapeutic Interventions. BIOLOGY 2023; 12:843. [PMID: 37372128 PMCID: PMC10295079 DOI: 10.3390/biology12060843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
MMPs are enzymes involved in SARS-CoV-2 pathogenesis. Notably, the proteolytic activation of MMPs can occur through angiotensin II, immune cells, cytokines, and pro-oxidant agents. However, comprehensive information regarding the impact of MMPs in the different physiological systems with disease progression is not fully understood. In the current study, we review the recent biological advances in understanding the function of MMPs and examine time-course changes in MMPs during COVID-19. In addition, we explore the interplay between pre-existing comorbidities, disease severity, and MMPs. The reviewed studies showed increases in different MMP classes in the cerebrospinal fluid, lung, myocardium, peripheral blood cells, serum, and plasma in patients with COVID-19 compared to non-infected individuals. Individuals with arthritis, obesity, diabetes, hypertension, autoimmune diseases, and cancer had higher MMP levels when infected. Furthermore, this up-regulation may be associated with disease severity and the hospitalization period. Clarifying the molecular pathways and specific mechanisms that mediate MMP activity is important in developing optimized interventions to improve health and clinical outcomes during COVID-19. Furthermore, better knowledge of MMPs will likely provide possible pharmacological and non-pharmacological interventions. This relevant topic might add new concepts and implications for public health in the near future.
Collapse
Affiliation(s)
- Rebecca Salomão
- Laboratory of Molecular Analysis, Postgraduate Program in Health and Sciences and Technology, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil
| | - Victoria Assis
- Laboratory of Molecular Analysis, Postgraduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil; (V.A.); (J.L.Q.D.)
| | - Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-907, SP, Brazil;
| | - Bernardo Petriz
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia 71966-700, DF, Brazil;
- Laboratory of Exercise Molecular Physiology, University Center UDF, Brasília 71966-900, DF, Brazil
| | - Nicolas Babault
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université de Bourgogne, F-21000 Dijon, France;
- Centre d’Expertise de la Performance, UFR des Sciences du Sport, Université de Bourgogne, F-21000 Dijon, France
| | - João Luiz Quaglioti Durigan
- Laboratory of Molecular Analysis, Postgraduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil; (V.A.); (J.L.Q.D.)
| | - Rita de Cássia Marqueti
- Laboratory of Molecular Analysis, Postgraduate Program in Health and Sciences and Technology, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil
- Laboratory of Molecular Analysis, Postgraduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil; (V.A.); (J.L.Q.D.)
| |
Collapse
|
5
|
Management of Invasive Infections in Diabetes Mellitus: A Comprehensive Review. BIOLOGICS 2023. [DOI: 10.3390/biologics3010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Patients with diabetes often have more invasive infections, which may lead to an increase in morbidity. The hyperglycaemic environment promotes immune dysfunction (such as the deterioration of neutrophil activity, antioxidant system suppression, and compromised innate immunity), micro- and microangiopathies, and neuropathy. A greater number of medical interventions leads to a higher frequency of infections in diabetic patients. Diabetic individuals are susceptible to certain conditions, such as rhino-cerebral mucormycosis or aspergillosis infection. Infections may either be the primary symptom of diabetes mellitus or act as triggers in the intrinsic effects of the disease, such as diabetic ketoacidosis and hypoglycaemia, in addition to increasing morbidity. A thorough diagnosis of the severity and origin of the infection is necessary for effective treatment, which often entails surgery and extensive antibiotic use. Examining the significant issue of infection in individuals with diabetes is crucial. Comprehensive research should examine why infections are more common amongst diabetics and what the preventive treatment strategies could be.
Collapse
|
6
|
Macrophages, Low-Grade Inflammation, Insulin Resistance and Hyperinsulinemia: A Mutual Ambiguous Relationship in the Development of Metabolic Diseases. J Clin Med 2022; 11:jcm11154358. [PMID: 35955975 PMCID: PMC9369133 DOI: 10.3390/jcm11154358] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic derangement with poor glycemic control accompanying overweight and obesity is associated with chronic low-grade inflammation and hyperinsulinemia. Macrophages, which present a very heterogeneous population of cells, play a key role in the maintenance of normal tissue homeostasis, but functional alterations in the resident macrophage pool as well as newly recruited monocyte-derived macrophages are important drivers in the development of low-grade inflammation. While metabolic dysfunction, insulin resistance and tissue damage may trigger or advance pro-inflammatory responses in macrophages, the inflammation itself contributes to the development of insulin resistance and the resulting hyperinsulinemia. Macrophages express insulin receptors whose downstream signaling networks share a number of knots with the signaling pathways of pattern recognition and cytokine receptors, which shape macrophage polarity. The shared knots allow insulin to enhance or attenuate both pro-inflammatory and anti-inflammatory macrophage responses. This supposedly physiological function may be impaired by hyperinsulinemia or insulin resistance in macrophages. This review discusses the mutual ambiguous relationship of low-grade inflammation, insulin resistance, hyperinsulinemia and the insulin-dependent modulation of macrophage activity with a focus on adipose tissue and liver.
Collapse
|
7
|
Huang J, Zhang S, Ding X, Li S, Luo X, Cao Y, Gao F, Zou M. Research progress on the mechanism by which skin macrophage dysfunction mediates chronic inflammatory injury in diabetic skin. Front Endocrinol (Lausanne) 2022; 13:960551. [PMID: 36093074 PMCID: PMC9449149 DOI: 10.3389/fendo.2022.960551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages, the main immune cells in the skin, form an innate immune barrier. Under physiological conditions, skin maintains immune barrier function through macrophage phagocytosis and antigen presentation. Parenchymal and stromal cell regeneration plays an important role in skin injury repair and uses macrophage plasticity to influence and stabilize the skin microenvironment. Diabetic skin lesions are the most common diabetes complication and are involved in the early pathophysiology of diabetic foot. Therefore, studying the initial link in diabetic skin lesions is a research hot spot in the early pathogenesis of diabetic foot. Skin inflammation caused by hyperglycaemia, oxidative stress and other injuries is an important feature, but the specific mechanism is unknown. Recent studies have suggested that chronic inflammatory injury is widely involved in a variety of skin diseases, and whether it plays an important role in diabetic skin lesions is unclear. In this review, current research hotspots were combined with the pathogenesis of diabetic skin lesions and analysed from the perspectives of the physiological function of skin macrophages, the impairment of skin macrophages in diabetes, and the mechanism of chronic inflammatory injury in macrophages to provide a theoretical basis for early screening and evaluation of diabetic foot.
