1
|
Munyeku-Bazitama Y, Edidi-Atani F, Takada A. Non-Ebola Filoviruses: Potential Threats to Global Health Security. Viruses 2024; 16:1179. [PMID: 39205153 PMCID: PMC11359311 DOI: 10.3390/v16081179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Filoviruses are negative-sense single-stranded RNA viruses often associated with severe and highly lethal hemorrhagic fever in humans and nonhuman primates, with case fatality rates as high as 90%. Of the known filoviruses, Ebola virus (EBOV), the prototype of the genus Orthoebolavirus, has been a major public health concern as it frequently causes outbreaks and was associated with an unprecedented outbreak in several Western African countries in 2013-2016, affecting 28,610 people, 11,308 of whom died. Thereafter, filovirus research mostly focused on EBOV, paying less attention to other equally deadly orthoebolaviruses (Sudan, Bundibugyo, and Taï Forest viruses) and orthomarburgviruses (Marburg and Ravn viruses). Some of these filoviruses have emerged in nonendemic areas, as exemplified by four Marburg disease outbreaks recorded in Guinea, Ghana, Tanzania, and Equatorial Guinea between 2021 and 2023. Similarly, the Sudan virus has reemerged in Uganda 10 years after the last recorded outbreak. Moreover, several novel bat-derived filoviruses have been discovered in the last 15 years (Lloviu virus, Bombali virus, Měnglà virus, and Dehong virus), most of which are poorly characterized but may display a wide host range. These novel viruses have the potential to cause outbreaks in humans. Several gaps are yet to be addressed regarding known and emerging filoviruses. These gaps include the virus ecology and pathogenicity, mechanisms of zoonotic transmission, host range and susceptibility, and the development of specific medical countermeasures. In this review, we summarize the current knowledge on non-Ebola filoviruses (Bombali virus, Bundibugyo virus, Reston virus, Sudan virus, Tai Forest virus, Marburg virus, Ravn virus, Lloviu virus, Měnglà virus, and Dehong virus) and suggest some strategies to accelerate specific countermeasure development.
Collapse
Affiliation(s)
- Yannick Munyeku-Bazitama
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Francois Edidi-Atani
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
2
|
Juma SN, Liao J, Huang Y, Vlashi R, Wang Q, Wu B, Wang D, Wu M, Chen G. Osteoarthritis versus psoriasis arthritis: Physiopathology, cellular signaling, and therapeutic strategies. Genes Dis 2024; 11:100986. [PMID: 38292181 PMCID: PMC10825447 DOI: 10.1016/j.gendis.2023.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/15/2023] [Indexed: 02/01/2024] Open
Abstract
Osteoarthritis and psoriasis arthritis are two degenerative forms of arthritis that share similar yet also different manifestations at the histological, cellular, and clinical levels. Rheumatologists have marked them as two entirely distinct arthropathies. Given recent discoveries in disease initiation and progression, potential mechanisms, cellular signaling pathways, and ongoing clinical therapeutics, there are now more opportunities for discovering osteoarthritis drugs. This review summarized the osteoarthritis and psoriasis arthritis signaling pathways, crosstalk between BMP, WNT, TGF-β, VEGF, TLR, and FGF signaling pathways, biomarkers, and anatomical pathologies. Through bench research, we demonstrated that regenerative medicine is a promising alternative for treating osteoarthritis by highlighting significant scientific discoveries on entheses, multiple signaling blockers, and novel molecules such as immunoglobulin new antigen receptors targeted for potential drug evaluation. Furthermore, we offered valuable therapeutic approaches with a multidisciplinary strategy to treat patients with osteoarthritis or psoriasis arthritis in the coming future in the clinic.
Collapse
Affiliation(s)
- Salma Nassor Juma
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qingwan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bocong Wu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Dan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
3
|
Lim HT, Kok BH, Leow CY, Leow CH. Exploring shark VNAR antibody against infectious diseases using phage display technology. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108986. [PMID: 37541634 DOI: 10.1016/j.fsi.2023.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Antibody with high affinity and specificity to antigen has widely used as a tool to combat various diseases. The variable domain of immunoglobulin new antigen receptor (VNAR) naturally found in shark contains autonomous function as single-domain antibody. Due to its excellent characteristics, the small, non-complex, and highly stable have made shark VNAR can acquires the antigen-binding capability that might not be reached by conventional antibody. Phage display technology enables shark VNAR to be presented on the surface of phage, allowing the exploration of shark VNAR as an alternative antibody format to target antigens from various infectious diseases. The application of phage-displayed shark VNAR in antibody library and biopanning eventually leads to the discovery and isolation of antigen-specific VNARs with diagnostic and therapeutic potential towards infectious diseases. This review provides an overview of the shark VNAR antibody, the types of phage display technology with comparison to the other types of display system, as well as the application and case studies of phage-displayed shark VNAR antibodies against infectious diseases.
Collapse
Affiliation(s)
- Hui Ting Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
4
|
Qin L, Ren Q, Lu C, Zhu T, Lu Y, Chen S, Tong S, Jiang X, Lyu Z. Screening and anti-glioma activity of Chiloscyllium plagiosum anti-human IL-13Rα2 single-domain antibody. Immunology 2023; 170:105-119. [PMID: 37190788 DOI: 10.1111/imm.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Glioblastoma is a common and fatal malignant tumour of the central nervous system, with high invasiveness. Conventional treatments for this disease, including comprehensive treatment of surgical resection combined with chemoradiotherapy, are ineffective, with low survival rate and extremely poor prognosis. Targeted therapy is promising in overcoming the difficulties in brain tumour treatment and IL-13Rα2 is a widely watched target. The development of new therapies for glioma, however, is challenged by factors, such as the unique location and immune microenvironment of gliomas. The unique advantages of single-domain antibodies (sdAbs) may provide a novel potential treatment for brain tumours. In this study, Chiloscyllium plagiosum was immunized with recombinant IL-13Rα2 protein to produce sdAb and sdAb sequences were screened by multi-omics. The targeted sdAb genes obtained were efficiently expressed in the Escherichia coli prokaryotic expression system, showing a significant binding capacity to IL-13Rα2 in vitro. The cell proliferation and migration inhibitory effects of recombinant variable domain of the new antigen receptor (VNAR) on glioma cells were detected by CCK-8 and cell scratch assays. The sdAb obtained in this study showed high in vitro activity and favourable cell proliferation inhibitory effect on glioma cells, with potential clinical application value. The present study also provides a new direction and experimental basis for the development of targeted therapies for glioma.
Collapse
Affiliation(s)
- Lanyi Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qingyu Ren
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chaoling Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tianci Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yijun Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shuangxing Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shuna Tong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaofeng Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengbing Lyu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
5
|
Guliy OI, Evstigneeva SS, Khanadeev VA, Dykman LA. Antibody Phage Display Technology for Sensor-Based Virus Detection: Current Status and Future Prospects. BIOSENSORS 2023; 13:640. [PMID: 37367005 DOI: 10.3390/bios13060640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Viruses are widespread in the environment, and many of them are major pathogens of serious plant, animal, and human diseases. The risk of pathogenicity, together with the capacity for constant mutation, emphasizes the need for measures to rapidly detect viruses. The need for highly sensitive bioanalytical methods to diagnose and monitor socially significant viral diseases has increased in the past few years. This is due, on the one hand, to the increased incidence of viral diseases in general (including the unprecedented spread of a new coronavirus infection, SARS-CoV-2), and, on the other hand, to the need to overcome the limitations of modern biomedical diagnostic methods. Phage display technology antibodies as nano-bio-engineered macromolecules can be used for sensor-based virus detection. This review analyzes the commonly used virus detection methods and approaches and shows the prospects for the use of antibodies prepared by phage display technology as sensing elements for sensor-based virus detection.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Vitaly A Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| |
Collapse
|
6
|
Manoutcharian K, Gevorkian G. Shark VNAR phage display libraries: An alternative source for therapeutic and diagnostic recombinant antibody fragments. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108808. [PMID: 37169114 DOI: 10.1016/j.fsi.2023.108808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The development of recombinant antibody fragments as promising alternatives to full-length immunoglobulins offers vast opportunities for biomedicine. Antibody fragments have important advantages compared with conventional monoclonal antibodies that make them attractive for the biotech industry: superior stability and solubility, reduced immunogenicity, higher specificity and affinity, capacity to target the hidden epitope and cross the blood-brain barrier, the ability to refold after heat denaturation and inexpensive and easy large-scale production. Different antibody formats such as antigen-binding fragments (Fab), single-chain fragment variable (scFv) consisting of the antigen-binding domains of Ig heavy (VH) and light (VL) chain regions connected by a flexible peptide linker, single-domain antibody fragments (sdAbs) like camelid heavy-chain variable domains (VHHs) and shark variable new antigen receptor (VNARs), and bispecific antibodies (bsAbs) are currently being evaluated as diagnostics or therapeutics in preclinical studies and clinical trials. In the present review, we summarize and discuss studies on VNARs, the smallest recombinant antibody fragment, obtained after the screening of different types of phage display antibody libraries. Results published until March 2023 are discussed.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, DF, Mexico.