Collapse
Affiliation(s)
- Jiali Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shili Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyi Ding
- School of Public Health and Tropic Medicine, Southern Medical University, Guangzhou, China
| | - Shuxian Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangrong Luo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Cao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Gao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Mengchen Zou,
| |
Collapse
|
8
|
Carneiro PP, Dórea AS, Oliveira WN, Guimarães LH, Brodskyn C, Carvalho EM, Bacellar O. Blockade of TLR2 and TLR4 Attenuates Inflammatory Response and Parasite Load in Cutaneous Leishmaniasis. Front Immunol 2021; 12:706510. [PMID: 34691019 PMCID: PMC8526941 DOI: 10.3389/fimmu.2021.706510] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Human cutaneous leishmaniasis (CL) caused by Leishmania braziliensis is characterized by a pronounced inflammatory response associated with ulcer development. Monocytes/macrophages, the main cells harboring parasites, are largely responsible for parasite control. Toll-like receptor (TLR) signaling leads to the transcription of inflammatory mediators, such as IL-1β and TNF during innate immune response. TLR antagonists have been used in the treatment of inflammatory disease. The neutralization of these receptors may attenuate an exacerbated inflammatory response. We evaluated the ability of TLR2 and TLR4 antagonists to modulate host immune response in L. braziliensis-infected monocytes and cells from CL patient skin lesions. Following TLR2 and TLR4 neutralization, decreased numbers of infected cells and internalized parasites were detected in CL patient monocytes. In addition, reductions in oxidative burst, IL-1β, TNF and CXCL9 production were observed. TNF production by cells from CL lesions also decreased after TLR2 and TLR4 neutralization. The attenuation of host inflammatory response after neutralizing these receptors suggests the potential of TLR antagonists as immunomodulators in association with antimonial therapy in human cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Pedro Paulo Carneiro
- Serviço de Imunologia, Hospital Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Andreza S Dórea
- Serviço de Imunologia, Hospital Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Walker N Oliveira
- Serviço de Imunologia, Hospital Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | | | | | - Edgar M Carvalho
- Goncalo Moniz Institute (IGM), Fiocruz, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT Conselho Nacional de Desenvolvimento Científico e Tecnológico/ Ministério da Ciência e Tecnologia (CNPq/MCT), Salvador, Brazil
| | - Olívia Bacellar
- Serviço de Imunologia, Hospital Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT Conselho Nacional de Desenvolvimento Científico e Tecnológico/ Ministério da Ciência e Tecnologia (CNPq/MCT), Salvador, Brazil
| |
Collapse
|
9
|
Neuro-immune-metabolism: The tripod system of homeostasis. Immunol Lett 2021; 240:77-97. [PMID: 34655659 DOI: 10.1016/j.imlet.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
Homeostatic regulation of cellular and molecular processes is essential for the efficient physiological functioning of body organs. It requires an intricate balance of several networks throughout the body, most notable being the nervous, immune and metabolic systems. Several studies have reported the interactions between neuro-immune, immune-metabolic and neuro-metabolic pathways. Current review aims to integrate the information and show that neuro, immune and metabolic systems form the triumvirate of homeostasis. It focuses on the cellular and molecular interactions occurring in the extremities and intestine, which are innervated by the peripheral nervous system and for the intestine in particular the enteric nervous system. While the interdependence of neuro-immune-metabolic pathways provides a fallback mechanism in case of disruption of homeostasis, in chronic pathologies of continued disequilibrium, the collapse of one system spreads to the other interacting networks as well. Current review illustrates this domino-effect using diabetes as the main example. Together, this review attempts to provide a holistic picture of the integrated network of neuro-immune-metabolism and attempts to broaden the outlook when devising a scientific study or a treatment strategy.
Collapse
|
10
|
Nasr El-Din A, Ata KAES, Abdel-Gawad AR, Fahmy NF. Impact of High Serum Levels of MMP-7, MMP-9, TGF-β and PDGF Macrophage Activation Markers on Severity of COVID-19 in Obese-Diabetic Patients. Infect Drug Resist 2021; 14:4015-4025. [PMID: 34611417 PMCID: PMC8487291 DOI: 10.2147/idr.s329004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE The aim of this study was to identify an association between the severity of COVID-19 in obese-diabetic patients and altered serum levels of MMP-7, MMP-9, TGF-β, and PDGF macrophage activation markers. METHODOLOGY The study included 70 COVID-19 patients, divided into two groups: Group 1 included: Obese COVID-19 patients with type 2 diabetes mellitus (T2D, n=22 patients) and group 2 included; non-obese, non-diabetic COVID-19 patients as an age- and sex-matched control group (n=48 patients). Serum levels of the tested biomarkers were measured by ELISA at admission and after one weak follow-up. RESULTS There was a significant reduction in the serum levels of LBP in obese-diabetic COVID-19 patients versus the control group (8.34±3.94 vs 20.78±7.61) (p 0.0001). Significant elevation of MMP-7, MMP-9, PDGF and TGF-β was detected in obese diabetic COVID-19 patients compared to the non-obese non-diabetic group: 1044.7±519.6 vs 405.6±164.1, 483.05±46.5 vs 173.31±76.26, 154.5±62.78 vs 39.77±21.52, and 603.05±258.82 vs 180.29±97.17, respectively. The serum levels of macrophage activation markers in obese-diabetic patients one week after admission revealed that patients with acute respiratory distress syndrome (ARDS) had significantly higher serum levels of MMP-7 and MMP-9 than non-ARDS patients (p 0.02 and p 0.01 respectively). CONCLUSION Macrophages were mainly polarized towards the M2 phenotype in obese-diabetic COVID-19 patients with significant upregulation of the pro-fibrotic markers MMP-7, MMP-9, PDGF, and TGF-β. Thus, high levels of MMP-7 and MMP-9 are associated with ARDS in severe COVID-19 disease among obese-diabetic patients.
Collapse
Affiliation(s)
- Asmaa Nasr El-Din
- Microbiology and Immunology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Kamal Abd El-Sattar Ata
- Chest Diseases and Tuberculosis Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Nahed F Fahmy
- Microbiology and Immunology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
11
|
Rodriguez-Coira J, Villaseñor A, Izquierdo E, Huang M, Barker-Tejeda TC, Radzikowska U, Sokolowska M, Barber D. The Importance of Metabolism for Immune Homeostasis in Allergic Diseases. Front Immunol 2021; 12:692004. [PMID: 34394086 PMCID: PMC8355700 DOI: 10.3389/fimmu.2021.692004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022] Open
Abstract
There is increasing evidence that the metabolic status of T cells and macrophages is associated with severe phenotypes of chronic inflammation, including allergic inflammation. Metabolic changes in immune cells have a crucial role in their inflammatory or regulatory responses. This notion is reinforced by metabolic diseases influencing global energy metabolism, such as diabetes or obesity, which are known risk factors of severity in inflammatory conditions, due to the metabolic-associated inflammation present in these patients. Since several metabolic pathways are closely tied to T cell and macrophage differentiation, a better understanding of metabolic alterations in immune disorders could help to restore and modulate immune cell functions. This link between energy metabolism and inflammation can be studied employing animal, human or cellular models. Analytical approaches rank from classic immunological studies to integrated analysis of metabolomics, transcriptomics, and proteomics. This review summarizes the main metabolic pathways of the cells involved in the allergic reaction with a focus on T cells and macrophages and describes different models and platforms of analysis used to study the immune system and its relationship with metabolism.
Collapse
Affiliation(s)
- Juan Rodriguez-Coira
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Alma Villaseñor
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Elena Izquierdo
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Tomás Clive Barker-Tejeda
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Domingo Barber
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| |
Collapse
|
12
|
Moin ASM, Sathyapalan T, Diboun I, Atkin SL, Butler AE. Identification of macrophage activation-related biomarkers in obese type 2 diabetes that may be indicative of enhanced respiratory risk in COVID-19. Sci Rep 2021; 11:6428. [PMID: 33742062 PMCID: PMC7979696 DOI: 10.1038/s41598-021-85760-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
Hyperactivation of the immune system through obesity and diabetes may enhance infection severity complicated by Acute Respiratory Distress Syndrome (ARDS). The objective was to determine the circulatory biomarkers for macrophage activation at baseline and after serum glucose normalization in obese type 2 diabetes (OT2D) subjects. A case-controlled interventional pilot study in OT2D (n = 23) and control subjects (n = 23). OT2D subjects underwent hyperinsulinemic clamp to normalize serum glucose. Plasma macrophage-related proteins were determined using Slow Off-rate Modified Aptamer-scan plasma protein measurement at baseline (control and OT2D subjects) and after 1-h of insulin clamp (OT2D subjects only). Basal M1 macrophage activation was characterized by elevated levels of M1 macrophage-specific surface proteins, CD80 and CD38, and cytokines or chemokines (CXCL1, CXCL5, RANTES) released by activated M1 macrophages. Two potent M1 macrophage activation markers, CXCL9 and CXCL10, were decreased in OT2D. Activated M2 macrophages were characterized by elevated levels of plasma CD163, TFGβ-1, MMP7 and MMP9 in OT2D. Conventional mediators of both M1 and M2 macrophage activation markers (IFN-γ, IL-4, IL-13) were not altered. No changes were observed in plasma levels of M1/M2 macrophage activation markers in OT2D in response to acute normalization of glycemia. In the basal state, macrophage activation markers are elevated, and these reflect the expression of circulatory cytokines, chemokines, growth factors and matrix metalloproteinases in obese individuals with type 2 diabetes, that were not changed by glucose normalisation. These differences could potentially predispose diabetic individuals to increased infection severity complicated by ARDS.
Clinical trial reg. no: NCT03102801; registration date April 6, 2017.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | | | | | - Stephen L Atkin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Alexandra E Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
13
|
McGovern T, Ano S, Farahnak S, McCuaig S, Martin JG. Cellular Source of Cysteinyl Leukotrienes Following Chlorine Exposure. Am J Respir Cell Mol Biol 2020; 63:681-689. [PMID: 32697598 DOI: 10.1165/rcmb.2019-0385oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exposure of mice to high concentrations of chlorine leads to the synthesis of cysteinyl leukotrienes (cysLTs). CysLTs contribute to chlorine-induced airway hyperresponsiveness. The aim of the current study was to determine the cellular source of the cysLTs. To achieve this aim, we exposed mice to 100 ppm of chlorine for 5 minutes. Intranasal instillation of clodronate in liposomes and of diphtheria toxin in CD11c-DTR mice was used to deplete macrophages. CCR2-/- mice were used to assess the contribution of recruited macrophages. Eosinophils and neutrophils were depleted with specific antibodies. Platelet-neutrophil aggregation was prevented with an antibody against P-selectin. The potential roles of phagocytosis of neutrophils by macrophages and of transcellular metabolism between epithelial cells and neutrophils were explored in coculture systems. We found that depletion of neutrophils was the only intervention that inhibited the synthesis of cysLTs at 24 hours after chlorine exposure. Although macrophages did synthesize cysLTs in response to phagocytosis of neutrophils, depletion of macrophages did not reduce the increment in cysLTs triggered by chlorine exposure. However, coculture of airway epithelial cells with neutrophils resulted in a significant increase in the synthesis of cysLTs, dependent on the expression of 5-lipoxygenase by neutrophils. We conclude that cysLT synthesis following chlorine exposure may be dependent on transcellular metabolism by neutrophil-epithelial interactions.
Collapse
Affiliation(s)
- Toby McGovern
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - Satoshi Ano
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - Soroor Farahnak
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - Sarah McCuaig
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - James G Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Casagrande FB, Ferreira SDS, de Sousa ESA, Guimarães JPT, Romera LMD, Tessaro FHG, de Almeida SR, Rodrigues SFDP, Martins JO. Insulin Modulates Inflammatory Cytokine Release in Acute Stages and Augments Expression of Adhesion Molecules and Leukocytes in Lungs on Chronic Stages of Paracoccidioidomycosis. Front Immunol 2020; 11:583385. [PMID: 33312173 PMCID: PMC7708333 DOI: 10.3389/fimmu.2020.583385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Type 1 diabetesmellitus (T1D) is caused by partial destruction of the insulin-producing beta cells in the pancreas and is a major issue for public health care worldwide. Reduced or impaired immunological responses, which render patients more susceptible to infections, have been observed in T1D, and this dysfunction is often related to a lack of insulin in the blood. Paracoccidioidomycosis is an important systemic mycosis endemic in Latin America. To evaluate the effects of T1D on this fungal infection and the modulatory effects of insulin, we induced diabetes in C57Bl/6 male mice (alloxan, 60 mg/kg), infected the mice (Pb18, 1 x 106 cells), and treated the mice with neutral protamine Hagedorn (NPH) insulin (2 IU/600 mg/dL blood glucose). Twenty-four hours after infection, infected diabetic mice showed reduced secretion of interferon (IFN)-γ and interleukine (IL)-12 p70 compared to infected nondiabetic controls. On the 45th day of infection, infected diabetic mice presented higher IFN-γ levels, a higher tumor necrosis factor (TNF)-α:IL-10 ratio, and lower adhesion molecule expression levels than nondiabetic mice. In the in vitro experiments, alveolar macrophages from diabetic animals showed reduced phagocytic activity compared to those from control animals at 4, 12, and 24 h. In infected diabetic mice, treatment with insulin restored IL-12 p70 levels at 24 h of infection, reduced IFN-γ levels and the TNF-α:IL-10 ratio at 45 days, and restored vascular cell adhesion molecule (VCAM)-1 expression in pulmonary blood vessels, and this treatment reduced the diminished phosphorylation of extracellular signal-regulated kinases (ERK) and increased nuclear factor-kappa-B(iκb)-α and jun amino-terminal kinases (JNK) p46 levels in infected nondiabetic mice. In addition, insulin promoted increased phagocytic activity in the alveolar macrophages of diabetic mice. These data suggest that T1D mice are more susceptible to Pb18 infection and that insulin modulates this inflammation in diabetic mice by augmenting the expression of adhesion molecules and leukocytes in the lungs and by reducing chronic inflammation.