| |
Collapse
|
7
|
Jiang X, Sun S, Li Z, Chen M. Isolation and Characterization of Targeting-HBsAg VNAR Single Domain Antibodies from Whitespotted Bamboo Sharks ( Chiloscyllium plagiosum). Mar Drugs 2023; 21:md21040237. [PMID: 37103376 PMCID: PMC10146958 DOI: 10.3390/md21040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Immunoglobulin new antigen receptor (IgNAR) is a naturally occurring antibody that consists of only two heavy chains with two independent variable domains. The variable binding domain of IgNAR, called variable new antigen receptor (VNAR), is attractive due to its solubility, thermal stability, and small size. Hepatitis B surface antigen (HBsAg) is a viral capsid protein found on the surface of the Hepatitis B virus (HBV). It appears in the blood of an individual infected with HBV and is widely used as a diagnostic marker for HBV infection. In this study, the whitespotted bamboo sharks (Chiloscyllium plagiosum) were immunized with the recombinant HBsAg protein. Peripheral blood leukocytes (PBLs) of immunized bamboo sharks were further isolated and used to construct a VNAR-targeted HBsAg phage display library. The 20 specific VNARs against HBsAg were then isolated by bio-panning and phage ELISA. The 50% of maximal effect (EC50) of three nanobodies, including HB14, HB17, and HB18, were 4.864 nM, 4.260 nM, and 8.979 nM, respectively. The Sandwich ELISA assay further showed that these three nanobodies interacted with different epitopes of HBsAg protein. When taken together, our results provide a new possibility for the application of VNAR in HBV diagnosis and also demonstrate the feasibility of using VNAR for medical testing.
Collapse
Affiliation(s)
- Xierui Jiang
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362251, China
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Centre for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen 361005, China
| | - Shan Sun
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Centre for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen 361005, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Life Science School, Ningxia University, Yinchuan 750021, China
| | - Zengpeng Li
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Centre for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen 361005, China
| | - Mingliang Chen
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Centre for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen 361005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
8
|
Shark nanobodies with potent SARS-CoV-2 neutralizing activity and broad sarbecovirus reactivity. Nat Commun 2023; 14:580. [PMID: 36737435 PMCID: PMC9896449 DOI: 10.1038/s41467-023-36106-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Despite rapid and ongoing vaccine and therapeutic development, SARS-CoV-2 continues to evolve and evade, presenting a need for next-generation diverse therapeutic modalities. Here we show that nurse sharks immunized with SARS-CoV-2 recombinant receptor binding domain (RBD), RBD-ferritin (RFN), or spike protein ferritin nanoparticle (SpFN) immunogens elicit a set of new antigen receptor antibody (IgNAR) molecules that target two non-overlapping conserved epitopes on the spike RBD. Representative shark antibody variable NAR-Fc chimeras (ShAbs) targeting either of the two epitopes mediate cell-effector functions, with high affinity to all SARS-CoV-2 viral variants of concern, including the divergent Omicron strains. The ShAbs potently cross-neutralize SARS-CoV-2 WA-1, Alpha, Beta, Delta, Omicron BA.1 and BA.5, and SARS-CoV-1 pseudoviruses, and confer protection against SARS-CoV-2 challenge in the K18-hACE2 transgenic mouse model. Structural definition of the RBD-ShAb01-ShAb02 complex enabled design and production of multi-specific nanobodies with enhanced neutralization capacity, and picomolar affinity to divergent sarbecovirus clade 1a, 1b and 2 RBD molecules. These shark nanobodies represent potent immunotherapeutics both for current use, and future sarbecovirus pandemic preparation.
Collapse
|
9
|
Chen YL, Lin JJ, Ma H, Zhong N, Xie XX, Yang Y, Zheng P, Zhang LJ, Jin T, Cao MJ. Screening and Characterization of Shark-Derived VNARs against SARS-CoV-2 Spike RBD Protein. Int J Mol Sci 2022; 23:ijms231810904. [PMID: 36142819 PMCID: PMC9502636 DOI: 10.3390/ijms231810904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the major target for antibody therapeutics. Shark-derived variable domains of new antigen receptors (VNARs) are the smallest antibody fragments with flexible paratopes that can recognize protein motifs inaccessible to classical antibodies. This study reported four VNARs binders (JM-2, JM-5, JM-17, and JM-18) isolated from Chiloscyllium plagiosum immunized with SARS-CoV-2 RBD. Biolayer interferometry showed that the VNARs bound to the RBD with an affinity KD ranging from 38.5 to 2720 nM, and their Fc fusions had over ten times improved affinity. Gel filtration chromatography revealed that JM-2-Fc, JM-5-Fc, and JM-18-Fc could form stable complexes with RBD in solution. In addition, five bi-paratopic VNARs, named JM-2-5, JM-2-17, JM-2-18, JM-5-18, and JM-17-18, were constructed by fusing two VNARs targeting distinct RBD epitopes based on epitope grouping results. All these bi-paratopic VNARs except for JM-5-18 showed higher RBD binding affinities than its component VNARs, and their Fc fusions exhibited further enhanced binding affinities, with JM-2-5-Fc, JM-2-17-Fc, JM-2-18-Fc, and JM-5-18-Fc having KD values lower than 1 pM. Among these Fc fusions of bi-paratopic VNARs, JM-2-5-Fc, JM-2-17-Fc, and JM-2-18-Fc could block the angiotensin-converting enzyme 2 (ACE2) binding to the RBD of SARS-CoV-2 wildtype, Delta, Omicron, and SARS-CoV, with inhibition rates of 48.9~84.3%. Therefore, these high-affinity VNAR binders showed promise as detectors and therapeutics of COVID-19.
Collapse
Affiliation(s)
- Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jin-Jin Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Huan Ma
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Ning Zhong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xin-Xin Xie
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yunru Yang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Peiyi Zheng
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tengchuan Jin
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
- Correspondence: (T.J.); (M.-J.C.); Tel.: +86-551-6360-0720 (T.J.); +86-592-618-3955 (M.-J.C.)
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Correspondence: (T.J.); (M.-J.C.); Tel.: +86-551-6360-0720 (T.J.); +86-592-618-3955 (M.-J.C.)
| |
Collapse
|
10
|
Wang M, Wei L, Xiang H, Ren B, Liu X, Jiang L, Yang N, Shi J. A megadiverse naïve library derived from numerous camelids for efficient and rapid development of VHH antibodies. Anal Biochem 2022; 657:114871. [PMID: 36108795 DOI: 10.1016/j.ab.2022.114871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 07/20/2022] [Accepted: 08/17/2022] [Indexed: 11/01/2022]
Abstract
The field of antibody development is under pressure to meet rising demands for speed, cost-effectiveness, efficacy, reliability, and large-scale production. It is costly and time-consuming to immunize animals and build a single-domain antibody (sdAb) library for each target. Using the variable domain (VHH) of heavy-chain only antibodies (HcAbs) derived from blood samples of 75 non-immunized camelid animals (51 alpacas, 13 llamas, 11 Bactrian camels), and spleens from two Bactrian camels, a naïve sdAb library with extensive megadiversity and reusability was constructed. The library was evaluated using next-generation DNA sequencing (NGS) and was found to contain hundreds of billions of unique clones. To confirm the availability of target-specific VHHs, a naive library was screened for a variety of targets. At least two VHH candidates were extracted for each target using a 20-day selection pipeline. Some binders had ultrahigh potencies, with binding affinities in the nanomolar range. This naïve library, in particular, offers the possibility of acquiring unique antibodies targeting antigens of interest with low feasible dissociation constant (kD) without the time, effort, and price associated in producing antibodies in animals via antigen injection. Overall, the study shows that the megadiverse naïve library provides a rapid, adaptable, and easy platform for antibody creation, emphasizing its therapeutic and diagnostic implications.
Collapse
Affiliation(s)
- Meiniang Wang
- BGI-Shenzhen, Shenzhen, 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Likun Wei
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China; Biotechnology and Health Centre, City University of Hong Kong, Shenzhen Research Institute, Shenzhen, China
| | - Haitao Xiang
- BGI-Shenzhen, Shenzhen, 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Bingzhao Ren
- BGI-Shenzhen, Shenzhen, 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xiaopan Liu
- BGI-Shenzhen, Shenzhen, 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Lin Jiang
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Naibo Yang
- BGI-Shenzhen, Shenzhen, 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China; Complete Genomics, Inc., 2904 Orchard Parkway, San Jose, CA, 95134, USA.
| | - Jiahai Shi
- Synthetic Biology Translational Research Programmes, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
11
|
Selection of Cancer Stem Cell-Targeting Agents Using Bacteriophage Display. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2394:787-810. [PMID: 35094358 DOI: 10.1007/978-1-0716-1811-0_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There is a growing need to develop tumor targeting agents for aggressive cancers. Aggressive cancers frequently relapse and are resistant to various therapies. Cancer stem cells (CSCs) are believed to be the cause of relapse and the aggressive nature of many cancers. Targeting CSCs could lead to novel diagnostic and treatment options. Bacteriophage (phage) display is a powerful tool developed by George Smith in 1985 to aid in the discovery of CSC targeting agents. Phage display selections are typically performed in vitro against an immobilized target. There are inherent disadvantages with this technique that can be circumvented by performing phage display selections in vivo. However, in vivo phage display selections present new challenges. A combination of both in vitro and in vivo selections, however, can take advantage of both selection methods. In this chapter, we discuss in detail how to isolate a CSC like population of cells from an aggressive cancer cell line, perform in vivo and in vitro phage display selections against the CSCs, and then characterize the resulting phage/peptides for further use as a diagnostic and therapeutic tool.
Collapse
|
12
|
Khalid Z, Chen Y, Yu D, Abbas M, Huan M, Naz Z, Mengist HM, Cao MJ, Jin T. IgNAR antibody: Structural features, diversity and applications. FISH & SHELLFISH IMMUNOLOGY 2022; 121:467-477. [PMID: 35077867 DOI: 10.1016/j.fsi.2022.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
In response to the invasion of exogenous microorganisms, one of the defence strategies of the immune system is to produce antibodies. Cartilaginous fish is among those who evolved the earliest humoral immune system that utilizes immunoglobulin-type antibodies. The cartilaginous fish antibodies fall into three categories: IgW, IgM, and IgNAR. The shark Immunoglobulin Novel Antigen Receptor (IgNAR) constitutes disulfide-bonded dimers of two protein chains, similar to the heavy chain of mammalian IgGs. Shark IgNAR is the primary antibody of a shark's adaptive immune system with a serum concentration of 0.1-1.0 mg/mL. Its structure comprises of one variable (V) domain (VNAR) and five constant (C1 -C5) domains in the secretory form. VNARs are classified into several subclasses based on specific properties such as the quantity and position of additional non-canonical cysteine (Cys) residues in the VNAR. The VDJ recombination in IgNAR comprises various fragments; one variable component, three diverse sections, one joining portion, and a solitary arrangement of constant fragments framed in each IgNAR gene cluster. The re-arrangement happens just inside this gene cluster bringing about a VD1D2D3J segment. Therefore, four re-arrangement procedures create the entire VNAR space. IgNAR antibody can serve as an excellent diagnostic, therapeutic, and research tool because it has a smaller size, high specificity for antigen-binding, and perfect stability. The domain characterization, structural features, types, diversity and therapeutic applications of IgNAR molecules are highlighted in this review. It would be helpful for further research on IgNAR antibodies acting as an essential constituent of the adaptive immune system and a potential therapeutic agent.
Collapse
Affiliation(s)
- Zunera Khalid
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yulei Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China
| | - Du Yu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Misbah Abbas
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ma Huan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zara Naz
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hylemariam Mihiretie Mengist
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China.
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031, China.
| |
Collapse
|
13
|
Pandey SS, Kovaleva M, Barelle CJ, Ubah OC. Overview, Generation, and Significance of Variable New Antigen Receptors (VNARs) as a Platform for Drug and Diagnostic Development. Methods Mol Biol 2022; 2446:19-33. [PMID: 35157267 DOI: 10.1007/978-1-0716-2075-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The approval of the first VHH-based drug caplacizumab (anti-von Willebrand factor) has validated a two-decade long commitment in time and research effort to realize the clinical potential of single-domain antibodies. The variable domain (VNAR) of the immunoglobulin new antigen receptor (IgNAR) found in sharks provides an alternative small binding domain to conventional monoclonal antibodies and their fragments and heavy-chain antibody-derived VHHs. Evolutionarily distinct from mammalian antibody variable domains, VNARs have enhanced thermostability and unusual convex paratopes. This predisposition to bind cryptic and recessed epitopes has facilitated both the targeting of new antigens and new (neutralizing) epitopes on existing antigens. Together these unique properties position the VNAR platform as an alternative non-antibody binding domain for therapeutic drug, diagnostic and reagent development. In this introductory chapter, we highlight recent VNAR advancements that further underline the exciting potential of this discovery platform.
Collapse
|
14
|
Gasperin-Bulbarela J, Cabanillas-Bernal O, Dueñas S, Licea-Navarro AF. Preparation of Immune and Synthetic VNAR Libraries as Sources of High-Affinity Binders. Methods Mol Biol 2022; 2446:71-93. [PMID: 35157269 DOI: 10.1007/978-1-0716-2075-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The shark-derived autonomous variable antibody domains known as VNARs are attractive tools for therapeutic and diagnostic applications due to their favorable properties like small size (approximately 12 kDa), high thermal and chemical stability, and good tissue penetration. Currently, different techniques have been reported to generate VNAR domains against targets of therapeutic interest. Here, we describe methods for the preparation of an immune VNAR library based on bacteriophage display, and for the preparation of a synthetic library of VNAR domains using a modified protocol based on Kunkel mutagenesis. Finally, we describe procedures for in silico maturation of a VNAR using a bioinformatic approach to obtain higher affinity binders.
Collapse
Affiliation(s)
| | | | - Salvador Dueñas
- Biomedical Innovation Department, CICESE, Zona Playitas, Ensenada, Mexico
| | | |
Collapse
|
15
|
Pillay TS, Muyldermans S. Application of Single-Domain Antibodies ("Nanobodies") to Laboratory Diagnosis. Ann Lab Med 2021; 41:549-558. [PMID: 34108282 PMCID: PMC8203438 DOI: 10.3343/alm.2021.41.6.549] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Antibodies have proven to be central in the development of diagnostic methods over decades, moving from polyclonal antibodies to the milestone development of monoclonal antibodies. Although monoclonal antibodies play a valuable role in diagnosis, their production is technically demanding and can be expensive. The large size of monoclonal antibodies (150 kDa) makes their re-engineering using recombinant methods a challenge. Single-domain antibodies, such as “nanobodies,” are a relatively new class of diagnostic probes that originated serendipitously during the assay of camel serum. The immune system of the camelid family (camels, llamas, and alpacas) has evolved uniquely to produce heavy-chain antibodies that contain a single monomeric variable antibody domain in a smaller functional unit of 12–15 kDa. Interestingly, the same biological phenomenon is observed in sharks. Since a single-domain antibody molecule is smaller than a conventional mammalian antibody, recombinant engineering and protein expression in vitro using bacterial production systems are much simpler. The entire gene encoding such an antibody can be cloned and expressed in vitro. Single-domain antibodies are very stable and heat-resistant, and hence do not require cold storage, especially when incorporated into a diagnostic kit. Their simple genetic structure allows easy re-engineering of the protein to introduce new antigen-binding characteristics or attach labels. Here, we review the applications of single-domain antibodies in laboratory diagnosis and discuss the future potential in this area.
Collapse
Affiliation(s)
- Tahir S Pillay
- Department of Chemical Pathology and NHLS- Tshwane Academic Division, University of Pretoria, Pretoria, South Africa.,Division of Chemical Pathology, University of Cape Town, Cape Town, South Africa.,Department of Chemical Pathology, University of Pretoria, Prinshof Campus, Pretoria, South Africa
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
16
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
17
|
Lai JY, Lim TS. Infectious disease antibodies for biomedical applications: A mini review of immune antibody phage library repertoire. Int J Biol Macromol 2020; 163:640-648. [PMID: 32650013 PMCID: PMC7340592 DOI: 10.1016/j.ijbiomac.2020.06.268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Antibody phage display is regarded as a critical tool for the development of monoclonal antibodies for infectious diseases. The different classes of antibody libraries are classified based on the source of repertoire used to generate the libraries. Immune antibody libraries are generated from disease infected host or immunization against an infectious agent. Antibodies derived from immune libraries are distinct from those derived from naïve libraries as the host's in vivo immune mechanisms shape the antibody repertoire to yield high affinity antibodies. As the immune system is constantly evolving in accordance to the health state of an individual, immune libraries can offer more than just infection-specific antibodies but also antibodies derived from the memory B-cells much like naïve libraries. The combinatorial nature of the gene cloning process would give rise to a combination of natural and un-natural antibody gene pairings in the immune library. These factors have a profound impact on the coverage of immune antibody libraries to target both disease-specific and non-disease specific antigens. This review looks at the diverse nature of antibody responses for immune library generation and discusses the extended potential of a disease-specified immune library in the context of phage display.
Collapse
Affiliation(s)
- Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
18
|
Cheong WS, Leow CY, Abdul Majeed AB, Leow CH. Diagnostic and therapeutic potential of shark variable new antigen receptor (VNAR) single domain antibody. Int J Biol Macromol 2020; 147:369-375. [PMID: 31926922 PMCID: PMC7112388 DOI: 10.1016/j.ijbiomac.2020.01.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 12/29/2022]
Abstract
Conventional monoclonal antibodies (mAbs) have been widely used in research and diagnostic applications due to their high affinity and specificity. However, multiple limitations, such as large size, complex structure and sensitivity to extreme ambient temperature potentially weaken the performance of mAbs in certain applications. To address this problem, the exploration of new antigen binders is extensively required in relation to improve the quality of current diagnostic platforms. In recent years, a new immunoglobulin-based protein, namely variable domain of new antigen receptor (VNAR) was discovered in sharks. Unlike conventional mAbs, several advantages of VNARs, include small size, better thermostability and peculiar paratope structure have attracted interest of researchers to further explore on it. This article aims to first present an overview of the shark VNARs and outline the characteristics as an outstanding new reagent for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Wei Shien Cheong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia.
| |
Collapse
|
19
|
Abstract
Phage display antibody libraries have proven an invaluable resource for the isolation of diagnostic and potentially therapeutic antibodies, the latter usually being antibody fragments converted into IgG formats. Recent advances in the production of highly diverse and functional antibody libraries are considered here, including for Fabs, scFvs and nanobodies. These advances include codon optimisation during generation of CDR diversity, improved display levels using novel signal sequences, molecular chaperones and isomerases and the use of highly stable scaffolds with relatively high expression levels. In addition, novel strategies for the batch reformatting of scFv and Fab phagemid libraries, derived from phage panning, into IgG formats are described. These strategies allow the screening of antibodies in the end-use format, facilitating more efficient selection of potential therapeutics.