Collapse
Affiliation(s)
- Felipe Beccaria Casagrande
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| | - Sabrina de Souza Ferreira
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| | - Emanuella Sarmento Alho de Sousa
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| | - João Pedro Tôrres Guimarães
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| | - Lavínia Maria Dal’Mas Romera
- Laboratory of Mycology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| | - Fernando Henrique Galvão Tessaro
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| | - Sandro Rogério de Almeida
- Laboratory of Mycology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| | - Stephen Fernandes de Paula Rodrigues
- Laboratory of Vascular Nanopharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo, Brazil
| | - Joilson O. Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| |
Collapse
|
15
|
Ramakrishnan AM, Kumar P, Chatterjee S, Sankaranarayanan K. Differential expression of CRAC channel in alloxan induced Diabetic BALB/c mice. Immunopharmacol Immunotoxicol 2020; 42:48-55. [PMID: 31983259 DOI: 10.1080/08923973.2020.1716788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objectives: CRAC (Calcium Release Activated Calcium) channel is one of the most important channels regulating calcium influx and has been involved in many autoimmune diseases. The contribution of CRAC channel in the pathogenesis of Type 1 Diabetes (T1D) has not been described much. Thus, we aimed to study the expression of CRAC channel and inflammatory cytokines like IL-1β (Interleukin -1β) and TNF-α (Tumor Necrosis Factor-α) in the spleen-derived cytotoxic T cells, Bone marrow monocytes (BMM) and macrophages differentiated from BMM in the alloxan induced T1D mice.Materials and methods: BALB/c mice treated with alloxan and vehicle control for 12 and 24 h. Spleen derived T cells; Bone marrow derived monocytes were isolated from the control and diabetic BALB/c mice as well as macrophages differentiated from the control and diabetic BMM.Results: We observed increased expression of CRAC channel components like STIM1 (Stromal Interaction Molecule), ORAI1 and ORAI2 and inflammatory cytokines like IL-1β and TNF-α in the spleen derived cytotoxic T cells and Macrophages differentiated from BMM as well as the downregulated expression of the same and CRAC channel in BMM of 12 and 24 h alloxan induced BALB/c mice.Conclusions: This study suggests that differential expression of CRAC channel correlated with the expression of inflammatory cytokines, thus CRAC channel might be responsible for the increased production of inflammatory cytokines in the alloxan induced T1D mice.
Collapse
Affiliation(s)
| | - Pavitra Kumar
- Vascular Biology laboratory, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Suvro Chatterjee
- Vascular Biology laboratory, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Kavitha Sankaranarayanan
- Ion Channel Biology Laboratory, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| |
Collapse
|
16
|
Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 Diabetes and its Impact on the Immune System. Curr Diabetes Rev 2020; 16:442-449. [PMID: 31657690 PMCID: PMC7475801 DOI: 10.2174/1573399815666191024085838] [Citation(s) in RCA: 483] [Impact Index Per Article: 96.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Type 2 Diabetes (T2D) is a major health problem worldwide. This metabolic disease is indicated by high blood glucose levels due to insufficient insulin production by the pancreas. An inflammatory response occurs as a result of the immune response to high blood glucose levels as well as the presence of inflammatory mediators produced by adipocytes and macrophages in fat tissue. This low and chronic inflammation damages the pancreatic beta cells and leads to insufficient insulin production, which results in hyperglycemia. Hyperglycemia in diabetes is thought to cause dysfunction of the immune response, which fails to control the spread of invading pathogens in diabetic subjects. Therefore, diabetic subjects are known to more susceptible to infections. The increased prevalence of T2D will increase the incidence of infectious diseases and related comorbidities. OBJECTIVE This review provides an overview of the immunological aspect of T2D and the possible mechanisms that result in increased infections in diabetics. CONCLUSION A better understanding of how immune dysfunctions occur during hyperglycemia can lead to novel treatments and preventions for infectious diseases and T2D comorbidities, thus improving the outcome of infectious disease treatment in T2D patients.
Collapse
Affiliation(s)
- Afiat Berbudi
- Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Infectious Disease Research Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Address correspondence to this author at the Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung Sumedang Km. 21, 45363, West Java, Indonesia; E-mail:
| | - Nofri Rahmadika
- Infectious Disease Research Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Adi Imam Tjahjadi
- Infectious Disease Research Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Microbiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Infectious Disease Research Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Pharmacology and Therapy Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
17
|
Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Performance of Point-of-Care Testing Compared with the Standard Laboratory Diagnostic Test in the Measurement of HbA1c in Indonesian Diabetic and Nondiabetic Subjects. J Diabetes Res 2020; 2020:2037565. [PMID: 32733964 PMCID: PMC7369652 DOI: 10.1155/2020/2037565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE This study is aimed at investigating if point-of-care testing for HbA1c (POCT-HbA1c) using the HemoCue® HbA1c 501 system could be an alternative method for diabetes screening and monitoring to replace the HbA1c measurement in a standard diagnostic laboratory. DESIGN This was a cross-sectional study to assess the agreement between POCT and a standard laboratory measurement method for determining the level of HbA1c. Setting and Participants. In total, 108 participants were recruited to participate in this study, consisting of 61 diabetics and 47 nondiabetics. The diabetic group comprised 37 females and 24 males, diagnosed with type 2 diabetes mellitus (DM) and undergoing diabetes treatment at several community health care centres in Bandung, West Java. The nondiabetic group consisted of 15 female and 32 male patients of several community health care centres and healthy volunteers. Sample Collection and Analysis. A venous blood sample was taken for routine HbA1c analysis by the diagnostic laboratory method. For the POCT-HbA1c, a blood sample was taken from the fingertip at the same time and analysed with the HemoCue® HbA1c 501 system. Outcome Measures. The HbA1c results of both methods were compared and analysed with a Bland-Altman agreement plot. The sensitivity and specificity of the POCT-HbA1c data were also compared with those of the standard diagnostic results. RESULTS Based on the Bland-Altman plot, the HbA1c level for 100 out of 108 (92.59%) subjects analysed by the POCT-HbA1c was within the range of the 95% limit of agreement. Compared with the standard diagnostic assay, the sensitivity of the POCT-HbA1c was 97.83% and its specificity was 77.42%. CONCLUSIONS The high sensitivity and accuracy of POCT-HbA1c indicate that it is a potential method for diabetes screening and monitoring to replace the routine diagnostic laboratory HbA1c measurement, especially when a rapid result is required.