Collapse
|
20
|
Könning D, Zielonka S, Kaempffe A, Jäger S, Kolmar H, Schröter C. Selection and Characterization of Anti-idiotypic Shark Antibody Domains. Methods Mol Biol 2020; 2070:191-209. [PMID: 31625097 DOI: 10.1007/978-1-4939-9853-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The antibody repertoire of cartilaginous fish comprises an additional heavy-chain-only antibody isotype that is referred to as IgNAR (immunoglobulin novel antigen receptor). Its antigen-binding site consists of one single domain (vNAR) that is reportedly able to engage a respective antigen with affinities similar to those achieved by conventional antibodies. While vNAR domains offer a reduced size, which is often favorable for applications in a therapeutic as well as a biotechnological setup, they also exhibit a high physicochemical stability. Together with their ability to target difficult-to-address antigens such as virus particles or toxins, these shark-derived antibody domains seem to be predestined as tools for biotechnological and diagnostic applications. In the following chapter, we will describe the isolation of anti-idiotypic vNAR domains targeting monoclonal antibody paratopes from semi-synthetic, yeast-displayed libraries. Anti-idiotypic vNAR variants could be employed for the characterization of antibody-based therapeutics (such as antibody-drug conjugates) or as positive controls in immunogenicity assays. Peculiarly, when using semi-synthetic vNAR libraries, we found that it is not necessary to deplete the libraries using unrelated antibody targets, which enables a fast and facile screening procedure that exclusively delivers anti-idiotypic binders.
Collapse
Affiliation(s)
- Doreen Könning
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Anna Kaempffe
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany.,Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sebastian Jäger
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany.,Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Christian Schröter
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany.
| |
Collapse
|
21
|
Buschhaus MJ, Becker S, Porter AJ, Barelle CJ. Isolation of highly selective IgNAR variable single-domains against a human therapeutic Fc scaffold and their application as tailor-made bioprocessing reagents. Protein Eng Des Sel 2019; 32:385-399. [PMID: 32119084 DOI: 10.1093/protein/gzaa002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/12/2019] [Accepted: 01/07/2020] [Indexed: 01/03/2023] Open
Abstract
The adaptive immune system of cartilaginous fish (Elasmobranchii), comprising of classical hetero-tetrameric antibodies, is enhanced through the presence of a naturally occurring homodimeric antibody-like immunoglobulin-the new antigen receptor (IgNAR). The binding site of the IgNAR variable single-domain (VNAR) offers advantages of reduced size (<1/10th of classical immunoglobulin) and extended binding topographies, making it an ideal candidate for accessing cryptic epitopes otherwise intractable to conventional antibodies. These attributes, coupled with high physicochemical stability and amenability to phage display, facilitate the selection of VNAR binders to challenging targets. Here, we explored the unique attributes of these single domains for potential application as bioprocessing reagents in the development of the SEED-Fc platform, designed to generate therapeutic bispecific antibodies. A panel of unique VNARs specific to the SEED homodimeric (monospecific) 'by-products' were isolated from a shark semi-synthetic VNAR library via phage display. The lead VNAR candidate exhibited low nanomolar affinity and superior selectivity to SEED homodimer, with functionality being retained upon exposure to extreme physicochemical conditions that mimic their applicability as purification agents. Ultimately, this work exemplifies the robustness of the semi-synthetic VNAR platform, the predisposition of the VNAR paratope to recognise novel epitopes and the potential for routine generation of tailor-made VNAR-based bioprocessing reagents.
Collapse
Affiliation(s)
- Magdalena J Buschhaus
- Elasmogen Ltd, Liberty Building, Foresterhill Health Campus, Foresterhill Road, Aberdeen AB25 2ZP, UK
| | - Stefan Becker
- Merck Biopharma KGaA, Protein Engineering & Antibody Technologies, Global Research and Development, Frankfurter Str. 250 Darmstadt 64293, Germany
| | - Andrew J Porter
- Elasmogen Ltd, Liberty Building, Foresterhill Health Campus, Foresterhill Road, Aberdeen AB25 2ZP, UK.,Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Caroline J Barelle
- Elasmogen Ltd, Liberty Building, Foresterhill Health Campus, Foresterhill Road, Aberdeen AB25 2ZP, UK
| |
Collapse
|
22
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
23
|
Bobkov V, Arimont M, Zarca A, De Groof TWM, van der Woning B, de Haard H, Smit MJ. Antibodies Targeting Chemokine Receptors CXCR4 and ACKR3. Mol Pharmacol 2019; 96:753-764. [PMID: 31481460 DOI: 10.1124/mol.119.116954] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of the chemokine system is implicated in a number of autoimmune and inflammatory diseases, as well as cancer. Modulation of chemokine receptor function is a very promising approach for therapeutic intervention. Despite interest from academic groups and pharmaceutical companies, there are currently few approved medicines targeting chemokine receptors. Monoclonal antibodies (mAbs) and antibody-based molecules have been successfully applied in the clinical therapy of cancer and represent a potential new class of therapeutics targeting chemokine receptors belonging to the class of G protein-coupled receptors (GPCRs). Besides conventional mAbs, single-domain antibodies and antibody scaffolds are also gaining attention as promising therapeutics. In this review, we provide an extensive overview of mAbs, single-domain antibodies, and other antibody fragments targeting CXCR4 and ACKR3, formerly referred to as CXCR7. We discuss their unique properties and advantages over small-molecule compounds, and also refer to the molecules in preclinical and clinical development. We focus on single-domain antibodies and scaffolds and their utilization in GPCR research. Additionally, structural analysis of antibody binding to CXCR4 is discussed. SIGNIFICANCE STATEMENT: Modulating the function of GPCRs, and particularly chemokine receptors, draws high interest. A comprehensive review is provided for monoclonal antibodies, antibody fragments, and variants directed at CXCR4 and ACKR3. Their advantageous functional properties, versatile applications as research tools, and use in the clinic are discussed.
Collapse
Affiliation(s)
- Vladimir Bobkov
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Marta Arimont
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Aurélien Zarca
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Timo W M De Groof
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Bas van der Woning
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Hans de Haard
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| |
Collapse
|
24
|
Synthetic libraries of shark vNAR domains with different cysteine numbers within the CDR3. PLoS One 2019; 14:e0213394. [PMID: 31206542 PMCID: PMC6576789 DOI: 10.1371/journal.pone.0213394] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/19/2019] [Indexed: 01/09/2023] Open
Abstract
The variable domain of New Antigen Receptors (vNAR) from sharks, present special characteristics in comparison to the conventional antibody molecules such as: small size (12–15 kDa), thermal and chemical stability and great tissue penetration, that makes them a good alternative source as therapeutic or diagnostic agents. Therefore, it is essential to improve techniques used for the development and selection of vNAR antibodies that recognize distinct antigens. The development of synthetic antibody libraries offers a fast option for the generation of antibodies with the desired characteristics. In this work three synthetic antibody libraries were constructed; without cysteines (Cys), with one Cys and with two Cys residues within its CDR3, with the objective of determining whether the presence or absence of Cys in the CDR3 favors the isolation of vNAR clones from a synthetic library. The libraries were validated selecting against six mammalian proteins. At least one vNAR was found for each of the antigens, and a clone coming from the library without Cys in the CDR3 was selected with all the antigens. In vitro angiogenesis assay with the isolated anti-VEGF antibodies, suggest that these vNARs are capable of inhibiting in vitro angiogenesis. In silico analysis of anti-VEGF antibodies showed that vNARs from synthetic libraries could rival antibodies with affinity maturation by in silico modeling.
Collapse
|
25
|
Leow HC, Fischer K, Leow YC, Braet K, Cheng Q, McCarthy J. Cytoplasmic and periplasmic expression of recombinant shark VNAR antibody in Escherichia coli. Prep Biochem Biotechnol 2019; 49:315-327. [DOI: 10.1080/10826068.2019.1566145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Herng C. Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Katja Fischer
- Clinical Tropical Medicine Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Yee C. Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Katleen Braet
- Department of Research, BioMARIC, Zwijnaarde, Belgium
| | - Qin Cheng
- Clinical Tropical Medicine Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Department of Drug Resistance Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - James McCarthy
- Clinical Tropical Medicine Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
26
|
Matz H, Dooley H. Shark IgNAR-derived binding domains as potential diagnostic and therapeutic agents. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:100-107. [PMID: 30236879 DOI: 10.1016/j.dci.2018.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/19/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Many of the most successful drugs generated in recent years are based upon monoclonal antibodies (mAbs). However, for some therapeutic and diagnostic applications mAbs are far from ideal; for example, while their relatively large size and inherent receptor binding aids their longevity in vivo it can also limit their tissue penetration. Further, their structural complexity makes them expensive to produce and prone to denaturation in non-physiological environments. Thus, researchers have been searching for alternative antigen-binding molecules that can be utilized in situations where mAbs are suboptimal tools. One potential source currently being explored are the shark-derived binding domains known as VNARs. Despite their small size VNARs can bind antigens with high specificity and high affinity. Combined with their propensity to bind epitopes that are inaccessible to conventional mAbs, and their ability to resist denaturation, VNARs are an emerging prospect for use in therapeutic, diagnostic, and biotechnological applications.
Collapse
Affiliation(s)
- Hanover Matz
- Dept. Microbiology & Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology (IMET), Baltimore, MD, 21202, USA
| | - Helen Dooley
- Dept. Microbiology & Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology (IMET), Baltimore, MD, 21202, USA.
| |
Collapse
|
27
|
Leow CH, Fischer K, Leow CY, Braet K, Cheng Q, McCarthy J. Isolation and characterization of malaria PfHRP2 specific V NAR antibody fragments from immunized shark phage display library. Malar J 2018; 17:383. [PMID: 30355309 PMCID: PMC6201582 DOI: 10.1186/s12936-018-2531-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/16/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Malaria rapid diagnostic tests (RDTs) represent an important antibody based immunoassay platform. Unfortunately, conventional monoclonal antibodies are subject to degradation shortening shelf lives of RDTs. The variable region of the receptor (VNAR) from shark has a potential as alternative to monoclonal antibodies in RDTs due to high thermal stability. METHODS In this study, new binders derived from shark VNAR domains library were investigated. Following immunization of a wobbegong shark (Orectolobus ornatus) with three recombinant malaria biomarker proteins (PfHRP2, PfpLDH and Pvaldolase), a single domain antibody (sdAb) library was constructed from splenocytes. Target-specific VNAR phage were isolated by panning. One specific clone was selected for expression in Escherichia coli expression system, and study of binding reactivity undertaken. RESULTS The primary VNAR domain library possessed a titre of 1.16 × 106 pfu/mL. DNA sequence analysis showed 82.5% of isolated fragments appearing to contain an in-frame sequence. After multiple rounds of biopanning, a highly dominant clone specific to PfHRP2 was identified and selected for protein production in an E. coli expression system. Biological characterization showed the recombinant protein expressed in periplasmic has better detection sensitivity than that of cytoplasmic proteins. Assays of binding activity indicated that its reactivity was inferior to the positive control mAb C1-13. CONCLUSIONS Target-specific bacteriophage VNARs were successfully isolated after a series of immunization, demonstrating that phage display technology is a useful tool for selection of antigen binders. Generation of new binding reagents such as VNAR antibodies that specifically recognize the malaria biomarkers represents an appealing approach to improve the performance of RDTs.
Collapse
Affiliation(s)
- Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.
| | - Katja Fischer
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Katleen Braet
- Department of Research, BioMARIC, Zwijnaarde, Belgium
| | - Qin Cheng
- Australian Army Malaria Institute, Brisbane, Australia
| | - James McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
28
|
Könning D, Hinz S, Grzeschik J, Schröter C, Krah S, Zielonka S, Kolmar H. Construction of Histidine-Enriched Shark IgNAR Variable Domain Antibody Libraries for the Isolation of pH-Sensitive vNAR Fragments. Methods Mol Biol 2018; 1827:109-127. [PMID: 30196494 DOI: 10.1007/978-1-4939-8648-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The adaptive immune system of sharks comprises a heavy chain-only antibody isotype, referred to as immunoglobulin new antigen receptor (IgNAR). Antigen binding in case of IgNAR antibodies is mediated by a single variable domain (vNAR). Due to their inherent beneficial biophysical properties, such as small size and high thermal stability combined with a high specificity and affinity to their target antigens, vNAR domains emerged as promising tools for biotechnological and biomedical applications. Herein, we present detailed protocols for the engineering of pH-sensitivity into IgNAR V domains by constructing histidine-enriched and CDR3-diversified semisynthetic antibody libraries which can then be screened upon using yeast surface display. Protonation or deprotonation of incorporated histidine residues at different pH values results in structural transitions caused by altered electrostatic interactions. These interactions account for an altered binding behavior toward the target antigen. In the following protocol, we describe the generation of a semisynthetic vNAR master library that comprises two histidine residues on average in the 12-residue CDR3 loop. Moreover, once a pH-dependent vNAR population toward the target antigen is identified, this population can further be optimized in terms of affinity and pH sensitivity upon conducting a CDR1-mediated affinity maturation.
Collapse
Affiliation(s)
- Doreen Könning
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany
| | - Steffen Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Julius Grzeschik
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Christian Schröter
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany
| | - Simon Krah
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
29
|
Grzeschik J, Könning D, Hinz SC, Krah S, Schröter C, Empting M, Kolmar H, Zielonka S. Generation of Semi-Synthetic Shark IgNAR Single-Domain Antibody Libraries. Methods Mol Biol 2018; 1701:147-167. [PMID: 29116504 DOI: 10.1007/978-1-4939-7447-4_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Besides classical antibodies with the composition of heavy and light chains, sharks produce a unique heavy chain only isotype, termed Immunoglobulin New Antigen Receptor (IgNAR), in which antigen binding is solely mediated by a single domain, referred to as vNAR. Owing to their high affinity and specificity combined with their small size and high stability, vNAR domains emerged as promising target-binding scaffolds that can be tailor-made for biotechnological and biomedical applications. Herein, we describe protocols for the construction of semi-synthetic, CDR3-randomized vNAR libraries for the isolation of target-specific antibodies using yeast surface display or phage display as platform technology. Additionally, we provide information for affinity maturation of target-specific molecules through CDR1 diversification and sublibrary establishment.
Collapse
Affiliation(s)
- Julius Grzeschik
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany
| | - Doreen Könning
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany
| | - Simon Krah
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany.,Protein Engineering and Antibody Technologies, Merck-Serono, Merck KGaA, Frankfurter Straße 250, D-64293, Darmstadt, Germany
| | - Christian Schröter
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany.,Protein Engineering and Antibody Technologies, Merck-Serono, Merck KGaA, Frankfurter Straße 250, D-64293, Darmstadt, Germany
| | - Martin Empting
- Department Drug Design and Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany.
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany. .,Protein Engineering and Antibody Technologies, Merck-Serono, Merck KGaA, Frankfurter Straße 250, D-64293, Darmstadt, Germany.
| |
Collapse
|
30
|
Liu JL, Shriver-Lake LC, Anderson GP, Zabetakis D, Goldman ER. Selection, characterization, and thermal stabilization of llama single domain antibodies towards Ebola virus glycoprotein. Microb Cell Fact 2017; 16:223. [PMID: 29233140 PMCID: PMC5726015 DOI: 10.1186/s12934-017-0837-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/28/2017] [Indexed: 12/26/2022] Open
Abstract
Background A key advantage of recombinant antibody technology is the ability to optimize and tailor reagents. Single domain antibodies (sdAbs), the recombinantly produced variable domains derived from camelid and shark heavy chain antibodies, provide advantages of stability and solubility and can be further engineered to enhance their properties. In this study, we generated sdAbs specific for Ebola virus envelope glycoprotein (GP) and increased their stability to expand their utility for use in austere locals. Ebola virus is extremely virulent and causes fatal hemorrhagic fever in ~ 50 percent of the cases. The viral GP binds to host cell receptors to facilitate viral entry and thus plays a critical role in pathogenicity. Results An immune phage display library containing more than 107 unique clones was developed from a llama immunized with a combination of killed Ebola virus and recombinantly produced GP. We panned the library to obtain GP binding sdAbs and isolated sdAbs from 5 distinct sequence families. Three GP binders with dissociation constants ranging from ~ 2 to 20 nM, and melting temperatures from ~ 57 to 72 °C were selected for protein engineering in order to increase their stability through a combination of consensus sequence mutagenesis and the addition of a non-canonical disulfide bond. These changes served to increase the melting temperatures of the sdAbs by 15–17 °C. In addition, fusion of a short positively charged tail to the C-terminus which provided ideal sites for the chemical modification of these sdAbs resulted in improved limits of detection of GP and Ebola virus like particles while serving as tracer antibodies. Conclusions SdAbs specific for Ebola GP were selected and their stability and functionality were improved utilizing protein engineering. Thermal stability of antibody reagents may be of particular importance when operating in austere locations that lack reliable refrigeration. Future efforts can evaluate the potential of these isolated sdAbs as candidates for diagnostic or therapeutic applications for Ebola. Electronic supplementary material The online version of this article (10.1186/s12934-017-0837-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinny L Liu
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Lisa C Shriver-Lake
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - George P Anderson
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Dan Zabetakis
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Ellen R Goldman
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave SW, Washington, DC, 20375, USA.