Collapse
Affiliation(s)
- Afiat Berbudi
- Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Infectious Disease Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Nofri Rahmadika
- Infectious Disease Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Adi Imam Tjahjadi
- Infectious Disease Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Microbiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Infectious Disease Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Pharmacology and Therapy Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
18
|
Korbel L, Easterling RS, Punja N, Spencer JD. The burden of common infections in children and adolescents with diabetes mellitus: A Pediatric Health Information System study. Pediatr Diabetes 2018; 19:512-519. [PMID: 29094435 DOI: 10.1111/pedi.12594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/19/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND People with diabetes mellitus (DM) have increased infection risk. The healthcare utilization of pediatric and adolescent diabetic patients with infection is not well defined. This study evaluates the number of pediatric and adolescent patients with DM that seek medical treatment for infection management and assesses its socioeconomic impact. METHODS A retrospective analysis was performed using the Pediatric Health Information System (PHIS) database on children and adolescents with DM who presented to the Emergency Department (ED) or were hospitalized for infection management from 2008 to 2014. The PHIS database collects admission, demographic, and economic data from 44 freestanding children's hospitals across the United States. RESULTS In total, 123 599 diabetic patient encounters were identified (77% type 1 DM, 23% type 2 DM). ED visits and hospitalizations for type 1 DM and type 2 DM increased throughout the study period. Total charges for these encounters were greater than $250 million dollars per year and increased each year. Infection encounters make up more than 30% of that cost while accounting for only 14% of the visits. Respiratory infections were the most common type of infection followed by skin and soft tissue infections for both ED care and inpatient hospitalizations. Patients with infections had longer hospital length of stay and higher cost per day than those without infections. CONCLUSIONS Children and adolescents with type 1 and type 2 DM commonly present to the ED and require hospitalization for infection evaluation and management. Encounters with infection make up a large proportion of a growing economic burden on the United States' healthcare system. As the prevalence of DM grows, this burden can be expected to become even more significant. Cost-effective strategies for the prevention of infection in pediatric patients with DM are needed.
Collapse
Affiliation(s)
- Lindsey Korbel
- Pediatrics Residency Program, Nationwide Children's Hospital, Columbus, Ohio
| | - Robert S Easterling
- College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio.,Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Nidhi Punja
- Data Resource Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - John David Spencer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
19
|
Takeda Y, Shimomura T, Asao H, Wakabayashi I. Relationship between Immunological Abnormalities in Rat Models of Diabetes Mellitus and the Amplification Circuits for Diabetes. J Diabetes Res 2017; 2017:4275851. [PMID: 28299342 PMCID: PMC5337356 DOI: 10.1155/2017/4275851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/13/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
A better understanding of pathogenic mechanisms is required in order to treat diseases. However, the mechanisms of diabetes mellitus and diabetic complications are extremely complex. Immune reactions are involved in the pathogenesis of diabetes and its complications, while diabetes influences immune reactions. Furthermore, both diabetes and immune reactions are influenced by genetic and environmental factors. To address these issues, animal models are useful tools. So far, various animal models of diabetes have been developed in rats, which have advantages over mice models in terms of the larger volume of tissue samples and the variety of type 2 diabetes models. In this review, we introduce rat models of diabetes and summarize the immune reactions in diabetic rat models. Finally, we speculate on the relationship between immune reactions and diabetic episodes. For example, diabetes-prone Biobreeding rats, type 1 diabetes model rats, exhibit increased autoreactive cellular and inflammatory immune reactions, while Goto-Kakizaki rats, type 2 diabetes model rats, exhibit increased Th2 reactions and attenuation of phagocytic activity. Investigation of immunological abnormalities in various diabetic rat models is useful for elucidating complicated mechanisms in the pathophysiology of diabetes. Studying immunological alterations, such as predominance of Th1/17 or Th2 cells, humoral immunity, and innate immune reactions, may improve understanding the structure of amplification circuits for diabetes in future studies.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, Japan
- *Yuji Takeda:
| | - Tomoko Shimomura
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Ichiro Wakabayashi
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
20
|
Pearson-Stuttard J, Blundell S, Harris T, Cook DG, Critchley J. Diabetes and infection: assessing the association with glycaemic control in population-based studies. Lancet Diabetes Endocrinol 2016; 4:148-58. [PMID: 26656292 DOI: 10.1016/s2213-8587(15)00379-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 02/08/2023]
Abstract
Diabetes is a leading cause of morbidity and mortality. The global burden of diabetes is rising because of increased obesity and population ageing. Although preventive and treatment measures are well documented for macrovascular and microvascular complications, little such guidance exists for infections in people with diabetes, despite evidence suggesting greater susceptibility to infections, and worse outcomes. In particular, few studies have characterised the relation between glycaemic control and infectious disease, which we discuss in this Review. Some large population-based observational studies have reported strong associations between higher HbA1c and infection risks for both type 1 and type 2 diabetes. However, studies are contradictory, underpowered, or do not control for confounders. Evidence suggests that better glycaemic control might reduce infection risk, but further longitudinal studies with more frequent measures of HbA1c are needed. Older people (aged 70 years or older) with diabetes are at increased risk of complications, including infectious diseases. There is more uncertainty about appropriate glycaemic control targets in this age group, and evidence suggests that glycaemic control is often neglected. Robust evidence from cohorts with sufficient numbers of older people would help to develop clinically relevant guidelines and targets to reduce mortality, morbidity, and antibiotic use, and to improve quality of life.
Collapse
Affiliation(s)
| | | | - Tess Harris
- Population Health Research Institute, St George's, University of London, London, UK
| | - Derek G Cook
- Population Health Research Institute, St George's, University of London, London, UK
| | - Julia Critchley
- Population Health Research Institute, St George's, University of London, London, UK
| |
Collapse
|
21
|
Ronacher K, Joosten SA, van Crevel R, Dockrell HM, Walzl G, Ottenhoff THM. Acquired immunodeficiencies and tuberculosis: focus on HIV/AIDS and diabetes mellitus. Immunol Rev 2015; 264:121-37. [PMID: 25703556 DOI: 10.1111/imr.12257] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The spread of human immunodeficiency virus (HIV) infection within Africa led to marked increases in numbers of cases of tuberculosis (TB), and although the epidemic peaked in 2006, there were still 1.8 million new cases in 2013, with 29.2 million prevalent cases. Half of all TB cases in Africa are in those with HIV co-infection. A brief review of the well-documented main immunological mechanisms of HIV-associated increased susceptibility to TB is presented. However, a new threat is facing TB control, which presents itself in the form of a rapid increase in the number of people living with type II diabetes mellitus (T2DM), particularly in areas that are already hardest hit by the TB epidemic. T2DM increases susceptibility to TB threefold, and the TB burden attributable to T2DM is 15%. This review addresses the much smaller body of research information available on T2DM-TB, compared to HIV-TB comorbidity. We discuss the altered clinical presentation of TB in the context of T2DM comorbidity, changes in innate and adaptive immune responses, including lymphocyte subsets and T-cell phenotypes, the effect of treatment of the different comorbidities, changes in biomarker expression and genetic predisposition to the respective morbidities, and other factors affecting the comorbidity. Although significant gains have been made in improving our understanding of the underlying mechanisms of T2DM-associated increased susceptibility, knowledge gaps still exist that require urgent attention.