| |
Collapse
|
31
|
Steven J, Müller MR, Carvalho MF, Ubah OC, Kovaleva M, Donohoe G, Baddeley T, Cornock D, Saunders K, Porter AJ, Barelle CJ. In Vitro Maturation of a Humanized Shark VNAR Domain to Improve Its Biophysical Properties to Facilitate Clinical Development. Front Immunol 2017; 8:1361. [PMID: 29109729 PMCID: PMC5660122 DOI: 10.3389/fimmu.2017.01361] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
Molecular engineering to increase the percentage identity to common human immunoglobulin sequences of non-human therapeutic antibodies and scaffolds has become standard practice. This strategy is often used to reduce undesirable immunogenic responses, accelerating the clinical development of candidate domains. The first humanized shark variable domain (VNAR) was reported by Kovalenko and colleagues and used the anti-human serum albumin (HSA) domain, clone E06, as a model to construct a number of humanized versions including huE06v1.10. This study extends this work by using huE06v1.10 as a template to isolate domains with improved biophysical properties and reduced antigenicity. Random mutagenesis was conducted on huE06v1.10 followed by refinement of clones through an off-rate ranking-based selection on target antigen. Many of these next-generation binders retained high affinity for target, together with good species cross-reactivity. Lead domains were assessed for any tendency to dimerize, tolerance to N- and C-terminal fusions, affinity, stability, and relative antigenicity in human dendritic cell assays. Functionality of candidate clones was verified in vivo through the extension of serum half-life in a typical drug format. From these analyses the domain, BA11, exhibited negligible antigenicity, high stability and high affinity for mouse, rat, and HSA. When these attributes were combined with demonstrable functionality in a rat model of PK, the BA11 clone was established as our clinical candidate.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas Baddeley
- Department of Chemistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Dawn Cornock
- Department of Chemistry, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Andrew J Porter
- Elasmogen Ltd., Aberdeen, United Kingdom.,Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | |
Collapse
|
32
|
Leow CH, Fischer K, Leow CY, Cheng Q, Chuah C, McCarthy J. Single Domain Antibodies as New Biomarker Detectors. Diagnostics (Basel) 2017; 7:diagnostics7040052. [PMID: 29039819 PMCID: PMC5745390 DOI: 10.3390/diagnostics7040052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023] Open
Abstract
Biomarkers are defined as indicators of biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers have been widely used for early detection, prediction of response after treatment, and for monitoring the progression of diseases. Antibodies represent promising tools for recognition of biomarkers, and are widely deployed as analytical tools in clinical settings. For immunodiagnostics, antibodies are now exploited as binders for antigens of interest across a range of platforms. More recently, the discovery of antibody surface display and combinatorial chemistry techniques has allowed the exploration of new binders from a range of animals, for instance variable domains of new antigen receptors (VNAR) from shark and variable heavy chain domains (VHH) or nanobodies from camelids. These single domain antibodies (sdAbs) have some advantages over conventional murine immunoglobulin owing to the lack of a light chain, making them the smallest natural biomarker binders thus far identified. In this review, we will discuss several biomarkers used as a means to validate diseases progress. The potential functionality of modern singe domain antigen binders derived from phylogenetically early animals as new biomarker detectors for current diagnostic and research platforms development will be described.
Collapse
Affiliation(s)
- Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Katja Fischer
- Bacterial Pathogenesis and Scabies Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia.
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kelantan 16150, Malaysia.
| | - Qin Cheng
- Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane 4051, Australia.
| | - Candy Chuah
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan 16150, Malaysia.
| | - James McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia.
| |
Collapse
|
33
|
Kovaleva M, Johnson K, Steven J, Barelle CJ, Porter A. Therapeutic Potential of Shark Anti-ICOSL VNAR Domains is Exemplified in a Murine Model of Autoimmune Non-Infectious Uveitis. Front Immunol 2017; 8:1121. [PMID: 28993766 PMCID: PMC5622306 DOI: 10.3389/fimmu.2017.01121] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/25/2017] [Indexed: 01/11/2023] Open
Abstract
Induced costimulatory ligand (ICOSL) plays an important role in the activation of T cells through its interaction with the inducible costimulator, ICOS. Suppression of full T cell activation can be achieved by blocking this interaction and has been shown to be an effective means of ameliorating disease in models of autoimmunity and inflammation. In this study, we demonstrated the ability of a novel class of anti-ICOSL antigen-binding single domains derived from sharks (VNARs) to effectively reduce inflammation in a murine model of non-infectious uveitis. In initial selections, specific VNARs that recognized human ICOSL were isolated from an immunized nurse shark phage display library and lead domains were identified following their performance in a series of antigen selectivity and in vitro bioassay screens. High potency in cell-based blocking assays suggested their potential as novel binders suitable for further therapeutic development. To test this hypothesis, surrogate anti-mouse ICOSL VNAR domains were isolated from the same phage display library and the lead VNAR clone selected via screening in binding and ICOS/ICOSL blocking experiments. The VNAR domain with the highest potency in cell-based blocking of ICOS/ICOSL interaction was fused to the Fc portion of human IgG1 and was tested in vivo in a mouse model of interphotoreceptor retinoid-binding protein-induced uveitis. The anti-mICOSL VNAR Fc, injected systemically, resulted in a marked reduction of inflammation in treated mice when compared with untreated control animals. This approach inhibited disease progression to an equivalent extent to that seen for the positive corticosteroid control, cyclosporin A, reducing both clinical and histopathological scores. These results represent the first demonstration of efficacy of a VNAR binding domain in a relevant clinical model of disease and highlight the potential of VNARs for the treatment of auto-inflammatory conditions.
Collapse
Affiliation(s)
| | - Katherine Johnson
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | | | | | - Andrew Porter
- Elasmogen Ltd., Aberdeen, United Kingdom
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
34
|
Goldman ER, Liu JL, Zabetakis D, Anderson GP. Enhancing Stability of Camelid and Shark Single Domain Antibodies: An Overview. Front Immunol 2017; 8:865. [PMID: 28791022 PMCID: PMC5524736 DOI: 10.3389/fimmu.2017.00865] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/07/2017] [Indexed: 11/13/2022] Open
Abstract
Single domain antibodies (sdAbs) are gaining a reputation as superior recognition elements as they combine the advantages of the specificity and affinity found in conventional antibodies with high stability and solubility. Melting temperatures (Tms) of sdAbs cover a wide range from below 50 to over 80°C. Many sdAbs have been engineered to increase their Tm, making them stable until exposed to extreme temperatures. SdAbs derived from the variable heavy chains of camelid and shark heavy chain-only antibodies are termed VHH and VNAR, respectively, and generally exhibit some ability to refold and bind antigen after heat denaturation. This ability to refold varies from 0 to 100% and is a property dependent on both intrinsic factors of the sdAb and extrinsic conditions such as the sample buffer ionic strength, pH, and sdAb concentration. SdAbs have also been engineered to increase their solubility and refolding ability, which enable them to function even after exposure to temperatures that exceed their melting point. In addition, efforts to improve their stability at extreme pH and in the presence of chemical denaturants or proteases have been undertaken. Multiple routes have been employed to engineer sdAbs with these enhanced stabilities. The methods utilized to achieve these goals include grafting complementarity-determining regions onto stable frameworks, introduction of non-canonical disulfide bonds, random mutagenesis combined with stringent selection, point mutations such as inclusion of negative charges, and genetic fusions. Increases of up to 20°C have been realized, pushing the Tm of some sdAbs to over 90°C. Herein, we present an overview of the work done to stabilize sdAbs derived from camelids and sharks. Utilizing these various strategies sdAbs have been stabilized without significantly compromising their affinity, thereby providing superior reagents for detection, diagnostic, and therapeutic applications.
Collapse
Affiliation(s)
- Ellen R Goldman
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - Jinny L Liu
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - Dan Zabetakis
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - George P Anderson
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| |
Collapse
|
35
|
Anany H, Chou Y, Cucic S, Derda R, Evoy S, Griffiths M. From Bits and Pieces to Whole Phage to Nanomachines: Pathogen Detection Using Bacteriophages. Annu Rev Food Sci Technol 2017; 8:305-329. [DOI: 10.1146/annurev-food-041715-033235] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- H. Anany
- Canadian Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada N1G 2W1;, ,
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt 11566
| | - Y. Chou
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - S. Cucic
- Canadian Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada N1G 2W1;, ,
| | - R. Derda
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - S. Evoy
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - M.W. Griffiths
- Canadian Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada N1G 2W1;, ,
| |
Collapse
|
36
|
Label free checkerboard assay to determine overlapping epitopes of Ebola virus VP-40 antibodies using surface plasmon resonance. J Immunol Methods 2017; 442:42-48. [PMID: 28109682 DOI: 10.1016/j.jim.2017.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 12/17/2022]
Abstract
Immunoassay formats, in which antibodies provide sensitivity and specificity, are often utilized to provide rapid and simple diagnostic tests. Surface plasmon resonance is frequently used to evaluate the suitability of antibodies by determining binding kinetics to agents or surrogate antigens. We used SPR to evaluate a number of commercial monoclonal antibodies as well as single domain antibodies produced in-house. All the antibodies targeted the Ebola virus viral protein 40 (VP40). We determined the ability of each antibody to bind to immobilized VP40, and ensured they did not bind Ebola glycoprotein or the nucleoprotein. A subset of the monoclonal antibodies was immobilized to characterize antigen capture in solution. It can be advantageous to utilize antibodies that recognize distinct epitopes when choosing reagents for detection and diagnostic assays. We determined the uniqueness of the epitope recognized by the anti-VP40 antibodies using a checkerboard format that exploits the 6×6 array of interactions monitored by the Bio-Rad ProteOn XPR36 SPR instrument. The results demonstrate the utility of surface plasmon resonance to characterize monoclonal and recombinant antibodies. Additionally, the analysis presented here enabled the identification of pairs of anti-VP40 antibodies which could potentially be utilized in sandwich type immunoassays for the detection of Ebola virus.
Collapse
|
37
|
Könning D, Zielonka S, Grzeschik J, Empting M, Valldorf B, Krah S, Schröter C, Sellmann C, Hock B, Kolmar H. Camelid and shark single domain antibodies: structural features and therapeutic potential. Curr Opin Struct Biol 2016; 45:10-16. [PMID: 27865111 DOI: 10.1016/j.sbi.2016.10.019] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022]
Abstract
In addition to canonical antibodies composed of heavy and light chains, the adaptive immune systems of camelids and cartilaginous fish comprise heavy-chain only isotypes (HcAb) devoid of light chains, where antigen-binding is mediated exclusively by one variable domain. Due to their inherent favorable attributes, such as high affinity and specificity for their cognate antigen, extraordinary stability, small size and, most importantly, the possibility to complement classical antibodies in terms of 'drugable' target-space, HcAb-derived entities evolved as promising candidates for biomedical applications of which many have already proven to be successful in early stage clinical trials.
Collapse
Affiliation(s)
- Doreen Könning
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Julius Grzeschik
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department Drug Design and Optimization, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Bernhard Valldorf
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Christian Schröter
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Carolin Sellmann
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Björn Hock
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany.
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.
| |
Collapse
|
38
|
Anderson GP, Teichler DD, Zabetakis D, Shriver-Lake LC, Liu JL, Lonsdale SG, Goodchild SA, Goldman ER. Importance of Hypervariable Region 2 for Stability and Affinity of a Shark Single-Domain Antibody Specific for Ebola Virus Nucleoprotein. PLoS One 2016; 11:e0160534. [PMID: 27494523 PMCID: PMC4975481 DOI: 10.1371/journal.pone.0160534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022] Open
Abstract
Single-domain antibodies derived from the unique New Antigen Receptor found in sharks have numerous potential applications, ranging from diagnostic reagents to therapeutics. Shark-derived single-domain antibodies possess the same characteristic ability to refold after heat denaturation found in single-domain antibodies derived from camelid heavy-chain-only antibodies. Recently, two shark derived single-domain antibodies specific for the nucleoprotein of Ebola virus were described. Our evaluation confirmed their high affinity for the nucleoprotein, but found their melting temperatures to be low relative to most single-domain antibodies. Our first approach towards improving their stability was grafting antigen-binding regions (complementarity determining regions) of one of these single-domain antibodies onto a high melting temperature shark single-domain antibody. This resulted in two variants: one that displayed excellent affinity with a low melting temperature, while the other had poor affinity but a higher melting temperature. These new proteins, however, differed in only 3 amino acids within the complementarity determining region 2 sequence. In shark single-domain antibodies, the complementarity determining region 2 is often referred to as hypervariable region 2, as this segment of the antibody domain is truncated compared to the sequence in camelid single-domain antibodies and conventional heavy chain variable domains. To elucidate which of the three amino acids or combinations thereof were responsible for the affinity and stability we made the 6 double and single point mutants that covered the intermediates between these two clones. We found a single amino acid change that achieved a 10°C higher melting temperature while maintaining sub nM affinity. This research gives insights into the impact of the shark sdAb hypervariable 2 region on both stability and affinity.
Collapse
Affiliation(s)
- George P. Anderson
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States of America
| | - Daniel D. Teichler
- Science and Engineering Apprenticeship Program, Naval Research Laboratory, Washington, DC, United States of America
| | - Dan Zabetakis
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States of America
| | - Lisa C. Shriver-Lake
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States of America
| | - Jinny L. Liu
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States of America
| | - Stephen G. Lonsdale
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Sarah A. Goodchild
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Ellen R. Goldman
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
39
|
Burk R, Bollinger L, Johnson JC, Wada J, Radoshitzky SR, Palacios G, Bavari S, Jahrling PB, Kuhn JH. Neglected filoviruses. FEMS Microbiol Rev 2016; 40:494-519. [PMID: 27268907 PMCID: PMC4931228 DOI: 10.1093/femsre/fuw010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/06/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Eight viruses are currently assigned to the family Filoviridae Marburg virus, Sudan virus and, in particular, Ebola virus have received the most attention both by researchers and the public from 1967 to 2013. During this period, natural human filovirus disease outbreaks occurred sporadically in Equatorial Africa and, despite high case-fatality rates, never included more than several dozen to a few hundred infections per outbreak. Research emphasis shifted almost exclusively to Ebola virus in 2014, when this virus was identified as the cause of an outbreak that has thus far involved more than 28 646 people and caused more than 11 323 deaths in Western Africa. Consequently, major efforts are currently underway to develop licensed medical countermeasures against Ebola virus infection. However, the ecology of and mechanisms behind Ebola virus emergence are as little understood as they are for all other filoviruses. Consequently, the possibility of the future occurrence of a large disease outbreak caused by other less characterized filoviruses (i.e. Bundibugyo virus, Lloviu virus, Ravn virus, Reston virus and Taï Forest virus) is impossible to rule out. Yet, for many of these viruses, not even rudimentary research tools are available, let alone medical countermeasures. This review summarizes the current knowledge on these less well-characterized filoviruses.
Collapse
Affiliation(s)
- Robin Burk
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
- Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Baden-Württemberg, Germany
| | - Laura Bollinger
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Joshua C. Johnson
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Sheli R. Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Peter B. Jahrling
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
40
|
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 2016; 10:922-948. [PMID: 27198131 PMCID: PMC7168043 DOI: 10.1002/prca.201600002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are valuable molecules for the diagnostic and treatment of diseases caused by pathogens and toxins. Traditionally, these antibodies are generated by hybridoma technology. An alternative to hybridoma technology is the use of antibody phage display to generate recombinant antibodies. This in vitro technology circumvents the limitations of the immune system and allows—in theory—the generation of antibodies against all conceivable molecules. Phage display technology enables obtaining human antibodies from naïve antibody gene libraries when either patients are not available or immunization is not ethically feasible. On the other hand, if patients or immunized/infected animals are available, it is common to construct immune phage display libraries to select in vivo affinity‐matured antibodies. Because the phage packaged DNA sequence encoding the antibodies is directly available, the antibodies can be smoothly engineered according to the requirements of the final application. In this review, an overview of phage display derived recombinant antibodies against bacterial, viral, and eukaryotic pathogens as well as toxins for diagnostics and therapy is given.
Collapse
Affiliation(s)
- Philipp Kuhn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Tobias Unkauf
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| |
Collapse
|
41
|
Böldicke T, Miethe S, Fühner V, Schirrmann T, Frenzel A, Hust M. Generation of Recombinant Antibodies Against Toxins and Viruses by Phage Display for Diagnostics and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:55-76. [PMID: 27236552 PMCID: PMC7121732 DOI: 10.1007/978-3-319-32805-8_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antibody phage display is an in vitro technology to generate recombinant antibodies. In particular for pathogens like viruses or toxins, antibody phage display is an alternative to hybridoma technology, since it circumvents the limitations of the immune system. Phage display allows the generation of human antibodies from naive antibody gene libraries when either immunized patients are not available or immunization is not ethically feasible. This technology also allows the construction of immune libraries to select in vivo affinity matured antibodies if immunized patients or animals are available.In this review, we describe the generation of human and human-like antibodies from naive antibody gene libraries and antibodies from immune antibody gene libraries. Furthermore, we give an overview about phage display derived recombinant antibodies against viruses and toxins for diagnostics and therapy.
Collapse
Affiliation(s)
- Thomas Böldicke
- grid.7490.aRecombinant protein exprsn/Intrabdy unit, Helmholtz-Centre for Infection Rese, Braunschweig, Germany
| | - Sebastian Miethe
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Viola Fühner
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany
| | - André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
42
|
Griffiths K, Dolezal O, Cao B, Nilsson SK, See HB, Pfleger KDG, Roche M, Gorry PR, Pow A, Viduka K, Lim K, Lu BGC, Chang DHC, Murray-Rust T, Kvansakul M, Perugini MA, Dogovski C, Doerflinger M, Zhang Y, Parisi K, Casey JL, Nuttall SD, Foley M. i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4. J Biol Chem 2016; 291:12641-12657. [PMID: 27036939 DOI: 10.1074/jbc.m116.721050] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 01/20/2023] Open
Abstract
CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor.