Collapse
Affiliation(s)
- Katharina Ronacher
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
22
|
Filgueiras LR, Brandt SL, Wang S, Wang Z, Morris DL, Evans-Molina C, Mirmira RG, Jancar S, Serezani CH. Leukotriene B4-mediated sterile inflammation promotes susceptibility to sepsis in a mouse model of type 1 diabetes. Sci Signal 2015; 8:ra10. [PMID: 25628460 DOI: 10.1126/scisignal.2005568] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is associated with chronic systemic inflammation and enhanced susceptibility to systemic bacterial infection (sepsis). We hypothesized that low insulin concentrations in T1DM trigger the enzyme 5-lipoxygenase (5-LO) to produce the lipid mediator leukotriene B4 (LTB4), which triggers systemic inflammation that may increase susceptibility to polymicrobial sepsis. Consistent with chronic inflammation, peritoneal macrophages from two mouse models of T1DM had greater abundance of the adaptor MyD88 (myeloid differentiation factor 88) and its direct transcriptional effector STAT-1 (signal transducer and activator of transcription 1) than macrophages from nondiabetic mice. Expression of Alox5, which encodes 5-LO, and the concentration of the proinflammatory cytokine interleukin-1β (IL-1β) were also increased in peritoneal macrophages and serum from T1DM mice. Insulin treatment reduced LTB4 concentrations in the circulation and Myd88 and Stat1 expression in the macrophages from T1DM mice. T1DM mice treated with a 5-LO inhibitor had reduced Myd88 mRNA in macrophages and increased abundance of IL-1 receptor antagonist and reduced production of IL-β in the circulation. T1DM mice lacking 5-LO or the receptor for LTB4 also produced less proinflammatory cytokines. Compared to wild-type or untreated diabetic mice, T1DM mice lacking the receptor for LTB4 or treated with a 5-LO inhibitor survived polymicrobial sepsis, had reduced production of proinflammatory cytokines, and had decreased bacterial counts. These results uncover a role for LTB4 in promoting sterile inflammation in diabetes and the enhanced susceptibility to sepsis in T1DM.
Collapse
Affiliation(s)
- Luciano Ribeiro Filgueiras
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Immunology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508, Brazil
| | - Stephanie L Brandt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Soujuan Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhuo Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David L Morris
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raghavendra G Mirmira
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sonia Jancar
- Immunology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508, Brazil
| | - C Henrique Serezani
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
23
|
Tavares NM, Araújo-Santos T, Afonso L, Nogueira PM, Lopes UG, Soares RP, Bozza PT, Bandeira-Melo C, Borges VM, Brodskyn C. Understanding the mechanisms controlling Leishmania amazonensis infection in vitro: the role of LTB4 derived from human neutrophils. J Infect Dis 2014; 210:656-66. [PMID: 24634497 PMCID: PMC4111911 DOI: 10.1093/infdis/jiu158] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are rapidly recruited to the site of Leishmania infection and play an active role in capturing and killing parasites. They are the main source of leukotriene B4 (LTB4), a potent proinflammatory lipid mediator. However, the role of LTB4 in neutrophil infection by Leishmania amazonensis is not clear. In this study, we show that L. amazonensis or its lipophosphoglycan can induce neutrophil activation, degranulation, and LTB4 production. Using pharmacological inhibitors of leukotriene synthesis, our findings reveal an LTB4-driven autocrine/paracrine regulatory effect. In particular, neutrophil-derived LTB4 controls L. amazonensis killing, degranulation, and reactive oxygen species production. In addition, L. amazonensis infection induces an early increase in Toll-like receptor 2 expression, which facilitates parasite internalization. Nuclear factor kappa B (NFkB) pathway activation represents a required upstream event for L. amazonensis–induced LTB4 synthesis. These leishmanicidal mechanisms mediated by neutrophil-derived LTB4 act through activation of its receptor, B leukotriene receptor 1 (BLT1).
Collapse
Affiliation(s)
- Natalia Machado Tavares
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation-FIOCRUZ Federal University of Bahia-UFBA, Salvador, Brazil
| | - Théo Araújo-Santos
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation-FIOCRUZ Federal University of Bahia-UFBA, Salvador, Brazil
| | - Lilian Afonso
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation-FIOCRUZ
| | | | | | - Rodrigo Pedro Soares
- René Rachou Research Center, Oswaldo Cruz Foundation-FIOCRUZ, Belo Horizonte, Brazil
| | - Patrícia Torres Bozza
- Immunopharmacology Laboratory, Oswaldo Cruz Institute-Oswaldo Cruz Foundation-FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Valeria Matos Borges
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation-FIOCRUZ Federal University of Bahia-UFBA, Salvador, Brazil National Institute of Science and Technology for Immunology Investigation (iii-INCT), Salvador, Bahia, Brazil
| | - Cláudia Brodskyn
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation-FIOCRUZ Federal University of Bahia-UFBA, Salvador, Brazil National Institute of Science and Technology for Immunology Investigation (iii-INCT), Salvador, Bahia, Brazil
| |
Collapse
|
24
|
Martinez N, Kornfeld H. Diabetes and immunity to tuberculosis. Eur J Immunol 2014; 44:617-26. [PMID: 24448841 DOI: 10.1002/eji.201344301] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/08/2014] [Accepted: 01/15/2014] [Indexed: 02/06/2023]
Abstract
The dual burden of tuberculosis (TB) and diabetes has attracted much attention in the past decade as diabetes prevalence has increased dramatically in countries already afflicted with a high burden of TB. The confluence of these two major diseases presents a serious threat to global public health; at the same time it also presents an opportunity to learn more about the key elements of human immunity to TB that may be relevant to the general population. Some effects of diabetes on innate and adaptive immunity that are potentially relevant to TB defense have been identified, but have yet to be verified in humans and are unlikely to fully explain the interaction of these two disease states. This review provides an update on the clinical and epidemiological features of TB in the diabetic population and relates them to recent advances in understanding the mechanistic basis of TB susceptibility and other complications of diabetes. Issues that merit further investigation - such as geographic host and pathogen differences in the diabetes/TB interaction, the role of hyperglycemia-induced epigenetic reprogramming in immune dysfunction, and the impact of diabetes on lung injury and fibrosis caused by TB - are highlighted in this review.