Collapse
Affiliation(s)
| | - Olan Dolezal
- Biomedical Manufacturing, CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052
| | - Benjamin Cao
- the Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria 3800,; Biomedical Manufacturing, CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3168
| | - Susan K Nilsson
- the Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria 3800,; Biomedical Manufacturing, CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3168
| | - Heng B See
- the Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009,; the Centre for Medical Research, University of Western Australia, Crawley, Western Australia 6009
| | - Kevin D G Pfleger
- the Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009,; the Centre for Medical Research, University of Western Australia, Crawley, Western Australia 6009,; Dimerix Bioscience Ltd., Nedlands, Western Australia 6009
| | - Michael Roche
- the Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000,; the Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004
| | - Paul R Gorry
- the School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001
| | - Andrew Pow
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | - Katerina Viduka
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | - Kevin Lim
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | | | | | | | - Marc Kvansakul
- the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | - Matthew A Perugini
- the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | - Con Dogovski
- the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | | | - Yuan Zhang
- the Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Kathy Parisi
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083,; the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | - Joanne L Casey
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | - Stewart D Nuttall
- Biomedical Manufacturing, CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052
| | - Michael Foley
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083,; the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and.
| |
Collapse
|
43
|
Krah S, Schröter C, Zielonka S, Empting M, Valldorf B, Kolmar H. Single-domain antibodies for biomedical applications. Immunopharmacol Immunotoxicol 2015; 38:21-8. [DOI: 10.3109/08923973.2015.1102934] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Zielonka S, Empting M, Grzeschik J, Könning D, Barelle CJ, Kolmar H. Structural insights and biomedical potential of IgNAR scaffolds from sharks. MAbs 2015; 7:15-25. [PMID: 25523873 PMCID: PMC4622739 DOI: 10.4161/19420862.2015.989032] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In addition to antibodies with the classical composition of heavy and light chains, the adaptive immune repertoire of sharks also includes a heavy-chain only isotype, where antigen binding is mediated exclusively by a small and highly stable domain, referred to as vNAR. In recent years, due to their high affinity and specificity combined with their small size, high physicochemical stability and low-cost of production, vNAR fragments have evolved as promising target-binding scaffolds that can be tailor-made for applications in medicine and biotechnology. This review highlights the structural features of vNAR molecules, addresses aspects of their generation using immunization or in vitro high throughput screening methods and provides examples of therapeutic, diagnostic and other biotechnological applications.
Collapse
Key Words
- CDR, complementarity-determining region
- HV, hypervariable region
- IgNAR
- IgNAR V domain, variable domain of IgNAR
- IgNAR, immunoglobulin new antigen receptor
- VH, variable domain of the heavy chain
- VHH, variable domain of camelid heavy chain antibodies
- VL, variable domain of the light chain
- antibody technology
- biologic therapeutic
- heavy chain antibody
- mAbs, monoclonal antibodies
- scFv, single chain variable fragment
- shark
- single chain binding domain
- vNAR, variable domain of IgNAR
Collapse
Affiliation(s)
- Stefan Zielonka
- a Institute for Organic Chemistry and Biochemistry ; Technische Universität Darmstadt ; Darmstadt , Germany
| | | | | | | | | | | |
Collapse
|
45
|
VNARs: An Ancient and Unique Repertoire of Molecules That Deliver Small, Soluble, Stable and High Affinity Binders of Proteins. Antibodies (Basel) 2015. [DOI: 10.3390/antib4030240] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
46
|
de los Rios M, Criscitiello MF, Smider VV. Structural and genetic diversity in antibody repertoires from diverse species. Curr Opin Struct Biol 2015; 33:27-41. [PMID: 26188469 DOI: 10.1016/j.sbi.2015.06.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/09/2015] [Accepted: 06/19/2015] [Indexed: 01/01/2023]
Abstract
The antibody repertoire is the fundamental unit that enables development of antigen specific adaptive immune responses against pathogens. Different species have developed diverse genetic and structural strategies to create their respective antibody repertoires. Here we review the shark, chicken, camel, and cow repertoires as unique examples of structural and genetic diversity. Given the enormous importance of antibodies in medicine and biological research, the novel properties of these antibody repertoires may enable discovery or engineering of antibodies from these non-human species against difficult or important epitopes.
Collapse
Affiliation(s)
- Miguel de los Rios
- Fabrus Inc., A Division of Sevion Therapeutics, San Diego, CA 92121, United States
| | - Michael F Criscitiello
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States
| | - Vaughn V Smider
- Fabrus Inc., A Division of Sevion Therapeutics, San Diego, CA 92121, United States; Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| |
Collapse
|
47
|
Abstract
INTRODUCTION Over the past decade, several library-based methods have been developed to discover ligands with strong binding affinities for their targets. These methods mimic the natural evolution for screening and identifying ligand-target interactions with specific functional properties. Phage display technology is a well-established method that has been applied to many technological challenges including novel drug discovery. AREAS COVERED This review describes the recent advances in the use of phage display technology for discovering novel bioactive compounds. Furthermore, it discusses the application of this technology to produce proteins and peptides as well as minimize the use of antibodies, such as antigen-binding fragment, single-chain fragment variable or single-domain antibody fragments like VHHs. EXPERT OPINION Advances in screening, manufacturing and humanization technologies demonstrate that phage display derived products can play a significant role in the diagnosis and treatment of disease. The effects of this technology are inevitable in the development pipeline for bringing therapeutics into the market, and this number is expected to rise significantly in the future as new advances continue to take place in display methods. Furthermore, a widespread application of this methodology is predicted in different medical technological areas, including biosensing, monitoring, molecular imaging, gene therapy, vaccine development and nanotechnology.
Collapse
Affiliation(s)
- Kobra Omidfar
- Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Biosensor Research Center , Tehran , Iran
| | | |
Collapse
|
48
|
Zielonka S, Weber N, Becker S, Doerner A, Christmann A, Christmann C, Uth C, Fritz J, Schäfer E, Steinmann B, Empting M, Ockelmann P, Lierz M, Kolmar H. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. J Biotechnol 2014; 191:236-45. [PMID: 24862193 DOI: 10.1016/j.jbiotec.2014.04.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/08/2014] [Accepted: 04/28/2014] [Indexed: 11/17/2022]
Abstract
A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold.
Collapse
Affiliation(s)
- Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Niklas Weber
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck Serono, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck Serono, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Andreas Christmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Christine Christmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Christina Uth
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Janine Fritz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Elena Schäfer
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Björn Steinmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department Drug Design and Optimization, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Pia Ockelmann
- Goethe-University Frankfurt, Faculty of Biosciences, Max-von-Laue-Str. 13, D-60438 Frankfurt am Main, Germany; University Hospital Frankfurt, Department of Anesthesiology, Intensive-Care Medicine and Pain Therapy, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Michael Lierz
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus-Liebig University, Gießen, Frankfurter Str. 91-93, D-35392 Giessen, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.
| |
Collapse
|
49
|
Kovaleva M, Ferguson L, Steven J, Porter A, Barelle C. Shark variable new antigen receptor biologics - a novel technology platform for therapeutic drug development. Expert Opin Biol Ther 2014; 14:1527-39. [PMID: 25090369 DOI: 10.1517/14712598.2014.937701] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Biologics drugs have succeeded in achieving a commercial dominance in the global market for new therapies and large pharmaceutical companies' interest remains strong through a continued commitment to pipeline development. It is not surprising, therefore, that next-generation biologics, particularly antibody-like scaffolds that offer many of the advantages of the original biologic drugs but in simplified formats, have entered the clinic as competing substitute therapeutic products, to capture market share. AREAS COVERED Specifically, this paper will position shark-derived variable new antigen receptors (VNARs) within an overview of the existing biologics landscape including the growth, diversity and success to date of alternative scaffolds. The intention is not to provide a comprehensive review of biologics as a whole but to discuss the main competing single-domain technologies and the exciting therapeutic potential of VNAR domains as clinical candidates within this context. EXPERT OPINION The inherent ability to specifically bind target and intervene in disease-related biological processes, while reducing off-site toxicity, makes mAbs an effective, potent and now proven class of therapeutics. There are, however, limitations to these 'magic bullets'. Their size and complexity can restrict their utility in certain diseases types and disease locations. In contrast, a number of so-called alternative scaffolds, derived from both immunoglobulin- and non-immunoglobulin-based sources have been developed with real potential to overcome many of the shortcomings documented for mAb treatments. Unlike competing approaches such as Darpins and Affibodies, we now know that shark VNAR domains (like camel VHH nanobody domains), are an integral part of the adaptive immune system of these animals and have evolved naturally (but from very different starting molecules) to exhibit high affinity and selectivity for target. In addition, and again influenced by the environment in which they have evolved naturally, their small size, simple architecture, high solubility and stability, deliver additional flexibility compared to classical antibodies (and many non-natural alternative scaffolds), thereby providing an attractive basis for particular clinical indications where these attributes may offer advantages.
Collapse
Affiliation(s)
- Marina Kovaleva
- University of Aberdeen, Institute of Medical Sciences, College of Life Sciences and Medicine , Foresterhill, Aberdeen, AB25 2ZD , UK +012 2443 8545 ;
| | | | | | | | | |
Collapse
|
50
|
Liu JL, Zabetakis D, Brown JC, Anderson GP, Goldman ER. Thermal stability and refolding capability of shark derived single domain antibodies. Mol Immunol 2014; 59:194-9. [DOI: 10.1016/j.molimm.2014.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022]
|