Collapse
Affiliation(s)
- Nuria Martinez
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
25
|
Takeda Y, Shimomura T, Wakabayashi I. [Immunological disorders of diabetes mellitus in experimental rat models]. Nihon Eiseigaku Zasshi 2014; 69:166-176. [PMID: 25253518 DOI: 10.1265/jjh.69.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A comprehensive understanding of the pathogenic mechanism is the prerequisite for proper disease management. However, the mechanisms of diabetes mellitus and diabetic complication remain extremely complicated and unresolved. While immune reactions are involved in the pathogenesis of diabetes and diabetic complication, the diabetic condition itself can influence immune responses. Furthermore, both diabetes and immune reactions are regulated by genetic and environmental factors. As a result, animal models have evolved to be powerful research tools to elucidate the complicated mechanisms for the pathogenesis of diabetes. Recently, various animal models of diabetes have been developed in rats, which provide advantages over mouse models in the scale of tissue samples and variation in type 2 diabetes models. In this review, we introduced rat models of diabetes and summarized the immune reactions in diabetic rats to propose the relationship between immune reactions and diabetes. Type 1 diabetes is induced by self-reactive cellular immune reactions. On the other hand, type 2 diabetes in rat models is associated with augmentation of innate immune reactions and increased humoral immunity. For example, helper T (Th) 1/Th17 cells are prevalent in non-obese type 1 diabetes rats (diabetes-prone BioBreeding rats), while non-obese type 2 diabetes rats (Goto-Kakizaki rat) show higher levels of natural IgM and T cell ratios with elevated Th2 cells compared with Wister rats. The investigation of immunological disorders in various diabetic rat models is useful to elucidate complicated mechanisms for the pathophysiology of diabetes. In future studies, immunological experimentations altering Th1/Th17 or Th2 cell levels and natural immune reactions may lend support to understanding the causes of diabetes and predicting the pathological conditions in diabetes.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine
| | | | | |
Collapse
|
26
|
Tang Y, Zhang MJ, Hellmann J, Kosuri M, Bhatnagar A, Spite M. Proresolution therapy for the treatment of delayed healing of diabetic wounds. Diabetes 2013; 62:618-27. [PMID: 23043160 PMCID: PMC3554373 DOI: 10.2337/db12-0684] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity and type 2 diabetes are emerging global epidemics associated with chronic, low-grade inflammation. A characteristic feature of type 2 diabetes is delayed wound healing, which increases the risk of recurrent infections, tissue necrosis, and limb amputation. In health, inflammation is actively resolved by endogenous mediators, such as the resolvins. D-series resolvins are generated from docosahexaenoic acid (DHA) and promote macrophage-mediated clearance of microbes and apoptotic cells. However, it is not clear how type 2 diabetes affects the resolution of inflammation. Here, we report that resolution of acute peritonitis is delayed in obese diabetic (db/db) mice. Altered resolution was associated with decreased apoptotic cell and Fc receptor-mediated macrophage clearance. Treatment with resolvin D1 (RvD1) enhanced resolution of peritonitis, decreased accumulation of apoptotic thymocytes in diabetic mice, and stimulated diabetic macrophage phagocytosis. Conversion of DHA to monohydroxydocosanoids, markers of resolvin biosynthesis, was attenuated in diabetic wounds, and local application of RvD1 accelerated wound closure and decreased accumulation of apoptotic cells and macrophages in the wounds. These findings support the notion that diabetes impairs resolution of wound healing and demonstrate that stimulating resolution with proresolving lipid mediators could be a novel approach to treating chronic, nonhealing wounds in patients with diabetes.
Collapse
Affiliation(s)
- Yunan Tang
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Michael J. Zhang
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Jason Hellmann
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Madhavi Kosuri
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Matthew Spite
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
27
|
Abel-Salam BK. Immunomodulatory effects of black seeds and garlic on alloxan-induced Diabetes in albino rat. Allergol Immunopathol (Madr) 2012; 40:336-40. [PMID: 21982401 DOI: 10.1016/j.aller.2011.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 07/16/2011] [Accepted: 07/25/2011] [Indexed: 10/16/2022]
Abstract
BACKGROUND Alteration in the proliferation capacity of leukocytes and in the level of some cytokines, such as TNF-α, IL-4 and IL-8 have been suggested to associate with Diabetes mellitus in alloxan-induced diabetic rats given the potential immunomodulatory effects of black seeds and garlic. AIM OF THE WORK The aim of this study was to test the effects of these agents on the immune cells in alloxan-induced diabetic rats. METHODS To this end, Diabetes was induced in albino rats by a single intraperitoneal injection of alloxan monohydrate (120mg/kg of body weight). Diabetic rats were then fed normal diet or diet with black seeds or garlic for 28 days. RESULTS The results showed significant increase in the numbers of monocytes and granulocytes, but with significant decreases in lymphocyte proliferation and the TNF-α, interleukin (IL)-4 and IL-8 levels in the diabetic group. Treatment of diabetic rats with black seeds or garlic induced significant amelioration in the numbers of monocytes and granulocytes, with significant increase in lymphocytes numbers and the TNF-α, IL-4 and IL-8 levels. CONCLUSIONS These results indicate the potential beneficial effects of black seeds and garlic as adjuvant treatment during treatment of Diabetes.
Collapse
|
28
|
Altered polarization, morphology, and impaired innate immunity germane to resident peritoneal macrophages in mice with long-term type 2 diabetes. J Biomed Biotechnol 2012; 2012:867023. [PMID: 23093868 PMCID: PMC3469280 DOI: 10.1155/2012/867023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/13/2012] [Accepted: 06/29/2012] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with perturbed innate immunity. Macrophages, bridging innate immunity and metabolic disturbances, play important roles in controlling immune homeostasis. However, the effect of long-term diabetic milieu (DM) on the functions and phenotypes of macrophages is still not clear. In this study, we used resident peritoneal macrophages (RPMs) from 5-month-old db/db mice to investigate the changes of macrophages. It was found that RPMs in db/db mice significantly reduced phagocytosis and adhesion capacity. After standardization with body weight, the number of F4/80+ RPMs markedly reduced in db/db mice, and, furthermore, the macrophages skewed to M2-polarizated macrophages. The results of morphology found that the RPMs shape of db/db mice was nearly round, but the RPMs shape of control mice was spindle-shaped and irregular. In this study, we found the cell numbers, morphology, and innate immunity functions of RPMs in 5-month-old type 2 diabetic mice (db/db mice) obtained by abdominal cavity lavage were significantly altered. Importantly, we also found the remarkably increased M2-RPMs in diabetic mice for the first time.
Collapse
|
29
|
Filgueiras, Jr. LR, Martins JO, Serezani CH, Capelozzi VL, Montes MBA, Jancar S. Sepsis-induced acute lung injury (ALI) is milder in diabetic rats and correlates with impaired NFkB activation. PLoS One 2012; 7:e44987. [PMID: 23024779 PMCID: PMC3443211 DOI: 10.1371/journal.pone.0044987] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/11/2012] [Indexed: 02/05/2023] Open
Abstract
Acute lung injury (ALI) develops in response to a direct insult to the lung or secondarily to a systemic inflammatory response, such as sepsis. There is clinical evidence that the incidence and severity of ALI induced by direct insult are lower in diabetics. In the present study we investigated whether the same occurs in ALI secondarily to sepsis and the molecular mechanisms involved. Diabetes was induced in male Wistar rats by alloxan and sepsis by caecal ligation and puncture surgery (CLP). Six hours later, the lungs were examined for oedema and cell infiltration in bronchoalveolar lavage. Alveolar macrophages (AMs) were cultured in vitro for analysis of IκB and p65 subunit of NFκB phosphorylation and MyD88 and SOCS-1 mRNA. Diabetic rats were more susceptible to sepsis than non-diabetics. In non-diabetic rats, the lung presented oedema, leukocyte infiltration and increased COX2 expression. In diabetic rats these inflammatory events were significantly less intense. To understand why diabetic rats despite being more susceptible to sepsis develop milder ALI, we examined the NFκB activation in AMs of animals with sepsis. Whereas in non-diabetic rats the phosphorylation of IκB and p65 subunit occurred after 6 h of sepsis induction, this did not occur in diabetics. Moreover, in AMs from diabetic rats the expression of MyD88 mRNA was lower and that of SOCS-1 mRNA was increased compared with AMs from non-diabetic rats. These results show that ALI secondary to sepsis is milder in diabetic rats and this correlates with impaired activation of NFκB, increased SOCS-1 and decreased MyD88 mRNA.
Collapse
Affiliation(s)
| | - Joilson O. Martins
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos H. Serezani
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Vera L. Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marlise B. A. Montes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sonia Jancar
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
30
|
Wu XY, Li F, Zhao T, Mao GH, Li J, Qu HY, Ren YN, Yang LQ. Enhanced anti-diabetic activity of a combination of chromium(III) malate complex and propolis and its acute oral toxicity evaluation. Biol Trace Elem Res 2012; 148:91-101. [PMID: 22322882 DOI: 10.1007/s12011-012-9347-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/26/2012] [Indexed: 10/14/2022]
Abstract
In order to obtain the additional benefit of anti-diabetic activity and protective effects of liver injury for diabetes, the anti-diabetic effect and acute oral toxicity of a combination of chromium(III) malate complex (Cr(2)(LMA)(3)) and propolis were assessed. The anti-diabetic activity of the combination of the Cr(2)LMA(3) and propolis was compared with Cr(2)(LMA)(3) and propolis alone in alloxan-induced diabetic mice by daily oral gavage for a period of 2 weeks. Acute oral toxicity of the combination of the Cr(2)LMA(3) and propolis was tested using ICR mice at the dose of 1.0-5.0 g/kg body mass by a single oral gavage and observed for a period of 2 weeks. The results of the anti-diabetic activity of the combination from the aspects of blood glucose level, liver glycogen level, and the activities of aspartate transaminase, alanine transaminase, and alkaline phosphatase indicated that the increased anti-diabetic activity and the protective efficacy of liver injury for diabetes were observed. In acute toxicity study, LD(50) (median lethal dose) value for the combination was greater than 5.0 g/kg body mass. The combination of Cr(2)LMA(3) and propolis might represent the nutritional supplement with potential therapeutic value to control blood glucose and exhibit protective efficacy of liver injury for diabetes and non-toxicity in acute toxicity.
Collapse
Affiliation(s)
- Xiang-Yang Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sunahara KKS, Martins JO. Alveolar macrophages in diabetes: friends or foes? J Leukoc Biol 2012; 91:871-6. [DOI: 10.1189/jlb.0911488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
32
|
Sunahara KKS, Sannomiya P, Martins JO. Briefs on Insulin and Innate Immune Response. Cell Physiol Biochem 2012; 29:1-8. [DOI: 10.1159/000337579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2011] [Indexed: 01/04/2023] Open
|
33
|
Takeda Y, Marumo M, Wakabayashi I. Attenuated phagocytic activity of monocytes in type 2 diabetic Goto-Kakizaki rats. Immunobiology 2011; 216:1094-102. [PMID: 21652107 DOI: 10.1016/j.imbio.2011.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 04/06/2011] [Accepted: 05/05/2011] [Indexed: 12/15/2022]
Abstract
The aim of this study was to determine whether phagocytic activity of leukocytes is altered in type 2 diabetes. Goto-Kakizaki (G-K) rats, a genetic model for type 2 diabetes, and Wistar rats (control) were used to analyze the immunological status of phagocytes. Direct analysis of phagocytes was performed using peripheral whole blood. Phagocytic activity of monocytes induced by Escherichia coli BioParticles was significantly lower in G-K rats than in the control rats, whereas no significant differences in phagocytic activity of granulocytes and lymphocytes were found between G-K and control rats. Monocytes of G-K rats showed significantly lower CD11b/c expression compared with that in monocytes of control rats. However, lipopolysaccharide-stimulated activation of extracellular signal-regulated kinase and nuclear factor-κB in monocytes was not significantly different between G-K and control rats. Restriction of diet in G-K rats greatly improved their hyperglycemic status, but did not restore the levels of phagocytic activity and CD11b/c expression in monocytes of G-K rats to the levels observed in control rats. The results suggest that the phagocytic activity of monocytes is attenuated in G-K rats and that this attenuation is independent of blood glucose levels and is partly explained by a decrease in CD11b/c expression in G-K rats.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya Hyogo 663-8501, Japan
| | | | | |
Collapse
|
34
|
Martins JO, Campos CAL, Cruz JWMC, Manzolli S, Alves VAF, Vianna EO, Jancar S, Sannomiya P. Insulin modulates cytokine release and selectin expression in the early phase of allergic airway inflammation in diabetic rats. BMC Pulm Med 2010; 10:39. [PMID: 20667094 PMCID: PMC2916891 DOI: 10.1186/1471-2466-10-39] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 07/28/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clinical and experimental data suggest that the inflammatory response is impaired in diabetics and can be modulated by insulin. The present study was undertaken to investigate the role of insulin on the early phase of allergic airway inflammation. METHODS Diabetic male Wistar rats (alloxan, 42 mg/Kg, i.v., 10 days) and controls were sensitized by s.c. injection of ovalbumin (OA) in aluminium hydroxide 14 days before OA (1 mg/0.4 mL) or saline intratracheal challenge. The following analyses were performed 6 hours thereafter: a) quantification of interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha and cytokine-induced neutrophil chemoattractant (CINC)-1 in the bronchoalveolar lavage fluid (BALF) by Enzyme-Linked Immunosorbent Assay, b) expression of E- and P- selectins on lung vessels by immunohistochemistry, and c) inflammatory cell infiltration into the airways and lung parenchyma. NPH insulin (4 IU, s.c.) was given i.v. 2 hours before antigen challenge. RESULTS Diabetic rats exhibited significant reduction in the BALF concentrations of IL-1beta (30%) and TNF-alpha (45%), and in the lung expression of P-selectin (30%) compared to non-diabetic animals. This was accompanied by reduced number of neutrophils into the airways and around bronchi and blood vessels. There were no differences in the CINC-1 levels in BALF, and E-selectin expression. Treatment of diabetic rats with NPH insulin, 2 hours before antigen challenge, restored the reduced levels of IL-1beta, TNF-alpha and P-selectin, and neutrophil migration. CONCLUSION Data presented suggest that insulin modulates the production/release of TNF-alpha and IL-1beta, the expression of P- and E-selectin, and the associated neutrophil migration into the lungs during the early phase of the allergic inflammatory reaction.
Collapse
Affiliation(s)
- Joilson O Martins
- Institute of Heart InCor, LIM-11, University of São Paulo Medical School, Av Dr Arnaldo, São Paulo 01246903, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|